高中数学必修5高考题
高中数学必修5基本不等式精选题目(附答案)
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( )A.a+d2>bc B.a+d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2b a +a2b ≥2(当且仅当a =2b 时等号成立), 3c a +a3c ≥2(当且仅当a =3c 时等号成立), 3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10,又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立.由⎩⎨⎧y =3x ,1x +9y =1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy=120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x+3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求+3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
高中数学人教A版必修5习题:第一章解三角形1.1.1含解析
01第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理课时过关·能力提升基础巩固1在△ABC中,下列关系一定成立的是().A.a>b sin AB.a≤b sin AC.a<b sin AD.a≥b sin A答案:D2在△ABC中,若A=60°,a=4√3,b=4√2,则B等于().A.45°或135°B.135°C.45°D.以上答案都不对答案:C3在△ABC中,若sin A>sin B,则角A与角B的大小关系是().A.A>BB.A<BC.A=BD.不确定答案:A4在△ABC中,若a∶b∶c=2∶5∶6,则sin A∶sin B∶sin C等于().A.2∶5∶6B.6∶5∶2C.6∶2∶5D.不确定解析:由正弦定理,知sin A∶sin B∶sin C=a∶b∶c=2∶5∶6.答案:A5在△ABC中,a=20,A=45°,B=75°,则边c的长为. 解析:C=180°-45°-75°=60°.由正弦定理得asinA =csinC,即20sin45°=csin60°,故c=20sin60°sin45°=20×√32√22=10√6.答案:10√66在△ABC中,角A,B,C所对的边分别为a,b,c,若a=√3,b=1,A=π3,则B=.解析:由正弦定理得asinA=bsinB,所以√3sinπ3=1sinB,解得sin B=12,所以B=5π6或B=π6,又因为a=√3,b=1,所以B<A,所以B=π6.答案:π67在△ABC中,A=2π3,a=√3c,则bc=.解析:由正弦定理知sinAsinC =ac=√3,即sin C=sin2π3√3=12,又a>c,可得C=π6,∴B=π−2π3−π6=π6,∴b=c,即bc=1.答案:18在△ABC中,若B=2A,a∶b=1∶√3,则A=.解析:∵B=2A,∴sin B=sin2A,∴sin B=2sin A cos A,∴sinAsinB=12cosA.由正弦定理,得ab =sinAsinB=√3,∴1 2cosA =√3∴cos A=√32.又0°<A<180°,∴A=30°.答案:30°9在△ABC中,a=5,B=45°,C=105°,求边c.解由三角形内角和定理,知A+B+C=180°, 故A=180°-(B+C)=180°-(45°+105°)=30°.由正弦定理,得c=a·sinCsinA=5·sin105°sin30°=5·sin(60°+45°)sin30°=5·sin60°cos45°+cos60°sin45°sin30°=52(√6+√2).10在△ABC中,已知a=√2,b=2,A=30°,解此三角形.解由asinA =bsinB,得sin B=bsinAa=√2=√22.∵0°<B<180°,∴B=45°或B=135°.当B=45°时,C=180°-(A+B)=180°-(30°+45°)=105°.∵csinC=asinA,∴c=asinCsinA =√2sin105°sin30°=√2×√6+√2412=√3+1.当B=135°时,C=180°-(A+B)=180°-(30°+135°)=15°,∴c=asinCsinA =√2sin15°sin30°=√2×√6-√2412=√3−1.综上可得,B=45°,C=105°,c=√3+1或B=135°,C=15°,c=√3−1.能力提升1在△ABC中,A=60°,a=√13,则a+b+csinA+sinB+sinC等于().A.8√33B.2√393C.26√33D.2√3解析:由a=2R sin A,b=2R sin B,c=2R sin C,得a+b+csinA+sinB+sinC =2R=asinA=√13sin60°=2√393.答案:B2在△ABC中,若a=4,A=45°,B=60°,则b的值为().A.2√6B.2+2√3C.√3+1D.2√3+1解析:由正弦定理得,asinA =bsinB,则b=asinBsinA =4sin60°sin45°=2√6.答案:A★3在△ABC中,角A,B,C的对边分别为a,b,c,如果m=(a2,b2),n=(tan A,tan B),且m∥n,那么△ABC 一定是().A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形解析:由m∥n得a2tan B=b2tan A,结合正弦定理有sin 2Bsin2A =tanBtanA,∴sinBsinA=cosAcosB.∴sin2A=sin2B.∴2A=2B或2A+2B=π.∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.故选D.答案:D4在△ABC中,角A,B,C所对的边分别为a,b,c,若3b cos A=c cos A+a cos C,则tan A的值是().A.-2√2B.−√2C.2√2D.√2解析:由正弦定理得b=2R sin B,c=2R sin C,a=2R sin A,则3(2R sin B)cos A=2R sin C cos A+2R sin A cos C,则有3sin B cos A=sin(C+A)=sin B.又∵sin B≠0,则cos A=13>0,∴A为锐角,∴sin A=√1-cos2A=√1-19=2√23,则有tan A=sinAcosA =2√2313=2√2.答案:C5在△ABC中,B=30°,C=120°,则a∶b∶c=. 解析:由题意得A=180°-B-C=30°,则sin A=12,sin B=12,sin C=√32,∴a∶b∶c=sin A∶sin B∶sin C=1∶1∶√3.答案:1∶1∶√36在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA +b2sinB+2csinC=.解析:由正弦定理得asinA=2R=2,b2sinB=R=1,2csinC=4R=4,故asinA+b2sinB+2csinC=2+1+4=7.答案:77已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m=(√3,−1),n=(cos A,sin A),若m⊥n,且a cos B+b cos A=c sin C,则角B=.解析:由题意知m·n=0,∴√3cos A-sin A=0.∴tan A=√3,A=π3.又a cos B+b cos A=c sin C,∴由正弦定理,得sin A cos B+sin B cos A=sin2C,即sin(A+B)=sin2C,sin(π-C)=sin2C,sin C=sin2C.∴sin C=1.∴C=π2.∴B=π6.答案:π6★8已知△ABC为锐角三角形,角A,B,C分别对应边a,b,c,且a=2b sin A,求cos A+sin C的取值范围.解设R为△ABC外接圆的半径.∵a=2b sin A,∴2R sin A=4R sin B sin A.∵sin A≠0,∴sin B=12.∵B为锐角,∴B=π6.令y=cos A+sin C=cos A+sin[π-(B+A)]=cos A+si n(π6+A)=cos A+si nπ6cos A+co sπ6sin A=32cos A+√32sin A=√3sin(A+π3).由△ABC为锐角三角形,知π2−B<A<π2,∴π3<A<π2.∴2π3<A+π3<5π6,∴12<sin(A+π3)<√32.∴√32<√3sin(A+π3)<32,即√32<y<32.∴cos A+sin C的取值范围是(√32,3 2 ).。
(完整版)高中数学必修五综合测试题 含答案
.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。
五年高考三年模拟数学必修五答案
五年高考三年模拟数学必修五答案【篇一:05 高中数学必修5课后习题答案】=txt>第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(p4) 1、(1)a?14,b?19,b?105?;(2)a?18cm,b?15cm,c?75?. 2、(1)a?65?,c?85?,c?22;或a?115?,c?35?,c?13;(2)b?41?,a?24?,a?24. 练习(p8) 1、(1)a?39.6?,b?58.2?,c?4.2 cm;(2)b?55.8?,c?81.9?,a?10.5 cm. 2、(1)a?43.5?,b?100.3?,c?36.2?;(2)a?24.7?,b?44.9?,c?110.4?. 习题1.1 a组(p10) 1、(1)a?38cm,b?39cm,b?80?;(2)a?38cm,b?56cm,c?90? 2、(1)a?114?,b?43?,a?35cm;a?20?,b?137?,a?13cm (2)b?35?,c?85?,c?17cm;(3)a?97?,b?58?,a?47cm;a?33?,b?122?,a?26cm; 3、(1)a?49?,b?24?,c?62cm;(2)a?59?,c?55?,b?62cm;(3)b?36?,c?38?,a?62cm; 4、(1)a?36?,b?40?,c?104?;(2)a?48?,b?93?,c?39?;习题1.1 a组(p10)1、证明:如图1,设?abc的外接圆的半径是r,①当?abc时直角三角形时,?c?90?时,?abc的外接圆的圆心o在rt?abc的斜边ab上.bcac在rt?abc中,?sina,?sinbababab即?sina,?sinb 2r2ra?2rsinab?2rsinb所以,又c?2r?2r?sin90??2rsinc (第1题图1)所以a?2rsina, b?2rsinb, c?2rsinc②当?abc时锐角三角形时,它的外接圆的圆心o在三角形内(图2),作过o、b的直径a1b,连接ac, 1?90?,?bac??bac则?a1bc直角三角形,?acb. 11在rt?a1bc中,即bc?sin?bac1, a1ba?sin?bac?sina, 12r所以a?2rsina,同理:b?2rsinb,c?2rsinc③当?abc时钝角三角形时,不妨假设?a为钝角,它的外接圆的圆心o在?abc外(图3)(第1题图2)作过o、b的直径a1b,连接ac. 1?90?,?bac?180???则?a1bc直角三角形,且?acb11在rt?a1bc中,bc?2rsin?bac1,即a?2rsin(180???bac)即a?2rsina同理:b?2rsinb,c?2rsinc综上,对任意三角形?abc,如果它的外接圆半径等于r,则a?2rsina, b?2rsinb, c?2rsinc2、因为acosa?bcosb,所以sinacosa?sinbcosb,即sin2a?sin2b 因为0?2a,2b?2?,所以2a?2b,或2a???2b,或2a???2??2b. 即a?b或a?b?所以,三角形是等腰三角形,或是直角三角形.在得到sin2a?sin2b后,也可以化为sin2a?sin2b?0 所以cos(a?b)sin(a?b)?0a?b??2.?2,或a?b?0即a?b??2,或a?b,得到问题的结论.1.2应用举例练习(p13)1、在?abs中,ab?32.2?0.5?16.1 n mile,?abs?115?,asab?根据正弦定理,sin?abssin(65??20?)得as?sin(65??20?)?ab?sin?abs16.1?sin115∴s到直线ab的距离是d?as?sin20??16.1?sin115sin20??7.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(p15)1、在?abp中,?abp?180?????,?bpa?180??(???)??abp?180??(???)?(180?????)????在?abp中,根据正弦定理,apab?sin?abpsin?apbapa?sin(180?????)sin(???)a?sin(???)ap?sin(???)asin?sin(???)所以,山高为h?apsin??sin(???)2、在?abc中,ac?65.3m,?bac?????25?25??17?38??7?47? ?abc?90????90??25?25??64?35?acbc?sin?abcsin?bacac?sin?bac65.3?sin7?47?bc???9.8m?sin?abcsin64?35井架的高约9.8m.根据正弦定理,3、山的高度为200?sin38?sin29??382msin9?练习(p16)1、约63.77?. 练习(p18)1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosc?ccosb?b?2ab2aca2?b2?c2a2?c2?b22a2????a?左边【类似可以证明另外两个等式】 2a2a2a习题1.2 a组(p19)1、在?abc中,bc?35?0.5?17.5 n mile,?abc?148??126??22? ?acb?78??(180??148?)?110?,?bac?180??110??22??48?acbc?sin?abcsin?bacbc?sin?abc17.5?sin22?ac???8.82 n milesin?bacsin48?货轮到达c点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?bcd中,?bcd?30??10??40?,?bdc?180???adb?180??45??10??12 5?1cd?30??10 n mile3cdbd根据正弦定理, ?sin?cbdsin?bcd10bd?sin?(180??40??125?)sin40?根据正弦定理,10?sin40?sin15?在?abd中,?adb?45??10??55?,?bad?180??60??10??110? ?abd?180??110??55??15? adbdabadbdab根据正弦定理,,即 ????sin?abdsin?badsin?adbsin15?sin110?sin55?bd?10?sin40??sin15?bd?sin15?10?sin40?ad????6.84 n mile sin110?sin110?sin70?bd?sin55?10?sin40??sin55???21.65 n milesin110?sin15??sin70?如果一切正常,此船从c开始到b所需要的时间为:ad?ab6.84?21.6520??60?10?30??60?86.98 min3030即约1小时26分59秒. 所以此船约在11时27分到达b岛. 4、约5821.71 m5、在?abd中,ab?700 km,?acb?180??21??35??124?700acbc根据正弦定理, ??sin124?sin35?sin21?700?sin35?700?sin21?,bc? ac?sin124?sin124?ab?700?sin35?700?sin21???786.89 kmsin124?sin124?所以路程比原来远了约86.89 km.6、飞机离a处探照灯的距离是4801.53 m,飞机离b处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx?根据正弦定理,sin(81??18.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan81??14721.64 m 飞机与山顶的海拔的差是:x?tan81??sin(81??18.5?)山顶的海拔是20250?14721.64?5528 m8、在?abt中,?atb?21.4??18.6??2.8?,?abt?90??18.6?,ab?15 mabat15?cos18.6?根据正弦定理,,即at? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为at?sin21.4???sin21.4??106.19 msin2.8?326?189、ae??97.8 km 60在?acd中,根据余弦定理:ac?bc?ac101.235(第9题)根据正弦定理,adac?sin?acdsin?adcad?sin?adc57?sin66?sin?acd???0.5144ac101.235?acd?30.96??acb?133??30.96??102.04?在?abc中,根据余弦定理:ab?245.93 ab2?ac2?bc2245.932?101.2352?2042cos?bac???0.58472?ab?ac2?245.93?101.235?bac?54.21?在?ace中,根据余弦定理:ce?90.75ae2?ec2?ac297.82?90.752?101.2352cos?aec???0.42542?ae?ec2?97.8?90.75?aec?64.82?180???aec?(180??75?)?75??64.82??10.18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km. 10、如图,在?abc中,根据余弦定理:ac??37515.44 km ab2?ac2?bc264002?37515.442?422002?bac????0.69242?ab?ac2?6400?37515.44?bac?133.82?,?bac?90??43.82? 所以,仰角为43.82?1111、(1)s?acsinb??28?33?sin45??326.68 cm222aca36(2)根据正弦定理:,c???sinc??sin66.5?sinasincsinasin32.8?11sin66.5?s?acsinb??362??sin(32.8??66.5?)?1082.58 cm2 22sin32.8?(3)约为1597.94 cm2122?12、nrsin.2na2?c2?b213、根据余弦定理:cosb? 2acaa2所以ma?()2?c2?2??c?cosb 22a2a2?c2?b22?()?c?a?c? b22ac11(第13题) ?()2[a2?4c2?2(a2?c2?b2)]?()2[2(b2?c2)?a2]22所以ma,同理mb?,mcb2?c2?a2c2?a2?b214、根据余弦定理的推论,cosa?,cosb?2bc2ca所以,左边?c(acosb?bcosa)c2?a2?b2b2?c2?a2?c(a??b?)2ca2bcc2?a2?b2b2?c2?a21?c(?)?(2a2?2b2)?右边2c2c2习题1.2 b组(p20)abasinb,所以b? ?sinasinbsina11asinb1sinbsinc代入三角形面积公式得s?absinc?a? ?sinc?a222sina2sinaa2?b2?c22、(1)根据余弦定理的推论:cosc?2ab1、根据正弦定理:由同角三角函数之间的关系,sinc?【篇二:五年高考三年模拟(数学)-系列4】class=txt>2009年高考题一、填空题1、(09广东理14)(坐标系与参数方程选做题)若直线??x?1?2t(t为参数)与直线?y?2?3t4x?ky?1垂直,则常数k?x?1?2t337【解析】将?化为普通方程为y??x?,斜率k1??,222?y?2?3t当k?0时,直线4x?ky?1的斜率k2??当k?0时,直线y??综上可知,k??6. 答案?62、(09广东理15) (几何证明选讲选做题)如图3,点a、b、c是圆o上的点,且ab=4,4?3??4?,由k1k2??????????1得k??6; k?2??k?37x?与直线4x?1不垂直. 22?acb?30o,则圆o的面积等于.图3【解析】连结ao,ob,因为 ?acb?30,所以?aob?60,?aob为等边三角形,故圆2o的半径r?oa?ab?4,圆o的面积s??r?16?.oo答案 16? 3、(天津理?13) 设直线l1的参数方程为?x?1?t(t为参数),直线l2的方程为y=3x+4y?1?3t?则l1与l2的距离为_______【解析】由题直线l1的普通方程为3x?y?2?0,故它与与l2的距离为答案3 5|4?2|3。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
高中数学必修5一元二次不等式及其解法精选题目(附答案)
高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。
新版高中数学人教A版必修5习题:第三章不等式 检测A(1)
第三章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若M=2a(a-2),N=(a+1)(a-3),则有().A.M>NB.M≥NC.M<ND.M≤N解析:∵M-N=2a(a-2)-(a+1)(a-3)=2a2-4a-(a2-2a-3)=2a2-4a-a2+2a+3=a2-2a+3=a2-2a+1+2=(a-1)2+2>0,∴M>N.答案:A<0的解集为().2不等式x-3x+2A.{x|-2<x<3}B.{x|x<-2}C.{x|x<-2,或x>3}D.{x|x>3}解析:原不等式等价于(x-3)(x+2)<0,解得-2<x<3.答案:A3若集合A={x|x2-2x>0},B={x|−√5<x<√5},则().A.A∩B=⌀B.A∪B=RC .B ⊆AD .A ⊆B解析:∵x 2-2x=x (x-2)>0,∴x<0或x>2.∴集合A 与B 在数轴上表示为由图象可以看出A ∪B=R ,故选B . 答案:B4不等式组{x ≥0,x +3y ≥6,3x +y ≤6所表示的平面区域的面积等于( ).A .32B.23C.13D.3答案:D5若2x +2y =1,则x+y 的取值范围是( ). A.[0,2] B.[-2,0]C.[-2,+∞)D.(-∞,-2]解析:∵2x +2y =1≥2√2x+y ,∴(12)2≥2x+y ,即2x+y ≤2-2.∴x+y ≤-2.答案:D6若变量x ,y 满足约束条件{x +y -1≤0,3x -y +1≥0,x -y -1≤0,则z =2x +y 的最大值为( ).A.1B.2C.3D.4解析:画出可行域,如图中的阴影部分所示.由图知,z是直线y=-2x+z在y轴上的截距,当直线y=-2x+z经过点A(1,0)时,z取最大值,此时x=1,y=0,则z的最大值是2x+y=2+0=2.答案:B7若a,b∈R,且ab>0,则下列不等式中恒成立的是().A.a2+b2>2abB.a+b≥2√abC.1a +1b>√abD.3ba +a27b≥23解析:由ab>0,得a,b同号.当a<0,b<0时,B,C不成立;当a=b时,A不成立;∵ba >0,∴3ba+a27b≥2√3ba ·a27b=23.答案:D8在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域{x-2≤0,x+y≥0, x-3y+4≥0中的点在直线x+y−2=0上的投影构成的线段记为AB,则|AB|=().A.2√2B.4C.3√2D.6解析:画出不等式组{x-2≤0,x+y≥0,x-3y+4≥0表示的平面区域如图阴影部分所示.作出直线x+y-2=0.设直线x-3y+4=0与x+y=0的交点为C ,直线x=2与直线x+y=0的交点为D. 过C 作CA ⊥直线x+y-2=0于点A , 过D 作DB ⊥直线x+y-2=0于点B ,则区域中的点在直线x+y-2=0上的投影为AB.∵直线x+y-2=0与直线x+y=0平行, ∴|CD|=|AB|.由{x -3y +4=0,x +y =0,得{x =-1,y =1,∴C 点坐标为(-1,1).由{x =2,x +y =0,得{x =2,y =-2,∴D 点坐标为(2,-2).∴|CD|=√9+9=3√2,即|AB|=3√2.故选C .答案:C9已知正实数a ,b 满足4a+b=30,当1a +1b 取最小值时,实数对(a,b)是( ). A.(5,10) B.(6,6)C.(10,5)D.(7,2)解析:1a +1b =(1a +1b )×130×30=130(1a +1b )(4a +b)=130(5+b a +4a b) ≥130(5+2√b a ·4ab)=310, 当且仅当{ba=4ab ,4a +b =30,即{a =5,b =10时取等号.故选A .答案:A10某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元;乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,则甲、乙两车间每天总获利最大的生产计划为( ).A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱 解析:设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意,得{x +y ≤70,10x +6y ≤480,x ≥0,y ≥0,x ,y ∈N ,目标函数z=280x+200y.画出可行域,如图中的阴影部分所示.由图知,目标函数过点A 时,z 取最大值.解方程组{x +y =70,10x +6y =480,得x=15,y=55,即A (15,55).所以甲车间加工原料15箱,乙车间加工原料55箱时,甲、乙两个车间每天总获利最大. 答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11已知x>0,y>0,若x ,y 满足x 3+y4=1,则xy 的最大值为 . 解析:∵x>0,y>0,∴1=x3+y4≥2√x 3·y4=√33√xy,则xy ≤3,当且仅当x3=y4,即x =32,y =2时,等号成立,∴xy 的最大值为3.答案:312若x ,y 满足约束条件{y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为 .如图,作出不等式组所表示的可行域.由z=x+3y ,得y=−13x +z 3.取l 0:x+3y=0,在可行域内平移直线l 0,由图可知直线过A 点时z 最大,由{y -x =1,x +y =3,得A (1,2).所以z max =1+3×2=7. 答案:713当x>1时,log 2x 2+log x 2的最小值为 . 解析:当x>1时,log 2x>0,log x 2>0,所以log 2x 2+log x 2=2log 2x +1log 2x≥2√2log 2x ·1log 2x =2√2,当且仅当2log 2x =1log 2x,即x =2√22时,等号成立,所以log 2x 2+log x 2的最小值为2√2. 答案:2√214如果实数x ,y 满足条件{x -y +1≥0,y +1≥0,x +y +1≤0,那么y -1x -1的取值范围是 .解析:画出可行域如图中的阴影部分所示.设P (x ,y )为可行域内的一点,M (1,1),则y -1x -1=kPM. 由于点P 在可行域内,则由图知k MB ≤k PM ≤k MA .又可得A (0,-1),B (-1,0),则k MA =2,k MB =12,则12≤k PM ≤2,即y -1x -1的取值范围是[12,2].答案:[12,2]15若不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是 . 解析:不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立. 若a+2=0,则显然不成立;若a+2≠0,则{a +2>0,16-4(a +2)(a -1)<0⇔{a >-2,16-4(a +2)(a -1)<0⇔{a >-2,a <-3或a >2⇔a>2.答案:(2,+∞)三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)解不等式组{3x -2x -6≤1,2x 2-x -1>0.解由3x -2x -6≤1得2x+4x -6≤0,∴-2≤x<6.由2x 2-x-1>0得(2x+1)(x-1)>0,∴x>1或x<−12.∴原不等式组的解集为{x |-2≤x <-12,或1<x <6}.17(8分)某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元.若墙高为3 m,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?解设房子的长为x m,宽为y m,总造价为t元,则xy=12,且t=3×x×1200+3×y×800×2+5800 =1200(3x+4y)+5800≥1200×2√12xy+5800=34600(当且仅当3x=4y,即x=4,y=3时,等号成立).故最低总造价是34600元.18(9分)已知函数f(x)=x2-2x-8,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.解f(x)=x2-2x-8.当x>2时,f(x)≥(m+2)x-m-15恒成立,则x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).于是对一切x>2,均有不等式x 2-4x+7x-1≥m成立.∵x2-4x+7x-1=(x−1)+4x-1−2≥2√(x-1)·4x-1−2=2(当且仅当x=3时,等号成立), ∴实数m的取值范围是(-∞,2].19(10分)解关于x的不等式x2-(3m+1)x+2m2+m<0.解∵x2-(3m+1)x+2m2+m=(x-m)[x-(2m+1)],∴方程x2-(3m+1)x+2m2+m=0的两解是x1=m,x2=2m+1.当m<2m+1,即m>-1时,原不等式的解为m<x<2m+1;当m=2m+1,即m=-1时,原不等式无解;当m>2m+1,即m<-1时,原不等式的解为2m+1<x<m.综上所述,当m>-1时,原不等式的解集为{x|m<x<2m+1};当m=-1时,原不等式的解集为⌀;当m<-1时,原不等式的解集为{x|2m+1<x<m }.20(10分)某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,那么{x +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,而z=0.28x+0.9y ,作出不等式组所表示的平面区域,即可行域如图中阴影部分所示.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A 时,z 最小,又直线x+y=35000和直线y =15x 的交点A (875003,175003),故当x =875003,y =175003时,饲料费用最低. 答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
高中数学必修5:一元二次不等式 知识点及经典例题(含答案)
一元二次不等式【知识概述】本节主要为大家讲解一元二次不等式的解法,以及利用一元二次不等式解决其他相关数学问题.通过本节课的学习,要求同学们掌握简单的一元二次不等式或可化为一元二次不等式的分式不等式的解法,能够解决已知二次函数零点的分布考查一元二次方程中未知参数的取值范围的问题.b-4ac)三个二次之间的关系(下表中a>0,△=2【学前诊断】1.[难度] 易不等式0)1)(2(>-+x x 的解集是( )A. }12|{>-<x x x 或B. }12|{<<-x xC. {|12}x x x <->或D. }21|{<<-x x 2. [难度] 易方程0)12(2=+++m x m mx 有两个不相等的实数根,则实数m 的取值范围是( )A. 41->mB. 41-<mC. 41≥mD. 41->m 且0≠m 3. [难度] 中若不等式220ax bx +->的解集是(-2,-41),则a =___________,b =____________【经典例题】例1. 解下列关于x 的不等式(1)(5)(32)6:x x +-≥(2)2(12)20ax a x -++>.例2. 已知不等式20ax bx c ++>的解集为{}24x x <<,求不等式20cx bx a ++<的解集.例3. 若关于x 的不等式2230ax ax -+>对一切实数x 都成立,求a 的取值范围.例4. 若关于x 的不等式2(2)20x a x a -++≥在区间(],1-∞上总成立,求a 的取值范围.例5.若关于x 的不等式22320x ax a +-≤在区间[]1,2-上总成立,求a 的取值范围.例6.若对(],1x ∈-∞-,不等式21()2()12x x m m --<恒成立,求实数m 的取值范围.【本课总结】不等式是高考的基本内容之一,作为重要的工具性知识,在高考数学试卷中一直占有较高的比例,由于不等式内容的高渗透性特征,所以本部分内容的考查形式比较灵活,可以出现在各种题型内,如选择、填空、解答题都可以渗透不等式内容,所以新课标卷对不等式的考查都是小题和大题兼顾,而且由于高考试卷命题的综合性特征明显,单纯考查不等式的题目不是很多,常在一些函数、数列、解析几何和实际应用问题的试题中有所涉及,并在其中充分发挥着工具性作用,不等式高考题的落脚点在于不等式的基础知识和不等式的解法,特别是一元二次不等式(包括含参数和不含参数的)的解法.不等式部分要求考生要有足够的运算求解能力和转化化归能力,且由于解题途径的多样性,又对考生的综合运用所学知识分析和解决问题的能力有较高要求.具体学习时要注意一下几点:1.要特别重视四位一体的综合思维模式,即将二次函数、二次方程、二次不等式、二次函数图像作为有机整体进行思考,并能进行必要的转化,此思维模式中包含重要的数学思想,如数形结合思想、转化思想等,通过数形结合将抽象问题直观化,通过转化则可将复杂问题简单化、将陌生问题熟悉化.2.解一元二次不等式时,要转化为标准形式,即二次项系数大于零,在此背景下才能直接套用不等式的解集公式.3.如果不等式的系数中包含字母参数,则在解不等式时一般要进行分类讨论,在含参问题的讨论中,充分利用二次函数图像突出其直观性是重要的思想方法.此类问题的难点在于含参问题的讨论,许多同学的困惑在于如何确定分类讨论的标准,一般来说此类问题的讨论分三个层次:先讨论二次项系数的符号,如本题中分k=0,k>0;再讨论判别式的符号;在有根的情况下,如有必要再讨论两根之大小关系,若该二次三项式可以因式分解,则不需讨论判别式而直接讨论两根之大小..4. 在含参数的不等式中求参数取值范围,是高考命题的一个趋势.已知不等式恒成立求参数的取值范围,是一种重要的数学模型,如(1)()()f x a x D ≥∈恒成立,求参数a 的取值范围;(2)()()f x g x ≥恒成立,求式中参数m 的取值范围等,此类数学模型一般有两种基本解法,一是转化为求函数的最小值:如()()f x a x D ≥∈恒成立max ()(),f x a x D ⇔≥∈二是分离参数法,将参数m 与自变量x 进行分离,分离参数是一种重要的方法,可避免分类讨论的痛苦,在研究不等式恒成立的问题时非常有效..5.要关注求解不等式的逆向思维问题,即若给出不等式的解集研究原不等式.6.要关注在其他数学问题背景中涉及到一元二次不等式的相关问题,此类问题具有一定的综合性,对解题方法的选择有一定灵活性.【活学活用】1 . [难度] 易若10<<a ,则不等式0)1)((>--a x x a 的解集是( ) A. a x a 1<< B. a x a <<1 C. a x 1>或a x < D. a x 1<或a x > 2. [难度] 中解关于x 的不等式0))((2<--a x a x .3. [难度] 中对于任意实数x ,一元二次不等式0)4()1()12(2>-+++-m x m x m 恒成立,求实数m 的取值范围.。
高中数学必修5基本不等式精选题目(附答案)
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
高中数学必修5常考题型:一元二次不等式及其解法
高中数学必修5常考题型:一元二次不等式及其解法(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2一元二次不等式及其解法(复习课)【常考题型】题型一、简单的分式不等式【例1】 解下列不等式(1)x +21-x <0;(2)x +1x -2≤2. [解] (1)由x +21-x <0,得x +2x -1>0, 此不等式等价于(x +2)(x -1)>0,∴原不等式的解集为{x |x <-2或x >1}.(2)法一:移项得x +1x -2-2≤0, 左边通分并化简有-x +5x -2≤0,即x -5x -2≥0, 它的同解不等式为⎩⎪⎨⎪⎧ x -2x -5≥0,x -2≠0, ∴x <2或x ≥5.∴原不等式的解集为{x |x <2或x ≥5}.法二:原不等式可化为x -5x -2≥0, 此不等式等价于⎩⎪⎨⎪⎧ x -5≥0,x -2>0① 或⎩⎪⎨⎪⎧ x -5≤0,x -2<0,②解①得x ≥5,解②得x <2,∴原不等式的解集为{x |x <2或x ≥5}.【类题通法】1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.【对点训练】3 1.解下列不等式:(1)x +23-x ≥0; (2)2x -13-4x>1. 解:(1)原不等式等价于⎩⎪⎨⎪⎧ x +23-x ≥0,3-x ≠0,即⎩⎪⎨⎪⎧ x +2x -3≤0,x ≠3-2≤x <3.∴原不等式的解集为{x |-2≤x <3}.(2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0. 等价于(3x -2)(4x -3)<0.∴23<x <34. ∴原不等式的解集为{x |23<x <34}. 题型二、不等式中的恒成立问题【例2】 关于x 的不等式(1+m )x 2+mx +m <x 2+1对x ∈R 恒成立,求实数m 的取值范围.[解] 原不等式等价于mx 2+mx +m -1<0,对x ∈R 恒成立,当m =0时,0·x 2+0·x -1<0对x ∈R 恒成立.当m ≠0时,由题意,得⎩⎪⎨⎪⎧ m <0,Δ=m 2-4mm -1<0⎩⎪⎨⎪⎧ m <0,3m 2-4m >0⎩⎪⎨⎪⎧ m <0,m <0,或m >43m <0.综上,m 的取值范围为m ≤0.【类题通法】不等式对任意实数x 恒成立,就是不等式的解集为R ,对于一元二次不等式ax 2+bx +c >0,它的解集为R 的条件为⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0;4一元二次不等式ax 2+bx +c ≥0,它的解集为R 的条件为⎩⎪⎨⎪⎧ a >0,Δ=b 2-4ac ≤0;一元二次不等式ax 2+bx +c >0的解集为的条件为⎩⎪⎨⎪⎧ a <0,Δ≤0.【对点训练】2.若关于x 的不等式ax 2+2x +2>0在R 上恒成立,求实数a 的取值范围.解:当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去; 当a ≠0时,要使原不等式的解集为R ,只需解得a >12. 综上,所求实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. 题型三、一元二次不等式的实际应用【例3】 某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x ≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围.[解] (1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %).依题意得,y =200a (1+2x %)(10-x )%=150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ·10%=20a (万元).依题意得,150a (100+2x )(10-x )≥20a ×83.2%, 化简得x 2+40x -84≤0,∴-42≤x ≤2.又∵0<x <10,∴0<x ≤2.∴x 的取值范围是{x |0<x ≤2}.【类题通法】5用一元二次不等式解决实际问题的操作步骤是:(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题;(3)解这个一元二次不等式,得到实际问题的解.【对点训练】3.某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解:设花卉带的宽度为x m ,则中间草坪的长为(800-2x ) m ,宽为(600-2x ) m .根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +600×100≥0,即(x -600)(x -100)≥0,所以0<x ≤100或x ≥600,x ≥600不符合题意,舍去.故所求花卉带宽度的范围为(0,100] m.【练习反馈】1.若集合A ={x |-1≤2x +1≤3},B ={x |x -2x ≤0},则A ∩B =( ) A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析:选B ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.2.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( )A .-4≤a ≤4B .-4<a <4C .a ≤-4或a ≥4D .a <-4或a >4 解析:选A 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A.3.不等式x +1x ≤3的解集为________. 解析:x +1x ≤3x +1x -3≤02x -1x ≥0x (2x -1)≥0且x ≠0x <0或x ≥12. 答案:⎩⎨⎧⎭⎬⎫x |x <0或x ≥12 4.若函数f (x )=log 2(x 2-2ax -a )的定义域为R ,则a 的取值范围为________.解析:已知函数定义域为R ,即x 2-2ax -a >0对任意x∈R恒成立.∴Δ=(-2a)2+4a<0.解得-1<a<0.答案:(-1,0)5.你能用一根长为100 m的绳子围成一个面积大于600 m2的矩形吗解:设围成的矩形一边的长为x m,则另一边的长为(50-x) m,且0<x<50.由题意,得围成矩形的面积S=x(50-x)>600,即x2-50x+600<0,解得20<x<30.所以,当矩形一边的长在(20,30)的范围内取值时,能围成一个面积大于600 m2的矩形.6。
高中理科数学高考必考题型试卷
高中理科数学高考必考题型试卷必做题:1.三角函数或数列(必修4,必修5)2.立体几何(必修2)3.统计与概率(必修3和选修2-3)4.解析几何(选修2-1)5.函数与导数(必修1和选修2-2)选做题:1.平面几何证明(选修4-1)2.坐标系与参数方程(选修4-4)3.不等式(选修4-5)2数学高考大题题型归纳一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
二、立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
(压轴题)高中数学必修五第三章《不等式》测试题(答案解析)(4)
一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤3.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .324.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6545.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-6.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .89.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<10.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-11.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 15.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 16.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.17.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 18.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.19.实数,x y 满足2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y =+-的最大值是___.20.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________.三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 23.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.24.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 25.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 3.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.4.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.5.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+=⎪⎝⎭ 故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.9.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的10.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,222178321163216162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立. 故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 15.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)559a b a b +=-+-+≥=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =213A C A C C C A C -≤++-=【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.18.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x yx+-=⎧⎨=⎩,得172xy=⎧⎪⎨=⎪⎩即71,2A⎛⎫⎪⎝⎭所以此时斜率为()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.19.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21【分析】画出,x y满足的可行域,当目标函数24z x y=+-经过点()7,9B时,z取得最大值,求解即可.【详解】画出,x y满足的可行域,由20250x yx y-+=⎧⎨--=⎩解得点()7,9B,则目标函数24z x y=+-经过点()7,9B时,z取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.20.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭,两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根 ∴223823x x a x ++=+ 令2238()23x x g x x ++=+ 令()()23,00,5t x =+∈-∞ 则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.23.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥ 所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞. 24.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增,∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.25.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围.【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。
高中数学必修5试题及详细答案(2021年整理)
(完整)高中数学必修5试题及详细答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修5试题及详细答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修5试题及详细答案(word版可编辑修改)的全部内容。
期末测试题考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的.1.在等差数列3,7,11,…中,第5项为( ). A .15B .18C .19D .232.数列{a n }中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列D .首项为1的等比数列3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4B .5C .6D .74.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( ).A .5B .13C .13D .375.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4B .8C .15D .316.△ABC 中,如果A a tan =B b tan =Cctan ,那么△ABC 是( ). A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形7.如果a >b >0,t >0,设M =ba,N =tb ta ++,那么( ). A .M >N B .M <NC .M =ND .M 与N 的大小关系随t 的变化而变化8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1C .a n =n21D .a n =1+log 2 n9.如果a <b <0,那么( ). A .a -b >0B .ac <bcC .a 1>b1D .a 2<b 210.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)的过程.令a =2,b =4,若c ∈(0,1),则输出的为( ).A .MB .NC .PD .∅11.等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 的值为( ).(第10A.50 B.49 C.48 D.4712.设集合A={(x,y)|x,y,1―x―y是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是( ).A B C D13.若{a n}是等差数列,首项a1>0,a4+a5>0,a4·a5<0,则使前n项和S n>0成立的最大自然数n的值为( ).A.4 B.5 C.7 D.814.已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k=( ).A.9 B.8 C.7 D.6二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上.15.已知x是4和16的等差中项,则x=.16.一元二次不等式x2<x+6的解集为.17.函数f(x)=x(1-x),x∈(0,1)的最大值为.18.在数列{a n}中,其前n项和S n=3·2n+k,若数列{a n}是等比数列,则常数k的值为.三、解答题:本大题共3小题,共28分。
高中数学北师大版高二必修5_第三章4.2、4.3_简单线性规划及其应用_作业含解析
⾼中数学北师⼤版⾼⼆必修5_第三章4.2、4.3_简单线性规划及其应⽤_作业含解析⾼中数学北师⼤版⾼⼆必修5_第三章4.2、4.3_简单线性规划及其应⽤_作业含解析[学业⽔平训练]1.设x ,y 满⾜2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ( )A .有最⼩值2,最⼤值3B .有最⼩值2,⽆最⼤值C .有最⼤值3,⽆最⼩值D .既⽆最⼩值,也⽆最⼤值解析:选B.由图像可知z =x +y 在点A 处取最⼩值,即z m in =2,⽆最⼤值.2.设变量x ,y 满⾜x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最⼤值为( )A .20B .35C .45D .55 解析:选D.作出可⾏域如图所⽰.令z =2x +3y ,则y =-23x +13z ,要使z 取得最⼤值,则需求直线y =-23x +13z 在y 轴上的截距的最⼤值,移动直线l 0:y =-23x ,可知当l 0过点C (5,15)时,z 取最⼤值,且z m ax =2×5+3×15=55,于是2x +3y 的最⼤值为55.故选D.3.(2013·⾼考课标全国卷Ⅱ)设x ,y 满⾜约束条件x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最⼩值是( )A .-7B .-6C .-5D .-3解析:选B.作出不等式组表⽰的可⾏域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最⼩值.由?x =3,x -y +1=0,得x =3,y =4,∴z m in =2×3-3×4=-6,故选B.4.直线2x +y =10与不等式组x ≥0y ≥0x -y ≥-24x +3y ≤20,表⽰的平⾯区域的公共点有( )A .0个B .1个C .2个D .⽆数个解析:选B.画出可⾏域如图阴影部分所⽰.∵直线过(5,0)点,故只有1个公共点(5,0).5.已知实数x ,y 满⾜y ≥1,y ≤2x -1,x +y ≤m .如果⽬标函数z =x -y 的最⼩值为-1,则实数m 等于( )A .7B .5C .4D .3解析:选B.画出x ,y 满⾜的可⾏域,可得直线y =2x -1与直线x +y =m 的交点使⽬标函数z =x -y 取得最⼩值,解?y =2x -1,x +y =m 得x =m +13,y =2m -13,代⼊x -y =-1,得m +13-2m -13=-1,解得m =5.6.已知点P (x ,y )的坐标满⾜条件x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最⼩值等于________,最⼤值等于________.解析:画出约束条件对应的可⾏域,如图阴影部分所⽰,∵|PO |表⽰可⾏域上的点到原点的距离,从⽽使|PO |取得最⼩值的最优解为点A (1,1);使|PO |取得最⼤值的最优解为B (1,3),∴|PO |m in =2,|PO |m ax =10.答案:2 107.(2013·⾼考⼤纲全国卷)若x ,y 满⾜约束条件x ≥0,x +3y ≥4,3x +y ≤4,则z =-x +y 的最⼩值为________.解析:由不等式组作出可⾏域,如图阴影部分所⽰(包括边界),且A (1,1),B (0,4),C (0,43).由数形结合知,直线y =x +z 过点A (1,1)时,z m in =-1+1=0.答案:08.某企业⽣产甲、⼄两种产品,已知⽣产每吨甲产品要⽤A 原料3吨、B 原料2吨;⽣产每吨⼄产品要⽤A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨⼄产品可获得利润3万元.该企业在⼀个⽣产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得最⼤利润是________.解析:设该企业⽣产甲产品为x 吨,⼄产品为y 吨,则该企业可获得利润为z =5x +3y ,且x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,联⽴3x +y =13,2x +3y =18,解得?x =3,y =4.由图可知,最优解为P (3,4).故z 的最⼤值为z =5×3+3×4=27(万元).答案:27万元9.已知x ,y 满⾜条件y ≤x ,x +2y ≤4,y ≥-2,若r 2=(x +1)2+(y -1)2(r >0),求r 的最⼩值.解:作出不等式y ≤x ,x +2y ≤4,y ≥-2所表⽰的平⾯区域如图:依据上图和r 的⼏何意义可知:r 的最⼩值是定点P (-1,1)到直线y =x 的距离,即r m in =|1+1|2= 2.10.某⼯⼚制造A 种仪器45台,B 种仪器55台,现需⽤薄钢板给每台仪器配⼀个外壳.已知钢板有甲、⼄两种规格:甲种钢板每张⾯积2 m 2,每张可作A 种仪器外壳3个和B 种仪器外壳5个.⼄种钢板每张⾯积3 m 2,每张可作A 种仪器外壳6个和B 种仪器外壳6个,问甲、⼄两种钢板各⽤多少张才能⽤料最省?(“⽤料最省”是指所⽤钢板的总⾯积最⼩)解:设⽤甲种钢板x 张,⼄种钢板y 张,依题意x ,y ∈N ,3x +6y ≥45,5x +6y ≥55,钢板总⾯积z =2x +3y .作出可⾏域如图所⽰中阴影部分的整点.由图可知当直线z =2x +3y 过点P 时,z 最⼩.由⽅程组3x +6y =45,5x +6y =55得?x =5,y =5. 所以甲、⼄两种钢板各⽤5张⽤料最省.[⾼考⽔平训练]1.若实数x ,y 满⾜不等式组y ≥0x -y ≤42x -y -2≥0,则w =y -1x +1的取值范围是( )A .[-1,13]B .[-12,13]C .[-12,2)D .[-12,+∞)解析:选C.把w =y -1x +1理解为⼀动点P (x ,y )与定点Q (-1,1)连线斜率的取值范围,可知当x =1,y =0时,w m in =-12,且w <2.2.若实数x 、y 满⾜x -y +1≥0,x +y ≥0,x ≤0.则z =3x+2y的最⼩值是________.解析:由不等式组,得可⾏域是以A (0,0),B (0,1),C (-0.5,0.5)为顶点的三⾓形,易知当x =0,y =0时,z ′=x +2y 取最⼩值0.∴z =3x +2y 的最⼩值为1.答案:13.某营养师要为某个⼉童预订午餐和晚餐,已知1个单位的午餐含12个单位的碳⽔化合物,6个单位的蛋⽩质和6个单位的维⽣素C ;1个单位的晚餐含8个单位的碳⽔化合物,6个单位的蛋⽩质和10个单位的维⽣素C.另外,该⼉童这两餐需要的营养中⾄少含64个单位的碳⽔化合物,42个单位的蛋⽩质和54个单位的维⽣素C.如果1个单位的午餐、晚餐的费⽤分别是2.5元和4元,那么要满⾜上述的营养要求,并且花费最少,应当为该⼉童分别预订多少个单位的午餐和晚餐?解:法⼀:设需要预订满⾜要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费⽤为z 元,则依题意,得z =2.5x +4y ,且x ,y 满⾜x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出可⾏域如图,则z 在可⾏域的四个顶点A (9,0),B (4,3),C (2,5),D (0,8)处的值分别是z A =2.5×9+4×0=22.5, z B =2.5×4+4×3=22, z C =2.5×2+4×5=25, z D =2.5×0+4×8=32.⽐较之,z B 最⼩,因此,应当为该⼉童预订4个单位的午餐和3个单位的晚餐,就可满⾜要求.法⼆:设需要预订满⾜要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费⽤为z 元,则依题意,得z =2.5x +4y ,且x ,y 满⾜x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出可⾏域如图,让⽬标函数表⽰的直线2.5x +4y =z 在可⾏域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最⼩值.因此,应当为该⼉童预订4个单位的午餐和3个单位的晚餐,就可满⾜要求.4.已知实数x 、y 满⾜x +y -3≥0,x -y +1≥0,x ≤2,(1)若z =2x +y ,求z 的最⼤值和最⼩值;(2)若z =x 2+y 2,求z 的最⼤值和最⼩值;(3)若z =yx,求z 的最⼤值和最⼩值.解:不等式组x +y -3≥0,x -y +1≥0,x ≤2表⽰的平⾯区域如图阴影部分所⽰.由x +y -3=0,x -y +1=0,得x =1,y =2,∴A (1,2);由x =2,x -y +1=0,得x =2,y =3,∴M (2,3);由x =2,x +y -3=0,得? x =2,y =1,∴B (2,1). (1)∵z =2x +y ,∴y =-2x +z ,当直线y =-2x +z 经过可⾏域内点M (2,3)时,直线在y 轴上的截距最⼤,z 也最⼤,此时z m ax =2×2+3=7.当直线y =-2x +z 经过可⾏域内点A (1,2)时,直线在y 轴上的截距最⼩,z 也最⼩,此时z m in =2×1+2=4.∴z 的最⼤值为7,最⼩值为4.(2)过原点(0,0)作直线l 垂直于直线x +y -3=0,垂⾜为N ,则直线l 的⽅程为y =x .由?y =x ,x +y -3=0,得?x =32,y =32,∴N32,32. 点N 32,32在线段AB 上,也在可⾏域内.此时可⾏域内点M 到原点的距离最⼤,点N 到原点的距离最⼩.⼜|OM |=13,|ON |=92,即92≤x 2+y 2≤13,∴92≤x 2+y 2≤13,∴z 的最⼤值为13,最⼩值为92.(3)∵k OA =2,k OB =12,∴12≤yx≤2,∴z 的最⼤值为2,最⼩值为12.。
高中数学人教版 必修五 数列经典例题 高考题(附黄冈解析答案)
黄冈经典例题高考题(附答案,解析)等差数列例 1、在等差数列{a n}中:1、若a1-a4-a8-a12+a15=2,则a3+a13=___________.2、若a6=5,a3+a8=5,则a10=___________.3、若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=___________.例 2、已知数列{a n}的通项,试问该数列{a n}有没有最大项?若有,求最大项和最大项的项数,若没有,说明理由.例 3、将正奇数1,3,5,7,……排成五列,(如下图表),按图表的格式排下去,2003所在的那列,从左边数起是第几列?第几行?1 3 5 715 13 11 917 19 21 2331 29 27 25…………例 4、设f(x)=log2x-log x4(0<x<1).又知数列{a n}的通项an满足.(1)求数列{a n}的通项公式;(2)判断该数列{a n}的单调性.1.(2009年安徽卷)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.-1B.1C.3D.72.(2009年湖北卷)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图(1)中的1,3,6,10,……,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,……这样的数为正方形数,下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.13783.(江西卷)在数列{a n}中,,则a n=( )A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn等差数列前N项和、等比数列例 1 、在等差数列 {a n}中,(1)已知a15=33,a45=153,求a61;(2)已知S8=48,S12=168,求S4;(3)已知a1-a4-a8-a12+a15=2,求S15;(4)已知S7=42,S n=510,a n-3=45,求n.例 2 、已知数列 {a n}的前n项和,求数列{|a n|}的前n项和S n′.例 3 、设数列 {a n}的首项a1=1,前n项之和S n满足关系式:3tS n-(2t+3)S n-1=3t(t>0,n=2,3,4…)(1)求证:数列{a n}为等比数列;(2)设数列{a n}的公比为f(t),作数列{b n},使(n=2,3,4,…),求b n.(3)求和:b1b2-b2b3+b3b4-…+(-1)n+1b n b n+1.例 4、一个水池有若干出水量相同的水龙头,如果所有水龙头同时放水,那么 24分钟可注满水池,如果开始时,全部放开,以后每隔相等的时间关闭一个水龙头,到最后一个水龙头关闭时,恰好注满水池,而且最后一个水龙头放水的时间恰好是第一个水龙头放水时间的5倍,问最后关闭的这个水龙头放水多少时间?例 5 、在 XOY平面上有一个点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n),…,对每个自然数n,点P n位于函数y=2000(0<a<10)的图象上,且点P n,点(n,0)与点(n+1,0)构成一个以P n为顶点的等腰三角形. (1)求点P n的纵坐标b n的表达式;(2)若对每个自然数n,以b n,b n+1,b n+2为边长能构成一个三角形,求a的取值范围;(3)设B n=b1·b2·…·b n(n∈N*).若a取(2)中确定的范围内的最小整数,求数列{B n}的最大项的项数.1.(2009年宁夏、海南卷)等差数列{a n}的前n项和为S n,已知,,则m=()A.38B.20C.10D.92.(2009年全国1卷)设等差数列{a n}的前n项和为S n,若S9=72,则=_________.3.(2009年福建卷)等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.等比数列前N项和、数列的应用例 1 、 {a n} 为等差数列(d≠0) , {a n} 中的部分项组成的数列恰为等比数列,且 k1=1 ,k2=5 , k3=17 ,求 k1+k2+k3+……+k n的值 .例 2、已知数列 {a n} 满足条件: a1=1 , a2=r(r ﹥ 0) 且 {a n·a n+1} 是公比为 q(q ﹥ 0) 的等比数列,设 b n=a2n a2n(n=1,2, …… ).-1+(1)求出使不等式 a n a n+1+a n+1a n+2> a n+2 a n+3 (n ∈ N*) 成立的 q 的取值范围;(2)求 b n;(3)设,求数列的最大项和最小项的值 .例 3 、某职工年初向银行贷款 2万元用于购房,银行为了推行住房制度改革,贷款优惠的年利率为10%,按复利计算,若这笔贷款要求分10年等额还清,每年一次,并且从贷款后次年年初开始归还,问每年应还多少元?(精确到1元)例 4、在一次人才招聘会上,有 A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资比上一年的月工资的基础上递增5%.设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元?(精确到1元)并说明理由.1.(2009年全国2卷)设等比数列{a n}的前n项和为S n,若,则=___________.2.(2009年北京卷)若数列满足:,则___________;前8项的和___________.(用数字作答)3.(2009年辽宁卷)等比数列{a n}的前n 项和为S n,已知,,成等差数列.(1)求{a n}的公比q;(2)若a1-a3=3,求S n.答案&解析等差数列例一分析:利用等差数列任两项之间的关系:am =an+(m-n)d以及“距首末两端等距离两项的和相等”的性质可简化解答过程.解:,故 5=10-d,∴ d=5.故 a10=a6+4d=5+4×5=25.例二分析:考察数列{an}在哪一范围是递增数列,在哪些范围是递减数列,即可找到最大项.解:由有n≤9.而 an >0,∴当n≤9时,有an+1≥an.即 a1<a2<…<a9=a10>a11>a12>…∴数列{an}中存在最大项,最大项的项数为9或10,最大项为.点评:最大项与最大项的项数是不同概念,一个是项,一个是项号.例三分析:考虑到每行占有四个数,利用周期性进行处理,每一个周期占两行用 8个数,只须确定2003是第几个正奇数,问题就得到解决.解:设2003是第n个正奇数.则 2003=1+(n-1)·2.∴ n=1002.而 1002=8×125+2.∴ 2003在第251行第3列.例四分析:的方程,解方程并注意f(x)的定义域0<x<1即可得通项公式.依据条件列出关于an解:(1)又∵ f(x)定义域为0<x<1,(2)}为递增数列.则数列{an1. 答案:B2.答案:C解析:=n2,由此可排除D(1378不是平方数),将A、B、C选项根据图形的规律可知第n个三角形数为,第n个正方形数为bn代入到三角形数表达式中检验可知,符合题意的是C选项,故选C.3.答案:A等差数列前N项和、等比数列例1 解析:(1) a45 -a15=30d=153 -33 得 d=4 , a61=a45+16d=217.(2)方法 1 S4, S8-S4, S12-S8成等差数列,则 S4+(168 -48) =2(48 -S4)解得 S4= -8方法 2 成等差数列,则,∴ d=2.故.则 S4= -8.(3)∵(4) S7=7a4=42 ∴ a4=6∴ n=20例二解析:∴ an=63 -3n≥0 有 n ≤ 21 误解一=误解二例三解析:(1)∵ n≥2 时∴ {an} 为等比数列 .(2)∵则 {bn } 为等差数列,而 b1=1.∴(3)∵. ∴当 n 为偶数时,当 n 为奇数时例四解析:设有 n 个水龙头,每个水龙头放水时间依次为 x1, x2, x3,…, xn,则数列 {xn} 为等差数列且每个水龙头 1 分钟放水池水,故最后关闭的水龙头放水时间为 40 分钟 .例五解析:(1)∵.(2)∵ 0<a<10 ,则 0<.要使 bn , bn+1, bn+2为边能构成三角形,(3)故{B n} 中最大项的项数为n=20.1.答案:C解析:}是等差数列,所以,由,得:2-=0,所以=2,又,因为{an即=38,即(2m-1)×2=38,解得m=10,故选C.2.答案:24解析:}是等差数列,由,得,∵{an.3.解析:(1)设的公比为,由已知得,解得..(2)由(1)得,,则,.设的公差为,则有,解得.从而.所以数列的前项和.等比数列前N项和、数列的应用例一解答:设公比为 q ,例二解答:(1)由题意得 rq n-1+rq n> rq n+1.由题设 r ﹥ 0,q ﹥ 0 ,故上式 q2-q-1﹤0 ,(2)因为,所以,b1=1+r≠0 ,所以 {bn} 是首项为 1+r ,公比为 q 的等比数列,从而 bn=(1+r)q n-1.(3)由(2)知 bn=(1+r)q n-1,从上式可知当 n-20.2 > 0 ,即 n ≥ 21(n ∈ N) 时, cn随 n 的增大而减小,故①当 n-20.2<0 ,即 n ≤ 20(n ∈ N) 时, cn也随着 n 的增大而减小,故②综合①、②两式知对任意的自然数 n 有 c20≤ cn≤ c21故 {cn } 的最大项 c21=2.25 ,最小项 c20=-4.例三解一:我们把这类问题一般化,即贷款年利率为 a ,贷款额为 M ,每年等额归还 x 元,第 n 年还清,各年应付款及利息分别如下:第 n 次付款 x 元,这次欠款全还清 .第 n-1 次付款 x 元后,过一年贷款全部还清,因此所付款连利息之和为 x(1+a) 元;第 n-2 次付款 x 元后,过二年贷款全部还清,因此所付款连利息之和为 x(1+a)2元;……第一次付款 x 元后,一直到最后一次贷款全部还清,所付款连利息之和为 x(1+a)n-1元.将 a=0.1 , M=20000 , n=10 代入上式得故每年年初应还 3255 元.解二:设每年应还 x 元,第 n 次归还 x 元之后还剩欠款为 an元;则 a0=20000 , a1=20000(1+10%)-x ,an+1=an(1+10%)-x ,∴ an+1-10x=1.1(an-10x) ,故数列 { an-10x} 为等比数列.∴ an -10x= (a-10x)×1.1n,依题意有 a10=10x+(20000-10x) ×1.110=0 ..故每年平均应还 3255 元.例四解答:(1)此人在 A 、 B 公司第 n 年的月工资数分别为:an=1500+230 × (n-1)(n ∈ N*) ,bn=2000(1+5%)n-1(n ∈ N*) .(2)若该人在 A 公司连续工作 10 年,则他的工资收入总量为:12(a1+a2+…+a10)=304200 (元);若该人在 B 公司连续工作 10 年,则他的工资收入总量为:12(b1+b2+…+b10) ≈ 301869 (元).因此在 A 公司收入的总量高些,因此该人应该选择 A 公司 .(3)问题等价于求 Cn =an-bn=1270+230n-2000×1.05n-1(n ∈ N*) 的最大值 .当 n ≥ 2 时, Cn -Cn-1=230-100×1.05n-2,当 Cn -Cn-1> 0 ,即 230-100×1.05n-2> 0 时, 1.05n-2<2.3 ,得 n<19.1,因此,当 2 ≤ n ≤ 19 时, Cn-1<Cn;于是当 n ≥ 20 时, Cn≤ Cn-1.∴ C19=a19-b19≈ 827 (元) .即在 A 公司工作比在 B 公司工作的月工资收入最多可以多827 元.1.答案:3解析:设等比数列的公比为q.当q=1时,.当q≠1时,由.2. 答案:16;255解析:依题知数列{a}是首项为1,且公比为2的等比数列,n.3. 解析:(1)依题意有.由于,故.又,从而.(2)由已知可得.故.从而.。
高中数学必修5解答题专项练习(附答案)
高中数学必修5解答题专项练习一、解答题1.在ΔABC中,a,b,c分别为角A,B,C的对边, 已知sin B2+sin2C=sin2A+65sinB sin C(1)求cos A值;(2)若sin B=2sin C,且ΔABC的面积为165,试求边长a的长.2.已知向量m⃗⃗ =(cosx,−cosx),n⃗=(sinx,cosx),函数f(x)=m⃗⃗ ⋅n⃗+1(Ⅰ)求f(x)的单调增区间;(Ⅱ)在ΔABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1,b=√2,c=3,求边长a.3.如图,在△ABC中,点D在BC边上,∠CAD=π4,AC=72,cos∠ADB=−√210.(1)求sin∠C的值;(2)若BD=5,求△ABD的面积.4.锐角ΔABC的内角A、B,C的对边分别为a,b,c,2sinA(acosB+bcosA)=√3a. (1)求角C的大小;(2)若c=√13,ΔABC的面积为3√3,求ΔABC的周长.5.设函数f(x)=a(x−1x )−2lnx,g(x)=2ex.(1)若函数f(x)在定义域内单调递增,求实数a的取值范围;(2)若在[1,e]上至少存在一个x0,满足f(x0)>g(x0),求实数a的取值范围.6.在① bcosA−c=0,② acosB=bcosA,③ acosC+b=0这三个条件中选择符合题意的一个条件,补充在下面的问题中,并求解.在△ABC中,角A,B,C的对边分别为a,b,c.已知b=√2,c=4,满足______.(1)请写出你的选择,并求出角A的值;(2)在(1)的结论下,已知点D在线段BC上,且∠ADB=3π4,求CD长.7.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=π3.(1)若△ABC的面积等于√3,求a,b;(2)若sinB=2sinA,求△ABC的面积.8.已知集合A={x|x2﹣x﹣2≤0},不等式x2﹣ax﹣a﹣2≤0在集合A上恒成立,求实数a的取值范围.9.在公差为2的等差数列 {a n } 中, a 1+1 , a 2+2 , a 3+4 成等比数列. (1)求 {a n } 的通项公式;(2)求数列 {a n −2n } 的前 n 项和 S n . 10.已知函数 f(x)=x 2+(a −2)x −3 .(1)若函数 f(x) 在 [−2,4] 上是单调函数,求实数a 的取值范围;(2)当 a =5 , x ∈[−1,1] 时,不等式 f(x)>m +2x −4 恒成立,求实数m 的范围. 11.已知函数 f(x)=x 2+m x(1≤x ≤4) ,且 f(1)=5 .(1)求实数m 的值,并求函数 f(x) 的值域;(2)函数 g(x)=ax −1(−2≤x ≤2) ,若对任意 x 1∈[1,4] ,总存在 x 0∈[−2,2] ,使得 g(x 0)=f(x 1) 成立,求实数a 的取值范围.12.已知f (x )=|ax ﹣1|(a ∈R ),不等式f (x )>5的解集为{x|x <﹣3或x >2}. (1)求a 的值;(2)解不等式f (x )﹣f ( x2 )≤2.13.正四棱锥 P −ABCD 的底面正方形边长是4, O 是 P 在底面上的射影, PO =2√2 , Q 是 AC 上的一点, AQ ⃗⃗⃗⃗⃗ =14AC ⃗⃗⃗⃗⃗ ,过 Q 且与 PA 、 BD 都平行的截面为五边形 EFGHL .(1)在图中作出截面 EFGHL (写出作图过程); (2)求该截面面积.14.在 △ABC 中,角 A,B,C 的对边分别为 a,b,c ,已知 sin B +√3cos B =0,a =1,c =2 .(1)求 b ;(2)如图, D 为 AC 边上一点,且 BD ⊥BC ,求 △ABD 的面积..15.已知二次函数f (x )图象过点(0,3),它的图象的对称轴为x = 2,且f (x )的两个零点的平方和为10,求f (x )的解析式.16.已知数列 {a n } 为等差数列,且 d ≠0 , {a n } 的部分项组成等比数列 {b n } ,其中 b n =a k n ,若 k 1=1 , k 2=5 , k =317 , (1)求 k n ;(2)若 a 1=2 ,求数列 {a n k n } 的前 n 项和 S n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC(A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.2.(2010湖南文数)7.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,a ,则A.a >bB.a <bC. a =bD.a 与b 的大小关系不能确定3.(2010天津理数)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -=,sin C B =,则A=(A )030 (B )060 (C )0120 (D )01504.(2010湖南理数)6、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,c =,则A 、a>bB 、a<bC 、a=bD 、a 与b 的大小关系不能确定 5.(2010湖北理数)3.在A B C ∆中,a=15,b=10,A=60°,则cos B =A -3B3C 3D36.(2010辽宁文数)(8)平面上,,O A B 三点不共线,设,O A a O B b == ,则O A B ∆的面积等于(A (B ) (C (D7.(2010天津文数)(9)如图,在ΔABC 中,AD AB⊥,BC =BD,1A D = ,则AC AD ⋅ =(A ) (B )2(C 3(D )8.(2010北京文数)(10)在A B C ∆中。
若1b =,c =,23c π∠=,则a= 。
9.(2010广东理数)11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若, A+C=2B,则sinC= .11.(2010江苏卷)13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b a C ab+=,则tan tan tan tan C C AB+=_______。
12.(2010浙江理数)在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24C =-(I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.13.(2010全国卷2理数)A B C ∆中,D 为边B C 上的一点,33B D =,5sin 13B =,3cos 5ADC ∠=,求A D.14.(2010陕西文数)在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长. 15.(2010辽宁文数)在A B C ∆中,a b c 、、分别为内角A B C、、的对边,且2s i n (2)s i n (a A b c B cb C=+++(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断A B C ∆的形状.16. (2010辽宁理数)在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.17.(2010安徽文数)A B C ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =。
(Ⅰ)求AB AC;(Ⅱ)若1c b -=,求a 的值。
18.(2010浙江文数)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足222)4S a b c =+-。
(Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值。
19.(2010天津文数)(17)(本小题满分12分)。
在∆ABC 中,cos cos AC B ABC=。
(Ⅰ)证明B=C :(Ⅱ)若cos A =-13,求sin 4B 3π⎛⎫+⎪⎝⎭的值。
20.(2010安徽理数)设A B C ∆是锐角三角形,,,a b c 分别是内角,,A B C 所对边长,并且22sin sin() sin() sin 33A B B Bππ=+-+。
(Ⅰ)求角A 的值;(Ⅱ)若12,AB AC a ==,b c (其中b c <)。
数列专题复习1.(广东卷)已知等比数列}{n a 的公比为正数,且3a 〃9a =225a ,2a =1,则1a =A. 21B. 22C.2 D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.73.(江西卷)公差不为零的等差数列{}n a 的前n 项和为nS .若4a 是37a a 与的等比中项,832S =,则10S 等于A. 18B. 24C. 60D. 90 . 4(湖南卷)设nS 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于【 】A .13B .35C .49D . 63 5.(辽宁卷)已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2 (B )-12 (C )12 (D )2 6.(四川卷)等差数列{na }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 1907.(湖北卷)设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列 8.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:. 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中及时三角形数又是正方形数的是A.289B.1024C.1225D.13789.(宁夏海南卷)等差数列{}n a 的前n 项和为nS ,已知2110m m m a a a -++-=,2138m S -=,则m =(A )38 (B )20 (C )10 (D )9 . 10.(重庆卷)设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A .2744nn+B .2533nn +C .2324nn +D .2n n +11.(四川卷)等差数列{na }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 .1(浙江)设等比数列{}n a 的公比12q =,前n 项和为nS ,则44S a =.2.(浙江)设等差数列{}n a 的前n 项和为nS ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为nT ,则4T , , ,1612T T 成等比数列.3.(山东卷)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.(宁夏海南卷)等比数列{na }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = .1.(广东卷文)(本小题满分14分)已知点(1,31)是函数,0()(>=a a x f x且1≠a )的图象上一点,等比数列}{n a 的前n 项和为c n f -)(,数列}{n b )0(>n b 的首项为c ,且前n 项和n S 满足n S -1-n S =n S +1+n S (2n ≥).(1)求数列}{n a 和}{n b 的通项公式;(2)若数列{}11+n n b b 前n 项和为nT ,问nT >20091000的最小正整数n 是多少? .2(浙江文)(本题满分14分)设nS 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数.(I ) 求1a 及na ; (II )若对于任意的*m N ∈,m a ,2m a ,4m a成等比数列,求k 的值.3.(北京文)(本小题共13分)设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,mb 是使得不等式n a m≥成立的所有n 中的最小值.(Ⅰ)若11,23p q ==-,求3b ;(Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由. 参考答案:1.【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q =,又因为等比数列}{n a的公比为正数,所以q =故212a a q===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B 。
【答案】B 3.答案:C 【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得1278a d +=则12,3d a ==-,所以1019010602S a d =+=,.故选C 4.解:172677()7()7(311)49.222a a a a S +++====故选C.或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===故选C.5.【解析】a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 ⇒ d =-12【答案】B6.【答案】B 【解析】设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.【答案】B【解析】可分别求得22=⎪⎪⎩⎭,1[]12=.则等比数列性质易得三者构成等比数列.8.【答案】C 【解析】由图形可得三角形数构成的数列通项(1)2nn a n =+,同理可得正方形数构成的数列通项2n b n=,则由2n b n =()n N +∈可排除A 、D ,又由(1)2nn a n =+知na 必为奇数,故选C.9.【答案】C 【解析】因为{}n a 是等差数列,所以,112m m ma a a -++=,由2110m m m a a a -++-=,得:2ma -2ma =0,所以,ma =2,又2138m S -=,即2))(12(121-+-m a a m =38,即(2m -1)×2=38,解得m =10,故选.C 。