2015年河北省中考数学试卷分析
13-15河北省中考数学试卷分析
65 25 90
54% 21% 75%
↑21% ↓8% ↑13%
61 33 94
51% 27% 78%
↑24% ↓14% ↑10%
基础型:15年比 14年增加21%, 比13年增加24%。
中等难度:15年 比14年降低8%, 比13年降低14%。
综合中低档难 度:15年比14 年增加13%, 比13年增加 10%。
阅读理解类的题目明显呈逐年上长趋势
2013年-阅读理解(15分)
12、两人对矩形的判定,从作图 语句中获取正确信息。
2013年-阅读理解(15分)
15、理解题目意思,以铁丝为例折 成三角形,判定中点位置。
21、理解题目中规定的定 义,根据定义进行解答。
2014年-阅读理解(19分)
13年相 比,14 年降低 0.8%, 15年降 低 2.5%
13-15三年稳 定在10.8%
13年相 比,14 年降低 0.8%, 15年无 变化
考查方式
1
应用大题小题化 历年来压轴题的 考核热点,逐步 减少在解答题中 的涉猎,而是涵 盖在小题里,以 小题形式出现。
2
核心考点的考查 核心考点的分别 出现在选择题、 填空题和解答题, 引起重视。
2013-2015年——实数相关概念及运算
综上所述: 2013-2015 年三年全都考查实数相 关概念及运算中:实数的混合运算、估算无理数 的大小、实数与数轴、负整数指数幂、相反数、 负整数指数幂、偶次方和零指数幂等考点。 中考数学对于实数相关概念及运算的考查在逐 年增加,对具体的知识点的考查也是全面的, 对于实数的运算,算数平方根,指数幂等来 是考试的重点和热点。
2014
试题呈现形式简洁化, 从文字量上看: 减少阅读量的趋势, 2014年比 更多的使用了图形和 符号,体现了数学考 2013年减少了 试的特征与测量要求 近82字,2015 的一致性,避免了因 比2014年减少 阅读量过大而带来的 了672字。 解题障碍或无关信息 的干扰。
13-15河北省中考数学试卷分析
河北中考数学试题分析(2013-2015)纵观2013-2015年的中考数学试题,河北省中考数学经过三年变革,数学试卷基本思路已经明确。
考查内容均在《课程标准》和《考试大纲》所规定的范围之内,但又绝不是照搬和简单的改造,而是对这些素材深入的进行挖掘和创新,以崭新的方式展现,在知识和方法的交汇处进行有机的巧妙整合,从独特的角度切入,问题设置巧妙,试题新颖,并注重了对数学本质问题的考查。
一方面少出或者不出繁、偏、难、怪的题目,减少学生审题障碍,让真正认真学习并且有一定数学思想和方法的学生能得分甚至得高分;另一方面选拔性考试的本质决定了一套卷中有10-20分难题,是需要具有良好的心理素质、较强的临场应变能力和知识迁移能力的学生才能拿到的分。
将经典的传统题型与创新题型相结合,加强探究性问题的考查,注重对数学本质问题和学生能力水平和学习潜能的考查。
一、试卷的总体特点从考查形式上看2013-2015年河北省中考数学试卷依然是选择题、填空题、解答题三大板块,分值分布为42、12、66,题量分布为16、4、6。
不同的是2013-2014年河北省中考数学试卷选择题部分1—6题为每道2分,7—16题为每道3分,2015年1—10题每题3分,11—16题每题2分最后十道各降低一分。
加大中低档题型分数,注重考查学生对基础知识的掌握。
而选择题后6道题的综合性明显高于前10道题,选择题前后题目分值和试题难易度、试题所花时间难成正比。
解答题的分值由2013年的9、10、10、11、12、14和2014年的10、10、11、11、11、13变为2015年的10、10、10、11、11、14,分值变动不大。
从考查内容上看,各章节所占分值比例如下图:2013-2015年河北省中考数学试卷数与式方程(组)/不等式(组)所占比例逐年增加,与2013年相比,2014年增加1.6%,2015年增加2.5%;函数所占比例逐年降低,与2013年相比,2014年降低0.8%,2015年降低2.5%;概率统计所占比例三年一直稳定在10.8%;平面几何所占比例也有所变化,与2013年相比,2014年降低0.8%,2015年无变化。
河北中考数学试卷(含答案解析)
河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究
精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。
如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。
2015年深圳中考数学试卷及试卷分析报告
2.(3 分)用科学记数法表示 316000000 为( ) A.3.16 ×107 B. 3.16 × 108 C. 31.6 × 107 D.31.6 ×106 【分析】 科学记数法的表示形式为 a×10n 的形式,其中 1≤ |a| <10,n 为整数.确定 n 的值时,要
看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1
,参加调查的总人数为
,补全统计图;
( 2)三本以上的圆心角为
.
( 3)全市有 6.7 万学生,三本以上有
人.
20.( 8 分)小丽为了测旗杆 AB的高度,小丽眼睛距地面 1.5 米,小丽站在 C 点,测出旗杆 A 的仰角
为 30°,小丽向前走了 10 米到达点 E,此时的仰角为 60°,求旗杆的高度.
范文范例 学习参考
2015 年省市中考数学试卷
一、选择题:
1.(3 分)﹣ 15 的相反数是(
)
A.15 B.﹣ 15 C. D.
2.(3 分)用科学记数法表示 316000000 为( )
A.3.16 ×107 B. 3.16 × 108 C. 31.6 × 107 D.31.6 ×106
3.(3 分)下列说法错误的是(
)
A.a? a=a2 B .2a+a=3a C.(a3)2=a5 D.a3÷ a﹣1=a4
4.(3 分)下列图形既是中心对称又是轴对称图形的是(
)
A.
B.
C.
D.
5.(3 分)下列主视图正确的是(
)
A.
B.
C.
D.
6.(3 分)在以下数据 75,80, 80,85,90 中,众数、中位数分别是(
近五年中考数学试卷分析
近五年中考数学试卷分析⼀、考点对⽐⼆、试卷分析数学中考主要考察学⽣对基本⽅法、基本知识、基本技能的考查,因此较少偏、怪、难的题⽬,⼤多数题⽬都来源于课本或者课本⽴体的改编,解法都能从课本上找到影⼦。
因此解题的关键就是要回归课本,掌握典型例题、课后习题的规律及解法,这样考试时才能得⼼应⼿,沉着应对。
把2015-2019这五年的中考数学试卷进⾏分析我们可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不⼤,基础题占有122分(82%),有难度拔⾼题占有28分(18%);4、代数部分考查分数⼤概是80~90分(),⼏何部分考查分数60~70分%);5、知识点的考查⽐较有规律,常规题型的变化不⼤三、题型探究1、代数部分(1)函数函数部分是代数部分的重点内容,也是难点内容,考查的对象主要是:⼀次函数、反⽐例函数、⼆次函数。
考查重点在于以下⼏点:函数解析式的求法,难度较低,熟悉待定系数法等⽅法即可;三种函数图像的基本性质的应⽤,难度中等;函数的实际应⽤,常出现在试卷难度最⼤的代数综合题、代⼏综合题中,分值在20-40分不等。
(2015)14.某⽔库的⽔位在5⼩时内持续上涨,初始的⽔位⾼度为6⽶,⽔位以每⼩时⽶的速度匀速上升,则⽔库的⽔位⾼度y ⽶与时间x ⼩时0≤x≤5的函数关系式为 . (2016?⼴州)⼀司机驾驶汽车从甲地去⼄地,他以平均80千⽶/⼩时的速度⽤了4个⼩时到达⼄地,当他按原路匀速返回时.汽车的速度v 千⽶/⼩时与时间t ⼩时的函数关系是()A .v=320tB .v=C .v=20tD .v=(2016)若⼀次函数y=ax+b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是() A .ab >0B .a ﹣b >0C .a 2+b >0 D .a+b >0(2017)关于的⼀元⼆次⽅程有两个不相等的实数根,则的取值范围是A.B.C. D.(2019)若点),1(1y A -,),2(2y B ,),3(3y C 在反⽐例函数xy 6=的图像上,则321,,y y y 的⼤⼩关系是()(A )123y y y << (B )312y y y << (C )231y y y << (D )321y y y << (2)不等式与⽅程不等式与⽅程的复习,要以基础为主,不要只研究难题,要注重过程以及⽅法的总结。
2015年河北省中考数学试题分析
二、典型试题分析
二、典型试题分析
a≠1,联想二次函数图像a>1 (变态解法)
二、典型试题分析
二、典型试题分析
a< -3(变态解法)
二、典型试题分析
二、典型试题分析
动手试一试
二、典型试题分析
送分题
二、典型试题分析
特殊值法: a=2,b=1
二、典型试题分析
∠1+∠2+∠3=60°,∠2 =18°; 60°-2∠2 = 24°(变态解法)
• 9、一元二次函数整体不难,但第三问问及1;4分线段求h 的值,让不少同学中招,分情况讨论时最后两题的惯用手 法,这次也不例外。想到分情况,还要想到检验,对做题 检查结果的同学是好事。
三、试卷的主要特点
1.尊重《课标》,加大了新增内容的考 察力度
今年是对使用新课标教材的第一次考 察,新增的内容无论在选择题、填空题和 解答题中均有体现。如12题一元二次方程 根的判别式、19题正多边形、23题方差的 计算。
• 3、第9题一改往日给图求距离的三角函数考察, 而转化为对方位描述专用术语的概念理解。考点 更贴近课本细微处的概念及生活的常用数学术语。
二、典型试题分析
• 4、第11题加减消元法解二元一次方程组,题目 简单,继14年21题中配方法解一元二次方程之后, 进一步考察各种方程、方程组课本中所涉及的各 种解法的具体步骤理解,基础贴近课本。
三、试卷的主要特点
4.关注过程,注重考查学生的自主探究能力
以能力为立意,以学生的自主探究能力为创新意识, 体现数学课程的发展性。解决问题的能力是学生数学学习 的重要目标,其核心是学生通过“观察、思考、猜想、归 纳、推理”等思维活动,对所呈现的问题情景能够自由探 究,进而解决问题。如:解答题目的26题,以直线、圆、 四边形为背景,以解直角三角形和相似为基础,把动手操 作、实践应用、拓展联想有机的联系在一起,从特殊到一 般,就是要让学生从运动变化中探究不变的数学本质,再 从不变的数学本质出发,寻求变化的规律,题设层层递进, 一环扣一环,使学生经历了问题探究的全过程,从而考查 学生在新问题情境中分析和解决问题的能力。
2015年河北省中考数学试卷与答案解析
2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015?河北)计算:3﹣2×(﹣1)=()A.5B.1C.﹣1 D.6考点:有理数的混合运算.分析:先算乘法,再算减法,由此顺序计算即可.解答:解:原式=3﹣(﹣2)=3+2=5.故选:A.点评:此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015?河北)下列说法正确的是()A.1的相反数是﹣ 1 B.1的倒数是﹣ 1C.1的立方根是±1 D.﹣1是无理数考点:立方根;相反数;倒数;无理数.分析:根据相反数、倒数、立方根,即可解答.解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015?河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C .点评:此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015?河北)下列运算正确的是()A .()﹣1=﹣B .6×107=6000000 C .(2a )2=2a2D .a 3?a 2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.分析:A :根据负整数指数幂的运算方法判断即可.B :科学记数法a ×10n表示的数“还原”成通常表示的数,就是把a 的小数点向右移动n位所得到的数,据此判断即可.C :根据积的乘方的运算方法判断即可.D :根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A 不正确;∵6×107=60000000,∴选项B 不正确;∵(2a )2=4a 2,∴选项C 不正确;∵a 3?a 2=a 5,∴选项D 正确.故选:D .点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n(n 是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a ≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a ×10n表示的数“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10﹣n,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.5.(3分)(2015?河北)如图所示的三视图所对应的几何体是()A.B.C.D.考点:由三视图判断几何体.分析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015?河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE考点:三角形的外接圆与外心.分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015?河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④考点:估算无理数的大小;实数与数轴.分析:根据数的平方,即可解答.解答:解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.点评:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015?河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°考点:平行线的性质;垂线.分析:如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.解答:解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.点评:该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015?河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A .B.C.D.考点:方向角.分析:根据方向角的定义,即可解答.解答:解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.点评:本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015?河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.解答:解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.点评:此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015?河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选 D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015?河北)若关于x的方程x 2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1考点:根的判别式.分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.13.(2分)(2015?河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.考点:概率公式.分析:由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015?河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4考点:两条直线相交或平行问题.专题:计算题.分析:先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.解答:解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015?河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A ,B 为定点,点M ,N 分别为PA ,PB 的中点,∴MN 是△PAB 的中位线,∴MN=AB ,即线段MN 的长度不变,故①错误;PA 、PB 的长度随点P 的移动而变化,所以,△PAB 的周长会随点P 的移动而变化,故②正确;∵MN 的长度不变,点P 到MN 的距离等于l 与AB 的距离的一半,∴△PMN 的面积不变,故③错误;直线MN ,AB 之间的距离不随点P 的移动而变化,故④错误;∠APB 的大小点P 的移动而变化,故⑤正确.综上所述,会随点P 的移动而变化的是②⑤.故选B .点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015?河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A .甲、乙都可以B .甲、乙都不可以C .甲不可以、乙可以D .甲可以、乙不可以考点:图形的剪拼.分析:根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.解答:解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A .点评:本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015?河北)若|a|=20150,则a=±1.考点:绝对值;零指数幂.分析:先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.解答:解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.点评:本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015?河北)若a=2b≠0,则的值为.考点:分式的化简求值.专题:计算题.分析:把a=2b代入原式计算,约分即可得到结果.解答:解:∵a=2b,∴原式==,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015?河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.考点:多边形内角与外角.分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.解答:解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和=(n﹣2)?180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015?河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.考点:等腰三角形的性质.分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解答:解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,…,∴9°n<90°,解得n<10.故答案为:9.点评:考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015?河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.考点:整式的混合运算—化简求值.专题:计算题.分析:(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.解答:解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015?河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.考点:平行四边形的判定;命题与定理.分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.解答:解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.点评:此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.23.(10分)(2015?河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?考点:一次函数的应用.分析:(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.解答:解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015?河北)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A ,B 产品单价变化统计表第一次第二次第三次A 产品单价(元/件) 6 5.2 6.5 B 产品单价(元/件)3.543并求得了A 产品三次单价的平均数和方差:=5.9,s A 2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了25%(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.考点:方差;统计表;折线统计图;算术平均数;中位数.分析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1”列式求m 即可.解答:解:(1)如图2所示:B 产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.点评:本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015?河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.考点:二次函数综合题.分析:(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.解答:解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.点评:本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答(3)题时,注意对h的值根据实际意义进行取舍.26.(14分)(2015?河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x 的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.考点:圆的综合题.分析:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间的距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,求出OS==2,在R t△OSO′中,SO′=OS?tan60°=2,KO′=2﹣在R t△KGO′中,∠O′=30°,求得KG=KO′=﹣,在R t△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα的值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.解答:解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间的距离最小,∴PA的最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,∴S扇形KRQ==,在R t△RKE中,RE=RK?sin60°=,∴S△PRK=?RE=,∴S阴影=+;拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在R t△OSO′中,SO′=OS?tan60°=2,KO′=2﹣,在R t△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在R t△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα的值为:或或.点评:本题考查了矩形的性质,直线与圆的位置关系,勾股定理,锐角三角函数,根据题意正确的画出图形是解题的关键.。
试卷分析报告(通用15篇)
试卷分析报告(通用15篇)在我们平凡的日常里,报告十分的重要,其在写作上具有一定的窍门。
一听到写报告马上头昏脑涨?以下是小编为大家整理的试卷分析报告,仅供参考,大家一起来看看吧。
试卷分析报告篇1一年级总人数23人,考试总分1787分,均分为77.7分,及格人19人,及格率82.6,合格率为82.6%,优生率为40%。
本次考试内容的分为十一项内容,每项内容都是本册教材的基础中重点。
本次测验取得成绩得主要原因:内容符合年级学生的特点,内容的范围比较的广,从字到词,从词到句始终紧扣教材与生活实际。
从学生的总体成绩和上学期期末成绩相比只保持平稳考试阶段,没有上升,也没有下降,但和同年级比,我认为分相差不大,总体成绩还是落后的。
通过本次的测查,可以看出教师在平时教与学中存在不少的问题:1.教师的经验不足,对新的教材理解不透。
2.对学生的书写抓得不实,造成个别同学书写差胳膊少腿。
3.答题粗心大意,有易漏的现象。
4.题型训练花样少,死板。
5.抓两头学生不够扎实,中间学生和特差生距离太大。
改进措施:1.教师深钻年纪教材,熟悉年纪特点,正确把握教材的重难点。
2.多看,多听适合年纪教学资料,经验,不断改进教学方法。
3.在教育教学中,注重学生学习习惯的培养,能力的培养,尤其是写字必须要求正确,规范。
4.在平时的作业,师尽量做到面批面改,发现问题及时改正。
5.阅读教学做到以“读”字当头,多读,精讲,多练填空,重视朗读背诵的指导及言语积累。
6.多于家长配合,狠抓学生的书写。
7.重视单元测试,让学生多熟悉不同题型。
8.在班内形成以好带差,促进“互学互帮互进步”的新风尚。
奋斗目标:在后半学期师要认真熟悉吃透本年级教材的重点与难点,要狠抓差生,特别是王海娟,马佳丽,力争期末考试成绩排列在平行年级中或者是中上。
试卷分析报告篇2一、总体分析这一份期末考卷,可以说是命题者花了一定心思,出的非常成功。
考卷突出了检查学生一个学期所掌握的知识和所具有的语文能力,重视语文基础知识的考查,突出对学生语文素养的考查,对今后的中考复习具有较强的指导性。
2012年河北省中考数学试题(解析版)
2012年河北省中考数学试题本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)2.计算3()ab 的结果是( )A .3abB .3a bC .33a b D .3ab[答案] C[考点] 幂的相关运算:积的乘方[解析] 幂的运算法则中:()nn nab a b =,依此得333()ab a b = 解: 333()ab a b =,故选C 。
3.图1中几何体的主视图是( )[答案] A[考点] 简单几何体的三视图:正视图[解析] 正视图是从正面看所得到的图形,从正面看所得到的图形。
解:正视看所得到的图形是A ,故选A. 4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.4 [答案] C[考点] 不等式:一元一次不等式组的解,[解析] 一元一次不等式组解,是使得不等式组中每一个不等式都成立的x 的值。
解:验证:1x =时,230x ->不成立,淘汰A ; 0x =时,230x ->不成立,淘汰B ; 4x =时,40x -<不成立,淘汰D,故选C.5.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE >B .AD BC = C .12D AEC =∠∠ D .ADE CBE △∽△[答案] D[考点] 圆:圆周角定理、垂径定理、同弧上圆周角与圆心角的关系;相似三角形的判定。
[解析] 本题逐一排查费时,容易证明ADE CBE △∽△,直接证明即可。
解:在ADE CBE △和△中A C DB ∠=∠⎧⎪⎨⎪∠=∠⎩(圆内同弧所对的圆周角相等)ADE CBE ∴△∽△(两个角对应相等的两个三角形相似),故选D 。
6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上 [答案] B[考点] 概率:随机事件[解析] 掷一枚质地均匀的硬币是随机事件,因此A 、C 、D 都错误,故选D 。
2008-2012年河北省中考数学试卷分析与趋势
2008—2012年河北省中考数学试卷变化特点与趋势
一、试题特点
1、注重双基,紧抓主干着重考查了学科知识体系的知识主干内容以及应用性较强的知识。
试题分值和题目位置的变化使考察重点向基础知识部分倾斜,同时压轴题又能起到很好的选拔性考试应有的区分度。
2、注重考察学生综合能力。
着力考查学生的阅读理解能力,应用探究能力,实践操作能力,综合创新能力。
试题在全面考查数学核心内容基础上,注重考查学生灵活运用数学知识解决问题的能力,关注对数学活动过程的考查,加强了探究性问题的设计与应用,注意考查学生的观察、实验猜想、推理能力。
3、突出对数学思想方法的考查,关注数学素养的培养。
如整体思想、数形结合思想、函数与方程思想、分类思想、转化思想、配方法、待定系数法、换元法等。
同时注重考察数学模型思想,注重考查建模过程和建模能力。
4、试题呈现形式简洁,减少无效的阅读量,文字材料向图像材料、表格材料、图片材料转换。
使题意直接明了,降低学生审题障碍和无关信息的干扰。
二、考查知识点分布
三、解答题类型。
近六年河北省对口升学数学高考题分析(2019) 郭春敏
2014----2019年河北省对口升学数学高考题分析郭春敏2019.82014----2019年河北省对口升学数学高考题分析郭春敏2019.8从河北省开始对口升学到现在,中间经历了很多。
从12年新课标至今已有8年时间,数学因为拉分容易,加上难度变换不定,可以说是考试最害怕的一个学科。
进五年,河北省对口高考数学卷的结构趋于稳定,难度上大体相当,2018年数学总体偏难,很多考生没有考好,很多数学老师预测2019年数学高考题难度应当下降,题比较简单。
预计2020会比2018年的高考题相当甚至要难一些。
选择填空会以基础呈现,属于简单和中等难度题,解答题一共7道题,题型比较固定,考察的知识点一般不会出现比较大的笔画。
一、近五年高考数学考点分布统计表:二、从近6年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。
具体来说几个方面:1.整体稳定,覆盖面广全面考查了新课标考试说明中各部分的内容,可以说教材中各章的内容都有所涉及。
2.重视基础,难度适中试题以考查高中基础知识为主线,在基础中考查能力。
但是2018年高考题整体来说难度偏高,2019年高考题整体来说难度偏低。
预计2020年的考题难度会与2018年相当3.突出通性通法、理性思维和思想方法的考查数学思想方法是对数学知识的最高层次的概括与提炼,是适用于中学数学全部内容的通法,是高考考查的核心。
数形结合的思想、方程的思想、分类讨论的思想等在高考中每年都会考查。
尤其数形结合,每年还专门有一道“新函数”的大致图象问题4. 注重能力考查,有效区分不同思维层次的学生三、高考策略分析高三一年的复习可以分为四个阶段:一轮复习要点:时间相对较长从开学一直持续到寒假,各学校主要围绕一轮复习资料讲解基本的题型和概念知识。
河北省中考数学试卷分析按年级分数占比
10
八年级50%:60分 九年级30%:36分
分值
合 计
3 3
3
3 3 3 3 3 42 3 3 2 2 2 2 2
2 3 3 10 4 9 9 9 9 10 68
10
12
120 120
0%:36分
备注
1、考试内容为课标所规定的人教版7—9年级教学内 中的数与代数、图形与几何、统计与概率、三部分的 内容 2、题型分选择题、填空题、解答题。近几年选择题 道共42分,没有变化;填空题3道,2020年共12分, 2019年共11分,2018年共12分,2017年共10分;解答 题7道共66分 3、数与代数占50%、图形与几何占40%、统计与概率 10% 4、综合与实践内容不单独划分比例,考试中将其内
圆综合题
二次函数综合应用 题
河北省5五年数学试卷分析
具体知识点
三角形的性质(稳定性) 科学计数法(原数中0的个数)
轴对称图形的对称轴
完全平方公式的变形 三视图判断几何体 垂线、垂直平分线、角平分线 等式的性质 线段垂直平分线的判定 平 有均理数数与一方般差计分算析(倒数、绝对值、众数、零指 数 方幂向及角整式的运算) 用字母表示数 有理数运算中的乘方公式:同底数幂乘法 分式化简(分式的乘除法) 三角形内心的应用
16 八年级下 第二章 填 17 八年级下 第一章 空 18 八年级上 第一章 题 19 九年级下 第一章
20 七上第一章 七下第四章 21 七上第一章 九上 第一章 22 八上第一章 九上 第四章 23 八下第四章 九上 第一章 解 答 24 八下第四章 题
25 七上第一章 七下 第四章
26 八上第一章 九上 第二章
七年级上册 第二章 七年级上册 第一章 八年级上册 第十五章 八年级上册 第十一章
2023年河北省中考数学真题(解析版)
2023年河北省初中毕业生升学文化课考试数学试卷一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =,可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形37P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或m ,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k <<∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 3BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯= ,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m ∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了(10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛=-++- -⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP '∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105AD DBA BD ∠===,∴2103sin 35BQ BP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB ==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQ HA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。
2024年河北省中考真题数学试卷含答案解析
2024年河北省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .【答案】A 【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是( )A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线【答案】B 【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .【答案】D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是( )A .38a b+=B .38a b =C .83a b +=D .38a b=+【答案】A 【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( )A .13∠=∠,AASB .13∠=∠,ASAC .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( )A .x B .y C .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法⨯,运算结果为3036.图运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132232表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.【答案】89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若1<<+,则n=;n n(2)若1,1-<<<<+,则满足条件的a的个数总比b的个数少个.n n n n2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为4-,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;∠的值.(2)求CP的长及sin APC∵1tan tan 4CH PAE AH α=∠==,设∴()22249x x AC +==,解得:31717x =,∴317CH =m,23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,此时2BP '=,222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 此时2CP CQ ==,222PQ =+=∴22BP =-,综上:BP 的长为2或22-.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p=;当150p x ≤≤时,()2080150x p y p -=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)9510010511115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =ABC 中,90,3,ABC AB BC ∠=︒==先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B与点N重合时,求劣弧 AN的长;∥时,如图2,求点B到OA的距离,并求此时x的值;(2)当OA MN(3)设点O到BC的距离为d.①当点A在劣弧 MN上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;∵25MN =,O H M N ⊥,∴5MH NH ==,而OM =∴222OH OM MH =-==∴点B 到OA 的距离为2;⊥于J,过O作过O作OJ BC∴四边形KOJB为矩形,=,∴OJ KB∵3AB=,32BC=,∴2233=+=,AC AB BC⊥于Q 如图,过A作AQ OB⊥∵B为MN中点,则OB MN∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO ∠+∠=︒=∠∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴122OJ BQ BJ AQ ==,26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+,∴()44266b -+=-,解得:8622b =-,∴直线l 为:48622y x =+-,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()21,2N n n t ⎡--+⎢⎣∴L 的横坐标为2m n +,。
中考数学试卷考纲考点分析
中考数学试卷考纲考点分析中考数学试卷考纲考点分析基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
今天在这给大家整理了一些中考数学试卷考纲考点分析,我们一起来看看吧!中考数学试卷考纲考点分析对于任意一个实数x,都对应着的角(弧度制中等于这个实数),而这个角又对应着确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。
记作f(x)=cscxf(x)=cscx=1/sinx相信同学们看过上述的初中数学余割函数的基础公式定理内容之后,有所感悟了吧。
其实和正弦型函数的解析式差不多,余弦型函数的解析式各常数值对函数图像的影响很大。
余弦型函数余弦型函数解析式:y=Acos(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图“五点作图法”即取ωx+φ当分别取0,π/2,π,3π/2,2π时y的值.在考试当中,余弦型函数的解析式经常运用在函数的综合大题中,是拿分的关键。
在直角坐标系中定义的余弦函数图像,我们相对更容易分析其的对称性特点。
图象性质1)对称轴:关于直线x=kπ,k∈Z对称2)中心对称:关于点(π/2+kπ,0),k∈Z对称作法一、运用五点法做出图象。
二、利用正弦函数导出余弦函数。
①可以由诱导公式六:sin(π/2-α)=cosα导出y=cosx=sin(π/2+x)②因此,y=cosx的图像就相对sinx左移π/2个单位(上增下减是y值的变化,左增右减是x值的变化)初中数学余弦函数的图象的作法有上述两大要点,图像为解题提供了直观的思路。
性质(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R(3)奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心(4)周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;(5)单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。
2015年河北中考数学试题分析
目难度低却易错,需要谨慎 作答。
3.典型试题分析
注:非常规
小切口命题,
题目难度低 却易错,需 要谨慎作答。
考点:反比例函数的定义与图像
3.典型试题分析
新课标教材实施第一次中考!!!
2015年中考说明选择题示例
3.典型试题分析
不等式融合于函数和函数图象
3.典型试题分析
3.典型试题分析
8.(2014· 河北)如图, 将长为2,宽为1的矩形纸 片分割成n个三角形后,拼 成面积为2的正方形,则n≠ ( )
26
23
阅读理解类的题目明显呈逐年上长趋势
1.考点分布特点 2.试题分布特点 3.典型试题分析
4.试卷主要特点
1.考点分布特点
2 试 题 分 布 特 点
2 试 题 分 布 特 点
3.典型试题分析
• 一、选择题 基础考查与能力考查并重,整体难度降低 试题呈现新颖生动,直观中有思维,方法中 有思想。
3.典型试题分析
注:非常规小切口 命题,题目难度低
考点:二元一次方程组求解
却易错,需要谨慎
作答。
3.典型试题分析
(2014· 河北)
3.典型试题分析
考点:概率计算
3.典型试题分析
考点:轴对称、折叠问题
3.典型试题分析
考点:有理数的运算
3.典型试题分析
仅有F点不在圆上(特殊解法)
3.典型试题分析
基础考题:1、2、5、7、11、13 中档考题:3、4、6、8、9、10、12、14 能力考题:15、16
3.典型试题分析
1.计算: 3 2 (1) (
A. 5 B.1 C.-1
)
D.6
考点:有理数四则混合运算
2015年中考数学试题及答案(解析版)
中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。
)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。
2015年河北省中考数学试卷分析
2015年河北省中考数学试卷分析一、试题总体特点2015年河北省中考数学试卷在承接2013年河北省中考数学卷变革以来的基本思路的同时在命题形式和命题方向上有了比较大的改变。
从考查形式上看2015年河北省中考数学试卷依然是选择题、填空题、解答题三大板块,分值和2014年一样是42、12、66的分布,题量也和2014年一样是16、4、6的分布,不同的是2015年河北省中考数学试卷选择题部分1-10题每题3分,11-16题每题2分。
在选择题后6道题的综合性明显高于前10道题的前提下这种分值的改动是有待商榷的,选择题前后题目分值和试题难易度、试题所花时间难成正比。
解答题的分值由2014年的10、10、11、11、11、13变为今年的10、10、10、11、11、14,分值变动不大。
从考查难度上看2015年河北省中考数学试卷一方面基本杜绝了“送分题”,基础题目也需要适当运算思考才能得出结果;另一方面试题整体难度比2014年简单,除选择题16题,填空题20题,解答题25题第3问,26题最后一问其他题目难度适中,易于上手。
河北省中考数学试卷的难度从2013年到2015年三年来持续走低。
二、典型试题评析1、选择题1-16题为选择题,选择题知识覆盖面广,多为大框架内的小切口命题,整体难度较低。
第1题是固定的有理数基础,不同的是此次考查有理数运算,利用减法或负负得正都可以解。
第2题是传统第1题的考点,考查相反数、倒数,直接锁定A项。
第3题考查折叠展开图,合理想象。
第4题考查实数运算和整式运算,套用公式。
第5题利用主视图和左视图判断。
第6题利用外心性质判断,2015年中考说明题型示例填空题第14题考查到三角形外心。
第7题考查二次根式估算,2014年河北省中考数学卷选择题第5题考查了这个内容。
第8题考查平行线的性质,过点C做EF的平行线是关键。
第9题单独考查方向角是比较独特的,利用方向角定义选择。
第10题考查反比例函数图像和性质,利用反比例函数k=x y转化求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试卷分析2013年河北省中考数学试卷接近,但在考查内容和考查角度上与2013年中考数学试卷有很大不同,试题整体难度比2013年中考数学试卷偏低。
可以说是应试试卷下的一次非应试尝试。
从考查形式上看2014年中考数学试卷依然是选择题、填空题、解答题三大板块,分值和去年一样是42、12、66的分布,题量也和去年一样是16、4、6的分布,不同的是解答题的分值由去年的9、10、10、11、12、14变为今年的10、10、11、11、11、13,分值分布更均衡。
从考查内容和考查角度上看2014年中考数学试卷的变化主要有以下几个方面:1、常规大题小问化。
取消传统的函数应用题,整套试题没有应用题,这会令很多学生非常不适应,全国各地近年的中考模考题目压轴题必出函数应用题,学生们已经习惯了有个应用题的大题。
2014年河北省中考数学试卷是将应用题以小问的形式呈现,在选择题第9题、解答题第22题第3问、解答题第26题第4大问都用到了应用题的解题思路,出现了应用题的形式。
这种考查形式知识覆盖面广,涉及一次函数、二次函数应用题,涉及利润类、行程类、运输类应用题,考查全面而基础。
再比如第22题第3问和第25题第2问中涉及的解直角三角形也是传统常规大题的考查形式。
2、核心考点平淡化。
对于数与式中的解方程、解不等式,空间图形中的四边形性质、圆的性质、切线判定,函数中的函数与空间图形结合,动态几何问题等常规核心考点未做特别考查,选择填空题的小切口命题、解答题的以点带面命题,都体现了这一特点。
而压轴题中涉及的核心考点也比较少,最后一道大题涉及纯数学知识的内容则更少。
3、数学知识生活化。
数学作为一门应用学科主要是为了解决实际问题的,之前常规的函数与空间图形结合,动态几何问题等问题更多的是就数学知识解决数学问题,此套试题的26题实际上是将数学知识和生活常识结合起来考查解决生活实际问题,有力驳斥了近年流行的数学无用论、买菜不用函数等论调,回归到数学学习本质是思维学习,是为提高学生逻辑思维能力和归纳分析能力的目的。
从这些变化中可以看出,命题组在尝试在此类带有指挥棒性质的选拔性考试中探索一条脱离应试的考查数学知识和能力的考试,是一次伟大的探索。
二、典型试题评析1、选择题1-16题为选择题,1~6小题每小题2分,注重基础的考查;7~16小题每小题3分,注重基础知识的灵活运用。
选择题知识覆盖面广,多为大框架内的小切口命题,除第8题、第12题、第15题比较灵活需要转化外其他题目难度均不大,整体难度较低。
第1题是固定的有理数基础;第2题简单直接地考查中位线性质;第3题改变整式运算的一贯考法,让考生选择运算结果而不是选择运算正确的选项,和2012年问数在不在不等式组的解集内一样,角度独特,第4题在非封闭的图形内考查外角,需要学生有一定的转化能力;第5题是常规的实数估算;第6题考查根据一次函数图像确定斜率,同时涉及解不等式组及在数轴上表示不等式组的解集,考查内容基础而全面;第7题为分式化简题,此题多年来是河北省中考解答题第1题的常用题型,分母相同,难度不大;第8题将矩形分割切成正方形关键在于找到两线切成三块的切法从而确定3、4、5的可行性;第9题可以理解为小应用题,根据已知条件确定二次函数系数;第10题将展开图折起来即可,若D 选项改为5可能会有看题不细心的考生误选;第11题将概率与频率结合在一起考查概率计算,1题靠4次计算;第12题沿袭从2012年开始的选择题考查尺规作图问题考查中垂线性质,得出PA=PB 是关键;第13题考查相似图形的判定,需要抓住相似图形边长成比例;第14题带入求值确定反比例函数k 值,注意需要分类讨论;第15题考查角度新颖,需要学生熟悉正六边形的特点,整体求值;第16题通过根据中位数和众数确定一组数据中的其他数来考查中位数、众数的定义,角度很好,难度不大。
2、填空题第17-20为填空题,填空题除第20题容易算错外其他题目难度均不大。
第17题为实数运算题目,比较基础;第18题为带值运算,绝对值、平方数的非负性初中阶段考查很多,学生都比较熟悉,第17题和第18题可以理解为常规解答题第1题的计算里实数混合运算的分解;第19题考查扇形面积计算的推导公式lr S 21扇,考生记住这个公式计算即可;第20题为固定的选择题最后一题考的归纳猜想问题,逐步用科学计数法表示计算即可,不出现运算错误都能算出结果。
3、解答题第21-26题为解答题,第21题考查配方法解一元二次方程、平方根的定义、一元二次方程求根公式。
数学公式的推导应用是数学学习的重点,但在教学和考试中涉及较少,配方法推导一元二次方程求根公式、求根公式推导韦达定理、求根公式推导根的判别式与根的个数的关系等都是学生可以推导的,此题沿袭2013年第22题的考法以学生日常容易犯的错误让学生自己找错误,出题角度比较好。
整体来看是对基础公式、定义和计算的考查。
此题原型为2013年保定市初中数学教师资格证笔试题目。
第22题为固定的统计概率考查,考查平均数计算、扇形统计图和解直角三角形。
统计概率与其他版块知识结合考查解答题近两年已被很多省市中考试题接受,这样可以在不改变统计概率分值占比的前提下使考查范围更广,题目分值更合理。
此套试题在第11题和第16题分别考查了概率和统计。
第1问直接根据平均数定义运算,第2问是常规的统计图问题,第3问可以理解为小应用题,带值计算即可。
此题难度不大,考查比较基础。
第23题为空间图形证明,第1问的证全等和第2问的求角度比较好入手,用简单常规的方法证明,第3问把握住先证平行四边形再证菱形的递进式证明思路,运用第2问的角度相等得平行,再结合全等得另一边平行即可,第3问有一定的思维难度。
此题梯度明显,第1、2问比较基础,第3问体现试题的区分度。
第24题主要考察待定系数法求二次函数解析式,第1、2问待定系数法一设二列三解四回即可,配方法求顶点,带点法验证点是否在图像上,第3问根据抛物线的特点直接得出满足条件的抛物线条数。
试题整体难度不大,从审题到思维到计算都比较基础。
可以结合动点问题进一步考查直线外同侧两点到直线上一点距离和最短、垂直坐标轴线段的长度计算、面积问题和点的存在性问题等问题。
第25题为圆的计算问题,第1问根据垂径定理求弦心距、根据切线得垂直得OBP 角度,第2问根据切线性质找角度解直角三角形,第3问根据切线定义运用极限法求解,注意将AB 与·BA 的夹角转化为角ABP 。
此题整体难度适中,需要学生能够灵活运用三角函数转化边角关系。
第26题为空间图形动点题,但是是以生活实例的形式呈现的,这种出题形式在近两年的解直角三角形题目中出现较多,在动点问题里出现还很少。
抓住两车位置关于CA 的相对对称性确定同一时刻两车位置是关键,第一问注意审清题目分类讨论,第2问在理解运动过程的基础上结合两车关于CA 对称可求解,第3问需要分别求出在游客刚好错过2号车时1号车的位置和刚好错过1号车时2号车的位置,进而得到1号车、2号车到达A 点的路程,路程长则时间多,第4问要理解刚好与2号车迎面相遇的意思,确定1、2号车大概位置和剩余路程就能比较,根据PA 求出步行和乘1号车需要的路程和时间分类讨论进行方案选择。
此题梯度明显,需要学生有较强的逻辑思维能力和空间想象能力,能将生活实际问题问题转化为路程时间问题,同时考查学生建立数学模型解决数学模型的能力。
三、知识点与分值分布题号 考查内容 解题关键点 相关知识点 方法技巧 分值 难易度 第1题 有理数基础 理解相反数定义 只有符号不同的两个数是相反数 排除法 2 易 第2题 中位线性质 根据中点得中位线 三角形中位线等于第三边的一半测量法 2 易 第3题平方差公式 理解平方差公式))((22b a b a b a -+=-排除法2易第4题 外角性质 找到外角关系三角形外角等于与它不相邻的两个内角的和测量法 2 易第5题 实数估算 转化为平方关系 )0,0(,222>><<<<x a b x a b x a 则 排除法 2 易第6题 一次函数图像 根据图像确定k 值正负 一次函数k<0时y 随x 的增大而减小 排除法 2 易 第7题 分式化简 对分子因式分解,约分)1(2-=-x x x x排除法 3 易 第8题 面积拼接 勾股定理确定正方形边长222c b a =+ 排除法 构造法 3 易 第9题二次函数 正方形面积 确定y 关于x 的解析式2ax y =排除法3 易 第10题 立体图形平面展开图 将展开图折回正方体立体图形平面展开图 构造法 3 易 第11题 频率计算算出各项概率和统计图频率P(A)=m/n ,m 表示事件A 的结果数,n 表示所有可能出现数。
估算法 3易第12题 中垂线性质 根据题意得PA=PB中垂线上的点到线段两端点距离相等转化 3 易第13题 相似图形的判定 根据相似的判定定理判断相似图形边长成比例 测量法 3 易 第14题 反比例函数图像根据新定义分别用2、x 替换掉a 、bk>0时,反比例函数在一、三象限k 〈0时,反比例函数在二、四象限分类讨论 3易第15题 正六边形和正三角形性质 将两个空白三角形拼成正六边形内以边长为一边的等边三角形 正六边形相邻两顶点与中心围成以边长为边的等边三角形 图形拼接 3 易第16题 中位数、众数根据中位数和众数确定另两个数小于6且不相等 中位数是按大小顺序排列的最中间的数、众数是一组数据中出现次数最多的数排除法 3 易第17题 实数运算根据根式乘法运算法则运算或根式化简求值 ab b a =⨯或2121228⨯=⨯ 3 易第18题 绝对值、平方数的非负性,负指数幂和0次幂 根据绝对值、平方数的非负性得出m 与n 的值,带值运算baa b 1=-,)0(10≠=a a转化3 易第19题 扇形面积计算根据题意确定扇形的弧长lrS 21=扇半径)弧长,::(r l转化 3 易第20题 归纳猜想分别用科学计数法表示出OA 、3721OP ON OM 、、长度科学计数法)101(10<<⨯a a nn 为整数规律归纳 3 易第21题 配方法解一元二次方程 平方根定义,一元二次方程求根公式、配方法 a x a x ±==则,2(a>0)配方法10易第22题 平均数计算 扇形统计图 解直角三角形求出A 处所占百分比和总数、 求出AB 长度 AC AB c =∠tan10 易第23题 全等判定、三角形内角和、平行四边形判定 SAS 证全等,三角形内角和求ACE ,利用两边平行得平行四边形 三角形内角和为180度,等边对等角、两边对应平行的四边形是平行四边形递进式证明11 易四、章节占比分析章节 2014年中考 2013年中考2012年中考章节占分占分比重占分占分比重 2014中考占比变化占分 占分 比重 2014中考占比变化 数与式 方程(组)与不等式(组) 3125.8% 2924.2%↑1.6% 29 24.2%↑1.6%函数 27 22.5% 28 23.3% ↓0.8% 34 28.3% ↓5.8% 统计与概率13 10.8% 13 10.8% _______ 13 10.8% _______ 空间与图形49 40.9% 5041.7%↓0.8%4436.7%↑4.2%五、试题总体评价从近两年河北省中考数学试卷的改变上可以看出命题组一直在寻求改变,寻求突破,寻求创新,在探寻数学学习和考查的实质。