中考数学压轴题专题复习—反比例函数的综合含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题专题复习—反比例函数的综合含详细答案

一、反比例函数

1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b>;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

【答案】(1)4;

(2)﹣8<x<0或x>4

(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).

∴CO=2,AD=OD=4.

∴S梯形ODAC= •OD= ×4=12,

∵S四边形ODAC:S△ODE=3:1,

∴S△ODE= S梯形ODAC= ×12=4,

即OD•DE=4,

∴DE=2.

∴点E的坐标为(4,2).

又点E在直线OP上,

∴直线OP的解析式是y= x,

∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,

即反比例函数解析式为y2= ,

将点A(4,m)代入y2= ,得:m=4,即点A(4,4),

将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,

得:,

解得:,

∴一次函数解析式为y1= x+2,

故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,

故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.

2.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴

上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).

(1)求k的值;

(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x

>0)的图象上时,求菱形ABCD平移的距离.

【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,

∵点D的坐标为(,2),

∴DO=AD=3,

∴A点坐标为:(,5),

∴k=5 ;

(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,

∴D′点的纵坐标为2,设点D′(x,2)

∴2= ,解得x= ,

∴FF′=OF′﹣OF= ﹣ = ,

∴菱形ABCD平移的距离为,

同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,

菱形ABCD平移的距离为,

综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.

3.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点

(1)已知点A的坐标是(2,3),求k的值及C点的坐标;

(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比

例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,

∴k=6,C(﹣2,﹣3),

即k的值是6,C点的坐标是(﹣2,﹣3);

(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,

∵点A(2,3),k=6,

∴AN=2,

∵△APO的面积为2,

∴,

即,得OP=2,

∴点P(0,2),

设过点A(2,3),P(0,2)的直线解析式为y=kx+b,

,得,

∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,

当y=0时,0=0.5x+2,得x=﹣4,

∴点D的坐标为(﹣4,0),

设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,

则,得,

∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,

∴点D到直线AC的直线得距离为:= .

【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C

在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.

4.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点

C.

(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.

(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.

(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).

【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,

∴y= ,

∵B(3,y2)在反比例函数的图象上,

∴y2= =1,

∴B(3,1),

∵直线y=ax+b经过A、B两点,

相关文档
最新文档