苏教版数学八上第一章、第二章知识点总结(填空版)

合集下载

苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)知识点总结:第一章:三角形全等全等三角形的定义是指能够完全重合的两个三角形。

全等三角形的形状和大小完全相等,与位置无关。

一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。

三角形全等不因位置发生变化而改变。

全等三角形的性质包括对应边相等、对应角相等,周长相等、面积相等,以及对应边上的对应中线、角平分线、高线分别相等。

全等三角形的判定有边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)、斜边、直角边公理(HL)。

证明两个三角形全等的基本思路是已知两边时找第三边(SSS),找夹角(SAS),或找是否有直角(HL);已知一边一角时找一角(AAS或ASA),或找夹边(SAS);已知两角时找夹边(ASA),或找其它边(AAS)。

第二章:轴对称轴对称图形是指关于直线对称的两个图形。

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

线段的垂直平分线的性质定理是线段垂直平分线上的点到线段两个端点的距离相等。

判定定理是到线段两个端点距离相等的点在这条线段的垂直平分线上。

三角形三条边的垂直平分线的交点到三个顶点的距离相等。

角的角平分线的性质定理是角平分线上的点到角两边的距离相等。

判定定理是到角两个边距离相等的点在这个角的角平分线上。

三角形三个角的角平分线的交点到三条边的距离相等。

等腰三角形的性质定理是两个底角相等(等边对等角)。

和立方1、定义:开平方和立方是数学中常见的运算。

2、表示方法:开平方用符号√,立方用符号³表示。

3、性质:1)开平方和立方的结果都是实数。

2)开平方和立方运算具有可逆性,即可以进行反向运算。

三、实数的分类1、定义:实数是数学中的一种数值,包括有理数和无理数。

2、分类:1)有理数:可以表示为两个整数之比的数,包括整数、分数和小数。

苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)

知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。

2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。

二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。

理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。

2、全等三角形的周长相等、面积相等。

3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。

三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

4、边边边公理(SSS) 有三边对应相等的两个三角形全等。

5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。

2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。

3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。

第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。

四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。

苏教版八年级上数学知识点总结

苏教版八年级上数学知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

苏教版新课标数学八年级上册知识点总结

苏教版新课标数学八年级上册知识点总结

苏教版八年级数学(上)学问点总结第一章三角形全等1、全等三角形的定义:可以完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形态及大小完全相等,及位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,及原三角形仍旧全等..;③三角形全等不因位置发生变更而变更。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的断定:①边角边公理()有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理()有两角和它们的夹边对应相等的两个三角形全等。

③推论()有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理() 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理()有斜边和一条直角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的根本思路:⑴两边:①找第三边〔〕;②找夹角〔〕;③找是否有直角〔〕.⑵一边一角:①找一角〔或〕;②找夹边〔〕.⑶两角:①找夹边〔〕;②找其它边〔〕.第二章轴对称1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的间隔相等。

②断定定理:到线段两个端点间隔相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点....的间隔相等4、角的角平分线:①性质定理:角平分线上的点到角两边的间隔相等。

②断定定理:到角两个边间隔相等的点在这个角的角平分线上。

拓展:三角形三个角的角平分线的交点到三.条边..的间隔相等。

苏教版数学八年级上册知识点总结

苏教版数学八年级上册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根 一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a=+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a=+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; 轴对称轴对称的性质轴对称图形线段 角 等腰三角形轴对称的应用等腰梯形设计轴对称图案…等;(4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

注意a 的双重非负性:a≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

苏教版八上数学知识点汇总

苏教版八上数学知识点汇总

第一章三角形全等1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。

2.全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定:①边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS)有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

4.证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).第二章轴对称1.轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2.轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3.线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等4.角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

②判定定理:到角两个边距离相等的点在这个角的角平分线上。

苏教版数学八年级上册知识点总结

苏教版数学八年级上册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a 注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

最新苏教版八年级上数学知识点总结

最新苏教版八年级上数学知识点总结

最新苏教版八年级上数学知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形. 3、勾股数:满足222c b a =+的三个正整数,称为勾股数.二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数.在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根.特别地,0的算术平方根是0.表示方法:记作“a ”,读作根号a.性质:正数和零的算术平方根都只有一个,零的算术平方根是零.2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根).表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”.性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.开平方:求一个数a 的平方根的运算,叫做开平方. 0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根). 表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零. 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面.四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小.2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大. (2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>.(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22.五、实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的. (3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab = 乘法对加法的分配律 ac ab c b a +=+)(第三章 中心对称图形(一)一、平移1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移. 2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等.二、旋转1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角.2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角.三、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形. 2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°. 四边形的外角和定理:四边形的外角和等于360°.推论:多边形的内角和定理:n 边形的内角和等于∙-)2(n 180°; 多边形的外角和定理:任意多边形的外角和等于360°. 6、设多边形的边数为n ,则多边形的对角线共有2)3(-n n 条.从n 边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形.四.平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质(1)平行四边形的对边平行且相等.(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,对称中心是对角线的交点.常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积.(2)推论:夹在两条平行线间的平行线段相等.3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.5、平行四边形的面积S平行四边形=底边长×高=ah五、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线.3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab六、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线.3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积 S 菱形=底边长×高=两条对角线乘积的一半七.正方形1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 2、正方形的性质(1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线.3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形. 先证它是菱形,再证它是矩形. 4、正方形的面积设正方形边长为a ,对角线长为b S 正方形=222b a八、梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形.梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底. 梯形中不平行的两边叫做梯形的腰. 梯形的两底的距离叫做梯形的高. 2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形. (2)一组对边平行且不相等的四边形是梯形.(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形. 一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形等腰梯形(三)等腰梯形 1、等腰梯形的定义两腰相等的梯形叫做等腰梯形. 2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行.(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补. (3)等腰梯形的对角线相等.(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线. 3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形.(选择题和填空题可直接用) (四)梯形的面积 (1)如图,DE AB CD SABCD ∙+=)(21梯形 (2)梯形中有关图形的面积: ①BAC ABD S S ∆∆=; ②BOC AOD S S ∆∆=; ③BCD ADC S S ∆∆=八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.2、性质(1)关于中心对称的两个图形是全等形.(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等. 3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.第四章 数量、位置的变化一、 在平面内,确定物体的位置一般需要两个数据.二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系.其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴.它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面.2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限.注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限. 3、点的坐标的概念对于平面内任意一点P ,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标.点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒.平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标.平面内点的与有序实数对是一一对应的. 4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x ,y)在第一象限0,0>>⇔y x点P(x ,y)在第二象限0,0><⇔y x 点P(x ,y)在第三象限0,0<<⇔y x 点P(x ,y)在第四象限0,0<>⇔y x (2)、坐标轴上的点的特征点P(x ,y)在x 轴上0=⇔y ,x 为任意实数 点P(x ,y)在y 轴上0=⇔x ,y 为任意实数点P(x ,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)即原点 (3)、两条坐标轴夹角平分线上点的坐标的特征点P(x ,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等 点P(x ,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 (4)、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同. 位于平行于y 轴的直线上的各点的横坐标相同. (5)、关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点为P ’(x ,-y )点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数,即点P (x ,y )关于y 轴的对称点为P ’(-x ,y )点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数,即点P (x ,y )关于原点的对称点为P ’(-x ,-y ) (6)、点到坐标轴及原点的距离点P(x ,y)到坐标轴及原点的距离: (1)点P(x ,y)到x 轴的距离等于y (2)点P(x ,y)到y 轴的距离等于x(3)点P(x ,y)到原点的距离等于22y x + 三、坐标变化与图形变化的规律:坐标( x , y )的变化图形的变化x × a 或 y × a 被横向或纵向拉长(压缩)为原来的 a 倍x × a, y × a 放大(缩小)为原来的 a 倍 x ×( -1)或 y ×( -1) 关于 y 轴或 x 轴对称 x ×( -1), y ×( -1)关于原点成中心对称 x +a 或 y+ a 沿 x 轴或 y 轴平移 a 个单位x +a , y+ a沿 x 轴平移 a 个单位,再沿 y 轴平移 a 个单第五章 一次函数一、函数:一般地,在某一变化过程中有两个变量x 与y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量. 二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围.一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑. 三、函数的三种表示法(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法.(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法. (3)图象法用图象表示函数关系的方法叫做图象法. 四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当一次函数b kx y +=中的b=0时(即kx y =)(k 为常数,k ≠0),称y 是x 的正比例函数. 2、一次函数的图像: 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线.k 的符号b 的符号函数图像图像特征k>0b>0 yx图像经过一、二、三象限,y 随x 的增大而增大.b<0 y0 x图像经过一、三、四象限,y 随x 的增大而增大.K<0b>0y0 x图像经过一、二、四象限,y随x 的增大而减小b<0y0 x图像经过二、三、四象限,y随x 的增大而减小.注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例. 4、正比例函数的性质 一般地,正比例函数kx y =有下列性质: (1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大;(2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小.5、一次函数的性质 一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k 、b 为常数,k ≠0)的形式. 而一次函数解析式形式正是y=kx+b (k 、b 为常数,k ≠0).当函数值为0时,•即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0(k 、b 为常数,k ≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y=kx+b 确定它与x 轴交点的横坐标值.第六章 数据的集中度1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数2、平均数(1)平均数:一般地,对于n 个数,,,,21n x x x 我们把)(121n x x x n+++ 叫做这n 个数的算术平均数,简称平均数,记为x .(2)加权平均数:3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数.4、中位数 一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.。

(完整版)苏教版八年级数学知识点总结

(完整版)苏教版八年级数学知识点总结

苏教版八年级数学知识点总结第一章全等三角形1.1 全等图形能够完全重合的图形叫做全等图形1.2 全等三角形两个能完全重合的三角形叫做全等三角形当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角全等三角形的对应边相等、对应角相等1.3 探索三角形全等的条件两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)第二章轴对称图形2.1 轴对称与轴对称图形把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么成这个图形是轴对称图形,这条直线就是对称轴。

2.2 轴对称的性质垂直并且平分一条线段的直线,叫做这条线段的垂直平分线成轴对称的两个图形中,对应点的连线被对称轴垂直平分2.3 设计轴对称图形2.4 线段、角的轴对称性线段垂直平分线上的点到线段两端的距离相等到线段两端距离相等的点在线段的垂直平分线上角平分线上的点到角两边的距离相等角的内部到角两边距离相等的点在角的平分线上2.5 等腰三角形的轴对称性等腰三角形的两底角相等(简称“等边对等角”)等腰三角形底边上的高线、中线及顶角平分线重合有两个角相等的三角形是等腰三角形(简称“等角对等边”)三边都相等的三角形叫做等边三角形或正三角形等边三角形的各角都等于60º三个角都相等的三角形是等边三角形有一个角是60º的等腰三角形是等边三角形直角三角形斜边上的中线等于斜边的一半等腰梯形是轴对称图形,过两底中点的直线是它的对称轴等腰梯形在同一底上的两个角相等等腰梯形的对角线相等在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形第三章 勾股定理3.1 勾股定理直角三角形两条直角边的平方和等于斜边的平方3.2 勾股定理的逆定理如果三角形的三边长分别为a 、b 、c ,且222c b a =+,那么这个三角形是直角三角形3.3 勾股定理的简单运用第四章 实数4.1 平方根如果()02>=a a x ,那么x 叫做a 的平方根,也称为二次方根。

苏教版八年级上数学知识点总结

苏教版八年级上数学知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

苏教版八上数学知识点汇总

苏教版八上数学知识点汇总

第一章三角形全等1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。

2.全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定:①边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS)有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

4.证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).第二章轴对称1.轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2.轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3.线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等4.角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

②判定定理:到角两个边距离相等的点在这个角的角平分线上。

苏教版数学八年级上册知识点总结

苏教版数学八年级上册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如si n60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a,即x 2=a,那么这个数x 就叫做a的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

苏教版数学八年级上册知识点总结

苏教版数学八年级上册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

苏教版数学八年级上册知识点总结

苏教版数学八年级上册知识点总结

苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:轴对称轴对称的性质轴对称图形线段 角 等腰三角形轴对称的应用等腰梯形设计轴对称图案(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

苏教版数学八上第一章、第二章知识点总结(填空版)

苏教版数学八上第一章、第二章知识点总结(填空版)

⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 S S S 全等形全等三角形应用边角边 S A S 判定角边角 A S A 角角边 A A S 斜边、直角边 H L 作图 角平分线性质与判定定理全等三角形姓名:1、关系图二、基础知识(一)、基本概念1、“全等”的理解全等的图形必须满足:(1);(2);全等图形: 。

全等三角形: 。

2、全等三角形的性质(1) ;(2) ;3、全等三角形的判定方法、并作图(1)SSS: 。

(2)ASA: 。

(3)AAS: 。

(4)SAS: 。

(5)HL: 。

4、角平分线的性质及判定性质:。

判定:。

(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备个条件,且至少要有一组对应相等,因此在寻找全等的条件时,总是先寻找的可能性。

2、要善于发现和利用隐含的等量元素,如公共、公共、等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①()② ( )(2)已知条件中有两边对应相等,可找①()② ( )(3)已知条件中有一边一角对应相等,可找①()② ( )证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等;(2)利用判定公理来证明两个三角形全等;(3)题目开放性问题,补全条件,使两个三角形全等。

误区提醒(1)忽略题目中的隐含条件;(2)不能正确使用判定公理。

轴对称知识梳理姓名:一、基本概念1.轴对称图形轴对称图形:叫做对称轴. 是对应点,叫做 .2.线段的垂直平分线垂直平分线:3.轴对称变换轴对称变换: .4.等腰三角形等腰三角形: . 叫做腰,叫做底边,叫做顶角,叫做底角.5.等边三角形等边三角形: .二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)(简称“等边对等角”).(2)等腰三角形的、、相互重合.(3)等腰三角形是图形,底边上的(、)所在直线就是它的对称轴.(4)等腰三角形两腰上的、分别相等,两底角的也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

【强烈推荐】苏教版数学八年级上册知识点总结

【强烈推荐】苏教版数学八年级上册知识点总结

苏教版数学八年级上册知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理全等三角形姓名:一、关系图二、基础知识(一)、基本概念 1、“全等”的理解全等的图形必须满足:(1) ;(2) ;全等图形: 。

全等三角形: 。

2、全等三角形的性质(1) ;(2) ; 3、全等三角形的判定方法、并作图(1)SSS: 。

(2)ASA: 。

(3)AAS: 。

(4)SAS: 。

(5)HL: 。

4、角平分线的性质及判定性质:。

判定:。

(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备个条件,且至少要有一组对应相等,因此在寻找全等的条件时,总是先寻找的可能性。

2、要善于发现和利用隐含的等量元素,如公共、公共、等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①()② ( )(2)已知条件中有两边对应相等,可找①()② ( )(3)已知条件中有一边一角对应相等,可找①()② ( )证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等;(2)利用判定公理来证明两个三角形全等;(3)题目开放性问题,补全条件,使两个三角形全等。

误区提醒(1)忽略题目中的隐含条件;(2)不能正确使用判定公理。

轴对称知识梳理姓名:一、基本概念1.轴对称图形轴对称图形:叫做对称轴. 是对应点,叫做 .2.线段的垂直平分线垂直平分线:3.轴对称变换轴对称变换: .4.等腰三角形等腰三角形: . 叫做腰,叫做底边,叫做顶角,叫做底角.5.等边三角形等边三角形: .二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)(简称“等边对等角”).(2)等腰三角形的、、相互重合.(3)等腰三角形是图形,底边上的(、)所在直线就是它的对称轴.(4)等腰三角形两腰上的、分别相等,两底角的也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

证明:(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.证明:5.等边三角形的性质(1)等边三角形的相等,并且每一个角都等于°.(2)等边三角形是图形,共有条对称轴.(3)等边三角形每边上的、和该边所对的平分线互相重合.三、有关判定1. 的点,在这条线段的垂直平分线上.2. ,简写成“等角对等边”).3. 都相等的三角形是等边三角形.4.有一个角是°的三角形是等边三角形.一、选择题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )3.如图(四),点P 是AB 上任意一点,ABC ABD ∠=∠,还应补充一个条件,才能推出APC APD △≌△.从下列条件中补充一个条件,不一定能....推出APC APD △≌△的是( )A .BC BD =B .AC AD = C .ACB ADB ∠=∠ D .CAB DAB ∠=∠A .42° B .48° C .52° D .58°CADP B图(四)4.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )(A)∠B=∠E,BC=EF (B )BC=EF ,AC=DF (C)∠A=∠D ,∠B=∠E (D )∠A=∠D ,BC=EF5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求A.1处 B.2处 C.3处7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那 么最省事的方法是( )EDCBA .带①去B .带②去C .带③去D .带①②③去 8.如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC于点E .已知10=∠BAE ,则C ∠的度数为( )A . 30B . 40C . 50D . 609.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40° 10.如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分D .CD 平分∠ACB11.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS12.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm, 则点D 到AB 的距离为( )A. 5cmB. 3cmC. 2cmD. 不能确定13.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结ADCBABCDCB B 'A '论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP14.如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( ) A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠ D .90B D ==︒∠∠15.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n 二、填空题1.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).……第1个第2个第3个ABCAB CDOBAPO2.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 ________3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使O C O D =(只添一个即可).4.如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距离是__________厘米。

5.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形 有 个 .第1个第2个第3个A CEBDDOCBAABCD E6.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度.7如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°.恒成立的结论有_______________________(把你认为正确的序号都填上)。

8.如图所示,AB = AD ,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE,则需要添加的条件是________.三、解答题1.如图,已知AB=AC ,AD=AE ,求证:BD=CE.2.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°.OABCD EQPO BED C A(1)求DBC ∠的度数;(2)求证:BD CE =.3.如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .4.如图,D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作等边△EDC ,连接AE ,找出图中的一组全等三角形,并说明理由.EE A5.如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.6.(如图,四边形ABCD 的对角线AC 与BD 相交于O 点,12∠=∠,34∠=∠. 求证:(1)ABC ADC △≌△;(2)BO DO =.B CA DMDCB AO123 47.如图,在ABC △和ABD △中,现给出如下三个论断:①AD BC =;②C D ∠=∠;③12∠=∠.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“⎫⇒⎬⎭”形式,用序号表示): .(2)请选择一个真命题加以证明. 你选择的真命题是:⎫⇒⎬⎭.证明:8.已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B21ACDB=∠C.9.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.FAEDCB10.如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.11.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):OEDCBABD CF A郜E12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC 于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.深本数学,一种独特数学方法,五年成就千万富翁。

相关文档
最新文档