中考冲刺指南(最新版):第十讲 特殊三角形
重难点02 三角形与特殊三角形 (解析版)-【查漏补缺】2024年中考数学复习冲刺过关(全国通用)
重难点02三角形与特殊三角形考点一:三角形的基础知识三角形的基础知识是学习三角形后续知识的基础,也是其他几何图形学习的基础,虽然中考中单独考察的几率不是很大,但是它却可以融合在其他图形中辅助解题。
特别是三角形内角和定理、外角定理、角平分线的性质、线段中垂线的性质,都是解决几何问题中不可或缺的辅助手段,也更需要我们重视这块知识的复习。
题型01三角形的内角和与外角定理易错点:三角形内角和定理:三角形三个内角的和=180°三角形外角定理:三角形的一个外角=与它不相邻两个内角的和三角形内角和与外角定理是几何图形求解角度时常用的等量关系;即使是其他多边形,也常转化为三角形求角度;【中考真题练】1.(2023•十堰)一副三角板按如图所示放置,点A在DE上,点F在BC上,若∠EAB=35°,则∠DFC =100°.【分析】由题意可得∠BAC=60°,∠C=30°,∠D=45°,由平角的定义可求得∠CAD=85°,再由三角形的内角和可求得∠AGD=50°,利用对顶角相等得∠CGF=50°,再利用三角形的内角和即可求∠DFC.【解答】解:如图,由题意得:∠BAC=60°,∠C=30°,∠D=45°,∵∠EAB=35°,∴∠CAD=180°﹣∠EAB﹣∠BAC=85°,∴∠AGD=180°﹣∠D﹣∠CAD=50°,∴∠CGF=∠AGD=50°,∴∠DFC=180°﹣∠C﹣∠CGF=100°.故答案为:100°.2.(2023•聊城)如图,分别过△ABC的顶点A,B作AD∥BE.若∠CAD=25°,∠EBC=80°,则∠ACB 的度数为()A.65°B.75°C.85°D.95°【分析】由平行线的性质可求∠ADC得度数,再利用三角形的内角和定理可求解.【解答】解:∵AD∥BE,∴∠ADC=∠EBC=80°,∵∠CAD+∠ADC+∠ACB=180°,∠CAD=25°,∴∠ACB=180°﹣25°﹣80°=75°,故选:B.3.(2023•遂宁)若三角形三个内角的比为1:2:3,则这个三角形是直角三角形.【分析】设这个三角形最小的内角是x°,则另外两内角的度数分别为2x°,3x°,利用三角形内角和是180°,可得出关于x的一元一次方程,解之可求出x的值,再将其代入3x°中即可得出结论.【解答】解:设这个三角形最小的内角是x°,则另外两内角的度数分别为2x°,3x°,根据题意得:x+2x+3x=180,解得:x=30,∴3x°=3×30°=90°,∴这个三角形是直角三角形.故答案为:直角.4.(2023•株洲)《周礼•考工记》中记载有:“…半矩谓之宣(xuān),一宣有半谓之欘(zhú)…”.意思是:“…直角的一半的角叫做宣,一宣半的角叫做欘…”即:1宣=矩,1欘=1宣(其中,1矩=90°).问题:图(1)为中国古代一种强弩图,图(2)为这种强弩图的部分组件的示意图,若∠A=1矩,∠B =1欘,则∠C=22.5度.【分析】根据题意可知:∠A=90°,∠B=67.5°,然后根据三角形内角和即可求得∠C的度数.【解答】解:∵1宣=矩,1欘=1宣,1矩=90°,∠A=1矩,∠B=1欘,∴∠A=90°,∠B=1××90°=67.5°,∴∠C=180°﹣90°﹣∠B=180°﹣90°﹣67.5°=22.5°,故答案为:22.5.5.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C=55°.【分析】根据平行线的性质,三角形内角和定理进行计算即可.【解答】解:∵DE∥BC,∠BDE=120°,∴∠B=180°﹣120°=60°,∵FG∥AC,∠DFG=115°,∴∠A=180°﹣115°=65°,∴∠C=180°﹣∠B﹣∠A=55°,故答案为:55.【中考真题练】1.(2024•盐城模拟)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.105°B.75°C.65°D.55°【分析】根据三角形的外角性质解答即可.【解答】解:由三角形的外角性质可知:∠α=30°+45°=75°,故选:B.2.(2023•新邵县校级一模)如图,在△ABC中,延长AB至D,延长BC至E如果∠1+∠2=230°,则∠A=50°.【分析】由三角形的外角性质可得∠1=∠A+∠ACB,∠2=∠A+∠ABC,再结合∠ABC+∠ACB=180°﹣∠A,从而可求∠A的度数.【解答】解:∵∠1,∠2是△ABC的外角,∴∠1=∠A+∠ACB,∠2=∠A+∠ABC,∵∠1+∠2=230°,∴∠A+∠ACB+∠A+∠ABC=230°,即2∠A+∠ACB+∠ABC=230°,∵∠ABC+∠ACB=180°﹣∠A,∴2∠A+180°﹣∠A=230°,解得:∠A=50°.故答案为:50°.3.(2023•绍兴模拟)将一副三角尺按如图所示的位置摆放,其中O,E,F在直线l上,点B恰好落在DE 边上,∠1=20°,∠A=45°,∠AOB=∠DEF=90°.则∠ABE的度数为()A.60°B.65°C.70°D.75°【分析】先根据三角形内角和定理和平角的定义求出∠ABO=45°,∠BOE=70°,再由三角形外角的性质求出∠OBE=20°,进一步即可得到∠ABE的度数.【解答】解:∵∠1=20°,∠A=45°,∠AOB=∠DEF=90°.∴∠ABO=180°﹣∠AOB﹣∠A=45°,∠BOE=180°﹣∠AOB﹣∠1=70°,∴∠OBE=∠DEF﹣∠BOE=20°,∴∠ABE=∠ABO+∠OBE=65°.故选:B.4.(2023•碑林区校级二模)如图,在△ABC中,∠A=30°,∠B=50°,CD为∠ACB的平分线,CE⊥AB于点E,则∠ECD度数为()A.5°B.8°C.10°D.12°【分析】利用三角形的内角和定理求出∠ACB的度数,再利用角平分线的性质求出∠ACD的度数数,根据直角三角形的性质得出∠ACE的度数,进而可得出结论.【解答】解:在△ABC中,∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=100°.∵CD是∠ACB的平分线,∴∠ACD=∠ACB=50°.∵CE⊥AB于点E,∴∠CEB=90°.∴∠ACE=90°﹣∠A=90°﹣30°=60°,∴∠DCE=∠ACE﹣∠ACD=60°﹣50°=10°.故选:C.5.(2023•石峰区一模)如图,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字形通道.如果∠DBA=120°,∠ECA=135°,那么∠A的度数是75°.【分析】先求出∠ABC,∠ACB,再根据三角形的内角和定理即可求解.【解答】解:∵∠DBA=120°,∠ECA=135°,∴∠ABC=180°﹣120°=60°,∠ACB=180°﹣135°=45°,∴∠A=180°﹣60°﹣45°=75°,故答案为:75°.题型02三角形的三边关系解题大招01:三角形两边之差<第三边<三角形两边之和解题大招02:判定三边能否组成三角形,直接用“定理”,且只需要较小的两边之和大于最大的边长即可解题大招03:“三点共线”类最值:当两线段长固定,且首尾相连,可用三点共线来求其最大值与最小值1.(2023•福建)若某三角形的三边长分别为3,4,m,则m的值可以是()A.1B.5C.7D.9【分析】根据三角形的三边关系定理得出4﹣3<m<4+3,求出即可.【解答】解:根据三角形的三边关系定理得:4﹣3<m<4+3,解得:1<m<7,即符合的只有5,故选:B.2.(2023•长沙)下列长度的三条线段,能组成三角形的是()A.1,3,4B.2,2,7C.4,5,7D.3,3,6【分析】根据三角形的三边关系分别判断即可.【解答】解:∵1+3=4,∴1,3,4不能组成三角形,故A选项不符合题意;∵2+2<7,∴2,2,7不能组成三角形,故B不符合题意;∵4+5>7,∴4,5,7能组成三角形,故C符合题意;∵3+3=6,∴3,3,6不能组成三角形,故D不符合题意,故选:C.3.(2023•金华)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是()A.1cm B.2cm C.13cm D.14cm【分析】首先设第三条线段长为x cm,再利用三角形的三边关系可得x的范围,然后可得答案.【解答】解:设第三条线段长为x cm,由题意得:8﹣6<x<8+6,解得:2<x<14,只有13cm适合,故选:C.4.(2023•徐州)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为3或4或5或6或7(答案不唯一)(写出一个即可).【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【解答】解:设三角形的第三边长为x,则5﹣3<x<5+3,即2<x<8,∵第三边的长为整数,∴x=3或4或5或6或7.故答案为:3或4或5或6或7(答案不唯一).【中考模拟练】1.(2024•韶关模拟)如图,人字梯的支架AB,AC的长度都为2m(连接处的长度忽略不计),则B、C 两点之间的距离可能是()A.3m B.4.2m C.5m D.6m【分析】根据三角形任意一边小于其它两边两边之和求出BC的取值范围,判断各选项即可得的答案.【解答】解:∵AC=AC=2m,∴2﹣2<BC<2+2,即0m<BC<4m.故选:A.2.(2024•新华区一模)为估计池塘两岸A、B间的距离,如图,小明在池塘一侧选取了一点O,测得OA =16m,OB=12m,那么AB的距离不可能是()A.5m B.15m C.20m D.30m【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.【解答】解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,30m不可能.故选:D.3.(2024•邳州市校级一模)三角形的两边长分别为2和9,周长为偶数,则第三边长为9.【分析】根据三角形的三边关系求得第三边的取值范围,再求得周长的取值范围.根据周长为偶数,确定第三边的长.【解答】解:设第三边长x.根据三角形的三边关系,得7<x<11.∴三角形的周长l的取值范围是:18<l<22.又∵三角形的周长为偶数,因而满足条件的数有20.∴第三边长为20﹣2﹣9=9.故答案为9.4.(2023•六安三模)三角形的两边长分别是10和8,则第三边的取值范围是2<x<18.【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【解答】解:根据三角形的三边关系:10﹣8<x<10+8,解得:2<x<18.故答案为:2<x<185.(2023•二道区校级模拟)已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x,∵一个三角形的两边长分别为4和5,∴5﹣4<x<5+4,即1<x<9,∵第三边的长为整数,∴x的值可以为2,3,4,5,6,7,8,∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.6.(2023•娄星区一模)已知四根小棒的长度分别为5cm、6cm、10cm、12cm,从中取出三根小棒,能围成三角形的概率为.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去,最后根据概率计算公式求解即可.【解答】解:共有4种方案:①取5cm、6cm、10cm;由于10﹣5<6<10+5,能构成三角形;②取5cm、6cm、12cm;由于5+6<12,不能构成三角形;③取6cm、10cm、12cm;由于12﹣6<10<12+6,能构成三角形;④取5cm、10cm、12cm;由于12﹣5<10<12+5,能构成三角形.∴一个有4种等可能性的结果数,其中能构成三角形的结果数有3种,∴能围成三角形的概率为.故答案为:.题型03三角形“三线”的性质由△的三线组成的几个“心”:△三边中线交点—→重心—→性质:△的重心到一中线中点的距离=重心到这条中线定点距离的一半;△三条角平分线交点—→内心—→性质:△的内心到△三边的距离(垂线段)相等;△三边中垂线交点—→外心—→性质:△的外心到△三个顶点的距离(连接)相等;解题大招01:三角形中线常见作用及其辅助线常见“用途”:平分线段、平分面积;辅助线类型:倍长中线造全等—→延伸:倍长中线类模型;解题大招02:三角形高线常见作用及其辅助线常见“用途”:求面积(等积法)、求角度(余角);辅助线类型:见特殊角做⊥,构特殊直角△、见等腰做底边上高线,构三线合一;解题大招03:角平分线常见作用及其辅助线常见“用途”:得角相等(定义)、得线段相等(性质)、SAS证全等、知2得1等;辅助线类型:见角平分线作双垂、见角平分线作对称、截长补短构全等、见角平分线+垂直,延长出等腰;解题大招04:中垂线常见作用及其辅助线常见“用途”:平分线段、得90°、证全等、求新形成三角形周长等;辅助线类型:连接两点【中考真题练】1.(2023•广州)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.【分析】过E作EH⊥AD于H,由角平分线的性质得到DE=DF=5,由勾股定理求出AD==13,由三角形面积公式得到13EH=12×5,因此EH=,即可得到点E到直线AD的距离.【解答】解:过E作EH⊥AD于H,∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF=5,∵AE=12,∴AD==13,∵△ADE的面积=AD•EH=AE•DE,∴13EH=12×5,∴EH=,点E到直线AD的距离为.故答案为:.2.(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是13.【分析】根据线段垂直平分线的性质得到BD=CD,即可求解.【解答】解:∵DE是BC的垂直平分线.∴BD=CD,∴AC=AD+CD=AD+BD,∴△ABD的周长=AB+AD+BD=AB+AC=5+8=13,故答案为:13.3.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC 的长是4.【分析】根据等腰三角形的判定定理求出AD,再根据线段垂直平分线的性质求出DC.【解答】解:∵∠B=∠ADB,AB=4,∴AD=AB=4,∵DE是AC的垂直平分线,∴DC=AD=4,故答案为:4.4.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交AC于点E,则∠EBC=10°.【分析】由∠C=90°,∠A=40°,求得∠ABC=50°,根据线段的垂直平分线、等边对等角和直角三角形的两锐角互余求得.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.5.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC 的角平分线,则AD=5.【分析】过点D作DE⊥AB于点E,由角平分线的性质得到CD=DE,再通过HL证明Rt△BCD≌Rt△BED,得到BC=BE=6,根据勾股定理可求出AB=10,进而求出AE=4,设CD=DE=x,则AD=8﹣x,在Rt△ADE中,利用勾股定理建立方程求解即可.【解答】解:如图,过点D作DE⊥AB于点E,∵∠C=90°,∴CD⊥BC,∵BD是∠ABC的角平分线,CD⊥BC,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BC=BE=6,在Rt△ABC中,==10,∴AE=AB﹣BE=10﹣6=4,设CD=DE=x,则AD=AC﹣CD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,∴42+x2=(8﹣x)2,解得:x=3,∴AD=8﹣x=5.故答案为:5.【中考模拟练】1.(2024•沭阳县校级模拟)已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,=4cm2,则阴影部分的面积为1cm2.且S△ABC【分析】易得△ABD,△ACD为△ABC面积的一半,同理可得△BEC的面积等于△ABC面积的一半,那么阴影部分的面积等于△BEC的面积的一半.【解答】解:∵D为BC中点,根据同底等高的三角形面积相等,=S△ACD=S△ABC=×4=2(cm2),∴S△ABD=S△CDE=S△BCE=×2=1(cm2),同理S△BDE=2(cm2),∴S△BCE∵F为EC中点,=S△BCE=×2=1(cm2).∴S△BEF故答案为1.2.(2024•天山区一模)如图,Rt△ABC中,∠C=90°.用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A.2B.3C.4D.5【分析】当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.再根据角平分线的性质定理可得DP =CD解决问题;【解答】解:当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.由作图可知:AE平分∠BAC,∵DC⊥AC,DP⊥AB,∴DP=CD=2,∴PD的最小值为2,故选:A.3.(2024•南昌一模)小明将两把完全相同的长方形直尺如图放置在∠AOB上,两把直尺的接触点为P,边OA与其中一把直尺边缘的交点为C,点C、P在这把直尺上的刻度读数分别是2、5,则OC的长度是3cm.【分析】过P作PN⊥OB于N,由角平分线性质定理的逆定理推出PO平分∠AOB,得到∠COP=∠NOP,由平行线的性质推出∠CPO=∠NOP,得到∠COP=∠CPO,因此OC=PC,由PC=5﹣2=3(cm),即可得到OC的长度是3cm.【解答】解:过P作PN⊥OB于N,由题意得:PM=PN,∵PM⊥OA,∴PO平分∠AOB,∴∠COP=∠NOP,∵PC∥OB,∴∠CPO=∠NOP,∴∠COP=∠CPO,∴OC=PC,∵C、P在这把直尺上的刻度读数分别是2、5,∴PC=5﹣2=3(cm),∴OC的长度是3cm.故答案为:3cm.4.(2024•永靖县一模)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=1.【分析】过点D作DF⊥AC,垂足为F,根据角平分线的性质可得DE=DF=1,然后利用三角形的面积进行计算即可解答.【解答】解:过点D作DF⊥AC,垂足为F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,∵AC=2,=AC•DF∴S△ACD=×2×1=1,故答案为:1.5.(2023•长清区二模)如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC 于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.5【分析】直接利用基本作图方法得出AE是∠CAB的平分线,进而结合全等三角形的判定与性质得出AC =AD,再利用勾股定理得出AC的长.【解答】解:过点E作ED⊥AB于点D,由作图方法可得出AE是∠CAB的平分线,∵EC⊥AC,ED⊥AB,∴EC=ED=3,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,∵在Rt△EDB中,DE=3,BE=5,∴BD=4,设AC=x,则AB=4+x,故在Rt△ACB中,AC2+BC2=AB2,即x2+82=(x+4)2,解得:x=6,即AC的长为:6.故选:C.考点二:全等三角形全等三角形的性质是对应边相等、对应角相等。
中考复习特殊三角形
中考复习特殊三角形中考对于每一位初中生来说都是一次重要的挑战,而数学中的特殊三角形更是考点中的重点。
特殊三角形包括等腰三角形、等边三角形和直角三角形,它们各自具有独特的性质和判定方法。
接下来,让我们一起深入复习这些特殊三角形的知识。
一、等腰三角形等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
1、性质(1)等腰三角形的两腰相等。
(2)等腰三角形的两底角相等(简写成“等边对等角”)。
(3)等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
2、判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(2)有两条边相等的三角形是等腰三角形。
在解题中,我们常常利用等腰三角形的性质和判定来求解角度、边长等问题。
例如,已知一个等腰三角形的顶角为 80°,那么底角的度数就可以通过“(180°顶角)÷ 2”来计算,即(180° 80°)÷ 2 = 50°。
二、等边三角形等边三角形又称正三角形,为三边相等的三角形,其三个内角相等,均为 60°。
1、性质(1)等边三角形的三条边都相等。
(2)等边三角形的三个内角都相等,且均为 60°。
(3)等边三角形是轴对称图形,有三条对称轴。
2、判定(1)三边相等的三角形是等边三角形。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是 60°的等腰三角形是等边三角形。
等边三角形在实际问题中也有广泛的应用。
比如在建筑设计中,利用等边三角形的稳定性可以增强结构的牢固性。
三、直角三角形直角三角形是一个角为直角的三角形。
直角所对的边称为斜边,其余两边称为直角边。
1、性质(1)直角三角形两直角边的平方和等于斜边的平方(勾股定理)。
(2)在直角三角形中,两个锐角互余。
中考冲刺指南(最新版):第十讲 特殊三角形
中考冲刺指南第十讲特殊三角形班级学号姓名一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(2013•徐州)若等腰三角形的顶角为80°,则它的底角度数为(B)2.(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是(A)3.(2013•台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()4.(2012•威海)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(B)5..(2012•淄博)已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是(D)6.(2012贵州贵阳)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是( B )A.3 B.2 C D.17.(2013•南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为(C)2D8.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A B A的边长为(C)9.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为(C)10.(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是(D)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S:S=1:3.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(2013•江西)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.12.(2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=70°.13.(2013•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10cm.14.(2013•菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是,(或介于和之间的任意两个实数)(写出1个即可).15.(2013•聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为3.16.(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14 =P16A,则∠A的度数是12°.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本题6分)(2012•玉林)已知等腰△ABC的顶角∠A=36°(如图).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算说明△ABD和△BDC都是等腰三角形.解:(1)如图所示:BD即为所求;(2)∵∠A=36°,∴∠ABC=∠C=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°,∴∠CDB=180°﹣36°﹣72°=72°,∵∠A=∠ABD=36°,∠C=∠CDB=72°,∴AD=DB,BD=BC,∴△ABD和△BDC都是等腰三角形.18.(本题8分)(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB 于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADE的面积.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)∵DE⊥AB,∴∠AED=∠C=90°,在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL),∴S△ACD=S△AED,∴S△AED=×CD×AC=×3×6=9.19.(本题8分)(2012•莱芜)如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.解:(1)DB′=EC′.理由如下:∵AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,∴AD=AE=AB,∵△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′,∴∠B′AD=∠C′AE=α,AB′=AB,AC′=AC,∴AB′=AC′,在△B′AD和△C′AE中,∵,∴△B′AD≌△C′AE(SAS),∴DB′=EC′;(2)∵DB′∥AE,∴∠B′DA=∠DAE=90°,在Rt△B′DA中,∵AD=AB=AB′,∴∠AB′D=30°,∴∠B′AD=90°﹣30°=60°,即旋转角α的度数为60°.20.(2013•荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).21.(本题10分)(2013•舟山)小明在做课本“目标与评定”中的一道题:如图1,直线a,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);②说出该画法依据的定理.(2)小明在此基础上进行了更深入的探究,想到两个操作:①在图3的画板内,在直线a与直线b上各取一点,使这两点与直线a、b的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分.②在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线(在画板内的部分),只要求作出图形,并保留作图痕迹.请你帮小明完成上面两个操作过程.(必须要有方案图,所有的线不能画到画板外,只能画在画板内)解:(1)方法一:①如图2,画PC∥a,量出直线b与PC的夹角度数,即为直线a,b所成角的度数,②依据:两直线平行,同位角相等,方法二:①如图2,在直线a,b上各取一点A,B,连结AB,测得∠1,∠2的度数,则180°﹣∠1﹣∠2即为直线a,b所成角的度数;②依据:三角形内角和为180°;(2)如图3,以P为圆心,任意长为半径画弧,分别交直线b,PC于点B,D,连结BD 并延长交直线a于点A,则ABPQ就是所求作的图形;(3)如图3,作线段AB的垂直平分线EF,则EF就是所求作的线.22.(本题12分)(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.解:(1)∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD,∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC,∴AB=BE,∴△ABE是等边三角形;(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.23.(本题12分)(2013•烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.解:(1)AE∥BF,QE=QF,理由是:如图1,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∠BFQ=∠AEQ,在△BFQ和△AEQ中∴△BFQ≌△AEQ(AAS),∴QE=QF,故答案为:AE∥BF,QE=QF.(2)QE=QF,证明:如图2,延长FQ交AE于D,∵AE∥BF,∴∠QAD=∠FBQ,在△FBQ和△DAQ中∴△FBQ≌△DAQ(ASA),∴QF=QD,∵AE⊥CP,∴EQ是直角三角形DEF斜边上的中线,∴QE=QF=QD,即QE=QF.(3)(2)中的结论仍然成立,证明:如图3,延长EQ、FB交于D,∵AE∥BF,∴∠1=∠D,在△AQE和△BQD中,∴△AQE≌△BQD(AAS),∴QE=QD,∵BF⊥CP,∴FQ是斜边DE上的中线,∴QE=QF.。
特殊三角形(等腰三角形与直角三角形)2024年中考数学一轮复习之核心考点精讲精练(原卷版)
考点16.特殊三角形(等腰三角形与直角三角形)(精讲)【命题趋势】特殊的三角形重在掌握基本知识的基础上灵活运用,也是考查重点,年年都会考查,分值为10分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查等腰(等边)三角形性质与判定和勾股(逆)定理、直角三角形的性质、尺规作图等知识点结合考查,这部分知识需要学生扎实地掌握基础,并且会灵活运用。
在解答题中会出现等腰三角形与直角三角形的性质和判定,这部分知识主要考查基础。
【知识清单】1:等腰(等边)三角形的性质与判定(☆☆☆)1)等腰三角形的定义:有两边相等的三角形角等腰三角形。
2)等腰三角形的性质:(1)等腰三角形的两个底角相等(简称“等边对等角”)。
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”)。
3)等腰三角形的判定:若某三角形有两个角相等,那这两个角所对的边也相等(简称“等角对等边”)。
4)等边三角形的定义:三条边都相等的三角形叫等边三角形,它是特殊的等腰三角形。
5)等边三角形的性质:(1)等边三角形的三条边相等;(2)三个内角都相等,且每个内角都是60°;(3)等边三角形(边长为a6)等边三角形的判定:(1)三边相等或三个内角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形。
2:垂直平分线的性质与判定(☆☆)1)垂直平分线的定理:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。
2)垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等。
3)垂直平分线的判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
3:勾股定理与逆定理及其应用(☆☆)1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.2)勾股定理的逆定理:若三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.4:直角三角形的性质及计算(☆☆☆)1)直角三角形的定义:有一个角是直角的三角形叫做直角三角形.2)直角三角形的性质:(1)直角三角形两个锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)在直角三角形中,30°角所对的直角边等于斜边的一半。
初三特殊的三角形培优同步讲义
初三特殊的三角形培优同步讲义1. 等腰三角形1.1 定义等腰三角形是指具有两边长度相等的三角形。
在等腰三角形中,两边对应的两个角也是相等的。
1.2 性质- 等腰三角形的底角(即两个底边夹角)相等。
- 等腰三角形的顶角(即顶边夹角)也是相等的。
2. 直角三角形2.1 定义直角三角形是指其中一个角度为90度的三角形。
直角三角形的斜边是其他两边之间最长的一边。
2.2 特殊三角形- 30度-60度-90度三角形:其中一个角度为90度,另外两个角度为30度和60度。
这种三角形的边长比例为1:√3:2。
30度-60度-90度三角形:其中一个角度为90度,另外两个角度为30度和60度。
这种三角形的边长比例为1:√3:2。
- 45度-45度-90度三角形:其中一个角度为90度,另外两个角度为45度。
这种三角形的两条直角边的边长相等。
45度-45度-90度三角形:其中一个角度为90度,另外两个角度为45度。
这种三角形的两条直角边的边长相等。
3. 等边三角形3.1 定义等边三角形是指三条边的长度都相等的三角形。
在等边三角形中,每个角的度数都是60度。
3.2 性质- 等边三角形的三个内角都是60度。
- 等边三角形的高、中线、角平分线三者重合,且均通过三角形的重心点。
4. 总结初三特殊的三角形主要包括等腰三角形、直角三角形和等边三角形。
通过对这些三角形的认识和特点的理解,能够更好地解决与三角形相关的问题和题目。
---_注意:以上内容仅供参考,具体知识点和定义请以教材为准。
_。
【数学】初中数学中的特殊三角形、特殊四边形中重要知识点总结
【数学】初中数学中的特殊三角形、特殊四边形中重要知识点总结01特殊三角形一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”)(2)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)(3)等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)(4)等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
(5)等腰三角形的一腰上的高与底边的夹角等于顶角的一半(6)等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)(7)等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
二、等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
三、直角三角形全等1、直角三角形全等的判定有5种:(1)两角及其夹边对应相等的两个三角形全等;(ASA)(2)两边及其夹角对应相等的两个三角形全等;(SAS)(3)三边对应相等的两个三角形全等;(SSS)(4)两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4、垂直平分线:垂直于一条线段并且平分这条线段的直线。
中考复习:特殊三角形
中考内容中考要求ABC等腰三角形与直角三角形了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题⎧⎧⎧⎪⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩定义等边对等角等腰三角形性质三线合一等腰三角形判定定义特殊三角形等边三角形性质判定定义直角三角形性质判定一、 等腰三角形1、定义:有两边相等的三角形是等腰三角形.相等的两边叫做腰,第三边为底.2、性质:(1)轴对称性:等腰三角形是轴对称图形,有1条对称轴. (2)定理1:等腰三角形的两个底角相等,简称“等边对等角”.(3)定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”. 3、判定:如果一个三角形有两角相等,那么这两个角所对的边也相等,简称“等角对等边”.知识精讲中考大纲 特殊三角形知识网络图【补充】1、等腰三角形两腰上的高相等;2、等腰三角形两腰上的中线相等;3、等腰三角形两底角的平分线相等;二、等边三角形1、定义:三边相等的三角形是等边三角形.2、性质:(1)轴对称性:等边三角形是轴对称图形,有3条对称轴.(2)等边三角形的各角都相等,并且每一个角都等于60°.3、判定:(1)判定1:三个角都相等的三角形是等边三角形.(2)判定2:有一个角等于60°的等腰三角形是等边三角形.三、线段的垂直平分线1、定义:经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2、性质:线段垂直平分线上的点与这条线段两个端点的距离相等.3、判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4、实质构成:线段的垂直平分线可以看作到线段两个端点距离相等的所有点的集合.四、直角三角形1、直角三角形30°角所对的边等于斜边的一半.2、直角三角形斜边的中线等于斜边的一半.解题方法技巧1、等腰三角形一腰上的高与底边的夹角等于顶角的一半.AC 2、等腰三角形顶角的外角平分线与底边平行3、等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.如图,即DE DF BG +=.本结论可以用面积列等式推得.ABCABCDE F G4、等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高.5、要证明一个三角形是等腰三角形,必须得到两边相等,得到两边相等的方法主要有:(1)通过等角对等边;(2)通过三角形全等得两边相等;(3)利用垂直平分线的性质得到两边相等.1、遇到等腰三角形的问题时,注意边有腰与底之分,角有底角和顶角之分.2、遇到高线的问题要考虑高在形内和形外两种情况.3、等腰三角形三线合一定理没有逆定理,定理的逆推论需要用全等去证明.易错点辨析题型一:等腰三角形的性质与判定【例1】 已知ABC △中,AB AC =.36A ∠=︒,则C ∠______. 【例2】 等腰三角形一个底角为75°,它的另外两个角为_______. 【例3】 等腰三角形一个角为70°,它的另外两个角为__________. 【例4】 已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( ) A .4.8cm B .9.6cm C .2.4cm D .1.2cm【例5】 在等腰ABC △中,AB AC =,其周长为20cm ,则AB 边的取值范围是__________.(2014年玉林中考)【例6】 如图,在ABC △中,AB AC =,且D 为BC 上一点,CD AD =,AB BD =,则B ∠的度数为__________.(2014年南充中考)DCBA【例7】 如图,在Rt ABC △中,D E ,为斜边AB 上的两个点,且BD BC AE AC ==,,则DCE ∠的大小为__________.(2014年天津)EDCBA【例8】 如图,ABC ∆中,30A ∠=︒,CD 是BCA ∠的平分线,ED 是CDA ∠的平分线,EF 是DEA ∠的平分线,DF FE =,求B ∠.ABCDEF特殊三角形习题集课堂练习【例9】 如图,P 为等腰三角形ABC 的底边AB 上的任意一点,PE AC ⊥于点E ,PF ⊥BC 于点F ,AD BC ⊥点D ,求证:PE PF AD +=.ABCE D PF【例10】 如图,点P 为等腰三角形ABC 的底边BA 的延长线上的一点,PE CA ⊥的延长线于点E ,PF BC⊥于点F ,AD BC ⊥于点D .PE 、PF 、AD 之间存在着怎样的数量关系?ABCEDP F【例11】 如图所示,已知ABC △中,D 、E 为BC 边上的点,且AD AE =,BD EC =,求证:AB AC =.AB CD E【例12】 如图,请在下列四个等式中,选出两个作为条件,推出AED △是等腰三角形,并予以证明.(写出一种即可)等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠. 已知:____________________ 求证:AED △是等腰三角形. 证明:【例13】 如图1,已知矩形ABED ,点C 是边DE 的中点,且2AB AD =.(1)判断ABC △的形状,并说明理由;(2)保持图1中ABC △固定不变,绕点C 旋转DE 所在的直线MN 到图2中(当垂线段AD 、BE 在直线MN 的同侧),试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明; (3)保持图2中ABC △固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.(2010年临沂)题型二:等腰三角形的作图题【例14】 已知ABC ∆中,90A ∠=︒,67.5B ∠=︒.请画一条直线,把这个三角形分割成两个等腰三角形.(请你利用下面给出的备用图,画出两种不同的分割方法.只需画图,不必说明理由,但要在图中标出相等两角的度数).CB ACB A【例15】 已知菱形ABCD 中,72A ∠=︒,请设计两种不同的分法,将菱形ABCD 分割成四个三角形,使得分割成的每个三角形都是等腰三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,例如第20题图,不要求写出画法,不要求证明.)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.36︒36︒36︒18︒18︒54︒72︒72︒72︒54︒DCBAA分A BC D分法2A BC D分法1题型三:等边三角形的性质【例16】 如图,DAC △和EBC △均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① ACE DCB △≌△;②CM CN =;③AC DN =.其中正确结论的个数是_____ A . 3个 B .2个 C .1个 D .0个NM ED BA【例17】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,BD AE =,AD 与CE 交于点F .(1)求证:AD CE =; (2)求DFC ∠的度数.FE DCBA【例18】 如图,已知ABC △为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.F EDCBA【例19】 已知,如图,延长ABC △的各边,使得BF AC =, AE CD AB ==,顺次连接D ,E ,F ,得到DEF △为等边三角形.求证:(1)AEF △≌CDE △; (2)ABC △为等边三角形.F DECB A【例20】 如下图,ABC ∆是等边三角形,122CBF ACD BAE ∠∠∠=∶∶∶∶,38DEF DFE ∠-∠=︒.求出DEF∆的每个内角度数.FEDCBA【例21】 如图,三角形ABC 中,AB BC CA ==,AE CD =,AD ,BE 相交于P ,BQ 垂直AD 于Q ,求证:2BP PQ =.P QA BC DE【例22】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,BD AE =,AD 与CE 交于点F .(1)求证:AD CE =;(2)求DFC ∠的度数.FE DCBA题型四:直角三角形的性质与判定【例23】 在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,6cm BC AB +=,则AB =_______cm .【例24】 如图,在Rt ABC ∆中,9060B ACB D ∠=︒∠=︒,,是BC 延长线上一点,且AC CD =,则:BC CD =_________.DCBA【例25】 若AD 为ABC ∆的高,且1AD =,1BD =,DC BAC ∠=____________.【例26】 已知:如图,在ABC △中,AB BC =,90ABC ∠=︒.F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接AE 、EF 和CF . (1)求证:AE CF =;(2)若30CAE ∠=︒,求EFC ∠的度数.FECBA【例27】 如图,在ABC ∆中,BF AC ⊥于F ,CG AB ⊥于G D E ,,分别是BC FG ,的中点.求证:DE GF ⊥.GFE D CB A【练1】 等腰三角形的一边长为3cm ,另一边长为4cm ,则它的周长是 ___________.【练2】 如图,ABC ∆和BDE ∆都是等边三角形,AB BD <,若ABC ∆不 动,将BDE ∆绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( ).A . AE CD =B . AE CD >C . AE CD < D . 无法确定EDCBA【练3】 MON ∠是一个钢架,10MON ∠=︒,在其内部添加一些钢管BC ,CD ,DE ,EF ,FG ,…添加的钢管长度都与OB 相等.(1)当添加到第五根钢管时,求FGM ∠的度数.(2)假设OM 、ON 足够长,能无限地添加下去吗?如果能,请说明理由.如果不能,则最多能添加几根?D NMFEO CBG【练4】 如图,在ABC ∆中,AB AC =,D 是ABC ∆外的一点,且60ABD ∠=,60ACD ∠=.求证:BD DC AB +=.DCBA课后作业【练5】 如图,在Rt ABC ∆中,90BAC ∠=,CA BA =,15DAC DCA ∠=∠=,求证:BA BD =.DACB【练6】 如图ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥于F .⑴说明BE CF =的理由;⑵如果AB a =,AC b =,求AE ,BE 的长.GFE DC BA。
中考复习课件-特殊三角形(2)
• 等腰三角形性质与判定的应用 (1)计算角的度数 利用等腰三角形的性质,结合三角形 内角和定理及推论计算角的度数,是等腰 三角形性质的重要应用。 ①已知角的度数,求其它角的度数 ②已知条件中有较多的等腰三角形(此时 往往设法用未知数表示图中的角,从中得 到含这些未知数的方程或方程组)
(2)证明线段或角相等
• 例1 已知一腰和底边上的高,求作等腰三角形。
分析:我们首先在草稿上画好一个示意图,然后对照此图写出已知和求作并 构思整个作图过程……
A
已知:线段a、h
求作:△ABC,使AB=AC=a,高AD=h
作法:
a
1、作PQ⊥MN,垂足为D
h
2、在DM上截取DA=h
h
3、以点A为圆心,以a为半径作弧,交PQ
分析:CD=CF
B
∠1=∠2
∠∠11==9∠0°B-+∠∠BAADD
D
E
∠∠22==90∠°3-+∠∠DCAADC 1 2 F
3
C
A
∠ACB =∠903°=∠,BCE是AC边上高
1 在直角三角形中,两个锐角互__余_____。 2、直角三角形__两__直__角__边_____的平方和等于_斜__边____的
∴△BOC等腰直角三角形 ∴∠BCO=45° 同理∠DCO=45° ∴∠BCD=90°
说明 本题易明显得出DG和EG所在的△DBG和△ECG不 全等,故要构造三角形的全等,本题的另一种证法是过E 作EF∥BD,交BC的延长线于F,证明△DBG≌△EFG, 同学们不妨试一试。
例7. 如图2-8-6,在△ABC中,AB=AC=CB,AE=CD, AD、BE相交于P,BQ⊥AD于Q. 请说明BP=2PQ的理由.
中考复习 特殊三角形(含答案)-
特殊三角形◆考点链接1.等腰(等边)三角形的判定定理与性质定理.2.直角三角形的判定与性质.3.勾股定理的应用.◆典例精析【例题1】判断题:(正确的画“∨”,错误的画“×”)(1)若三角形中最大的内角是60°,那么这个三角形是等边三角形;()(2)等腰三角形一腰上的中线把这个等腰三角形分成两个等腰三角形;()(3)等腰三角形两腰上的高相等;()(4)等边三角形的三条高相等;()(5)等腰三角形的角平分线垂直且平分对边;()(6)顶角相等的两个等腰三角形全等.()评析:本题主要考查等腰三角形的性质与判定.(1)三角形有一角为60°时,另两角和是120°,若其中之一小于60°,必有另一个大于60°,与最大角为60°相矛盾.(2)等腰三角形一腰上的中线不一定等于腰长的一半.(3)(4)应用等腰(等边)三角形的性质,通过三角形面积的不同表示方法可证明.(5)当等腰三角形腰和底不相等时,底角的平分线不垂直平分对边.(6)•和等腰三角形底边平行的直线截得的等腰三角形与原三角形顶角相等,但不全等.答案:(1)∨ (2)× (3)∨ (4)∨ (5)× (6)×评析:有一个角是60°的等腰三角形是等边三角形,等腰三角形的“三线合一”在等边三角形中就都成立,这是因为在等边三角形中,每个顶点都可以视作等腰三角形的顶点.【例题2】(1)已知:a、b、c为△ABC三边,且满足a2+b2+c2+50=60a+8b+10c,试判断△ABC的形状.(2)如图,△ABC中,CD⊥AB,垂中为D点,且CD2=AD·BD,求证:△ABC 为直角三角形.解题思路:由三角形的三边的数量关系来判断三角形是否是直角三角形,或用于构造直角三角形证明两直线垂直,一般与勾股定理和代数式、方程相结合,综合运用.特别是由一个等式求三角形的三边长时,往往把等式化为A2+B2+C2=0的形式,再由A=0,B=0,C=0,求得三角形三边的长,再用于计算或判断.(1)解:∵a2+b2+c2+50=6a+8b+10c,∴a2-6a+9+b2-8b+16+c2-10c+25=0,∴(a-3)2+(b-4)2+(c-5)2=0,∴a-3=0,b-4=0,c-5=0,∴a=3,b=4,c=5,∴a2+b2=c2,∴△ABC为直角三角形.(2)证明:∵CD⊥AB,∴AD2+DC2=AC2,DB2+DC2=BC2.∴AC2+BC2=AD2+DB2+2DC2,∵DC2=AD·DB,∴AC2+BC2=AD2+DB2+2AD·DB=(AD+DB)2=AB2.∴△ABC为直角三角形.评析:(1)对于原等式关键处是化为A2+B2+C2=0的形式,对常数项拆项的依据是一次项系数的一半的平方.(2)本题的解答在于反复应用勾股定理及其逆定理,•先分别在Rt△ACD和Rt△BCD中使用勾股定理,再依据已知条件,进而求得A C2+BC2=AB2,•利用勾股定理的逆定理判定△ABC为直角三角形.【例题3】(北京)如图,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P,若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.解题思路:(1)木棍在滑动过程中,OP始终是Rt△AOB斜边中线,故为斜边AB•的一半,而AB的长为定长,所以OP不变.(2)木棍在滑动的过程中,斜边上的高在发生变化,因为AB为定值,当高最大时,△AOB的面积为最大,所以当OP⊥AB(即OA=OB)•时,•△AOB面积最大.解:(1)不变.理由:在直角三角形中,因为斜边AB•的长不变,•由性质有斜边中线OP长不变.(2)当△AOB的斜边AB上的高h等于中线OP时,△AOB的面积最大,如图,若h与OP 不相等,则总有h ,故根据三角形面积公式,有 h 与 OP 相等时,△ AOB 的面积最大.此时,S△AOB=AB·h=×2a·a=a2.所以△AOB的面积最大值为a2.评析:(1)在变化过程中,要抓住不变量,建立起所求量与不变量的关系.(2)要求面积的最大值转化为三角形底不变,高是变量,即找出高的变化的最大值即得.◆探究实践【问题1】已知△ABC的两边AB、AC长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形;(2)k为何值时,△ABC是等腰三角形,并求△ABC的周长.解题思路:(1)用根与系数的关系、勾股定理建立方程求解,•再用判别式和根与系数的关系检验.(2)用求根公式和等腰三角形的性质求解.解:(1)根据一元二次方程根与系数的关系和勾股定理,可列方程组:∵AC2+AB2=(AC+AB)2-2AC·AB.∴25=(2k+3)2-2(k2+3k+2),∴k1=-5,k2=2.当k=-5时,方程的两根为负值,不合题意,舍去.∴k=2,△ABC是以BC为斜边的直角三角形.(2)∵△=(2k+3)2-4(k2+3k+2)=1>0,方程有两个不相等的实数根,∴AC≠AB.当AB=BC或AC=BC时,将x=5代入方程x2-(2k+3)x+k2+3k+2=0,k=3,k=4.k=3时,方程为x2-9x+20=0,x1=4,x2=5.△ABC的周长为14.k=4时,方程为x2-11x+30=0,x1=5,x2=6.△ABC的周长为16.评析:这是一道综合题,涉及知识较多,一元二次方程的解法,一元二次方程根与系数关系,根的判别式,勾股定理,因为没指明等腰三角形的底和腰,不要漏解.另外,求解以后要检验,如三角形的边不能为负值,那么方程的解为负值即不合题意舍去,再如,求出的三边是否满足三角形三边之间的关系定理,不满足的也要舍去.【问题2】如下左图,图①是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边的长为c.图②是以c为直角边的等腰直角三角形,•请你开动脑筋将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形;(1、用单纯形法求解,并回答下列问题。
北师大初中数学中考总复习:特殊三角形--知识讲解(基础)【推荐】.doc
中考总复习:特殊三角形—知识讲解(基础)【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定;2.能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题;3.会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2性质:(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.3.判定:(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.如图,等腰三角形一腰上的高与底边所成的角等于( )A.顶角的2倍B.顶角的一半C.顶角D.底角的一半【思路点拨】等角的余角相等.【答案】B.【解析】如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C= 90°-(180-∠A)= ∠A,【总结升华】本题适用于任何一种等腰三角形,可以试着证明在钝角三角形中结论一样成立;总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.举一反三:【变式】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个 C.3个 D.2个【答案】A.2.(2015秋•南通校级月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=30cm,DE=2cm,则BC= cm.【思路点拨】作出辅助线后根据等腰三角形的性质得出BE=30,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【答案】32;【解析】解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=30,DE=2,∴DM=28,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=14,∴BN=16,∴BC=2BN=32,故答案为32.【总结升华】本题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.类型二、直角三角形3.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )A. B. C. D.【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).A. B. C. D.5【答案】B.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=AB设BD为x,则CD=8-x∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2∴AB2=42+82=80,∴AB=,∴BE=在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=,故选B.4.已知:在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D.(1)若∠BAC=30°,求证: AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.图1 图2【思路点拨】(1)利用直角三角形两锐角互余,求得∠ABD=∠A=30°,得出AD=BD.(2)利用三角形内角和及角平分线定义或利用三角形外角性质.【答案与解析】(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°又∵ BD 平分∠ABC , ∴∠ABD=30°,∴ ∠BAC =∠ABD ,∴BD=AD ;(2)解法一: ∵∠C=90°,∴∠BAC+∠ABC=90°∴=45°∵ BD 平分∠ABC ,AP 平分∠BAC∠BAP=,∠ABP=即∠BAP+∠ABP=45°∴∠APB=180°-45°=135°解法二: ∵∠C=90°,∴∠BAC+∠ABC=90°∴=45°∵BD 平分∠ABC ,AP 平分∠BAC∠DBC=,∠PAC=∴∠DBC+∠PAD=45° ∴∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.【总结升华】本题利用了:1、直角三角形的性质,两锐角互余,2、角的平分线的性质,3、三角形的外角与内角的关系.类型三、综合运用5 . 已知ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC 的长为5. (1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?(2)k 为何值时,ΔABC 是等腰三角形?并求出ΔABC 的周长。
中考数学冲刺总复习 第一轮 横向基础复习 第三单元 三角形 第10课 几何初步课件
过平行线上的一点作另一条平行线
平行线间 定义 的垂线,垂线段的长度叫做两条平
的距离
行线间的距离.
性质 两条平行线间的距离处处相等.
知识点5 命题
命题的概念 判断一件事情的句子叫做命题. 命题的分类 命题分为真命题和假命题. 命题的组成 命题题设和结论两个部分组成.
课前小测
1.(余角的性质)∠α =35°,则∠α 的余角的度数为
则正确的是( B )
A. ∠1=∠2
B. ∠3=∠4
C. ∠2+∠4=180°
D. ∠1+∠4=180°
4.(2018·广东)如图,AB∥CD,则∠DEC=100°,
∠C=40°,则∠B=( B )
A. 30°
B. 40°
C. 50°
D. 60°
5.(2018·绵阳)如图,有一块含有30°角的直角三角
(A )
A. 110°
B. 70°
C. 30°
D. 20°
2.(2017·百色)如图,AM为∠BAC的平分线,下列等
式错误的是( C )
A. 1 ∠BAC=∠BAM 2
B. ∠BAM=∠CAM
C. ∠BAM=2∠CAM
D. 2∠CAM=∠BAC
3.(2017·随州)某同学用剪刀沿直线将一片平整的 银杏叶剪掉一部分(如图),发现剩下的银杏叶的 周长比原银杏叶的周长要小,能正确解释这一现象
若∠A=36°,则∠B= 36° .
【点拨】本题主要考查了平行线的性质以及角平分线的 定义的运用,解题时注意:两直线平行,同位 角相等,内错角相等.
考点三 命题与定理 例3 (2018·怀化)下列命题是真命题的是( A )
A. 两直线平行,同位角相等 B. 相似三角形的面积比等于相似比 C. 菱形的对角线相等 D. 相等的两个角是对顶角
特殊三角形知识点和常规题型方法归类
特殊三⾓形知识点和常规题型⽅法归类⼀、特殊三⾓形知识点1、等腰三⾓形的定义,性质,判定。
等腰三⾓形性质定理:等腰三⾓形的两个底⾓相等 (即等边对等⾓)等腰三⾓形判定定理:如果⼀个三⾓形有两个⾓相等,那么这个三⾓形是等腰三⾓形(即等⾓对等边)“三线合⼀”定理:等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合2、等边三⾓形性质:等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°判定:三个⾓都相等的三⾓形是等边三⾓形;三边都相等的三⾓形是等边三⾓形;有⼀个⾓等于60°的等腰三⾓形是等边三⾓形3、直⾓三⾓形性质:(1)在直⾓三⾓形中,两个锐⾓互余;(2)直⾓三⾓形斜边上的中线等于斜边上的⼀半;(3)(补充结论)在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半;(4)勾股定理:直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅;(5)逆定理:如果三⾓形的三边长满⾜两边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形;(6)直⾓三⾓形全等判定条件HL:斜边和⼀条直边对应相等的两个直⾓三⾓形全等。
⼆、题型归类1、关于三线的题型:(1)等腰三⾓形两底⾓的⾓平分线相等;(2)等腰三⾓形腰上的⾼相等;(3)等腰三⾓形腰上的中线相等;(4)题中出现⾓平分线,垂线,中线中的两条是同⼀条线,要想到“三线合⼀”2、分类讨论题型:(1)没有指明边是底边,腰,直⾓边,斜边;(2)没有强调是底⾓还是顶⾓;例题:若等腰三⾓形中有⼀个⾓等于40°,则这个等腰三⾓形的顶⾓的度数为____在△ABC中,AB=15,AC=13,⾼AD=12,则三⾓形的周长是(3)没有强调是锐⾓还是钝⾓,需要⾃⼰画图的题;例题:等腰三⾓形的顶⾓是80°,则⼀腰上的⾼与底边的夹⾓是______。
中考数学复习-特殊的三角形
• 二、关于边的问题 • 3、(1)一个等腰三角形两边长分别为4和5, 则它的周长等于_________。 • (2)一个等腰三角形的两边长分别为3和7, 则它的周长等于 。 • 4、(1)如果一个等腰三角形的周长为24,一 边长为10,则另两边长为 。 • (2)如果一个等腰三角形的周长为24,一边 长为6,则另两边长为 。
考点聚焦 勾股定理及逆定理 勾股 定理 勾股 定理 的逆 定理 勾股数 直角三角形两直角边a、b的平方和,等于斜边c 的平方.即:________2 a2+b2=c 如果三角形的三边长a、b、c有关系: 逆定 2 a________ ,那么这个三角形是直角三角 +b2=c2 理 形 (1)判断某三角形是否为直角三角形;(2) 用途 证明两条线段垂直;(3)解决生活实际问 题 能构成直角三角形的三条边长的三个正整数,称 为勾股数
制作-zy
等腰三角形 (等边 等腰三角形(等边 三角形)的性质 三角形)的判定
边
两条腰相等
(三条边都相等)
两条边相等
(三条边都相等)
角
重要线段
等边对等角
(三个角都相等,并且 每个角都等于60°)
等角对等边பைடு நூலகம்
(1.三个角都相等 2.有一个角等于60 °的 等腰三角形)
线段垂直平分线上的点到这条 线段的两个端点的距离相等
在等边三角形ABC中,点E在AB上,点D在CB的 延长线上,且ED=EC,如图20-3.试确定线段 AE与DB的大小关系,并说明理由.
小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点E为AB的中点时,如图20-4①,确定线段 AE与DB的大小关系,请你直接写出结论: AE________DB(填“>”“<”或“=”) =
中考复习专用 三角形与特殊三角形
中考复习专用三角形与特殊三角形在中考的数学世界里,三角形与特殊三角形是一个非常重要的考点。
今天,咱们就来好好梳理一下这部分知识,为即将到来的中考做好充分准备。
首先,咱们来聊聊三角形的基本概念。
三角形是由三条线段首尾相连组成的封闭图形。
它有三个内角,内角和为 180 度。
这是一个非常重要的性质,在很多题目中都会用到。
比如,已知两个内角的度数,求第三个内角的度数。
三角形的三条边也有很多有趣的性质。
两边之和大于第三边,两边之差小于第三边。
这在判断三条线段能否组成三角形时特别有用。
如果给了三条线段的长度,咱们只需要比较两条较短边的和是否大于最长边,就能判断它们能否组成三角形啦。
接下来,咱们重点说说特殊三角形。
特殊三角形主要有等腰三角形、等边三角形和直角三角形。
等腰三角形有两条边相等,这两条相等的边叫做腰,另一条边叫做底边。
等腰三角形的两个底角相等。
如果知道了顶角的度数,就能很容易地求出底角的度数,反之亦然。
而且,等腰三角形“三线合一”的性质也很重要,就是顶角平分线、底边上的中线和底边上的高互相重合。
等边三角形就更特殊啦,它的三条边都相等,三个内角也都相等,都是60 度。
因为它的特殊性,所以在很多题目中一旦出现等边三角形,往往能给我们提供很多有用的信息。
再说说直角三角形。
直角三角形有一个角是 90 度。
它的两条直角边的平方和等于斜边的平方,这就是著名的勾股定理。
比如,一个直角三角形的两条直角边分别是 3 和 4,那么斜边就是 5,因为 3²+ 4²= 5²。
除了勾股定理,直角三角形还有很多重要的性质。
比如,斜边上的中线等于斜边的一半。
在解决与三角形和特殊三角形相关的题目时,我们经常需要用到全等三角形的知识。
全等三角形的对应边相等,对应角相等。
判断两个三角形全等的方法有“边边边”(SSS)、“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS)和“斜边、直角边”(HL)。
特殊三角形中考数学第一轮总复习课件
点,P为DE上一点,且满足∠EAP=∠ABP,则1PE=_____.
A
D
FE
B
C
D B
A E
P C
【例3】如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中
点,EF⊥AC于点F,G为EF的中点,连接DG,则12D9G的长为 __. A
考点聚焦
等边三角形的判定方法.
1.三边相等; 2.三角相等; 3.有一个角为60º的等腰三角形;
D
B
等边三角形的性质.
1.三边相等;
2.三角相等都等于60º;
A
B
拓展训练
特殊三角形
提升能力
10.如图,已知∠AOB=60º,点P在OA上,OP=8,点M,N在边OB上,PM=PN,若
MN=2,则3 OM=____.
11.如图,Rt△ABC中,∠B=90º,AB=4,BC=3,AC的垂直平分线DE分别交
25
AB,AC于D,E两点,则CD的8 长为____.
A
__________.
2.已知x,y为直角三角形两边的长,且满足|x-3|+ yA2 −EP4y + 3=0,则第三边的D
长为___2__2_,3__2或 ___10__.
1
P
P
3.如图,矩形ABCD中AB=4,BC=4 3,点E是
3
折线A-D-C上的一个动点(E不与A重合),
点P是点A关于BE的对称点.在点E运动的
判定 定义法:有一个角是90º的三角形是直角三角形. 有一条边上的中线是这边的一半的三角形是直角三角形.
2.等面积法求斜边上的高:如图,S=0.5ab=0.5ch, 其中a,b为两个直角边,c为斜边,h为斜边上的高.
特殊三角形专题
特殊三角形专题三角形,这一简单而又基础的几何图形,在数学的广袤天地中有着极其重要的地位。
而特殊三角形,更是因其独特的性质和特点,成为了数学研究和实际应用中的焦点。
首先,咱们来聊聊等腰三角形。
等腰三角形,顾名思义,就是至少有两条边长度相等的三角形。
这两条相等的边叫做腰,另一条边则称为底边。
等腰三角形有一个非常重要的性质,那就是两腰所对的底角相等。
这一性质在解决许多几何问题时,往往能起到关键作用。
比如说,已知一个等腰三角形的顶角为 80 度,那么根据三角形内角和为 180 度,以及等腰三角形两底角相等的性质,就能很轻松地算出底角的度数为(180 80)÷ 2 = 50 度。
等腰三角形的“三线合一”性质也特别实用。
所谓“三线合一”,就是指等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合。
这一性质在证明线段相等、角相等以及求解三角形的边长等问题时,常常能让我们事半功倍。
再来讲讲等边三角形。
等边三角形,那可是等腰三角形中的“佼佼者”,因为它的三条边都相等,三个角也都相等,而且每个角都是 60 度。
在实际生活中,等边三角形的应用也不少。
比如一些建筑的结构设计,就会用到等边三角形的稳定性。
接下来,不得不提的是直角三角形。
直角三角形,就是有一个角为90 度的三角形。
直角所对的边称为斜边,另外两条边称为直角边。
勾股定理是直角三角形最著名的性质。
即直角三角形两条直角边的平方和等于斜边的平方。
比如,一个直角三角形的两条直角边分别为 3 和 4,那么斜边的长度就可以通过勾股定理计算得出:斜边的平方= 3 的平方+ 4 的平方= 9 + 16 = 25,所以斜边的长度就是 5。
直角三角形还有一个重要的性质,那就是在一个直角三角形中,如果一个锐角等于 30 度,那么它所对的直角边等于斜边的一半。
这个性质在求解相关边长问题时,经常能派上大用场。
特殊三角形的判定也是我们需要掌握的重要知识点。
对于等腰三角形,我们可以通过“有两条边相等的三角形是等腰三角形”或者“有两个角相等的三角形是等腰三角形”来判定。
广东省中考数学复习配套课件:特殊三角形
(4)勾股定理:如果直角三角形的两条直
角边长分别为a,b,斜边长为c,那
么 a2+b2=c2 .
3.直角三角形的判定
(1)有一个角是 90° 的三角形是直角三
角形;
(2)勾股定理的逆定理:如果三角形的三
边长a,b,c满足
a2+b2=c2 ,那么
这个三角形是直角三角形.
1.一个直角三角形的一个锐角是20°, 则它的另一个锐角的大小是( C )
并且每个内角都等于60 ; (2)等边三角形是 轴对°称 图形,它有 三条对称轴.
3.等边三角形的判定 (1)三边都 相等 的三角形是等边 三角形; (2)三个角都 相等 的三角形是等 边三角形; (3)有一个角是 60 的等腰三角形是 等边三角形. °
1.有一个内角是60°的等腰三角形是 ( B) A.钝角三角形 B.等边三角形 C.直角三角形 D.以上都不是
解:观察图形,我们猜想 AE=CD=BF,AF=CE=BE
(证明)∵△ABC、△DEF是等边三角形 ∴∠A=∠B=60°,EF=DF ∴∠1+∠3=180°-60°=120°
∠2+∠3=180°-60°=120° ∴∠1=∠2
∠A=∠B 由 ∠1=∠2 得 △AEF≌△BFD(AAS)
EF=DF ∴AE=BF,AF=BD.
谢谢观赏
You made my day!
我们,还在路上……
(2)等腰三角形的顶角的平分线.底 边上的中线.底边上的高相互重合. 简称“ 三线合一 ”. (3)等腰三角形是 轴对称 图形,底 边上的中线(顶角平分线.底边上的 高)所在直线是它的对称轴.
3.等腰三角形的判定 (1)有两条边 相等 的三角形是等腰三
特殊三角形常考知识点专题备战2023年中考数学考点微专题
考向4.4 特殊三角形常考知识点专题例1、(2021·福建·中考真题)如图,在Rt ABC 中,90ACB ∠=︒.线段EF 是由线段AB平移得到的,点F 在边BC 上,EFD △是以EF 为斜边的等腰直角三角形,且点D 恰好在AC的延长线上.(1)求证:ADE DFC ∠=∠; (2)求证:CD BF =.证明:(1)在等腰直角三角形EDF 中,90EDF ∠=︒, ∴90ADE ADF ∠+∠=︒. ∵90ACB ∠=︒,∴90DFC ADF ACB ∠+∠=∠=︒, ∴ADE DFC ∠=∠. (2)连接AE .由平移的性质得//,AE BF AE BF =. ∴90EAD ACB ∠=∠=︒, ∴18090DCF ACB ∠=︒-∠=︒, ∴EAD DCF ∠=∠.∵EDF 是等腰直角三角形, ∴DE DF =.由(1)得ADE DFC ∠=∠, ∴AED CDF ≌, ∴AE CD =,∴CD BF =.1、等腰三角形的最重要的性质“三线合一”,这是中考题中常考点;2、中考几何综合题的基本特征就是常考知识点三个以上的在一个题中出现,因此解综合题的前题是学生对知识点能全面并熟悉掌握。
3、本小题考查平移的性质、直角三角形和等腰三角形的性质、全等三角形的判定和性质,解题的关键是:正确添加辅助线、熟练掌握平移的性质和全等三角形的判定与性质. 中考真题)已知AOB 和△2OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.解:(1)∵AOB 和MON △都是等腰直角三角形,∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON , ∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOB BOM BOM ,==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45AOBN,AM BN =,∴454590ABN ABO OBN ,且OMN ∆为等腰直角三角形, ∴2MN OM =,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAHHM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AHHM; 故46322AM或46322-.1、直角三角形角的关系是两锐角互余,边的关系是勾股定理;2、本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.1、等腰三角形具有的特性:等边对等角、等角对等边、对称性、;三线合一、等边三角形是特殊等腰三角形;2、直角三角形判定方法:两内角互余、勾股定理逆定理、一边上中线等于这边一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考冲刺指南第十讲特殊三角形班级学号姓名一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(2013•徐州)若等腰三角形的顶角为80°,则它的底角度数为(B)2.(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是(A)3.(2013•台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()4.(2012•威海)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(B)5..(2012•淄博)已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是(D)6.(2012贵州贵阳)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是( B )A.3 B.2 C D.17.(2013•南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为(C)2D8.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A B A的边长为(C)9.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为(C)10.(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是(D)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S:S=1:3.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(2013•江西)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.12.(2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=70°.13.(2013•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10cm.14.(2013•菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是,(或介于和之间的任意两个实数)(写出1个即可).15.(2013•聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为3.16.(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14 =P16A,则∠A的度数是12°.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本题6分)(2012•玉林)已知等腰△ABC的顶角∠A=36°(如图).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算说明△ABD和△BDC都是等腰三角形.解:(1)如图所示:BD即为所求;(2)∵∠A=36°,∴∠ABC=∠C=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°,∴∠CDB=180°﹣36°﹣72°=72°,∵∠A=∠ABD=36°,∠C=∠CDB=72°,∴AD=DB,BD=BC,∴△ABD和△BDC都是等腰三角形.18.(本题8分)(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB 于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADE的面积.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)∵DE⊥AB,∴∠AED=∠C=90°,在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL),∴S△ACD=S△AED,∴S△AED=×CD×AC=×3×6=9.19.(本题8分)(2012•莱芜)如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.解:(1)DB′=EC′.理由如下:∵AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,∴AD=AE=AB,∵△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′,∴∠B′AD=∠C′AE=α,AB′=AB,AC′=AC,∴AB′=AC′,在△B′AD和△C′AE中,∵,∴△B′AD≌△C′AE(SAS),∴DB′=EC′;(2)∵DB′∥AE,∴∠B′DA=∠DAE=90°,在Rt△B′DA中,∵AD=AB=AB′,∴∠AB′D=30°,∴∠B′AD=90°﹣30°=60°,即旋转角α的度数为60°.20.(2013•荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).21.(本题10分)(2013•舟山)小明在做课本“目标与评定”中的一道题:如图1,直线a,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);②说出该画法依据的定理.(2)小明在此基础上进行了更深入的探究,想到两个操作:①在图3的画板内,在直线a与直线b上各取一点,使这两点与直线a、b的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分.②在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线(在画板内的部分),只要求作出图形,并保留作图痕迹.请你帮小明完成上面两个操作过程.(必须要有方案图,所有的线不能画到画板外,只能画在画板内)解:(1)方法一:①如图2,画PC∥a,量出直线b与PC的夹角度数,即为直线a,b所成角的度数,②依据:两直线平行,同位角相等,方法二:①如图2,在直线a,b上各取一点A,B,连结AB,测得∠1,∠2的度数,则180°﹣∠1﹣∠2即为直线a,b所成角的度数;②依据:三角形内角和为180°;(2)如图3,以P为圆心,任意长为半径画弧,分别交直线b,PC于点B,D,连结BD 并延长交直线a于点A,则ABPQ就是所求作的图形;(3)如图3,作线段AB的垂直平分线EF,则EF就是所求作的线.22.(本题12分)(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.解:(1)∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD,∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC,∴AB=BE,∴△ABE是等边三角形;(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.23.(本题12分)(2013•烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.解:(1)AE∥BF,QE=QF,理由是:如图1,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∠BFQ=∠AEQ,在△BFQ和△AEQ中∴△BFQ≌△AEQ(AAS),∴QE=QF,故答案为:AE∥BF,QE=QF.(2)QE=QF,证明:如图2,延长FQ交AE于D,∵AE∥BF,∴∠QAD=∠FBQ,在△FBQ和△DAQ中∴△FBQ≌△DAQ(ASA),∴QF=QD,∵AE⊥CP,∴EQ是直角三角形DEF斜边上的中线,∴QE=QF=QD,即QE=QF.(3)(2)中的结论仍然成立,证明:如图3,延长EQ、FB交于D,∵AE∥BF,∴∠1=∠D,在△AQE和△BQD中,∴△AQE≌△BQD(AAS),∴QE=QD,∵BF⊥CP,∴FQ是斜边DE上的中线,∴QE=QF.。