八上数学培优之全等三角形
2022人教版八年级上册数学培优第十二章全等三角形第2节 第1课时利用三边判定三角形全等(SSS)
=BF.请写出图中所有的全等三角形:
△ADE≌△CBF,△CDE≌△ABF,△ADC≌△CBA
.
第7题图
基础巩固
能能力力提提升升
核心素养
-11-
第1课时 利用三边判定三角形全等(SSS)
8.如图,在方格纸中,以BC为一边作△PBC,使之与△ABC全等, 则这样的点P(不与点A重合)有 3 个.
第8题图
基基础础ቤተ መጻሕፍቲ ባይዱ巩固固
能力提升
核心素养
-8-
第1课时 利用三边判定三角形全等(SSS)
AE=CE, 证明:在△AOE 和△COE 中, OA=OC,
OE=OE,
∴△AOE≌△COE(SSS),
∴∠AOE=∠COE.
同理可得∠COE=∠DOF,
∴∠AOE=∠EOF=∠DOF.
基基础础巩巩固固
能力提升
核心素养
-9-
第1课时 利用三边判定三角形全等(SSS)
知识点3 作一个角等于已知角(尺规作图) 6.用尺规作图作一个角等于已知角的示意图如图所示,则说明 ∠A'O'B'=∠AOB的依据是 SSS .
基基础础巩巩固固
能力提升
核心素养
-10-
第1课时 利用三边判定三角形全等(SSS)
限时:15分钟
7.如图,AB=CD,BC=DA,E,F是AC上的两点,且AE=CF,DE
SSS .
基基础础巩巩固固
能力提升
核心素养
-7-
第1课时 利用三边判定三角形全等(SSS)
5.数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图 所示,点A,B,C,D分别固定在以点O为公共端点的四根木条上, 且OA=OB=OC=OD,点E,F可以在中间的两根木条上滑动 ,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠DOF.
2020年人教版八年级数学上册《全等三角形》单元培优(含答案)
2020年人教版八年级数学上册《全等三角形》单元培优一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。
A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定5.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°6.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.48.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7二、填空题9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .13.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC 的面积= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题16.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.17.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.18.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.20.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.21.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.22.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.D2.C3.C4.C5.C6.C.7.D.8.D9.答案为:①②③.10.答案为:相等或互补.11.答案为:128°.12.答案为:(-2,0),(-2,4),(2,4);13.答案为:1<AD <9.14.答案为:50.15.答案为:①②④.16.证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS).∴∠BAD=∠1,∠ABD=∠2.∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2.17.证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF ,在△ABF 和△AEC 中,∵,∴△ABF ≌△AEC (SAS ),∴EC=BF ;(2)如图,根据(1),△ABF ≌△AEC ,∴∠AEC=∠ABF ,∵AE ⊥AB ,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM (对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.18.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE19.答案为:80°,50°;20.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B21.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.22.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。
八年级数学全等三角形(培优篇)(Word版含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。
或150。
或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。
角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。
全等三角形问题培优
全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。
全等三角形指的是具有相等边长和相等内角的两个三角形。
在解决问题时,我们常常要运用全等三角形的性质。
本文将从这一角度出发,介绍全等三角形问题的培优方法。
一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。
在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。
1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。
2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。
3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。
利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。
二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。
利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。
例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。
如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。
2. 证明问题在几何证明中,全等三角形是常常被用到的工具。
通过找到一个或多个全等三角形,我们可以得到所求证的结论。
例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。
然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。
3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。
通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。
初二上数学培优专题(3)三角形全等
三角形全等例1:已知,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)如图1,求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.例2:已知△ABC中、∠ABC=∠ACB=40°,BD是∠ABC的平分线,延长BD至点E,使得DE=AD,求∠ECA的度数。
例3.已知∠GOH=90°,A、C分别是OG、OH上的点,且OA=OC=4,以OA为边长作正方形OABC.(1)E是边OC上一点,作∠AEF=90°使EF交正方形的外角平分线CF于点F(如图1),求证:EF=AE.(2)现将正方形OABC绕O点顺时针旋转,当A点第一次落在∠GOH的角平分线OP上时停止旋转;旋转过程中,AB边交OP于点M,BC边交OH于点N(如图2),①旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;②设△MBN的周长为p,在正方形OABC的旋转过程中,p值是否有变化?请证明你的结论.例4:如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上由点B出发向C点运动,同时,点Q在线段CA上由点C出发向A点运动.设运动时间为t(s).(1)若点P的运动速度为3cm/s,则t(s)时,BP= cm,CP= cm,(用含t的代数式表示).若点Q的运动速度与点P的运动速度相等,经过几秒后,△BPD与△CQP是否全等?请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,且点P的速度比点Q的速度慢1cm/s,则点Q的速度为多少时,能够使△BPD与△CQP全等?(3)若点Q以(2)中的速度从点C出发,点P以(2)中的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次相遇,相遇点在△ABC的哪条边上?1.∆ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=_____2.如图∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN ⑤EM=FN.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个 2题3.下列条件中能作出唯一的三角形的是()A.已知两边及一边的对角B.已知两边及第三边上的中线C.已知两角D.已知两边及第三边上的高线4.下列判断正确的是()A.有两边及其中一边的对角对应相等的两个三角形全等.B.有两边对应相等,且有一个角为30°的两个等腰三角形全等.C.有一个角和一边对应相等的两个直角三角形全等 .D.有两角和一边对应相等的两个三角形全等. 5题5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③AO=CO=AC④四边形ABCD的面积=AC•BD,其中正确的结论有 .6.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③ B.②③④ C.①③⑤ D.①③④7.下列叙述:①任意一个三角形的三条高至少有一条在三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)一定可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④两个角和其中一角的对边对应相等的两个三角形全等;⑤两条边和其中一边的对角对应相等的两个三角形全等;⑥三个角对应相等的两个三角形全等;⑦两边和其中一边上的高分别相等的两个三角形全等。
2024年湘教版八年级上册数学期末培优训练第6招全等三角形判定的三种类型
∴△ BDF ≌△ CEF (AAS).
∴ BF = CF , DF = EF .
∴ BF + EF = CF + DF ,即 BE = CD .
∠=∠,
在△ ABE 和△ ACD 中,ቐ∠=∠,
=,
∴△ ABE ≌△ ACD (AAS).
∴ AB = AC . ∴△ ABC 是等腰三角形.
定出全等三角形.本题图中没有三角形,只有连接 AC ,
将∠ B 和∠ D 分别放在两个三角形中,通过三边对应相等
证明两个三角形全等来证明∠ B 和∠ D 相等.
返回
典例剖析
证明:如图,连接 AC .
=,
在△ ABC 和△ ADC 中,ቐ=,
=,
∴△ ABC ≌△ ADC (SSS).∴∠ B =∠ D .
个三角形已经具备的条件,然后以其为基础,结合已知的
其他条件,分析推导得出需要的条件.
返回
典例剖析
如图,在四边形 ABCD 中, AB = AD , CB = CD . 求
证:∠ B =∠ D .
返回
典例剖析
判定三角形全等时,需要三对相等的对应边或角
(至少有一对对应边),因此我们可以先根据题目的条件确
返回
分类训练
已知一边一角型
方法1一次全等型
1. 如图,在△ ABC 中, D 是 BC 边上一点,连接 AD ,过点
B 作 BE ⊥ AD 于点 E ,过点 C 作 CF ⊥ AD 交 AD 的延长
线于点 F ,且 BE = CF .
求证: AD 是△ ABC 的中线.
返回
1
2
3
4
5
6
7
分类训练
∴△ ACB ≌△ ACD .
数学八年级上册 全等三角形(培优篇)(Word版 含解析)
数学八年级上册全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH== 5.∵BM+MN 的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC,在△BDF和△CDA中,∠BDF=∠CDA,∠A=∠DFB,BD=CD,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故③正确.作GM⊥AB于M.如图所示:∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.4.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°. 【详解】解:如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O 、P' 交OB 、OA 于M 、N ,由轴对称△PMN 周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN 周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.5.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】 解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.6.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP也无法证明BR QS.【详解】解:连接AP①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠BAC的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.7.△ABC中,最小内角∠B=24°,若△ABC被一直线分割成两个等腰三角形,如图为其中一种分割法,此时△ABC中的最大内角为90°,那么其它分割法中,△ABC中的最大内角度数为_____.【答案】117°或108°或84°.【解析】【分析】根据等腰三角形的性质进行分割,写出△ABC中的最大内角的所有可能值.【详解】①∠BAD=∠BDA=12(180°﹣24°)=78°,∠DAC=∠DCA=12∠BDA=39°,如图1所示:∴∠BAC=78°+39°=117°;②∠DBA=∠DAB=24°,∠ADC=∠ACD=2∠DBA=48°,如图2所示:∴∠DAC=180°﹣2×48°=84°,∴∠BAC=24°+84°=108°;③∠DBA=∠DAB=24°,∠ADC=∠DAC=2∠DBA=48°,如图3所示:∴∠BAC=24°+48°=72°,∠C=180°﹣2×48°=84°;∴其它分割法中,△ABC中的最大内角度数为117°或108°或84°,故答案为:117°或108°或84°.【点睛】本题考查了等腰三角形的性质,解题的关键是根据等腰三角形的性质进行分割找出所有情况.8.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..9.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC 上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。
八年级数学《全等三角形》能力培优
八年级数学《全等三角形》能力培优一.解答题(共8小题)1.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.2.已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0,1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y 轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.3.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;4.如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.5.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.6.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4,AC=7,求NC的长.7.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.8.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.八年级数学《全等三角形》能力培优参考答案与试题解析一.解答题(共8小题)1.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.2.已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0,1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y 轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.【分析】(1)过C作CM⊥y轴于M,通过判定△BCM≌△ABO(AAS),得出CM=BO=1,BM=AO=4,进而得到OM=3,据此可得C(﹣1,﹣3);(2)过C作CM⊥y轴于M,根据△BCM≌△ABO,可得CM=BO,BM=OA=4,再判定△DBE≌△CME(AAS),可得BE=EM,进而得到BE=BM=2.【解答】解:(1)如图1,过C作CM⊥y轴于M.∵CM⊥y轴,∴∠BMC=∠AOB=90°,∴∠ABO+∠BAO=90°∵∠ABC=90°,∴∠CBM+∠ABO=90°,∴∠CBM=∠BAO,在△BCM与△ABO中,,∴△BCM≌△ABO(AAS),∴CM=BO=1,BM=AO=4,∴OM=3,∴C(﹣1,﹣3);(2)在B点运动过程中,BE长保持不变,BE的长为2,理由:如图2,过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,∴CM=BO,BM=OA=4.∵△BDO是等腰直角三角形,∴BO=BD,∠DBO=90°,∴CM=BD,∠DBE=∠CME=90°,在△DBE与△CME中,,∴△DBE≌△CME(AAS),∴BE=EM,∴BE=BM=2.【点评】本题考查了全等三角形的判定以及全等三角形对应边、对应角相等的性质,熟练掌握三角形全等的判定方法,判定△DBE≌△CME是解第(2)题的关键.3.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;=3,BG=6,求AC的(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG长.【分析】(1)根据ASA证明△BCG≌△CAF,则CF=BG;(2)先证明△ACG≌△BCG,得∠CAG=∠CBE,再证明∠PCG=∠PGC,即可得出结论;(3)作△AEG的高线EM,根据角的大小关系得出∠CAG=30°,根据面积求出EM的长,利用30°角的三角函数值依次求AE、EG、BE的长,所以CE=3+,根据线段的和得出AC的长.【解答】证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图3,过E作EM⊥AG,交AG于M,=AG•EM=3,∵S△AEG由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.【点评】本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明△BCG≌△CAF即可;第3问,如何得出30°角和作辅助线,利用到S△AEG=3列式是突破口.4.如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.【分析】(1)证明三角形ACD和CAB全等.根据全等三角形判定中的SSS可得出两三角形全等,那么就能证出AD∥BC,也就得出∠1=∠2了.(2)(3)和(1)的证法完全一样.【解答】解:∠1与∠2相等.证明:在△ADC与△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠2.②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠2.【点评】本题主要考查了全等三角形的判定和平行线的判定,根据全等三角形得出角相等是解题的关键.5.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.【分析】(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点是对应点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据(2)中的表示方法,可以求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:(1)△EAD≌△EA’D,其中∠EAD=∠EA’D,∠AED=∠A'ED,∠ADE=∠A’DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A.规律为:∠1+∠2=2∠A.【点评】在研究折叠问题时,有全等形出现,要充分利用全等的性质.6.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4,AC=7,求NC的长.【分析】(1)推出∠3=∠E,推出AC=AE,根据等腰三角形性质得出AF⊥CE,根据平行线性质推出即可;(2)延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,求出BF=CN,AE=AN,BE=BF.设CN=x,则BF=x,AE=AN=AC﹣CN=7﹣x,BE=AB+AE=4+7﹣x.得出方程4+7﹣x=x.求出即可.【解答】(1证明:∵AD为△ABC的角平分线,∴∠1=∠2.∵CE∥AD,∴∠1=∠E,∠2=∠3.∴∠E=∠3.∴AC=AE.∵F为EC的中点,∴AF⊥EC,∵AD∥EC,∴∠AFE=∠FAD=90°.∴AF⊥AD.(2)解:延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,∴∠3=∠C,∠F=∠4∵M为BC的中点∴BM=CM.在△BFM和△CNM中,∴△BFM≌△CNM(AAS),∴BF=CN,∵MN∥AD,∴∠1=∠E,∠2=∠4=∠5.∴∠E=∠5=∠F.∴AE=AN,BE=BF.设CN=x,则BF=x,AE=AN=AC﹣CN=7﹣x,BE=AB+AE=4+7﹣x.∴4+7﹣x=x.解得x=5。
2024年浙教版八年级上册数学期末培优复习第1招全等三角形中的常见模型
“=”)
返回
1
2
3
4
5
6
7
8
9
分类训练
【点拨】
∵∠ BEC =∠ CFA =∠β,∠β=90°,∠ ACB =
90°,
∴∠ BEC =∠ AFC =90°,∠ BCE +∠ ACF =90°,
∴∠ CBE +∠ BCE =90°,∴∠ CBE =∠ ACF .
∠=∠,
在△ BCE 和△ CAF 中,ቐ∠=∠,
【解】 AC ⊥ BD .
理由如下:∵∠ AMD =∠ ABM +∠ BAM ,∠ BAM =
∠ BAO +∠ OAC ,
∴∠ AMD =∠ ABM +∠ BAO +∠ OBD =∠ OBA +
∠ BAO .
∵∠ AOB =90°,∴∠ OBA +∠ BAO =90°,
∴∠ AMD =90°,∴ AC ⊥ BD .
=,
∴△ ABD ≌△ CAE ( AAS ).
∴ BD = AE , AD = CE . ∴ AD + AE = BD + CE ,
∴ DE = BD + CE ,∴ BD = DE - CE .
1
2
3
4
5
6
7
8
9
返回
分类训练
4. CD 是经过∠ BCA 的顶点 C 的一条直线, CA = CB , E ,
返回
典例剖析
(1)证明:∵∠1=∠2,∠ ADE =∠2+∠ BDE =∠1+∠ C ,
∴∠ BDE =∠ C .
∠=∠,
在△ AEC 和△ BED 中,ቐ∠=∠,
=,
∴△ AEC ≌△ BED ( AAS ).
返回
2019-2020人教版数学八年级上册期末压轴题培优:全等三角形(含答案)
八年级上学期期末压轴题培优:全等三角形1.某中学八年级(5)班的学生到野外进行数学活动,为了测量一池塘两端A、B之间的距离,同学们设计了如下两种方案:方案1:如图(1),先在平地上取一个可以直接到达A、B的点C,连接AC并延长AC 至点D,连接BC并延长至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长.方案2:如图(2),过点B作AB的垂线BF,在BF上取C、D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB间的距离问:(1)方案1是否可行?并说明理由;(2)方案2是否可行?并说明理由;(3)小明说:“在方案2中,并不一定需要BF⊥AB,DE⊥BF,将“BF⊥AB,DE⊥BF”换成条件AB∥DE也可以.”你认为小明的说法正确吗?如果正确的话,请你把小明所说的条件补上.解:(1)在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE;(2)∵BF⊥AB,DE⊥BF,∴∠B=∠BDE,在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE;(3)只需AB∥DE即可,∵AB∥DE,∴∠B=∠BDE,在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE,故答案为:AB∥DE.2.小明用大小相同高度为2cm的10块小长方体垒了两堵与地面垂直的木墙AD,BE,当他将一个等腰直角三角板ABC如图垂直放入时,直角顶点C正好在水平线DE上,锐角顶点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.3.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A:②沿河岸直走20m有一树C.继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.(1)河的宽度是5米.(2)请你说明他们做法的正确性.证明:(1)由题意知,DE=AB=5米,即河的宽度是5米.故答案是:5.(2)如图,由题意知,在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED.即他们的做法是正确的.4.小明想知道一堵墙上点A的高度(AO⊥OD),但又没有直接测量的工具,于是设计了下面的方案,请你先补全方案,再说明理由.第一步:找一根长度大于OA的直杆,使直杆靠在墙上,且顶端与点A重合,记下直杆与地面的夹角∠ABO;第二步:使直杆顶端竖直缓慢下滑,直到∠OCD=∠ABO.标记此时直杆的底端点D;第三步:测量OD的长度,即为点A的高度.说明理由:解:OCD,ABO,OD;理由:在△AOB与△DOC中,,∴△AOB≌△DOC(AAS),∴OA=OD.故答案为:OCD,ABO,OD.5.如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?解:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中,∴△COB≌△FOE(SAS)∴BC=EF(对应边相等)∠BCO=∠F(对应角相等)∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),6.如图,操场上有两根旗杆间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?解:(1)∵CM和DM的夹角为90°,∴∠1+∠2=90°,∵∠DBA=90°,∴∠2+∠D=90°,∴∠1=∠D,在△CAM和△MBD中,,∴△CAM≌△MBD(AAS),∴AM=DB,AC=MB,∵AC=3m,∴MB=3m,∵AB=12m,∴AM=9m,∴DB=9m;(2)9÷0.5=18(s).答:小强从M点到达A点还需要18秒.7.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=E D,即他们的做法是正确的.8.某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案,设计方案:先在平地上取一个可直接到达A,B的点E(AB为池塘的两端),连接AE,BE,并分别延长AE至D,BE至C,使ED=AE,EC=BE.测出CD的长作为AB之间的距离.他的方案可行吗?请说明理由.若测得CD为10米,则池塘两端的距离是多少?解:在△AEB和△D EC中∴△AEB≌△DEC(SAS);∴AB=CD=10米(全等三角形的对应边相等).答;池塘两端的距离是10米.9.如图,一条河流MN旁边有两个村庄A,B,AD⊥MN于D.由于有山峰阻挡,村庄B 到河边MN的距离不能直接测量,河边恰好有一个地点C能到达A,B两个村庄,与A,B的连接夹角为90°,且与A,B的距离也相等,测量C,D的距离为150m,请求出村庄B到河边的距离.解:如图,过点B作BE⊥MN于点E,∵∠ADC=∠ACB=90°,∴∠A=∠BCE(同角的余角相等).在△ADC与△CEB中,.∴△ADC≌△CEB(AAS).∴BE=CD=150m.即村庄B到河边的距离是150米.10.如图,小明站在乙楼BE前方的点C处,恰好看到甲、乙两楼楼顶上的点A和E重合为一点,若B、C相距30米,C、D相距60米,乙楼高BE为20米,小明身高忽略不计,则甲楼的高AD是多少米?解:∵AD⊥DC,EB⊥BC,∴AD∥BE,∴∠AEF=∠C,∵B、C相距30米,C、D相距60米,∴EF=DB=BC=30米,∵∠AFE=∠EBC=90°,∴△AEF≌△ECB(ASA),∴AF=BE,∵DF=BE,∴AD=2BE=2×20=40(米).答:甲楼的高AD是40米.11.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,∴制成整个金属框架所需这种材料的长度为24×2﹣3=45cm.12.如图,某地在山区修建高速公路时需挖通一条隧道,为估计这条隧道的长度需测出这座山A、B间的距离,结合所学知识或方法,设计测量方案你能给出什么好的方法吗?解:选择一合适的地点O,连接AO、BO,测出AO和BO的长度,延长AO、BO至A′、B′,使OA′=OA,OB′=OB,连接A′B′,这样就构成两个三角形,在△AOB和△A′OB′中,,∴△AOB≌△A′OB′(SAS),∴AB=A′B′.13.生活中处处有数学.(1)如图(1)所示,一扇窗户打开后,用窗钩AB将其固定,这里所运用的数学原理是三角形具有稳定性;(2)如图(2)所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC 的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度,这样做合适吗?请说明理由.解:(1)如图1所示,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是:三角形的稳定性.故答案为:三角形具有稳定性;(2)合适,理由如下:∵AB∥CD,∴∠B=∠C,∵点M是BC的中点,∴MB=MC,在△MEB与△MCF中,∴△MEB≌△MFC(SAS),∴ME=MF,∴想知道M与F之间的距离,只需要测出线段ME的长度.14.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.解:(1)根据题意画出图形,如图所示.(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC,∴AB=DE.∵DE=60m,∴AB=60m,答:A、B两根电线杆之间的距离大约为60m.15.(1)如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明.(提示:延长CD到G,使得DG=BE)(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西20°的A处,舰艇乙在指挥中心南偏东60°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1×(60+80)=140(海里).答:此时两舰艇之间的距离是140海里.。
人教版八年级上册数学同步培优第12章全等三角形 用“斜边、直角边”判定直角三角形全等
认知基础练
【点拨】 设点P的运动时间为t s. ①当BP=CQ,AB=PC时,△ABP≌△PCQ. ∵AB=8 cm,∴PC=8 cm. ∴BP=12-8=4(cm), ∴2t=4.∴t=2.∴v×2=4,∴v=2. ②当AB=QC,BP=CP时,△ABP≌△QCP.
认知基础练
∵BP=CP,∴2t=6.∴t=3,∴3v=8. ∴v=83. 综上所述,当 v=2 或83时,△ ABP 与△ PCQ 全等. 【答案】 2 或83
BF=CE, ∴△BDF≌△CDE(SAS),∴∠B=∠C.
思维发散练
5 【教材P42例5拓展】如图,AC⊥BC,AD⊥BD,AD= BC,CE⊥AB,DF⊥AB,垂足分别是点E,F.求证: CE=DF. 证明:∵AC⊥BC,AD⊥BD, ∴∠ACB=∠BDA=90°. 在 Rt△ ABC 和 Rt△ BAD 中,ABBC==BAAD,,
认知基础练
2 【教材P43练习T2变式】如图,BE=CF,AE⊥BC, DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,还
需要添加一个条件是( D )
A.AE=DF
B.∠A=∠D
C.∠B=∠C D.AB=DC
认知基础练
3 【2021·日照】如图,在矩形ABCD中,AB=8 cm, AD=12 cm,点P从点B出发,以2 cm/s的速度沿BC边 向点C运动,到达点C停止,同时,点Q从点C出发, 以v cm/s的速度沿CD边向点D运动,到达点D停止,规 定其中一个动点停止运动时,另一个动点也随之停止 运动.当v为________时,△ABP与△PCQ全等.
思维发散练
∴Rt△ ABC≌Rt△ BAD(HL).∴∠CBE=∠DAF. ∵CE⊥AB,DF⊥AB,∴∠CEB=∠DFA=90°.
八年级数学上册全等三角形(培优篇)(Word版 含解析)
八年级数学上册全等三角形(培优篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD 中,∠ABC=120°,AB=10cm ,点P 是这个菱形内部或边上的一点.若以P ,B ,C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为______cm .【答案】10310-【解析】解:连接BD ,在菱形ABCD 中,∵∠ABC =120°,AB =BC =AD =CD =10,∴∠A =∠C =60°,∴△ABD ,△BCD 都是等边三角形,分三种情况讨论:①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P 与点D 重合时,PA 最小,最小值PA =10;②若以边PB 为底,∠PCB 为顶角时,以点C 为圆心,BC 长为半径作圆,与AC 相交于一点,则弧BD (除点B 外)上的所有点都满足△PBC 是等腰三角形,当点P 在AC 上时,AP 最小,最小值为10310-;③若以边PC 为底,∠PBC 为顶角,以点B 为圆心,BC 为半径作圆,则弧AC 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点A 重合时,PA 最小,显然不满足题意,故此种情况不存在;综上所述,PA 的最小值为10310-(cm ).故答案为:10310-.点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D在第二象限,且ABD与ABC全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等.故答案为(-4,2)或(-4,3).3.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵32ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴3222=4.∴CM+MN的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.4.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:①AE=CF;②△EPF是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.故始终正确的是①②④.故选D .考点:1.全等三角形的判定与性质;2.等腰直角三角形.5.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.6.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.7.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
八年级上册数学 全等三角形(培优篇)(Word版 含解析)
八年级上册数学 全等三角形(培优篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角, ∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.2.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,3,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.【答案】53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=43,得到AD=BE=3BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =223314231442⨯-⨯-⨯⨯=53,故答案为53.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.3.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG中,60BAF BDG AB DBABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG . ∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG =60°,∴②正确; ∵AE =CD ,AF =DG ,∴EF =CG ;∴③正确;∵∠ADB =60°,而∠CDB =∠EAB ≠30°,∴AD 与CD 不一定垂直,∴④错误.∵△BFG 是等边三角形,∴∠BFG =60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确. 故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误,根据HL证明△AMO≌△ADO得到AM=AD,同理可证BM=BN,CD=CN,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.5.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.6.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.7.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.8.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC ,AD 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠EBC=∠E=60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6cm ,DE=2cm ,∴DM=4,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.9.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.10.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;根据CF +EF =AF ,CF +DF =CD ,得出CD ≠AF ,从而得出FE ≠FD ,即可得出③错误.【详解】∵△ABD 和△ACE 是等边三角形,∴∠BAD =∠EAC =60°,AE =AC =EC .∵∠BAE +∠DAE =60°,∠CAD +∠DAE =60°,∴∠BAE =∠DAC ,在△BAE 和△DAC 中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且14.在一个33ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.15.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.16.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A .16B .18C .20D .24【答案】A【解析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC22-=4223AC E C-22故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.18.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t=43,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=83,∴当第43秒或第83秒时,△PBQ为直角三角形.故④正确.正确的是②③④,故选C.【点睛】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.19.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( ) A.1 B.2 C.3 D.4【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.20.如图,在ABC△中,2B C∠=∠,AH BC⊥,AE平分BAC∠,M是BC中点,则下列结论正确的个数为()(1)AB BE AC+=(2)2AB BH BC+=(3)2AB HM=(4)CH EH AC+=A.1 B.2 C.3 D.4【答案】D【解析】【分析】(1)延长AB取BD=BE,连接DE,由∠D=∠BED,2ABC C∠=∠,得到∠D=∠C,在△ADE和△ACE中,利用AAS证明ADE ACE≌,可得AC=AD=AB+BE;(2)在HC上截取HF=BH,连接AF,可知△ABF为等腰三角形,再根据2ABC AFB C∠=∠=∠,可得出△AFC为等腰三角形,所以FC+BH+HF=AB+2BH=BC;(3)HM=BM-BH,所以2HM=2BM-2BH=BC-2BH,再结合(2)中结论,可得2AB HM=;(4)结合(1)(2)的结论,BC2BH BE BC BH BE BH CH EHAC AB BE=+=-+=-+-=+.【详解】解:①延长AB取BD=BE,连接DE,∴∠D=∠BED,∠ABC=∠D+∠BED=2∠D,∵2ABC C∠=∠,∴∠D=∠C,在△ADE和△ACE中,DAE CAED CAE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE≌∴AC=AD=AB+BE,故(1)正确;②在HC上截取HF=BH,连接AF,∵AH BC⊥,∴△ABF为等腰三角形,∴AB=AF,∠ABF=∠AFB,∵2ABC C∠=∠,∴∠AFB=2∠C=∠C+∠CAF,∴FC=AF=AB,∴FC+BH+HF=AB+2BH=BC,故(2)正确;③∵HM=BM-BH ,∴2HM=2BM-2BH=BC-2BH ,由②可知BC-2BH=AB ,∴2AB HM =④根据①②结论,可得:BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.。
八上培优第7讲 全等三角形的判定(一)
A DB C E F第七讲:全等三角形的判定(一)SAS【知识要点】1.求证三角形全等的方法(判定定理):①SAS;②ASA;③AAS;④SSS;⑤HL;需要三个边角关系;其中至少有一个是边;2.“SAS”定理:有两边及夹角对应相等的两个三角形全等;①求证全等的格式:()如:②利用全等进行几何证明的三大环节:预备证明、“全等五行”、全等应用;③“边边角”不能证明两个三角形全等;3.三角形全等的的应用:①证明线段相等;②证明角相等;4.注意不需要预备证明而直接利用的隐藏条件:公共边、公共角、对顶角. 【新知讲授】“SAS”公理的运用例1、已知:如图,C为AB的中点,CD∥BE,CD=BE,求证:∠D=∠E.巩固练习1.如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:BC=DE.2.已知:如图,AB=AC,D、E分别为AB、AC的中点,求证:∠B=∠C.在△ABC和△DEF中:AB DEA DAC DF=⎧⎪∠=∠⎨⎪=⎩∴△ABC∽△DEF.(SAS)例2.已知:如图,AB=CD,∠ABC=∠DCB,求证:∠ABD=∠ACD.巩固练习:1.已知:如图,AB∥CD,AB=CD,AE=DF,求证:CE∥BF.2.已知:如图,AB=AD,AC=AE,∠1=∠2,求证:∠DEB=∠2.例3.如图,BD、CE为△ABC的两条中线,延长BD到G,使BD=DG,延长CE到F,使CE=EF.(1)求证:AF=AG;(2)试问:F、A、G三点是否在同一直线线?证明你的结论.巩固练习:1.已知:如图,AB⊥BD于点B,CD⊥BD于点D,AB=CD,BE=DF,求证:∠EAF=∠ECF.2.已知:如图,AB=AC,AD平分∠BAC,求证:∠DBE=∠DCE.A BC DEFABDEF例4.已知:如图,OA=OB,OC=OD,求证:∠ACD=∠BDC. (提示:不能用等腰三角形的性质)巩固练习:1.已知:如图,OD=OE,OA=OB,OC平分∠AOB,求证:∠A=∠B.2.已知:如图,AB=CD,BE=CF,∠B=∠C,求证:∠EAF=∠EDF.【课后作业】1.如图,已知点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC∥EF.2.已知:如图,AB⊥BD,CD⊥BD,AB=DE,BE=CD,试判断△ACE的形状并说明理由.A B E D C A D B C E F A D B C E A D C B4.已知:如图,OD=OE ,OC 平分∠AOB ,求证:∠A=∠B.5.如图,四边形ABCD 中,AD=BC ,AD ∥BC ,求证:AB=CD ,AB ∥CD.6.如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)7.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.条件,使△BDE≌△CDF (不再添加其它线段),并能用“SAS”公理进行证明.(1)你添加的条件是:;(2)证明:。
八年级数学全等三角形(培优篇)(Word版 含解析)
八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
【八年级上册数学培优竞赛-素养提升】专题02 全等三角形之常见模型
专题02全等三角形之常见模型【专题解读】全等三角形隐藏着几个常见模型,有“K型”、“手拉手模型”、“半角模型”等,分析各模型的基本特征,在复杂图形中准确识别常见模型的特征,找到与问题解决相关的全等三角形,并利用全等三角形的性质解决有关角、线段等问题.思维索引例1.(1)如图1,四边形ABCD是正方形,点E是边BC上(除B、C外)的任意一点,∠AEF=90°,且EF=AE,连接FC,求证:CF平分∠DCG.(1)如图2,四边形ABCD是正方形,点E是边BC上(除B、C外)的任意一点,∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.图1图2答案:(1)证明略;(2)证明略例2.两个大小不等的正方形ABCD和正方形BEFG,且有公共顶点B.(1)如图1.若点A、B、E三点共线,则线段AG与CE的关系为_______________.(2)将图1中的正方形BEFG绕点B旋转一定的角度得到图2,(1)中的结论还成立吗?并说明理由,(图1)答案:(1)AG=CE,AG⊥CE,理由略;(2)仍然成立,理由略.例3.如图,点E、F分别在正方形ABCD的边BC,CD上,分别连接AE、AF和EF,若∠EAF=45°试证明:EF=BE+DF.答案:证明略.素养提升1.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3等于()A.55°B.50°C.45°D.60°答案:A(第1题) (第2题) (第3题)2.如图,AB⊥BC,CD⊥BC,垂足分别为B、C,AB=BC,E为BC中点,且AE⊥BD,若CD=5,则AB 的长为( )A.5B.6C.8D.10答案:D3.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是()A.6B.4.5C.3D.2答案:C4.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E,AD=2.5cm,DE=1.7cm,则BE的长( )A.0.8cmB.0.7cmC.0.6cmD.1cm(第4题) (第5题) (第6题)答案:A5.如图,五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为( )答案:C6.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作经过点A的直线的垂线段BD,CE,若BD=3厘米,CE=5厘米,则DE的长为________厘米.答案:87.如图,已知AD=DB,AC=BC=PB,∠PBC=2∠PBD,∠P=15°,则∠C=_______.答案:30°8.如图,在Rt△ABC和Rt△BCD中,BD=8,CD=6,AB=AC,∠BAC=∠BDC=90°,M、N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_______.答案:149.如图,AO⊥OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为______.答案:2(第7题) (第8题) (第9题) (第10题)10.如图,点D是线段AB上一点,∠CAB=∠ADE=∠ABF=90°,AC=BD,AD=BF,AB=DE,若∠AEB=α,则∠CEF=______.(用含α的式子表示)答案:90°-α11.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并说明理由.(图1) (图2)答案:证明略12.如图,△ABC是等边三角形,△BDC是等腰三角形,且BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连接MN.问:线段BM、MN、NC之间有怎样的数量关系?并说明理由.答案:证明略13.CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:(填“>”,“<”或“=”);①如图1,若∠BCA=90°,∠α=90°,则BE_____CF;EF____BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件________________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF,BE,AF三条线段的数量关系,并说明理由.(图1) (图2) (图3)答案:(1)①=,=;②∠α+∠BCA=180°;(2)EF=BE+AF14.如图,等边△ABC中,P是三角形内一点,且∠BPC=110°,∠BP A=100°,如果以线段P A,PB,PC为边组成三角形,求这个三角形各内角的度数.答案:40°,50°,90°.15.如图,在我海军的某次军事演习中,驱逐舰A位于“辽宁”号航母所在的指挥中心(O处)北偏东20°方向,驱逐舰B在指挥中心南偏西80°方向,并且两舰到指挥中心的距离相等.接到行动指令后,A向正西以32海里/小时的速度前进,B沿北偏西30°的方向以40海里/小时的速度前进,半小时后,指挥中心观测到A、B两舰分别到达C,D处,且两舰艇与指挥中心O之间夹角∠COD=60°,求此时两舰艇之间的距离.答案:CD=32(海里).。
人教版八年级上册数学同步培优第12章全等三角形 全等三角形的定义
认知基础练
3 【教材P32练习T2变式】如图,△AOC≌△BOD,点A 与点B,点C与点D是对应点,下列结论中错误的是 (C ) A.∠A与∠B是对应角 B.∠AOC与∠BOD是对应角 C.OC与OB是对应边 D.OC与OD是对应边
认知基础练
4 如图,沿直线AC对折,△ABC与△ADC重合,则 △ABC≌__△__A_D__C_,AB的对应边是____A_D___,∠BCA的 对应角是____∠_D__C_A.
(2)写出对应边及对应角. 对应边有:AB与DC,AF与DE,BF与CE; 对应角有:∠A与∠D,∠B与∠C,∠AFB与∠DEC.
人教版 八年级上
第十二章 全等三角形
12.1
全等三角形
目标一 全等三角形的定义
习题链接
温馨提示:点击 进入讲评
1B 2C 3C 4
5 6 ②④ 7 8
答案呈现
认知基础练
1 下列图形中与已知图形全等的是( B )
认知基础练
2 下列说法中正确的有( C ) ①用一张底片冲洗出的10张1寸相片是全等形; ②我国国旗上的4颗小五角星是全等形; ③所有的正方形是全等形; ④全等形的面积一定相等. A.1个 B.2个 C.3个 D.4个
方法技巧练
7 【教材P33习题T2改编】如图,△ABD≌△ACE,∠B 和∠C是对应角,AD和AE是对应边,写出其他对应角 和对应边.
解:其他对应角有∠BAD和∠CAE,∠ADB和∠AEC; 其他对应边有AB和AC,BD和CE.
方法技巧练
8 如图,点E,F在线段BC上,△ABF与△DCE全等, 点A与点D,点B与点C是对应顶点,AF与DE交于点M. (1)表示这两个三角形全等; 解:△ABF≌△DCE.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A F C E DB B AC D EF 全等三角形的性质与判定经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).A B CD OFE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.B (E )OC F 图③DAAE第1题图A BCDEBCDO第2题图AFECB D【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是EFB ACDG第2题图( ) A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图D05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.D A C .QP.BD B A CEF A E B F DCA E FB D C14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接F第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图ABCDA 1B 1C 1D 1AEF C DB AE B DC DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;ABE D CAB C DE⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。