电子管并联调整推挽电路

合集下载

胆圣TS-EL34合并式推挽电子管放大器

胆圣TS-EL34合并式推挽电子管放大器


通 过机顶 上的指示表头

及 调 节 电位 器
可 以完成此 项 工


似 乎 胆 圣 胆 机 大 多配 有 调 整

装置
此 电子 管 放 大 器 还 配 备 了

遥控功能

与 机 箱 同 类 工 艺 制作

的 铝 合 金 外 壳 的遥 控 器

只 有静

音量 调 整 +



三 个按 键

想 想 如此 功 能 已 足 够
维普资讯
凯蕈 薹 黼
了 独 立 的 电子 管 前 级 及 后 级 产 品


背板 的连接端子很 丰富
致 于将后 背板几 乎排满 号输入



而 且 是单端

推挽输 出的机种 齐
则 是 最近 开 发 的



三组信


TS E L 3 4



组 超 低音专用输 出 这
员 响 应 : 2 4 Hz 4 0 k Hz 率
-
供 电没 有 采用 电子 管整 流 及 扼 流
但仍细 腻
KT 8 8
甜美可
圈滤 波 的传统 方 式
±

取而 代之 的

力度逊色于

推 挽 输 出的
l dB
是 整 流桥 波 的 方 式
强势
但 又 不 至 于只 适 于聆听人

位等要 处理 好 供
4 Q


音 箱连 接端 子 提

8 mm

用EL34制作的合并式电子管功放调整

用EL34制作的合并式电子管功放调整

用EL34制作的合并式电子管功放调整————————————————————————————————作者:————————————————————————————————日期:用EL34制作的合并式电子管功放(上)作者:徐松森文章来源:《无线电与电视》点击数: 18122 更新时间:2005—5-16 15:10:53电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。

今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放.本机通用性强,制作简便,成功率高,升级换代方便。

电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。

本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压与部分元件参数即可。

常用功率管作A类与AB类推挽功放应用参考数据表:一、合并式功放电路简析图1 电子管合并式功放电原理图图l为电子管合并式功放电原理图。

输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流与跨导值大,屏极线性范围宽,输入动态范围大。

输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。

本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。

倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。

这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真.本电路由双三极电子管6N1l或6N6来担任。

上管为激励管;下管为倒相管。

两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。

电子管功放调整方法

电子管功放调整方法

电子管功放调整方法电子管功放调整方法电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。

下面是店铺为大家整理的电子管功放调整方法,欢迎大家阅读浏览。

一、栅负压电路调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。

电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。

栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。

为了使胆管工作稳定,栅负压必须用直流电来供给。

按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。

另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。

使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。

自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。

这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。

由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。

阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。

当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。

自制电子管并联调整推挽

自制电子管并联调整推挽

自制电子管并联调整推挽(SRPP)电路SRPP(Shunt Regulated Pust-Pull)电路,即并联调整推挽电路是一款线性接近理想,而失真度、动态以及输出阻抗都比一般甲类放大电路更加好的优秀电路。

该电路最早使用在视频领域,所以频率响应非常宽,现在用于音频领域,确有杀鸡用牛刀的感觉。

笔者早在1992年春看到贵体翔先生在《实用电子文摘》上介绍日本的须贺一男用该电路做输入兼推动的混合型胆石机,频响宽达360kHz等指标后.曾立志今后—定要玩—玩该电路。

同年,2月时,再看到何绍和先生在《无线电与电视》上介绍该电路时,再也抑制不住兴奋。

从1993年春到1996年春这三年里不断地摸索,反复六次拆装,才终于做成今天这一款较理想的前级。

说句心理话,要做成一款电子管前级并不难。

因为几十年来,电子管技术的发展已经达到了颠峰,各种电路也非常成熟,关键是如何提高制作的技术,具体地说是如何提高它的倌噪比和降低失真度,而最难的就是提高信噪比。

在附图中,图1和图2分别是一个声道的放大电路和电源的电路图。

图1图2主电路是非常经典的SRPP电路,高低音电路是参照陈锦华先生发表在《音响世界》的路。

VR1是左右声道平衡电位器(VR1a表示一个声道的).用的是带有中间定位的ALPS 100k Ω×2的B型电位器。

由于本人使用的激光唱机是PhilipsCD931,带有音量调节,信号输出可达2伏,所以在本前级中不设音量控制,只设了输出电平调节VR4。

输入管G1我用的是旧的金脚ECC88,输出管G2常用6DJ8、6N11、有时也用6N2。

不同的管于有不同的声音,内阻越高胆味越浓,我爱用6DJ8听打击乐,用6N11听丝竹音乐,而用6N2听情歌。

事实上该电路适应性强,甚至全部用6N1也有非常好的声音。

由于上述各管的管脚相同,可以相互换插,不同的管子有不同的最佳工作点,但电子管的适应能力很强,屏压从6 0V到500V都能工作。

单端A类电子管功放电路图

单端A类电子管功放电路图

6P3P单端A类电子管功放电路图作者:日期:2010-2-26 12:37:26 人气:397 标签:单端A类电子管功放电路图1.输入电压放大级??? SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。

??? 电路见图。

VT1、VT2直流通路串联。

VT1构成普通的三极管共阴放大器,VTr2构成阴极输出器,对VT1而言VT2是一个带电流负反馈的高阻负载。

音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。

进入后级电路。

vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。

同时,VTl、VT2交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为“并联”,相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。

又因为VT1、VT2对R4负载来说是推挽工作,输出电流增大一倍,失真也有所降低。

C1是VTl的阴极交流旁路电容。

避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3的驱动能力。

??? R3上的压降2.6V,作为VT1的栅负偏压,此负压比现代数码音源输出信号振幅大1.5V,避开了6N3动态阳一栅特性曲线的非线性部分。

输入级电压放大倍数为:A=u·R4/(Ri/2+R4)=35·360k/(5.8k/2+360k)≈35倍。

其中u为6N3放大系数,值为35;Ri为6N3内阻,值为5.8k.2.功率输出级??? 功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源+B1直接相连。

这种接法的特点是:放大效率高。

能达到特性表中功放管所规定的输出功率。

R6为输出级阴极电阻,将输出级栅负压确定在-20V。

用6C19电子管制作的AB类推挽功率放大器

用6C19电子管制作的AB类推挽功率放大器

用6C19电子管制作的AB类推挽功率放大器一、电路特点 采用6N11做电压放大和P—K分割倒相,6N6推动。

6C19功率输出,电路见下图。

6C19功率管采用自给偏压,静态电流55mA左右,可通过调整R13的阻值调整阴极电压,从而调整其偏压值和工作点。

R13可用多只电阻并联使用。

总瓦数大一些好。

一般认为,P—K分割倒相电路无须调整。

在电子管的屏极和阴极接人阻值相同的电阻,因为它们是串联关系。

串联电路电流处处相等。

就会得到幅度相等而相位相反的两组电压。

其实不然,实际上在分割倒相电路中,由于负载是输出变压器。

不是纯电阻,它的阻抗是随频率变化的。

输出阻抗的不同导致不同频率时两路输出不平衡,造成阴极输出端的信号电压总是高于屏极输出端的信号电压,这是P—K分割倒相电路的特点同时也是它的弱点。

因此屏极电阻R4的值应该比阴极电阻R5的值大一些,并且应该在调整中确定其阻值。

具体方法是在输入端输入3kHz-5kHz正弦波信号。

测最两路输出电压,通过调整R4和R5的阻值,使输出电压基本相等即可。

二、输出变压器 6C19内阻低,输出变压器绕制相对简单。

用片厚0.35mm,舌宽32mm.叠厚45mm的EI型高硅片铁芯。

初级用φ0.27mm漆包线绕1100匝+1100匝(800FZ),次级用φ0.80mm漆包线绕105匝(8Ω)。

初、次级采用3夹2结构,初级1100匝+1100匝。

次级35匝+35匝+35匝,初级夹在次级之间,硅钢片交叉插,见图。

三、电源变压器 电源变压器采用成本较低、片厚0.5mm的电脑USP电源拆机铁芯。

舌宽40mm,叠厚60mm,初级220V用φ0.80mm漆包线绕550匝,次级高压180V用φ0.5mm漆包线绕450匝,6N11、6N6灯丝绕组用φ1.62mm漆包线绕16匝。

6C19灯丝绕组用φ1.50mm漆包线绕16匝。

初次级之间用厚0.2mm 铜皮做静电屏蔽。

四、整流滤波电路 整流采用摩托罗拉快恢复二极管。

电子管功放简易设计

电子管功放简易设计

电子管功放简易设计首先,我们需要选择适合的电子管。

在电子管功放设计中,常用的电子管包括三极管(triode)和双三极管(dual-triode)。

三极管通常被用作电源放大器,而双三极管则用于信号放大。

在这个简易设计中,我们将使用一个双三极管进行放大。

为了简化电路设计,我们可以选择推挽(push-pull)电路结构。

推挽电路由两个输出级组成,一个管子用于推动音频信号的正半周期,另一个管子则用于推动负半周期。

这样可以减少交叉失真(cross-over distortion)的影响,提高音质。

在设计推挽电路时,我们需要在交流耦合(AC-coupling)的输入和输出级之间添加一个输出变压器(output transformer)。

输出变压器用于匹配负载阻抗和提供电压升压。

它还可以帮助控制输出级的相位,并提供一定的反馈。

接下来是电源部分的设计。

在这个简易设计中,我们将使用整流器(rectifier)和滤波器(filter)来提供电源电压。

整流器将交流输入电压转换为直流电压,滤波器则用于去除剩余的纹波(ripple)。

完成上述设计后,我们需要连接并测试电路。

在测试电路之前,确保所有的电子零件都正确连接。

检查焊接是否牢固,电路板是否正确布局。

一旦一切准备就绪,我们可以将音频信号输入电子管功放并连接扬声器。

然后,我们可以进行放大器的性能测试,包括音质、频率响应和失真等。

在测试过程中,您可能需要进行一些微调和调整,以获得最佳的音质效果。

您可以尝试调整电源电压、功率级的偏置、反馈等参数。

不断调整和测试,直到满意为止。

需要注意的是,电子管功放的设计和制造需要一定的电子知识和实践经验,对于初学者而言,可能还比较困难。

因此,我们建议您在制作电子管功放之前,多进行学习和练习,确保您具备足够的技术能力。

总而言之,电子管功放是一种独特而受欢迎的音频放大器。

通过选择适当的电子管、推挽电路结构、输出变压器以及合适的电源设计,我们可以设计和制造出一个具有出色音质的电子管功放。

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图作者:日期:2010-2-26 12:37:26 人气:397 标签:单端 A 类电子管功放电路图1.输入电压放大级SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。

电路见图。

VT1 、VT2 直流通路串联。

VT1 构成普通的三极管共阴放大器,VTr2 构成阴极输出器,对VT1 而言VT2 是一个带电流负反馈的高阻负载。

音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。

进入后级电路。

vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。

同时,VTI、VT2 交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为并联” 相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。

又因为VT1 、VT2 对R4 负载来说是推挽工作,输出电流增大一倍,失真也有所降低。

C1是VTI的阴极交流旁路电容。

避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3 的驱动能力。

*B1专业文档供参考,如有帮助请下载。

R3上的压降2. 6V ,作为VT1的栅负偏压,此负压比现代数码音源输出信号振 幅大1. 5V ,避开了 6N3动态阳一栅特性曲线的非线性部分。

输入级电压放大倍数为:A=u ・R4/(Ri /2+R4)=35・360k /(5. 8k /2+360k)〜35咅。

其中 u 为 6N3 放大 系数,值为35; Ri 为6N3内阻,值为5. 8k.2•功率输出级功率管6P3P 采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源 +B1直接相连。

这种接法的特点是:放大效率高。

能达到特性表中功放管所规定的 输出功率。

电子管功放电路全集

电子管功放电路全集

电子管功放电路全集一.电子管差分放大电路,用的电子管有ECC83 pdf(12AX7)二.前级放大器电源电路图前级放大器电路如图1所示,左右声道完全相同。

它由两级电压放大加阴极输出器组成,V1为第一级电压放大。

现代数码音源CD、DVD的输出电压一般都在2V左右,信号从IN输入,经R1衰减,通过栅极防振电阻R 2加至V1栅极,V1将信号放大,然后从屏极取出放大后的信号电压经C1耦合到下一级。

W1为V1交流负载的一部分,又是V2的栅极回路,同时起着总音量的控制作用。

V2a为第二级电压放大,将放大后的信号电压直接送到V2b栅极,这就叫做直接耦合。

采用直接耦合的V2a 与V2b屏栅电位一致,在静态时足以使V2b管屏流截止而不工作,在动态时由于信号电压的加入,才能使V2b进人工作状态。

这种直接耦合,由于少用了一只耦合电容,不存在信号的电路损耗。

传输效率高,传真度好,减少了低频衰减,有利于改善幅频特性。

V1、V2a阴极电阻R4、R6都未并接旁路电容,有本级电流负反馈作用,能够提高音质、消除失真。

V2b为阴极输出器,把前级放大的音频信号电压从阴极引出,经C2传送给功率放大器。

阴极输出器具有非线性失真小,频率响应宽的特点,它没有放大作用,电压增益小于1,但它有一定的电流输出,有恒压输出特性,带负载能力很强,推动任何纯后级功率放大器从容不迫、轻松自如。

它的输入阻抗高,输出阻抗低,大约才几百欧姆,能和末级功放很好地匹配,即使用较长的信号线传输,也不会造成高频损失,抗干扰能力强,可以提高信噪比,提高音乐的纯度,音质较好。

一台靓声、工作稳定可靠的放大器,离不开优质的电源作保证,特别是前级放大器,对电源的品质要求相当高,不应有交流声和噪声,哪怕只有一丁点儿,经过功率放大后,都会产生可怕的声压级,会严重影响音质。

6922电子管前级放大器图2是前级放大器的电源电路图,高压部分采用晶体二极管作桥式整流,用扼流圈作n型滤波,电子管稳压供电。

纯直流场效应管功放电路

纯直流场效应管功放电路

纯直流场效应管功放电路这款场效应管功放,适合那些倾心于电子管音色,因而各种原因无法自制出靓声的胆后级发烧友。

此款双极型场效应管功放与电子管的输出特性极为相似,频率特性好,音色与胆后级相近,再配上电子管前置放大则更为理想。

SRPP电子管前置放大电路,如图7-25所示。

其电路为并联调整式推挽电路,又可称为分流调整式推挽电路,原是用于高频输入级,如VHF/UHF的电子管高频头线路,而用于AF输入,无论失真度、线性度、放大率、动态和低输出阻抗均全面优胜于一般的甲类三极管放大器,巨与许多其它的电子管线路设计相反,SRPP 电路的失真率随着频率上升而减小。

此电路明明是两只电子管串联着的,怎么是并联调整式推挽电路呢?这是对交流工作而言,两只管子直流供电方式是串联着的,每只担负一半的电源电压。

但对交流信号就不一样,上面管子的屏极是对地相通,输入取自下面管子的屏极,又由阴极输出(共屏电路),这样两只管子就变成了并联工作了。

因为电子管的栅极是上作在相对阴极为负的情况下,使得偏置电路也极为简单,此原理不能用于晶体管或运放电路中。

场效应管功放级电路原理,差分排动级原理如阁7-26所示。

差分输入级采用场效应挛生模块NPD5565S,其参数为VDss=55V,iDss=6~15mA,其输入特性非常好(高输入阻抗),如无NPD5565S,也可用其它小功率N沟道管,耐压要求大于100V,Gm值配对,误差要小于2%。

VR既是源极负反馈电阻也是中点电位调零电阻。

VT3、VT4是镜像恒流源的特点是对直流电路近似通路,而对交流而言是开路,这样就能满足各管的直流工作点,又能使交流信号尽可能地传送到下一级,这对于推动级来说是最好的,又因不用传统的普通直流放大器的中点伺服电路,使得中点电位调零极方便、简单。

VT5、VT6为电压放大级,因本电路采用电流倾注式,R4决定VT5、VT6的工作电流大小,故调节R4、使VT5、VT6的工作电流为80mA,工作在甲类状态,一方面可以消除可怕的交越失真,另外可使它的负载能力加强。

具有胆机音色的场效应管HIFI功放电路

具有胆机音色的场效应管HIFI功放电路

具有胆机音色的场效应管HIFI功放电路【电路原理】这款场效应管功放,适合那些倾心于电子管音色,因而各种原因无法自制出靓声的胆后级发烧友。

此款双极型场效应管功放与电子管的输出特性极为相似,频率特性好,音色与胆后级相近,再配上电子管前置放大则更为理想。

SRPP电子管前置放大电路,如图7-25所示。

其电路为并联调整式推挽电路,又可称为分流调整式推挽电路,原是用于高频输入级,如VHF/UHF的电子管高频头线路,而用于AF 输入,无论失真度、线性度、放大率、动态和低输出阻抗均全面优胜于一般的甲类三极管放大器,巨与许多其它的电子管线路设计相反,SRPP电路的失真率随着频率上升而减小。

此电路明明是两只电子管串联着的,怎么是并联调整式推挽电路呢?这是对交流工作而言,两只管子直流供电方式是串联着的,每只担负一半的电源电压。

但对交流信号就不一样,上面管子的屏极是对地相通,输入取自下面管子的屏极,又由阴极输出(共屏电路),这样两只管子就变成了并联工作了。

因为电子管的栅极是上作在相对阴极为负的情况下,使得偏置电路也极为简单,此原理不能用于晶体管或运放电路中。

场效应管功放级电路原理,差分排动级原理如阁7-26所示。

差分输入级采用场效应挛生模块NPD5565S,其参数为VDss=55V,iDss=6~15mA,其输入特性非常好(高输入阻抗),如无NPD5565S,也可用其它小功率N沟道管,耐压要求大于100V,Gm值配对,误差要小于2%。

VR既是源极负反馈电阻也是中点电位调零电阻。

VT3、VT4是镜像恒流源的特点是对直流电路近似通路,而对交流而言是开路,这样就能满足各管的直流工作点,又能使交流信号尽可能地传送到下一级,这对于推动级来说是最好的,又因不用传统的普通直流放大器的中点伺服电路,使得中点电位调零极方便、简单。

VT5、VT6为电压放大级,因本电路采用电流倾注式,R4决定VT5、VT6的工作电流大小,故调节R4、使VT5、VT6的工作电流为80mA,工作在甲类状态,一方面可以消除可怕的交越失真,另外可使它的负载能力加强。

电子管音调电路图大全(六款电子管音调电路原理图详解)

电子管音调电路图大全(六款电子管音调电路原理图详解)

电子管音调电路图大全(六款电子管音调电路原理图详解)电子管音调电路图(一)有源中段音调控制电路电子管音调电路图(二)电子管双声道前级放大器电路原理图从所周知电子管前级放大器能对数码音源起到润色作用,它和晶体管功率放大器相搭配时,能改善数码音源带来的生硬感,使声音润化,并使音乐中的细节更加丰富,层次更加鲜明,音乐感、临场感加浓,达到完美而传神的境界。

电子管前级放大器的电路很多,每款电路都具有不同的特性。

本文介绍的双声道电子管前级放大器,是采用目前广为流行的二级SRPP 电路,该电路性能优越,保真度高,很适合现代各种数码音源的放音系统。

SRPP电路的全称为SeriesRegulatedPushPull,即串联式调整推挽电路。

该电路具有共阴极放大与阴极跟随器的双重优点,输入阻抗高,输出阻抗低,频率响应好,且频率越高,失真越小,高频放大线性极佳,这是其它电路难以达到的。

下图是电子管双声道前级放大器的电路图。

1.输入电压放大级本输入电压放大级由SRPP电路组成,采用高放大系数双三极电子管12AX7担任。

该管放大系数为100,电流为1.5mA。

用该管别成的前级电压放大器,其增益可达26dB。

本前级放大器的上边管屏极电压取320V,其中点电压应为电源电压的一半,即160V左右。

阴极电位较高。

双三极电子管12AX7与12AU7的阴极与灯丝间的耐压Efk为180V,故完全可以胜任。

如采用其它双三极电子管代用时,必须选用Efk>160V的才行,否则容易造成电子管阴极与灯丝间被击穿。

经放大后的音频信号,由12AX7双三极电子管的上边管阴极输出,输出阻抗仅为数百欧。

经放大后的信号经电容耦合后,输送到下一级。

并在前级电压放大级与输出级之间加入了频率均衡网络。

2,频率均衡网络下图是本机的频率均衡电路。

为了提高前级放大器的性能,故在输入电压放大级与输出级之间加入了由RC组成的频率均衡网络。

由于音频信号在传输网络中,存在着频率的衰减特性,使得传输信号随着频率的增加而衰减增大,产生了幅度畸度。

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图作者:日期:2010-2-26 12:37:26 人气:397 标签:单端A类电子管功放电路图1.输入电压放大级SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。

电路见图。

VT1、VT2直流通路串联。

VT1构成普通的三极管共阴放大器,VTr2构成阴极输出器,对VT1而言VT2是一个带电流负反馈的高阻负载。

音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。

进入后级电路。

vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。

同时,VTl、VT2交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为“并联”,相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。

又因为VT1、VT2对R4负载来说是推挽工作,输出电流增大一倍,失真也有所降低。

C1是VTl的阴极交流旁路电容。

避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3的驱动能力。

R3上的压降2.6V,作为VT1的栅负偏压,此负压比现代数码音源输出信号振幅大1.5V,避开了6N3动态阳一栅特性曲线的非线性部分。

输入级电压放大倍数为:A=u·R4/(Ri/2+R4)=35·360k/(5.8k/2+360k)≈35倍。

其中u为6N3放大系数,值为35;Ri为6N3内阻,值为5.8k.2.功率输出级功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源+B1直接相连。

这种接法的特点是:放大效率高。

能达到特性表中功放管所规定的输出功率。

R6为输出级阴极电阻,将输出级栅负压确定在-20V。

6P3P屏极电压为290V,栅负压为-20V,屏流为50mA,作A类放大,输出功率约为5 5W,基本满足一般家居环境放音的要求。

自制电子管并联调整推挽

自制电子管并联调整推挽

自制电子管并联调整推挽(SRPP)电路SRPP(Shunt Regulated Pust-Pull)电路,即并联调整推挽电路是一款线性接近理想,而失真度、动态以及输出阻抗都比一般甲类放大电路更加好的优秀电路。

该电路最早使用在视频领域,所以频率响应非常宽,现在用于音频领域,确有杀鸡用牛刀的感觉。

笔者早在1992年春看到贵体翔先生在《实用电子文摘》上介绍日本的须贺一男用该电路做输入兼推动的混合型胆石机,频响宽达360kHz等指标后.曾立志今后—定要玩—玩该电路。

同年,2月时,再看到何绍和先生在《无线电与电视》上介绍该电路时,再也抑制不住兴奋。

从1993年春到1996年春这三年里不断地摸索,反复六次拆装,才终于做成今天这一款较理想的前级。

说句心理话,要做成一款电子管前级并不难。

因为几十年来,电子管技术的发展已经达到了颠峰,各种电路也非常成熟,关键是如何提高制作的技术,具体地说是如何提高它的倌噪比和降低失真度,而最难的就是提高信噪比。

在附图中,图1和图2分别是一个声道的放大电路和电源的电路图。

图1图2主电路是非常经典的SRPP电路,高低音电路是参照陈锦华先生发表在《音响世界》的路。

VR1是左右声道平衡电位器(VR1a表示一个声道的).用的是带有中间定位的ALPS 100k Ω×2的B型电位器。

由于本人使用的激光唱机是PhilipsCD931,带有音量调节,信号输出可达2伏,所以在本前级中不设音量控制,只设了输出电平调节VR4。

输入管G1我用的是旧的金脚ECC88,输出管G2常用6DJ8、6N11、有时也用6N2。

不同的管于有不同的声音,内阻越高胆味越浓,我爱用6DJ8听打击乐,用6N11听丝竹音乐,而用6N2听情歌。

事实上该电路适应性强,甚至全部用6N1也有非常好的声音。

由于上述各管的管脚相同,可以相互换插,不同的管子有不同的最佳工作点,但电子管的适应能力很强,屏压从6 0V到500V都能工作。

电子管的调整

电子管的调整

电子管的调整电子管的调整电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。

胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。

只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。

工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。

一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。

发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。

没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。

胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。

如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。

调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。

三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。

一款性能卓越的5881A电子管推挽功放电路及制作

一款性能卓越的5881A电子管推挽功放电路及制作

一款性能卓越的5881A电子管推挽功放电路及制作一次偶然的机会,从一烧友处见识了一台来自宝岛台湾的某知名品牌6L6GC推挽胆机,其电路程式与国内无异:前级为12AX7接成SRPP电路; 12AU7长尾倒相;6L6GC自给偏压推挽功放电路。

其音效通透流畅、卓尔不凡,令人难忘。

该机最大的特点是:电源变压器以后的双声道电路,自整流滤波至输出电路完全独立、镜像对称结构,全手工搭棚焊接工艺,用料上乘,制作精良。

鉴于此,笔者在保留其基本电路不变的前提下,对原机局部改良、参照其结构进行验证性制作。

经过近一年的推敲、构思、准备,获得圆满成功,与大家分享(改良后的电路见图1,整机外观见图2)。

一、电路改良1、原机6L6GC功放电路为自给偏压,现改为固定偏压电路,以提高整机的动态特性;改功放管为5881A。

由于笔者手头刚好有4只全新的曙光5881A电子管,与6L6GC同属束射四极管,具有相同的特性且屏极功耗更大,可获得更大的输出功率。

2、增设高压延时电路,以增加电子管使用寿命。

电源指示灯改为红绿双色发光二极管,由高压延时继电器控制,以准确指示工作状态。

二、元器件选择1、电容器电源滤波:C7、C8分别为日本红宝石、飞利浦;前级退偶C1、C2选用EPCOS西门子轴向电容(与原机一致);信号部分:C4选用法国苏伦(0.22UF/630V,大S电容);C5、C6选用美国VC铜膜油浸电容(0.1UF/1000V),以取得通透、柔润的音色。

2、滤波扼流圈:原机滤波电路采用2只5H/250mA扼流圈,现用工艺扎实的松下筒灯拆下的13W/220mA镇流器暂代,推算其电感量约为2H(计算略)。

电感量虽然小了些,但实际使用效果良好。

3、前级电子管:全部用俄罗斯EH管子(原机为JJ复刻管);电源牛、输出牛全部为品牌成品牛。

三、整机结构布局1、整机底盘横向分成上下二块区域:上半部安装电源、输出牛、栅负压/延时电路;下半部单独使用一块可拆卸衬板,安装电子管放大电路。

NE5532推动的电子管功放电路原理图

NE5532推动的电子管功放电路原理图

NE5532推动的电子管功放电路原理图
随着VCD机的出现和普及,胆机越来越受音响爱好者的青睐。

本文介绍一款用运放之皇NE5532推动的电子管功放,音质相当不错。

功放管选用曙光6P3PJ级束射四极管,输出功率在7W左右,可以满足一般家庭听音乐要求,电路非常简单,只要焊接无误,不需调试就可工作。

本机功放电路如图所示,电源电路如图所示。

电路原理不再阐述,其中灯丝6.3V电压由LM317T稳压后获得,也可接成如图所示恒流源电路,恒流源电路对延长灯丝寿命有利,但高度稍麻烦,R在1.5欧左右。

制作时耦合电容一定要选用优质CBB电容或钽电解电容,电阻除标明功率以外均选用0.25W金属膜电阻。

很多发烧友之所以不敢“染指”胆机,高压只是一个原因,更重要的是怕输出变压器缠。

胆机推挽电路的设计

胆机推挽电路的设计

胆机推挽电路的设计胆机推挽电路是一种常用于音频功放电路的电路设计,它能够提供高增益、低失真和高功率输出的特点。

本文将介绍胆机推挽电路的设计原理、电路组成和优缺点。

1.设计原理胆机推挽电路的设计原理基于功率放大器的基本原理。

通过串联一对热阻匹配的电子管放大器,使输入信号被放大的同时消除了二次谐波成分,从而在输出信号中得到更好的线性度。

同时,通过控制两个输出管的反向频率,使得输出信号在两管之间进行平衡,消除了总体电流的偏移。

这样设计出的胆机推挽电路可以实现小信号下的高线性度和高功率的输出。

2.电路组成胆机推挽电路的核心是一对反相放大器,每个反相放大器由一个电子管和一个负反馈电路组成。

两个负反馈电路的输出端通过一个中心点连接起来,这个点即为功率放大器的输出端。

这个输出端既可以连接到扬声器中,也可以连接到负载。

在设计中,应注意选择合适的管子和拓扑结构,使得输出特性更好,输出电流更大。

3.优缺点胆机推挽电路的主要优点是高增益、低失真和高功率输出。

在音频放大器中使用时,能够使得音频信号获得更好的放大效果,提供更高的清晰度和真实度。

同时,胆机推挽电路还有较高的效率,能够提供可靠的工作效果。

但是,胆机推挽电路也存在一些缺点。

首先,由于它使用了两个电子管放大器,所以成本较高。

其次,在高功率输出时,由于较高的工作温度,这些电子器件也会受到较大的加热和老化。

此外,在设计过程中需要注意各个部分的匹配,才能得到较好的效果。

综上,本文介绍了胆机推挽电路的设计原理、电路组成和优缺点。

在实际应用中,需要根据具体的需求和设计条件来选择合适的技术路线,以得到更好的工作效果。

电子管的调整

电子管的调整

电子管的调整电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。

胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。

只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。

工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。

一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。

发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。

没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。

胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。

如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。

调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。

三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档