2018年河北省衡水中学高三一模理科数学试题(1)(可编辑修改word版)

合集下载

河北衡水金卷2018届高三理数高考一模试卷及解析

河北衡水金卷2018届高三理数高考一模试卷及解析

河北衡水金卷2018届高三理数高考一模试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合 A ={x|−x 2+4x ≥0} , B ={x|181<3x <27} , C ={x|x =2n,n ∈N} ,则 (A ∪B)∩C = ( )A.{2,4}B.{0,2}C.{0,2,4}D.{x|x =2n,n ∈N}2.设 i 是虚数单位,若 i(x +yi)=5i 2−i, x , y ∈R ,则复数 x +yi 的共轭复数是( ) A.2−i B.−2−i C.2+i D.−2+i3.已知等差数列 {a n } 的前 n 项和是 S n ,且 a 4+a 5+a 6+a 7=18 ,则下列命题正确的是( ) A.a 5 是常数 B.S 5 是常数 C.a 10 是常数 D.S 10 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是( )答案第2页,总19页订…………○…………线…………○内※※答※※题※※订…………○…………线…………○A.316 B.38 C.14 D.185.已知点 F 为双曲线 C : x 2a 2−y 2b 2=1 ( a >0 , b >0 )的右焦点,直线 x =a 与双曲线的渐近线在第一象限的交点为 A ,若 AF 的中点在双曲线上,则双曲线的离心率为( ) A.√5 B.1+√2 C.1+√5 D.−1+√5 6.已知函数 f(x)={sinx,x ∈[−π,0],√1−x 2,x ∈(0,1],则 ∫1−πf(x)dx = ( ) A.2+π B.π2 C.−2+π2D.π4−2………○…………线…………○…__________………○…………线…………○…7.执行如图所示的程序框图,则输出的 S 的值为( )A.√2021B.√2019C.2√505D.2√505−18.已知函数 f(x)=sinωxcosωx −√3cos 2ωx +√32( ω>0 )的相邻两个零点差的绝对值为 π4 ,则函数 f(x) 的图象( )A.可由函数 g(x)=cos4x 的图象向左平移 5π24 个单位而得 B.可由函数 g(x)=cos4x 的图象向右平移 5π24 个单位而得 C.可由函数 g(x)=cos4x 的图象向右平移 7π24 个单位而得 D.可由函数 g(x)=cos4x 的图象向右平移 5π6 个单位而得 9.(2x −3)(1+1x )6 的展开式中剔除常数项后的各项系数和为( )A.−73B.−61C.−55D.−6310.某几何体的三视图如图所示,其中俯视图中六边形 ABCDEF 是边长为1的正六边形,点 G 为 AF 的中点,则该几何体的外接球的表面积是( )答案第4页,总19页…订…………○…………线…………○※※内※※答※※题※※…订…………○…………线…………○A.31π6 B.31π8 C.481π64 D.31√31π4811.已知抛物线 C : y 2=4x 的焦点为 F ,过点 F 分别作两条直线 l 1 , l 2 ,直线 l 1 与抛物线 C 交于 A 、 B 两点,直线 l 2 与抛物线 C 交于 D 、 E 两点,若 l 1 与 l 2 的斜率的平方和为1,则 |AB|+|DE| 的最小值为( ) A.16 B.20 C.24 D.3212.若函数 y =f(x) , x ∈M ,对于给定的非零实数 a ,总存在非零常数 T ,使得定义域 M 内的任意实数 x ,都有 af(x)=f(x +T) 恒成立,此时 T 为 f(x) 的类周期,函数 y =f(x) 是 M 上的 a 级类周期函数.若函数 y =f(x) 是定义在区间 [0,+∞)内的2级类周期函数,且 T =2 ,当 x ∈[0,2) 时, f(x)={12−2x 2,0≤x ≤1,f(2−x),1<x <2,函数 g(x)=−2lnx +12x 2+x +m .若 ∃x 1∈[6,8] , ∃x 2∈(0,+∞) ,使 g(x 2)−f(x 1)≤0 成立,则实数 m 的取值范围是( )A.(−∞,52]B.(−∞,132]…………外……………………装…………○…………订校:___________姓名:___________班级:___________考…………内……………………装…………○…………订 C.(−∞,−32]D.[132,+∞)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知向量 a ⇀=(2sinα,cosα) , b ⇀=(1,−1) ,且 a ⇀⊥b ⇀,则 (a ⇀−b ⇀)2= .14.已知 x , y 满足约束条件 {x −2y ≤0,2x −y ≥0,x +4y −18≤0,则目标函数 z =32x8y 的最小值为 .15.在等比数列 {a n } 中, a 2⋅a 3=2a 1 ,且 a 4 与 2a 7 的等差中项为17,设 b n =a 2n−1−a 2n , n ∈N ∗ ,则数列 {b n } 的前 2n 项和为 .16.如图,在直角梯形 ABCD 中, AB ⊥BC , AD//BC , AB =BC =12AD =1 ,点 E 是线段 CD 上异于点 C , D 的动点, EF ⊥AD 于点 F ,将 ΔDEF 沿 EF 折起到 Δ PEF 的位置,并使 PF ⊥AF ,则五棱锥 P −ABCEF 的体积的取值范围为 .三、解答题(题型注释)17.已知 ΔABC 的内角 A , B , C 的对边 a , b , c 分别满足 c =2b =2 ,2bcosA +acosC +ccosA =0 ,又点 D 满足 AD ⇀=13AB ⇀+23AC ⇀.答案第6页,总19页…○…………外…………○…………装…………○…………订…………○…………线…※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…(1)求 a 及角 A 的大小; (2)求 |AD ⇀| 的值.18.在四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 是正方形,且 BC =BB 1=√2 ,∠A 1AB =∠A 1AD =60° .(1)求证: BD ⊥CC 1 ;(2)若动点 E 在棱 C 1D 1 上,试确定点 E 的位置,使得直线 DE 与平面 BDB 1 所成角的正弦值为 √714 .19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x ¯(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布 N(μ,σ2) ,利用该正态分布,求 Z 落在 (14.55,38.45) 内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于 (10,30) 内的包数为 X ,求 X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=√142.75≈11.95;②若Z~N(μ,σ2),则P(μ−σ<Z≤μ+σ)=0.6826,P(μ−2σ<Z≤μ+2σ)=0.9544.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.已知函数f(x)=e x−2(a−1)x−b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x−(a−1)x2−bx−1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,圆C1的参数方程为{x=−1+acosθ,y=−1+asinθ,(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2√2cos(θ−π4).(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:θ=π12,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.23.选修4-5:不等式选讲已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10−|x−3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(−2n)≥16.答案第8页,总19页…装…………○…………不※※要※※在※※装※※订※※线※※…装…………○…………参数答案1.C【解析】1.集合 A ={x|0≤x ≤4},B ={x|−4<x <3} ,故 A ∪B ={x|−4<x ≤4} ,集合 C 表示非负的偶数,故 (A ∪B)∩C ={0,2,4} ,故答案为:C.先解二次不等式和指数不等式求出集合,再进行交并运算. 2.A【解析】2. i(x +yi)=−y +xi,5i 2−i=5i(2+i)5=−1+2i ,根据两复数相等的充要条件得 x =2,y =1 ,即 x +yi =2+i ,其共轭复数为 x −yi =2−i .故答案为:A.对于复数方程,根据两复数相等的充要条件求出复数,再求共轭复数. 3.D【解析】3. ∵a 4+a 5+a 6+a 7=2(a 5+a 6)=18,∴a 5+a 6=9 , ∴S 10=10(a 2+a 10)2=5(a 5+a 6)=45 为常数,所以答案是:D.【考点精析】利用等差数列的通项公式(及其变式)和等差数列的前n 项和公式对题目进行判断即可得到答案,需要熟知通项公式:或;前n 项和公式:.4.A【解析】4.由七巧板的构造可知, ΔBIC ≅ΔGOH ,故黑色部分的面积与梯形 EFOH 的面积相等,则 S EFOH =34S ΔDOF =34×14S ABDF =316S ABDF ,∴ 所求的概率为 P =S EFOH S ABDF=316.所以答案是:A.【考点精析】根据题目的已知条件,利用几何概型的相关知识可以得到问题的答案,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 5.D………装…………○……__________姓名:___________班级:__………装…………○……【解析】5.由 {x =a y =b ax ,解得点 A(a,b) ,又 F(c,0) ,则 AF 的中点坐标为 (a+c 2,b2) ,于是 (a+c)24a 2−b 24b2=1,(a +c)2=5a 2 , c 2+2ac −4a 2=0 ,则 e 2+2e −4=0 ,解得 e =−1+√5 或 e =−1−√5 (舍去)。

2018届河北省衡水第一中学高三上学期分科综合考试数学(理)试题 Word版含解析

2018届河北省衡水第一中学高三上学期分科综合考试数学(理)试题 Word版含解析

2017~2018学年度高三分科综合测试卷理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】,则,选A.2. 已知复数的实部为,则复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】试题分析:,所以实部为,则,因此复数,则,在复平面内对应点的坐标为,位于第三象限。

考点:复数的运算。

3. 若,则()A. B. C. D.【答案】C【解析】,.选C.4. 已知实数满足约束条件,则的最大值为()A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点处取得最大值 .本题选择B选项.5. 一直线与平行四边形中的两边分别交于点,且交其对角线于点,若,,,则()A. B. 1 C. D.【答案】A【解析】由几何关系可得:,则:,即:,则=.本题选择A选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6. 在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,.A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7. 二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入,则输出的值为()A. 6B. 7C. 8D. 9【答案】B【解析】根据二分法,程序运行中参数值依次为:,,,,,,,,此时满足判断条件,输出,注意是先判断,后计算,因此输出的,故选B.8. 已知函数,其中表示不超过的最大整数,则关于函数的性质表述正确的是()A. 定义域为B. 偶函数C. 周期函数D. 在定义域内为减函数【答案】C【解析】由于表示不超过的最大整数,如,,则,所以定义域为错误;当时,,,,,是偶函数错误,由于,所以函数的的图象是一段一段间断的,所以不能说函数是定义域上的减函数,但函数是周期函数,其周期为1,例如任取,则,,则,则,选C.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则()A. 3B.C.D. 4【答案】B10. 已知函数的图像与坐标轴的所有交点中,距离原点最近的两个点的坐标分别为和,则该函数图像距离轴最近的一条对称轴方程是()A. B. C. D.【答案】B【解析】函数的图像过,则,,则或,又距离原点最近的两个点的坐标分别为和,则,,过,则,,,,取,得,则,其对称轴为,即,当时,该函数图像距离轴最近的一条对称轴方程是,选B.11. 某棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A. B. C. D.【答案】A【解析】根据三视图恢复原几何体为三棱锥P-ABC如图,其中,,平面,计算可得,,放在外接球中,把直角三角形恢复为正方形,恰好在一个球小圆中,AC为球小圆的直径,分别过和做圆的垂面,得出矩形和矩形,两矩形对角线交点分别为,连接并取其中点为,则为球心,从图中可以看出点共面且都在的外接圆上,在中,,,利用正弦定理可以求出的外接圆半径,,,平面,则,则球的半径,外接球的表面积为,选A. 【点睛】如何求多面体的外接球的半径?基本方法有种,第一种:当三棱锥的三条侧棱两两互相垂直时,可还原为长方体,长方体的体对角线就是外接圆的直径;第二种:“套球”当棱锥或棱柱是较特殊的形体时,在球内画出棱锥或棱柱,利用底面的外接圆为球小圆,借助底面三角形或四边形求出小圆的半径,再利用勾股定理求出球的半径,第三种:过两个多面体的外心作两个面的垂线,交点即为外接球的球心,再通过关系求半径.本题使用“套球”的方法,恢复底面为正方形,放在一个球小圆里,这样画图方便一些,最主要是原三视图中的左试图为直角三角形,告诉我们平面平面,和我们做的平面是同一个平面,另外作平面和平面的作用是找球心,因为这两个矩形平面对角线的交点所连线段的中点就是球心,再根据正、余弦进行计算就可解决.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.【答案】C【解析】令,则,函数在定义域内单调递增,方程即:,即,结合函数的单调性有: .本题选择C选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.二、填空题:本题共4小题,每小题5分,共20分.13. 已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________.【答案】【解析】设正的外接圆圆心为,连接,则,角是与平面所成的角为,由正的边长为可知,所以在中,球的表面积为,故答案为.14. 若的展开式中含有常数项,则的最小值等于__________.【答案】2【解析】的展开式中,,令,展开式中含有常数项,当时,取最小值为;令,展开式中含有常数项,当时,取最小值为2;综上可知:取最小值为2;15. 在中,角的对边分别为,且,若的面积为,则的最小值为__________.【答案】3【解析】,,,,,,,则,又,则,;当且仅当时取等号,则的最小值为3.16. 已知抛物线的焦点为,准线为,过上一点作抛物线的两条切线,切点分别为,若,则__________.【答案】【解析】设,则,将代入可得:,即,由题意直线与抛物线相切,则其判别式,即,所以切线的方程为,即.同理可得: .所以,即.又两切线都经过点可得,则是方程的两根,故,所以,因又因为,同理可得,即共线,而,则,即,故在中,高,应填答案。

2018年高考数学模拟试卷(衡水中学理科)

2018年高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x 2<1},B={y|y=|x|},则A∩B=()A.?B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8B.0.4C.0.3D.0.23.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2C.D.16.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.57.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018?衡中模拟)已知(x﹣3)0+a1(x+1)+a2(x+1)10=a10=a 2+⋯+a1010(x+1),2+⋯+a10则a8=()A.45B.180C.﹣180D.720积为()A BC的三视图,其表面锥S﹣9.(5分)(2018?衡中模拟)如图为三棱A.16B.8+6C.16D.16+610.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),为P F+PM的最大值为17,则椭圆的离心率部点M(﹣1,3)满足P为椭圆上一动点,椭圆内()A.B.C.D.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣k x恒有一个零点,则k的取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥2n+p,数列{bn}的通项公式12.(5分)(2018?衡中模拟)已知数列{an}的通项公式为an=﹣n﹣4*为b n=2,设c n=,若在数列{c n}中c6<c n(n∈N,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)||=2||=2,|﹣|=,则在上13.(5分)(2018?衡中模拟)若平面向量、满足的投影为.a1=a2=1,an+2=,14.(5分)(2018?衡中模拟)若数列{an}满足S2n=.则数列{a n}前2n项和a=0把区域分成面2)y+4﹣15.(5分)(2018?衡中模拟)若直线ax+(a﹣积相等的两部分,则的最大值为.2 16.(5分)(2018?衡中模拟)已知函数f(x)=(a+1)lnx+x(a<﹣1)对.x2|,则a的取值范围为f(x2)|≥4|x1﹣任意的x1、x2>0,恒有|f(x1)﹣.)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤c=1,17.(12分)(2018?衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足且cosBsinC+(a﹣s inB)cos(A+B)=0(1)求C的大小;2+b2(2)求a的最大值,并求取得最大值时角A,B的值.A BCD中,侧棱PA⊥底面ABCD,AD∥BC,P﹣18.(12分)(2018?衡中模拟)如图,在四棱锥∠ABC=90°,PA=AB=BC=,2AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段C D上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区时转动两个域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同无效,重新开下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动转盘待指针停域为y,x、y∈{1,2,3},域为x,转盘(B)指针所对的区始),记转盘(A)指针所对的区设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线1,).过椭圆E内一点P(1,)的与椭圆相交于M、N两点,且线段M N的中点为(﹣两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;.(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由2 21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e 处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC?BC=2AD?CD.[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),C的极坐标方程在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线为ρ=C的直角坐标方程和直线l的普通方程;(1)求曲线l与曲线C相交于A,B两点,求△AOB的面积.(2)若直线4-5:不等式选讲][选修3|.l|+|x﹣24.(2018?衡中模拟)已知函数f(x)=|x﹣(I)解不等式f(x)≤6;x∈R恒成立,求实数a的取值范围.(Ⅱ)若不等式f(x)≥ax﹣1对任意参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只 有一项是符合题目要求的.)1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A ∩B=()A .?B .(0,1)C .[0,1)D .[0,1]【解答】解:A={x|x 2 <1}={x|﹣1<x <1},B={y|y=|x|≥0}, 则A ∩B=[0,1), 故选:C .2.(5分)(2018?衡中模拟)设随机变量ξ~N (3,σ2),若P (ξ>4)=0.2,则P (3<ξ≤4)=()A .0.8B .0.4C .0.3D .0.2【解答】解:∵随机变量X 服从正态分布N (3,σ 2 ),∴μ=3,得对称轴是x=3. ∵P (ξ>4)=0.2∴P (3<ξ≤4)=0.5﹣0.2=0.3. 故选:C3.(5分)(2018?衡中模拟)已知复数z=(i 为虚数单位),则 3=()A .1B .﹣1C .D . 【解答】解:复数z=, 可得=﹣=cos+isin . 则 3=cos4π+isin4π=1. 故选:A .4.(5分)(2018?衡中模拟)过双曲线﹣=1(a >0,b >0)的一个焦点F 作两渐近线的垂线,垂足分别为P 、Q ,若∠PFQ=π,则双曲线的渐近线方程为() A .y=±xB .y=±xC .y=±xD .y=±x 【解答】解:如图若∠PFQ=π, 则由对称性得∠QFO=, 则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+⋯+﹣)=(1﹣)=故选B.8.(5分)(2018?衡中模拟)已知(x﹣3)0+a1(x+1)+a2(x+1)10=a10=a 2+⋯+a1010(x+1),2+⋯+a10则a8=()A.45B.180C.﹣180D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018?衡中模拟)如图为三棱锥S﹣A BC的三视图,其表面积为()A.16B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.word完美格式∴表面积为4×=16.故选:C.10.(5分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P F+PM的最大值为17,则椭圆的离心率为部点M(﹣1,3)满足P为椭圆上一动点,椭圆内()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018?衡中模拟)已知f(x)=,若函数y=f(x)﹣k x恒有一个零点,则k的取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥【解答】解:由y=f(x)﹣k x=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,xx0=1,当x<0时,函数f(x)=e﹣1的导数f′(x)=e,则f′(0)=e即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.k≤0或k≥1,围为综上k的取值范故选:B.2n+p,数列{bn}的通项公式12.(5分)(2018?衡中模拟)已知数列{an}的通项公式为a n=﹣n﹣4*围为b n=2,设c n=,若在数列{c n}中c6<c n(n∈N,n≠6),则p的取值范()A.(11,25)B.(12,22)C.(12,17)D.(14,20)n﹣42【解答】解:∵an﹣b n=﹣2n+p﹣,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,n﹣4bn=2随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)|=,则在上13.(5分)(2018?衡中模拟)若平面向量、满足||=2||=2,|﹣的投影为﹣1.【解答】解:根据条件,=word完美格式=7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018?衡中模拟)若数列{an}满足a1=a2=1,an+2=,则数列{a n}前2n项和S2n=2﹣1.n+n2【解答】解:∵数列{an}满足a1=a2=1,an+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.n2故答案为:2+n﹣1.15.(5分)(2018?衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.216.(5分)(2018?衡中模拟)已知函数f (x )=(a+1)lnx+x (a <﹣1)对 任意的x 1、x 2>0,恒有|f (x 1)﹣f (x 2)|≥4|x 1﹣x 2|,则a 的取值范围为(﹣∞,﹣2]. 【解答】解:由f ′(x )=+x ,得f ′(1)=3a+1,所以f (x )=(a+1)lnx+ax 2,(a <﹣1)在(0,+∞)单调递减,不妨设0<x1<x2, 则f (x 1)﹣f (x 2)≥4x 2﹣4x 1,即f (x 1)+4x 1≥f (x 2)+4x 2, 令F (x )=f (x )+4x ,F ′(x )=f ′(x )+4=+2ax+4, 等价于F (x )在(0,+∞)上单调递减, 故F'(x )≤0恒成立,即+2ax+4≤0, 所以恒成立, 得a ≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018?衡中模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足c =1, 且cosBsinC+(a ﹣sinB )cos (A+B )=0 (1)求C 的大小;(2)求a 的最大值,并求取得最大值时角A ,B 的值.2+b 2 【解答】解:(1)cosBsinC+(a ﹣sinB )cos (A+B )=0 可得:cosBsinC ﹣(a ﹣sinB )cosC=0 即:sinA ﹣acosC=0. 由正弦定理可知:, ∴,c=1,word完美格式∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c﹣2abcosC,2=a2+b2得1=a﹣ab2+b2又,∴,即:.当时,a2+b取到最大值为2+.2+b218.(12分)(2018?衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=,2AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴MEAD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM?平面PAB,∴BC⊥AM,又PB?平面PBC,BC?平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE?平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),1).==(λ+1,2λ﹣1,﹣∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018?衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区两个域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动,重新开转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效域为y,x、y∈{1,2,3},始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记A指针指向1,2,3区域的事件为A1,A2,A3,转盘1,2,3区域的事件为B1,B2,B3,同理转盘B指针指向∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.⋯(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ23456PEξ==.⋯(12分)20.(12分)(2018?衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段1,).过椭圆E内一点P(1,)的M N的中点为(﹣两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.,【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则两式相减,故a⋯(2分)2=3b2A P平行于x轴时,设|AC|=2d,当直线∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得⋯4分22a=3,b=1,所以方程为⋯(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),⋯①同理可得⋯②⋯(8分)由①②得:⋯③得,程将点A、B的坐标代入椭圆方两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)⋯④同理可得:3(y3+y4)k CD=﹣(x3+x4),⋯(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)kAB=﹣λ(x3+x4)⋯⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.⋯(12分)2 21.(12分)(2018?衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e 处的切线x﹣2y+e=0平行.与直线(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;.(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围【解答】解:(Ⅰ)由,得,解得m=2,,函数g(x)的定义域为(0,1)∪(1,+∞),故,则而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),word完美格式要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.﹣kk=2e k22=?(k),k﹣k)﹣2+2e﹣易知,又h(e)=k×(﹣k26>则?'(k)=2(e﹣k)>0,则?(k)在k>2为增函数,∴?(k)>?(2)=2e﹣0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.4-1:几何证明选讲][选修22.(10分)(2018?衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.word完美格式..(Ⅰ)求证:DE ∥AB ;(Ⅱ)求证:AC?BC=2AD?CD .【解答】证明:(Ⅰ)连接B D ,因为D 为的中点,所以BD=DC .因为E 为BC 的中点,所以DE ⊥BC .因为AC 为圆的直径,所以∠ABC=90°,所以AB ∥DE .⋯(5分)(Ⅱ)因为D 为的中点,所以∠BAD=∠DAC ,又∠BAD=∠DCB ,则∠DAC=∠DCB .又因为AD ⊥DC ,DE ⊥CE ,所以△DAC ∽△ECD .所以=,AD?CD=AC?CE ,2AD?CD=AC?2CE ,因此2AD?CD=AC?BC .⋯(10分)[选修4-4:坐标系与参数方程]23.(2018?衡中模拟)在平面直角坐标系中,直线l 的参数方程为(t 为参数),在以直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若直线l 与曲线C 相交于A ,B 两点,求△AOB 的面积.【解答】解:(1)由曲线C 的极坐标方程为ρ=得ρ2sin 2 θ=2ρcos θ. 2∴由曲线C 的直角坐标方程是:y=2x .由直线l 的参数方程为(t 为参数),得t=3+y 代入x=1+t 中消去t 得:x ﹣y ﹣4=0,所以直线l 的普通方程为:x ﹣y ﹣4=0⋯(5分)(2)将直线l 的参数方程代入曲线C 的普通方程y 2=2x ,得t 2=2x ,得t 2 ﹣8t+7=0, 设A ,B 两点对应的参数分别为t 1,t 2,word完美格式..所以|AB|===,y﹣4=0的距离d=,因为原点到直线x﹣所以△AOB的面积是|AB|d==12.⋯(10分)[选修4-5:不等式选讲]3|.l|+|x﹣24.(2018?衡中模拟)已知函数f(x)=|x﹣(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.l|+|x﹣3|=的图象如图所示,【解答】解:函数f(x)=|x﹣(I)不等式f(x)≤6,即①或②,或③.解①求得x∈?,解②求得3<x≤5,解③求得﹣1≤x≤3.1,5].综上可得,原不等式的解集为[﹣(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.欢迎您的光临,Word文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。

2018年河北省衡水中学高三一模理科数学试题(1)

2018年河北省衡水中学高三一模理科数学试题(1)

6•设x,y满足约束条件3x y 620,0, 若目标函数z ax by (a,b 0)的最大值是12,则x,y 0,a2 b2的最小值是(6A.—13 36D.36137.已知三棱锥的三视图如图所示,则它的外接球表面积为()A . 16B . 4 &已知函数f x C. 8 D. 22sin( x ) ( 0,的一部分(如图所示),则与的值分别为(11 5_ 10’ 67 _10, 6)图像)4 _5' 3 2B . 1,一双曲线C的左右焦点分别为F1,F2 ,且F2恰为抛物线的焦点,设双曲线C与该抛物线的一个交点为为底边的等腰三角形,则双曲线C的离心率为( )A .10.已知函数f (x)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式X1f(xj X2f(X2) X1f(X2)X2f(xJ 恒成立,则不等式f(1 x) 0 的解集为(9.y2 4x1 2C. 1 3D. 2A,若ARF2是以河北省衡水中学2018高三第一次模拟理科数学试题12小题,每小题5分,共60分)3 ,则图中阴影部分表示的集合是4. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数x 3 :②标准差|S 2 :③平均数x 3且标准差S 2 ;④平均数x 3且极差小于或等于2;⑤众数等于1且极差小于或等于A .①②B .③④C.③④⑤D .④⑤5. 在长方体ABCD —A1B1C1D1中,对角线B1D与平面A1BC1相交于点E,则点E A1BC 1 的()A .垂心B.内心2 x 1 B . X2x21 x2 D . X X 2”是2•设a R,i是虚数单位,则为纯虚数”的(A.充分不必要条件C.充要条件3. 若{a n}是等差数列,首项和S n 0成立的最大正整数A. 2011B. 2012B.必要不充分条件D.既不充分又不必要条件0,31 0, 32011 32012n是( )C. 4022a2011a20120,则使前n项D. 4023一、选择题(本大题共1.设全集为实数集R, xx2 4 , N1。

2018年河北省衡水金卷模拟试题(一)数学理试题(含详细答案)

2018年河北省衡水金卷模拟试题(一)数学理试题(含详细答案)
2018年河北省衡水金卷模拟试题(一)数学理
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , , ,则 ( )
A. B. C. D.
2.设 是虚数单位,若 , , ,则复数 的共轭复数是( )
A. B. C. D.
23.选修4-5:不等式选讲
已知函数 .
(1)求不等式 ;
(2)若正数 , 满足 ,求证: .
2018年普通高等学校招生全国统一考试模拟试题理数(一)答案
一、选择题
1-5: 6-10: 11、12:
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)由 及正弦定理得 ,
即 ,
在 中, ,
19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数 为:
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.已知 的内角 , , 的对边 , , 分别满足 , ,又点 满足 .
(1)求 及角 的大小;
(2)求 的值.
18.在四棱柱 中,底面 是正方形,且 , .
(1)求证: ;
(2)若动点 在棱 上,试确定点 的位置,使得直线 与平面 所成角的正弦值为 .
结合 , ,
得 底面 ,
所以 、 、 两两垂直.
如图,以点 为坐标原点, 的方向为 轴的正方向,建立空间直角坐标系 ,
则 , , , , , , , ,
由 ,易求得 .
设 ( ),则 ,即 .
设平面 的一个法向量为 ,
由 得 令 ,得 ,
设直线 与平面 所成角为 ,则 ,

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,. . . .. . ..s . .. 因为原点到直线x ﹣y ﹣4=0的距离d=, 所以△AOB 的面积是|AB |d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f (x )=|x ﹣l |+|x ﹣3|.(I )解不等式f (x )≤6;(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R恒成立,求实数a 的取值范围.【解答】解:函数f (x )=|x ﹣l |+|x ﹣3|= 的图象如图所示,(I )不等式f (x )≤6,即①或②,或③. 解①求得x ∈∅,解②求得3<x ≤5,解③求得﹣1≤x ≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R 恒成立,则函数f (x )的图象不能在y=ax ﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B (3,2),∴3a ﹣1≤2,且 a ≥﹣2,求得﹣2≤a ≤1.。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分、在每个小题给出得四个选项中,只有一项就是符合题目要求得、)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0、2,则P(3<ξ≤4)=()A.0、8B.0、4C.0、3D.0、23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)得一个焦点F作两渐近线得垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线得渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x5.(5分)(2018•衡中模拟)将半径为1得圆分割成面积之比为1:2:3得三个扇形作为三个圆锥得侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3得值为()A. B.2 C. D.16.(5分)(2018•衡中模拟)如图就是某算法得程序框图,则程序运行后输出得结果就是()A.2B.3C.4D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}得前8项与为()A. B. C. D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45B.180C.﹣180D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC得三视图,其表面积为()A.16B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)得左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM得最大值为17,则椭圆得离心率为()A. B. C. D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k得取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}得通项公式为a n=﹣2n+p,数列{b n}得通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p得取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中得横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上得投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项与S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等得两部分,则得最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意得x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a得取值范围为.三、解答题(本大题共5小题,共70分、解答应写出文字说明、证明过程或演算步骤、)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对得边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C得大小;(2)求a2+b2得最大值,并求取得最大值时角A,B得值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M就是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N就是线段CD上一动点,且=λ,当直线MN与平面PAB所成得角最大时,求λ得值.19.(12分)(2018•衡中模拟)如图就是两个独立得转盘(A)、(B),在两个图中三个扇形区域得圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则就是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对得区域为x,转盘(B)指针所对得区域为y,x、y∈{1,2,3},设x+y得值为ξ.(Ⅰ)求x<2且y>1得概率;(Ⅱ)求随机变量ξ得分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°得直线与椭圆相交于M、N 两点,且线段MN得中点为(﹣1,).过椭圆E内一点P(1,)得两条直线分别与椭圆交于点A、C 与B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应得λ=.(Ⅰ)求椭圆E得方程;(Ⅱ)当λ变化时,k AB就是否为定值?若就是,请求出此定值;若不就是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处得切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上就是减函数,求实数a得最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k得取值范围.[选修41:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O得直径,D为得中点,E为BC得中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修44:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l得参数方程为(t为参数),在以直角坐标系得原点O为极点,x轴得正半轴为极轴得极坐标系中,曲线C得极坐标方程为ρ=(1)求曲线C得直角坐标方程与直线l得普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB得面积.[选修45:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a得取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分、在每个小题给出得四个选项中,只有一项就是符合题目要求得、)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0、2,则P(3<ξ≤4)=()A.0、8B.0、4C.0、3D.0、2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴就是x=3.∵P(ξ>4)=0、2∴P(3<ξ≤4)=0、5﹣0、2=0、3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1B.﹣1C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)得一个焦点F作两渐近线得垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线得渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ得斜率k==tan=,则双曲线渐近线得方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1得圆分割成面积之比为1:2:3得三个扇形作为三个圆锥得侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3得值为()A. B.2 C. D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图就是某算法得程序框图,则程序运行后输出得结果就是()A.2B.3C.4D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}得前8项与为()A. B. C. D.【解答】解:设等差数列{a n}得公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45B.180C.﹣180D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC得三视图,其表面积为()A.16B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4得长方体切去四个小棱锥得到得几何体. 三棱锥得三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)得左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM得最大值为17,则椭圆得离心率为()A. B. C. D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆得定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k得取值范围为()A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)与y=kx得图象如图,由图象知当k≤0时,函数f(x)与y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)得导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1得导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x就是函数f(x)得切线,则当0<k<1时,函数f(x)与y=kx有3个交点,不满足条件.当k≥1时,函数f(x)与y=kx有1个交点,满足条件.综上k得取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}得通项公式为a n=﹣2n+p,数列{b n}得通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p得取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中得横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上得投影为﹣1. 【解答】解:根据条件,==7;∴;∴在上得投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项与S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等得两部分,则得最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等得两部分,则直线过AB得中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则得几何意义就是区域内得点到点(﹣2,0)得斜率,由图象过AC得斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意得x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a得取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分、解答应写出文字说明、证明过程或演算步骤、)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对得边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C得大小;(2)求a2+b2得最大值,并求取得最大值时角A,B得值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C就是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M就是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N就是线段CD上一动点,且=λ,当直线MN与平面PAB所成得角最大时,求λ得值.【解答】证明:(1)取PC得中点E,则连接DE,∵ME就是△PBC得中位线,∴ME,又AD,∴MEAD,∴四边形AMED就是平行四边形,∴AM∥DE.∵PA=AB,M就是PB得中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB得一个法向量,∴cos<>=====设MN与平面PAB所成得角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成得角最大时.19.(12分)(2018•衡中模拟)如图就是两个独立得转盘(A)、(B),在两个图中三个扇形区域得圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则就是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对得区域为x,转盘(B)指针所对得区域为y,x、y∈{1,2,3},设x+y得值为ξ.(Ⅰ)求x<2且y>1得概率;(Ⅱ)求随机变量ξ得分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域得事件为A1,A2,A3,同理转盘B指针指向1,2,3区域得事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ得可能取值为2,3,4,5,6,P( ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P( ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ得分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°得直线与椭圆相交于M、N 两点,且线段MN得中点为(﹣1,).过椭圆E内一点P(1,)得两条直线分别与椭圆交于点A、C 与B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应得λ=.(Ⅰ)求椭圆E得方程;(Ⅱ)当λ变化时,k AB就是否为定值?若就是,请求出此定值;若不就是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)得坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B得坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于就是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于就是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处得切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上就是减函数,求实数a得最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k得取值范围.【解答】解:(Ⅰ) 由,得,解得m=2,故,则,函数g(x)得定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上就是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,得最大值.而,即右边得最大值为,∴,故实数a得最小值;(Ⅱ) 由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修41:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O得直径,D为得中点,E为BC得中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为得中点,所以BD=DC.因为E为BC得中点,所以DE⊥BC.因为AC为圆得直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为得中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修44:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l得参数方程为(t为参数),在以直角坐标系得原点O为极点,x轴得正半轴为极轴得极坐标系中,曲线C得极坐标方程为ρ=(1)求曲线C得直角坐标方程与直线l得普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB得面积.【解答】解:(1)由曲线C得极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C得直角坐标方程就是:y2=2x.由直线l得参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l得普通方程为:x﹣y﹣4=0…(5分)(2)将直线l得参数方程代入曲线C得普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应得参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0得距离d=,所以△AOB得面积就是|AB|d==12.…(10分)[选修45:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a得取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|= 得图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式得解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)得图象不能在y=ax﹣1得图象得下方.如图所示:由于图中两题射线得斜率分别为﹣2,2,点B(3,2), ∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.。

2018年河北省衡水金卷普通高等学校招生全国统一考试模拟试卷 分科综合卷 理科数学(一)(解析版)

2018年河北省衡水金卷普通高等学校招生全国统一考试模拟试卷  分科综合卷 理科数学(一)(解析版)

2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B.C. D.【答案】D【解析】由题意得集合,,则,,故选D.2. 已知为虚数单位,为实数,复数满足,若复数是纯虚数,则()A. B. C. D.【答案】B【解析】由,得,又∵复数是纯虚数,∴,解得,故选B.3. 我国数学家邹元治利用下图证明了购股定理,该图中用勾和股分别表示直角三角形的两条直角边,用弦来表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是()A. B. C. D.【答案】B【解析】设直角三角形的长直角边为,短直角边为,由题意,∵大方形的边长为,小方形的边长为,则大正方形的面积为49,小正方形的面积为25,∴满足题意的概率值为:,故选B.4. 已知等差数列的前项和为,且,则()A. B. C. D.【答案】C【解析】由等差数列的性质可得:,∴,则,故选C.5. 已知函数,则下列结论正确的是( )A. 在区间内单调递增B. 在区间内单调递减C. 是偶函数D. 是奇函数,且在区间内单调递增【答案】D 【解析】当时,函数在区间内单调递增,当时,函数在区间上单调递减,在内单调递增,故,均错误,,均成立,故是奇函数,故错误,故选.6.的展开式中项的系数为( )A. -16B. 16C. 48D. -48 【答案】A 【解析】∵展开式的通项公式为,∴的展开式中项的系数为,故选A.7. 如图是某个集合体的三视图,则这个几何体的表面积是( )A. B. C. D.【答案】B【解析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体,其直观图如下所示:其表面积,故选B.8. 若,则下列不等式不正确的是()A. B.C. D.【答案】C【解析】根据对数函数的单调性可得正确,正确,∵,,∴,,∴,故C不正确,∵,∴正确,故选C.9. 执行如图所示的程序框图,若输出的值为11,则判断框中的条件可以是()A. B. C. D.【答案】C【解析】第1次执行循环体,,应不满足输出的条件,n=2,第2次执行循环体,S=7,应不满足输出的条件,n=3,第3次执行循环体,S=15,应不满足输出的条件,n=4,第4次执行循环体,S=31,应不满足输出的条件,n=5,第5次执行循环体,S=63,应不满足输出的条件,n=6,第6次执行循环体,S=127,应不满足输出的条件,n=7,第7次执行循环体,S=255,应不满足输出的条件,n=8,第8次执行循环体,S=511,应不满足输出的条件,n=9,第9次执行循环体,S=1023,应不满足输出的条件,n=10,第10次执行循环体,S=2047,应不满足输出的条件,n=11第11次执行循环体,S=4095,应满足输出的条件,故判断框中的条件可以是S<4095?,故选:C点睛:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题;由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.10. 已知函数的部分图象如图所示,将函数的图象向左平移个单位长度后,所得图象与函数的图象重合,则()B.C. D.【答案】A【解析】根据函数(,)的部分图象,可得,∴,根据,∴,故,将函数的图象向左平移个单位长度后,所得图象与函数的图象重合,故,故选A.点睛:题主要考查利用的图象特征,由函数的部分图象求解析式,理解解析式中的意义是正确解题的关键,属于中档题.为振幅,有其控制最大、最小值,控制周期,即,通常通过图象我们可得和,称为初象,通常解出,之后,通过特殊点代入可得,用到最多的是最高点或最低点.11. 已知抛物线的焦点为,过点作斜率为1的直线交抛物线于两点,则的值为()A. B. C. D.【答案】C【解析】抛物线:的焦点为,过点作斜率为的直线:,可得,消去可得:,可得,,,,,则,故选C.12. 已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B. C. D.【答案】A【解析】根据题意,数列中,,即,则有,则有,,即,∵对于任意的,,不等式恒成立,∴,化为:,设,,可得且,即有,即,可得或,则实数的取值范围是,故选A.点睛:本题考查了数列递推公式,涉及数列的求和,注意运用裂项相消求和和不等式恒成立问题的解法,关键是对的变形,即运用裂项相消求和可得,再由不等式恒成立问题可得,设,,运用一次函函数的性质,可得的不等式,解不等式即可得到所求的范围.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,若向量与共线,则向量在向量放心上的投影为__________.【答案】0【解析】向量,,向量,∵向量与共线,∴,即,∴向量,∴向量在向量方向上的投影为,故答案为0. 14. 若实数满足则的最大值是__________.【答案】【解析】实数,满足,对应的可行域如图:线段,化为:,如果最大,则直线在轴上的截距最小,作直线:,平移直线至点时,取得最大值,联立,解得,所以的最大值是:,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 过双曲线的下焦点作轴的垂线,交双曲线于两点,若以为直径的圆恰好过其上焦点,则双曲线的离心率为__________.【答案】【解析】过双曲线的下焦点作轴的垂线,交双曲线于,两点,则,以为直径的圆恰好过其上焦点,可得:,∴,可得,解得,舍去,故答案为.16. 一底面为正方形的长方体各棱长之和为24,则当该长方体体积最大时,其外接球的体积为__________.【答案】【解析】设该项长方体底面边长为米,由题意知其高是:,(),则长方体的体积,(),,由,得,且当时,,单调递增;当时,,单调递减,∴体积函数在处取得唯一的极大值,即为最大值,此时长方体的高为,∴其外接球的直径,∴,∴其外接球的体积,故答案为.点睛:本题主要考查了正方体和球的组合体问题,解决该题的关键是准确寻找直径与正方体的关系是解题的关键,常见的形式有:1、当正方体的各个顶点均在球面上时,正方体的体对角线为球的直径;2、当球与正方体的各条棱相切时,球的直径即为面的对角线;3、当球与正方体的的各面相切时,正方体的棱长即为球的直径.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在中,角所对的边分别为,若.(1)求角的大小;(2)若点在边上,且是的平分线,,求的长.【答案】(1);(2).【解析】试题分析:(1)利用正弦定理将边化角,根据三角恒等变换即可得出,从而得出的大小;(2)利用余弦定理求出,根据是的平分线,可得,故而可求得结果.试题解析:(1)在中,∵,∴由正弦定理得,∵,∴,∵,∴.(2)在中,由余弦定理得,即,解得,或(负值,舍去)∵是的平分线,,∴,∴.18. 如图,在三棱柱中,侧棱底面,且,是棱的中点,点在侧棱上运动.(1)当是棱的中点时,求证:平面;(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)取线段的中点,连结.可得四边形是平行四边形,,即可证明平面;(2)以为原点,,,所在直线分别为、、轴建立空间直角坐标系,利用向量法二面角的余弦值.试题解析:(1)取线段的中点,连结.∵,∴,且.又为的中点,∴,且.∴,且.∴四边形是平行四边形.∴.又平面平面,∴平面.(2)∵两两垂直,∴以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,如图,∵三棱柱中,平面,∴即为直线与平面所成的角.设,则由,得.∴.∴,设平面的一个法向量为,则令,得,即.又平面的一个法向量为,∴,又二面角的平面角为钝角,∴二面角的余弦值为.19. 第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政数处为了调查学生对“一带一络"的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;(2)从所轴取的70分以上的学生中再随机选取4人.①记表示选取4人的成绩的平均数,求;②记表示测试成绩在80分以上的人数,求的分布列和数学期望.【答案】(1)答案见解析;(2)①.;②.答案见解析.【解析】试题分析:(1)众数为,中位数为,抽取的人中,分以下的有人,不低于分的有人,从而求出从该校学生中任选人,这个人测试成绩在分以上的概率,由此能求出该校这次测试成绩在分以上的人数;(2)①由题意知分以上的有,,,,,,,,当所选取的四个人的成绩的平均分大于分时,有两类:一类是:,,,,共1种;另一类是:,,,,共3种.由此能求出;②由题意得的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出的分布列和.... ... ... ... ...试题解析:(1)众数为76,中位数为76.抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中人选1人,这个人测试成绩在70分以上的概率为,故该校这次测试成绩在70分以上的约有(人)(2)①由题意知70分以上的有72,76,76,76,82,88,93,94.当所选取的四个人的成绩的平均分大于87分时,有两类.一类是82,88,93,94,共1种;另一类是76,88,93,94,共3种.所以.②由题意可得,的可能取值为0,1,2,3,4,,,,.的分别列为.20. 已知椭圆的左、右焦点分别为,离心率为,点在椭圆上,且的面积的最大值为.(1)求椭圆的方程;(2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求点的横坐标的取值范围.【答案】(1);(2).【解析】试题分析:(1)利用待定系数法求出椭圆方程;(2)联立方程组,利用根与系数的关系求出的中点的坐标,根据得出点横坐标的表达式,利用基本不等式得出的取值范围.试题解析:(1)由已知得,解得,∴椭圆的方程为.(2)设,的中点为,点,使得,则.由得,由,得.∴,∴.∵∴,即,∴.当时,(当且仅当,即时,取等号),∴;当时,(当且仅当,即时,取等号),∴,∴点的横坐标的取值范围为.21. 设函数为自然对数的底数.(1)若,且函数在区间内单调递增,求实数的取值范围;(2)若,试判断函数的零点个数.【答案】(1);(2)函数没有零点.【解析】试题分析:(1)求出函数的导数,问题转化为在恒成立,记,根据函数的单调性求出的范围即可;(2)求出,记,根据函数的单调性得到在区间递增,从而求出的最小值大于0,判断出函数无零点即可. 试题解析:(1)∵函数在区间内单调递增,页11第∴在区间内恒成立.即在区间内恒成立.记,则恒成立,∴在区间内单调递减,∴,∴,即实数的取值范围为.(2)∵,,记,则,知在区间内单调递增.又∵,,∴在区间内存在唯一的零点,即,于是,.当时,单调递减;当时,单调递增.∴,当且仅当时,取等号.由,得,∴,即函数没有零点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 已知在平面直角坐标系中,椭圆的方程为,以为极点,轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程和椭圆的参数方程;(2)设为椭圆上任意一点,求的最大值.【答案】(1)直线的直角坐标方程为,椭圆的参数方程为为参数);(2)9. 【解析】试题分析:(1)根据题意,由参数方程的定义可得椭圆的参数方程,对直线的极坐标方程利用两角和的正弦展开,将,代入可得直线的普通方程;(2)根据题意,设,进页12第而分析可得,由三角函数的性质分析可得答案.试题解析:(1)由,得,将代入,得直线的直角坐标方程为.椭圆的参数方程为为参数).(2)因为点在椭圆上,所以设,则,当且仅当时,取等号,所以.23. 已知函数.(1)求不等式的解集;(2)若的最大值为,对任意不想等的正实数,证明:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)原不等式即为,分当时,当时,当时去绝对值,解不等式,最后求并集即可;(2)运用绝对值不等式的性质可得,再由绝对值不等式的性质,化简变形即可得证.试题解析:(1)不等式,即,此不等式等价于或或解得,或,或.所以不等式的解集为.(2),因为,当且仅当时,取等号,所以,即,因为为正实数,所以,当且仅当时,取等号.即.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.页13第。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共 小题,每小题 分,共 分 在每个小题给出的四个选项中,只有一项是符合题目要求的 ).( 分)( •衡中模拟)已知集合 < , ,则 ( ).∅ .( , ). , ) . ,.( 分)( •衡中模拟)设随机变量 ~ ( , ),若 ( > ) ,则 ( < ≤ ) ( )... ..( 分)( •衡中模拟)已知复数 ( 为虚数单位),则( )..﹣ ...( 分)( •衡中模拟)过双曲线﹣ ( > , > )的一个焦点 作两渐近线的垂线,垂足分别为 、 ,若∠ ,则双曲线的渐近线方程为( ). ±. ±. ± . ±.( 分)( •衡中模拟)将半径为 的圆分割成面积之比为 : : 的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为 , , ,那么 的值为( ).....( 分)( •衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是( ). . . ..( 分)( •衡中模拟)等差数列 中, , ,若,则数列 的前 项和为(). . . ..( 分)( •衡中模拟)已知( ﹣ ) ( ) ( )( ) ,则(). . .﹣ ..( 分)( •衡中模拟)如图为三棱锥 ﹣ 的三视图,其表面积为(). . . ..( 分)( •衡中模拟)已知椭圆 : ( > > )的左焦点 (﹣ , ), 为椭圆上一动点,椭圆内部点 (﹣ , )满足 的最大值为 ,则椭圆的离心率为(). . . ..( 分)( •衡中模拟)已知 ( ) ,若函数 ( )﹣ 恒有一个零点,则 的取值范围为(). ≤ . ≤ 或 ≥ . ≤ 或 ≥ . ≤ 或 ≥.( 分)( •衡中模拟)已知数列 的通项公式为 ﹣ ,数 的通项公式为 ﹣ ,设 ,若在数列 中 < (列∈ , ≠ ),则 的取值范围().( , ) .( , ) .( , ) .( , )第 卷二、填空题(本大题共 小题,每小题 分,共 分.把答案填在题中的横线上.).( 分)( •衡中模拟)若平面向量、满足 , ﹣ ,则在上的投影为..( 分)( •衡中模拟)若数列 满足 ,,则数列 前 项和 ..( 分)( •衡中模拟)若直线 ( ﹣ ) ﹣ 把区域分成面积相等的两部分,则的最大值为 ..( 分)( •衡中模拟)已知函数 ( ) ( )( <﹣ )对任意的 、 > ,恒有 ( )﹣ ( ) ≥ ﹣ ,则 的取值范围为 .三、解答题(本大题共 小题,共 分 解答应写出文字说明、证明过程或演算步骤 ).( 分)( •衡中模拟)在△ 中,角 , , 所对的边分别为 , , ,满足 ,且 ( ﹣ ) ( )( )求 的大小;( )求 的最大值,并求取得最大值时角 , 的值..( 分)( •衡中模拟)如图,在四棱锥 ﹣ 中,侧棱 ⊥底面 , ∥ ,∠ , , , 是棱 中点.( )求证:平面 ⊥平面 ; ( )设点 是线段 上一动点,且,当直线 与平面 所成的角最大时,求 的值..( 分)( •衡中模拟)如图是两个独立的转盘( )、( ),在两个图中三个扇形区域的圆心角分别为 、 、 .用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘( )指针所对的区域为 ,转盘( )指针所对的区域为 , 、 ∈ , , ,设 的值为 .( )求 < 且 > 的概率;( )求随机变量 的分布列与数学期望..( 分)( •衡中模拟)已知椭圆 : ( > > ),倾斜角为 的直线与椭圆相交于 、 两点,且线段 的中点为(﹣ ,).过椭圆 内一点 ( ,)的两条直线分别与椭圆交于点 、 和 、 ,且满足 , ,其中 为实数.当直线 平行于 轴时,对应的 .( )求椭圆 的方程;( )当 变化时,是否为定值?若是,请求出此定值;若不是,请说明理由..( 分)( •衡中模拟)已知函数 ( ) ,曲线 ( )在点 处的切线与直线 ﹣ 平行.( )若函数 ( ) ( )﹣ 在( , )上是减函数,求实数 的最小值;( )若函数 ( ) ( )﹣无零点,求 的取值范围.选修 :几何证明选讲.( 分)( •衡中模拟)如图所示, 为⊙ 的直径, 为的中点, 为 的中点.( )求证: ∥ ;( )求证: .选修 :坐标系与参数方程.( •衡中模拟)在平面直角坐标系中,直线 的参数方程为( 为参数),在以直角坐标系的原点 为极点, 轴的正半轴为极轴的极坐标系中,曲线 的极坐标方程为( )求曲线 的直角坐标方程和直线 的普通方程;( )若直线 与曲线 相交于 , 两点,求△ 的面积.选修 :不等式选讲.( •衡中模拟)已知函数 ( ) ﹣ ﹣ .( )解不等式 ( )≤ ;( )若不等式 ( )≥ ﹣ 对任意 ∈ 恒成立,求实数 的取值范围.参考答案与试题解析一、选择题(本大题共 小题,每小题 分,共 分 在每个小题给出的四个选项中,只有一项是符合题目要求的 ).( 分)( •衡中模拟)已知集合 < , ,则 ().∅ .( , ) . , ) . ,【解答】解: < ﹣ < < , ≥ ,则 , ),故选: ..( 分)( •衡中模拟)设随机变量 ~ ( , ),若 ( > ) ,则 ( < ≤ ) (). . . .【解答】解:∵随机变量 服从正态分布 ( , ),∴ ,得对称轴是 .∵ ( > )∴ ( < ≤ ) ﹣ .故选:.( 分)( •衡中模拟)已知复数 ( 为虚数单位),则 () . .﹣ . .【解答】解:复数 ,可得 ﹣ .则.故选: ..( 分)( •衡中模拟)过双曲线﹣( > , > )的一个焦点 作两渐近线的垂线,垂足分别为 、 ,若∠ ,则双曲线的渐近线方程为( ). ±. ±. ± . ±【解答】解:如图若∠ , 则由对称性得∠ ,则∠,即 的斜率, 则双曲线渐近线的方程为 ± ,故选:.( 分)( •衡中模拟)将半径为 的圆分割成面积之比为 : : 的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为 , , ,那么 的值为( ),∴ ,同理,【解答】解:∵,∴故选: ..( 分)( •衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是(). . . .【解答】解:第一次循环, > ,即 > 成立, , , , < 成立,第二次循环, > ,即 > 不成立, , , , < 成立,第三次循环, > ,即﹣ > 不成立, , , , < 成立,第四次循环, > ,即 >﹣ 成立, , , , < 成立,第五次循环, > ,即 > 成立, , , , < 不成立,输出 ,故选:.( 分)( •衡中模拟)等差数列 中, , ,若,则数列 的前 项和为()【解答】解:设等差数列的公差为 , , ,∴,解得, ,∴( ﹣ ) ,∴,∴( ﹣ ﹣ ﹣) ( ﹣)故选 ..( 分)( •衡中模拟)已知( ﹣ ) ( ) ( )( ) ,则(). . .﹣ .【解答】解:( ﹣ ) ( )﹣ ,∴,故选: ..( 分)( •衡中模拟)如图为三棱锥 ﹣ 的三视图,其表面积为(). . . .【解答】解:由三视图可知该三棱锥为边长为 , , 的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为 × .故选: ..( 分)( •衡中模拟)已知椭圆 : ( > > )的左焦点 (﹣ , ), 为椭圆上一动点,椭圆内部点 (﹣ , )满足 的最大值为 ,则椭圆的离心率为(). . . .【解答】解:设右焦点为 ,由 (﹣ , ),可得 ( , ),由椭圆的定义可得 ,即 ﹣ ,则 ( ﹣ )≤ ,当 , , 共线时,取得等号,即最大值 ,由 ,可得 ,所以 ,则 ,故选: ..( 分)( •衡中模拟)已知 ( ) ,若函数 ( )﹣ 恒有一个零点,则 的取值范围为(). ≤ . ≤ 或 ≥ . ≤ 或 ≥ . ≤ 或 ≥【解答】解:由 ( )﹣ 得 ( ) ,作出函数 ( )和 的图象如图,由图象知当 ≤ 时,函数 ( )和 恒有一个交点,当 ≥ 时,函数 ( ) ( )的导数 ( ) ,则 ( ) ,当 < 时,函数 ( ) ﹣ 的导数 ( ) ,则 ( ) ,即当 时, 是函数 ( )的切线,则当 < < 时,函数 ( )和 有 个交点,不满足条件.当 ≥ 时,函数 ( )和 有 个交点,满足条件.综上 的取值范围为 ≤ 或 ≥ ,故选: ..( 分)( •衡中模拟)已知数列 的通项公式为 ﹣ ,数 的通项公式为 ﹣ ,设 ,若在数列 中 < (列∈ , ≠ ),则 的取值范围().( , ) .( , ) .( , ).( , ) 【解答】解:∵ ﹣ ﹣ ﹣﹣ , ∴ ﹣ 随着 变大而变小,又∵ ﹣ 随着 变大而变小,﹣ 随着 变大而变大, ∴,( )当( )当,综上 ∈( , ),故选 .二、填空题(本大题共 小题,每小题 分,共 分.把答案填在题中的横线上.) .( 分)( •衡中模拟)若平面向量、满足 , ﹣ ,则在上的投影为 ﹣ .【解答】解:根据条件,;∴; ∴在上的投影为.故答案为:﹣ ..( 分)( •衡中模拟)若数列 满足 ,,则数列 前 项和 ﹣. 【解答】解:∵数列 满足 , , ∴ ﹣ 时, ﹣ ﹣ ,为等差数列;时, ,为等比数列.∴.故答案为: ﹣ ..( 分)( •衡中模拟)若直线 ( ﹣ ) ﹣ 把区域分成面积相等的两部分,则的最大值为 .【解答】解:由 ( ﹣ ) ﹣ 得 ( ﹣ ) ﹣ , 则得,即直线恒过 (﹣ , ),若将区域分成面积相等的两部分,则直线过 的中点 ,由得,即 ( , ),∵ ( , ),∴中点 ( , ),代入 ( ﹣ ) ﹣ ,得 ﹣ ,则,则的几何意义是区域内的点到点(﹣ , )的斜率,由图象过 的斜率最大,此时最大值为 .故答案为: ..( 分)( •衡中模拟)已知函数 ( ) ( ) ( <﹣ )对任意的 、 > ,恒有 ( )﹣ ( ) ≥ ﹣ ,则 的取值范围为 (﹣ ,﹣ .【解答】解:由 ( ) ,得 ( ) ,所以 ( ) ( ) ,( <﹣ )在( , )单调递减,不妨设 < < , 则 ( )﹣ ( )≥ ﹣ ,即 ( ) ≥ ( ) ,令 ( ) ( ) , ( ) ( ),等价于 ( )在( , )上单调递减,故 ( )≤ 恒成立,即≤ , 所以恒成立, 得 ≤﹣ .故答案为:(﹣ ,﹣ .三、解答题(本大题共 小题,共 分 解答应写出文字说明、证明过程或演算步骤 ).( 分)( •衡中模拟)在△ 中,角 , , 所对的边分别为 , , ,满足 ,且 ( ﹣ ) ( )( )求 的大小;( )求 的最大值,并求取得最大值时角 , 的值.【解答】解:( ) ( ﹣ ) ( )可得: ﹣( ﹣ )即: ﹣ .由正弦定理可知:,∴, ,∴ ﹣ ,﹣ ,可得 ( ﹣) , 是三角形内角,∴ .( )由余弦定理可知: ﹣ ,得 ﹣又,∴,即:.当时, 取到最大值为 ..( 分)( •衡中模拟)如图,在四棱锥 ﹣ 中,侧棱 ⊥底面 , ∥ ,∠ , , , 是棱 中点.( )求证:平面 ⊥平面 ;( )设点 是线段 上一动点,且 ,当直线 与平面 所成的角最大时,求 的值.【解答】证明:( )取 的中点 ,则连接 ,∵ 是△ 的中位线,∴ ,又 ,∴ ,∴四边形 是平行四边形,∴ ∥ .∵ , 是 的中点,∴ ⊥ ,∵ ⊥平面 , ⊂平面 ,∴ ⊥ ,又 ⊥ , ,∴ ⊥平面 ,∵ ⊂平面 ,∴ ⊥ ,又 ⊂平面 , ⊂平面 , ,∴ ⊥平面 ,∵ ∥ ,∴ ⊥平面 ,又 ⊂平面 ,∴平面 ⊥平面 .( )以 为原点,以 , , 为坐标轴建立空间直角坐标系,如图所示:则 ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ).∴ ( , , ), ( , , ), ( , , ),∴ ( , , ), ( , , ),( , ﹣ ,﹣ ).∵ ⊥平面 ,∴为平面 的一个法向量,∴ <>设 与平面 所成的角为 ,则 .∴当 即时, 取得最大值,∴ 与平面 所成的角最大时..( 分)( •衡中模拟)如图是两个独立的转盘( )、( ),在两个图中三个扇形区域的圆心角分别为 、 、 .用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘( )指针所对的区域为 ,转盘( )指针所对的区域为 , 、 ∈ , , ,设 的值为 .( )求 < 且 > 的概率;( )求随机变量 的分布列与数学期望.【解答】解:( )记转盘 指针指向 , , 区域的事件为 , , ,同理转盘 指针指向 , , 区域的事件为 , , ,∴ ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,( ) ( ﹣ ( )) ×( ﹣) . ( 分)( )由已知得 的可能取值为 , , , , , ( ) ( ) ( ) ,( ) ( ) ( ) ( ) ( ) ,( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ),∴ 的分布列为:. ( 分) .( 分)( •衡中模拟)已知椭圆 : ( > > ),倾斜角为 的直线与椭圆相交于 、 两点,且线段 的中点为(﹣ ,).过椭圆 内一点 ( ,)的两条直线分别与椭圆交于点 、 和 、 ,且满足, ,其中 为实数.当直线 平行于 轴时,对应的 .( )求椭圆 的方程;( )当 变化时, 是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:( )设 ( , )、 ( , ),则,两式相减,故 ( 分)当直线 平行于 轴时,设 ,∵,,则,解得, 故点 (或 )的坐标为. 代入椭圆方程,得 分, ,所以方程为 ( 分)( )设 ( , )、 ( , )、 ( , )、 ( , )由于,可得 ( , )、 ( , )、 ( , )、 ( , ),同理可得 ( 分)由 得:将点 、 的坐标代入椭圆方程得,两式相减得( )( ﹣ ) ( )( ﹣ ) ,于是 ( ) ﹣( )同理可得: ( ) ﹣( ), ( 分)于是 ( ) ﹣( )(∵ ∥ ,∴ )所以 ( ) ﹣ ( )由 两式相加得到: ( ) ﹣ ( )( )把 代入上式得 ( ) ﹣ ( ),解得:,当 变化时, 为定值,. ( 分).( 分)( •衡中模拟)已知函数 ( ) ,曲线 ( )在点 处的切线与直线 ﹣ 平行.( )若函数 ( ) ( )﹣ 在( , )上是减函数,求实数 的最小值;( )若函数 ( ) ( )﹣无零点,求 的取值范围.【解答】解:( ) 由,得,解得 ,故,则,函数 ( )的定义域为( , ) ( , ),而,又函数 ( )在( , )上是减函数,∴在( , )上恒成立,∴当 ∈( , )时,的最大值.而,即右边的最大值为,∴,故实数 的最小值;( ) 由题可得,且定义域为( , ) ( , ),要使函数 ( )无零点,即在( , ) ( , )内无解,亦即在( , ) ( , )内无解.构造函数,则,( )当 ≤ 时, ( )< 在( , ) ( , )内恒成立,∴函数 ( )在( , )内单调递减,在( , )内也单调递减.又 ( ) ,∴当 ∈( , )时, ( )> ,即函数 ( )在( , )内无零点,同理,当 ∈( , )时, ( )< ,即函数 ( )在( , )内无零点,故 ≤ 满足条件;( )当 > 时,.若 < < ,则函数 ( )在( , )内单调递减,在内也单调递减,在内单调递增.又 ( ) ,∴ ( )在( , )内无零点;又,而,故在内有一个零点,∴ < < 不满足条件;若 ,则函数 ( )在( , )内单调递减,在( , )内单调递增.又 ( ) ,∴当 ∈( , ) ( , )时, ( )> 恒成立,故无零点.∴ 满足条件;若 > ,则函数 ( )在内单调递减,在内单调递增,在( , )内也单调递增.又 ( ) ,∴在及( , )内均无零点.易知,又 ( ﹣ ) ×(﹣ )﹣ ﹣ ﹣ ( ),则 ( ) ( ﹣ )> ,则 ( )在 > 为增函数,∴ ( )> ( ) ﹣ > .故函数 ( )在内有一零点, > 不满足.综上: ≤ 或 .选修 :几何证明选讲.( 分)( •衡中模拟)如图所示, 为⊙ 的直径, 为的中点, 为 的中点.( )求证: ∥ ;( )求证: .【解答】证明:( )连接 ,因为 为的中点,所以 .因为 为 的中点,所以 ⊥ .因为 为圆的直径,所以∠ ,所以 ∥ . ( 分)( )因为 为的中点,所以∠ ∠ ,又∠ ∠ ,则∠ ∠ .又因为 ⊥ , ⊥ ,所以△ ∽△ .所以 , , ,因此 . ( 分)选修 :坐标系与参数方程.( •衡中模拟)在平面直角坐标系中,直线 的参数方程为( 为参数),在以直角坐标系的原点 为极点, 轴的正半轴为极轴的极坐标系中,曲线 的极坐标方程为( )求曲线 的直角坐标方程和直线 的普通方程;( )若直线 与曲线 相交于 , 两点,求△ 的面积.【解答】解:( )由曲线 的极坐标方程为得 .∴由曲线 的直角坐标方程是: . 由直线 的参数方程为( 为参数),得 代入 中消去 得: ﹣ ﹣ ,所以直线 的普通方程为: ﹣ ﹣ ( 分)( )将直线 的参数方程代入曲线 的普通方程 ,得 ﹣ ,设 , 两点对应的参数分别为 , ,所以 , 因为原点到直线 ﹣ ﹣ 的距离 ,所以△ 的面积是. ( 分)选修 :不等式选讲 .( •衡中模拟)已知函数 ( ) ﹣ ﹣ .( )解不等式 ( )≤ ;( )若不等式 ( )≥ ﹣ 对任意 ∈ 恒成立,求实数 的取值范围.【解答】解:函数 ( ) ﹣ ﹣ 的图象如图所示,( )不等式 ( )≤ ,即 或 ,或 .解 求得 ∈∅,解 求得 < ≤ ,解 求得﹣ ≤ ≤ .综上可得,原不等式的解集为 ﹣ , .( )若不等式 ( )≥ ﹣ 对任意 ∈ 恒成立,则函数 ( )的图象不能在 ﹣ 的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣ , ,点 ( , ),∴ ﹣ ≤ ,且 ≥﹣ ,求得﹣ ≤ ≤ .。

河北省衡水中学2018-2019学年高三第一次摸底考试数学(理)试卷含答案

河北省衡水中学2018-2019学年高三第一次摸底考试数学(理)试卷含答案

2018—2019学年河北省衡水中学 高三年级上学期四调考试数学(理)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.下列命题正确的个数为 ①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .32.已知 是公差为1的等差数列, 为 的前 项和,若 ,则 A .B .3C .D .43.已知双曲线 与抛物线 有相同的焦点,则该双曲线的渐近线方程为A .B .C .D .4.如图,一只蚂蚁从点 出发沿着水平面的线条爬行到点 ,再由点 沿着置于水平面的长方体的棱爬行至顶点 ,则它可以爬行的不同的最短路径有准考证号考场号座位号A.40条B.60条C.80条D.120条5.函数的图象大致是A.B.C.D.6.若,则A.B.2 C.D.7.某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为A.72 B.56 C.57 D.638.一个简单几何体的三视图如图所示,则该几何体的体积为A.B.C.D.9.已知函数,下列结论不正确的是A.的图象关于点中心对称B.既是奇函数,又是周期函数C.的图象关于直线对称D.的最大值为10.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为A.B.C.D.11.已知的准线交轴于点,焦点为,过且斜率大于0的直线交于,,则A.B.C.4 D.312.已知是减函数,且有三个零点,则的取值范围为A.B.C.D.二、解答题13.数列满足,().(1)求证:数列是等差数列;(2)求数列的前999项和.14.在四棱锥,,,,平面平面,分别是中点.(1)证明:平面;(2)求与平面所成角的正弦值.15.在中,内角所对的边分别为,已知.(1)求角的大小;(2)若的面积,且,求.16.如图,直线平面,直线平行四边形,四棱锥的顶点在平面上,,,,,分别是与的中点.(1)求证:平面;(2)求二面角的余弦值.17.如图,椭圆:的左右焦点分别为,离心率为,过抛物线:焦点的直线交抛物线于两点,当时,点在轴上的射影为,连接并延长分别交于两点,连接,与的面积分别记为,,设.(1)求椭圆和抛物线的方程;(2)求的取值范围.18.已知函数的图象的一条切线为轴.(1)求实数的值;(2)令,若存在不相等的两个实数满足,求证:.三、填空题19.已知向量夹角为,且,,则_______.20.已知直三棱柱中,,则异面直线与所成角的余弦值为_______.21.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.22.三棱锥中,平面,为正三角形,外接球表面积为,则三棱锥的体积的最大值为______2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学答案参考答案1.C【解析】分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.点睛:(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些基础知识的掌握水平和空间想象能力.(2)对于类似这种空间直线平面位置关系的命题的判断,一般可以利用举反例的方法和直接证明法,大家要灵活选择方法判断.2.C【解析】【分析】利用等差数列前项和公式,代入即可求出,再利用等差数列通项公式就能算出.【详解】∵是公差为1的等差数列,,∴解得,则,故选C.【点睛】本题考查等差数列的通项公式及其前项和公式的运用,是基础题。

(河北省衡水金卷一模)2018届高三毕业班模拟演练数学(理)(附答案)

(河北省衡水金卷一模)2018届高三毕业班模拟演练数学(理)(附答案)

(河北省衡水金卷一模)2018届高三毕业班模拟演练数学(理)(附答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第I卷(选择题)一、单选题1.已知集合,,则()A. B. C. D.2.已知,为虚数单位,若复数为纯虚数,则的值为()A. B. 2 C. -2 D. 03.已知等比数列中,,,则()A. B. -8 C. 8 D. 164.如图的折线图是某公司2017年1月至12月份的收入与支出数据.若从这12个月份中任意选3个月的数据进行分析,则这3个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为()A. B. C. D.5.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,上广二丈,袤三丈,下广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),上底宽2丈,长3丈;下底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,再次相加,再乘以高,最后除以6.则这个问题中的刍童的体积为()A. 13.25立方丈B. 26.5立方丈C. 53立方丈D. 106立方丈6.已知偶函数在区间上单调递增,且,,,则满足()A. B.C. D.7.某几何体的正视图与侧视图如图所示,则它的俯视图不可能是()A. B. C. D.8.若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为( )A. 8B. 3C. 2D. 19.已知点分别在正方形的边上运动,且,设,,若,则的最大值为( )A. 2B. 4C.D.10.已知函数,将的图象向右平移个单位,所得函数的部分图象如图所示,则的值为( )A. B. C. D.11.若函数满足:①的图象是中心对称图形;②若时,图象上的点到其对称中心的距离不超过一个正数,则称是区间上的“对称函数”.若函数是区间上的“对称函数”,则实数的取值范围是()A. B. C. D.12.已知双曲线的左、右焦点分别为,点是双曲线上的任意一点,过点作双曲线的两条渐近线的平行线,分别与两条渐近线交于两点,若四边形(为坐标原点)的面积为,且,则点的横坐标的取值范围为()A. B.C. D.第II卷(非选择题)二、填空题13.已知,则__________.14.已知抛物线的焦点坐标为,则抛物线与直线所围成的封闭图形的面积为__________.15.已知实数满足不等式组则目标函数的最大值与最小值之和为__________.16.在中,为的中点,与互为余角,,,则的值为__________.三、解答题17.已知数列的前项和恰好与的展开式中含项的系数相等.(1)求数列的通项公式;(2)记,数列的前项和为,求.18.在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.(1)当时,求证:;(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.19.春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:,,,,,.统计结果如下表所示:该市高中生压岁钱收入可以认为服从正态分布,用样本平均数(每组数据取区间的中点值)作为的估计值.(1)求样本平均数;(2)求;(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于的获赠两次读书卡,压岁钱不低于的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:现从该市高中生中随机抽取一人,记(单位:张)为该名高中生获赠的读书卡的张数,求的分布列及数学期望.参考数据:若,则,.20.已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.(1)试求椭圆的标准方程;(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则与之积是否为定值?若是,求出该定值;若不是,试说明理由.21.已知函数.(1)若函数恰有一个零点,求实数的取值范围;(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).22.选修4-4:坐标系与参数方程在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.(1)若直线与圆有公共点,试求实数的取值范围;(2)当时,过点且与直线平行的直线交圆于两点,求的值23.选修4-5:不等式选讲已知函数.(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范数学(理)答案1.A【解析】集合集合,则,故选A.点睛:(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2.B【解析】复数为纯虚数,则,解得x=2,故选B.3.C【解析】由题意可得, ,又同号,所以,则,故选C.4.D【解析】由图知,7月,8月,11月的利润不低于40万元,故所求概率为,故选D.5.B【解析】分析:根据题意,把有关数据代入公式,即可求出刍童的体积.详解:由算法可知,刍童的体积,立方长,\故选:B点睛:本题解题的关键是理解题意,利用题目提供的各个数据代入公式即可.6.D【解析】,故, 又,故,故选D.7.C【解析】若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8.B【解析】令,可得n=7,故输入n=7符合,当输入的n满足n>7时,输出的结果总是大于127,不合题意,当输入n=6,5,4时,输出的n值分别为,均不合题意,当输入n=3或n=2时,输出的n=127符合题意,当输入n=1时,将进入死循环不符,故输入的所有的n的可能取值为2,3,7,共3个,故选B.点睛:本题考查程序框图的应用,属于中档题.算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.C【解析】,又因为,,当且仅当x=y时取等号,,即的最大值为,故选C.10.A【解析】由题意得=,则,由图知,则,由,得,解得的值为,故选A.11.A【解析】函数的图象可由的图象向左平移1个单位,再向上平移m个单位得到,故函数f(x)的图象关于点A(-1,m)对称,如图所示,由图可知,当时,点A到函数f(x)图象上的点(-4,m-27)或(2,m+27)的距离最大,最大距离为,根据条件只需,故,应选A.12.A【解析】由题易知四边形PAOB为平行四边形,且不妨设双曲线C的渐近线,设点P(m,n),则直线PB的方程为y-n=b(x-m),且点P到OB的距离为,由,解得,又,又,,双曲线C的方程为,即,又,解得或,所以点P的横坐标m的取值范围为,故选A.13.【解析】=,故填.14.【解析】抛物线的标准方程为,由得或,图形面积,故填.15.【解析】令t=2x,则x=,原可行域等价于,作出可行域如图所示,经计算得的几何意义是点P(t,y)到原点O的距离d的平方,由图可知,当点P与点C重合时,d取最大值;d的最小值为点O到直线AB:t-y-1=0的距离,故,所以的最大值与最小值之和为,故填.点睛: 应用利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值16.或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC, ,当时,,在△ACD中,,综上可得,的值为或.17.(1) (2)【解析】试题分析:(1)根据数列的前项和等于展开式中含项的系数,以及的关系,求出数列的通项公式;(2)由(1)求出,根据裂项相消法得出结果.试题解析:(1)依题意得,故当时,,又当时,,也适合上式,故.(2)由(1)得,故.18.(1)见解析(2)【解析】试题分析: (1) 当时,点是的中点,由已知证出,根据面面垂直的性质定理证得平面,进而证得结论;(2) 以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.写出各点坐标,求出平面的法向量,根据线面角的公式求出结果.试题解析:(1)当时,点是的中点.∴,.∵,∴∵,,,∴.∴.又平面平面,平面平面,平面,∴平面.∵平面,∴.(2)以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.则,,.取的中点,∵,∴,∴ 易证得平面,∵,∴,∴.∴,,.设平面的一个法向量为,则令,则.设与平面所成的角为,则,解得或(舍去)∴存在实数,使得与平面所成的角的正弦值为,此时.19.(1)68.5(2)0.8185(3)【解析】试题分析:(1)根据表中数据以及平均数公式代入计算即可;(2) 由(1)得的值,根据概率的计算公式计算即可;(3) 的所有可能取值为1,2,3,4,分别求出概率写出分布列,并求出期望即可.试题解析:(1),(2)由(1)得,.∴.(3)易知.∴的所有可能取值为1,2,3,4.;;;.∴的分布列为∴.20.(1) (2) 与之积为定值,且该定值是【解析】试题分析:(1),可得,将坐标代入求出点E,代入椭圆方程,结合焦点坐标可得椭圆方程;(2) 设,,设出直线AB的方程,与椭圆方程联立,消去y得到关于x的一元二次方程并写出韦达定理,根据三点共线得出M,N的坐标,求出与之积得出定值.试题解析:(1)椭圆的上顶点为,右焦点,点的坐标为.∵,可得,又,,∴代入可得,又,解得,,即椭圆的标准方程为.(2)设,,,,.由题意可设直线的方程为,联立消去,得,∴根据三点共线,可得,∴.同理可得,∴的坐标分别为,,∴.∴与之积为定值,且该定值是.点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.(1) (2)见解析【解析】试题分析:(1)求出函数的定义域和导函数,对参数m进行讨论得出函数的单调性,根据零点存在性定理判断零点的个数,求出m的取值范围;(2) 记函数,,则函数的两个相异零点为,将零点代入写出方程,并对两式相加和相减,再利用分析法以及变量集中构造新函数,并利用导数求最值的方法证得命题成立.试题解析(1)由题意知的定义域为,且.①当时,,在区间上单调递增,又,,∴,即函数在区间有唯一零点;②当时,,令,得.又易知函数在区间上单调递增,∴恰有一个零点.③当时,令,得,在区间上,,函数单调递增;在区间上,,函数单调递减,故当时,取得极大值,且极大值为,无极小值.若恰有一个零点,则,解得,综上所述,实数的取值范围为.(2)记函数,,则函数的两个相异零点为不妨设,∵,,∴,,两式相减得,两式相加得.∵,∴要证,即证,只需证,只需证,即证,设,则上式转化为,设,∴在区间上单调递增,∴,∴,即,即.点睛:本题考查函数的应用,利用导数解决函数的零点以及函数的单调性,最值和不等式的证明等问题. 本题也考查了零点存在性定理的应用,如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数在区间[a,b]内有零点,即存在,使得,这个c也就是方程的实数根.但是反之不一定成立.22.(1) (2)【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.试题解析:(1)由,得,即,故直线的直角坐标方程为.由得所以圆的普通方程为.若直线与圆有公共点,则圆心到直线的距离,即,故实数的取值范围为.(2)因为直线的倾斜角为,且过点,所以直线的参数方程为(为参数),①圆的方程为,②联立①②,得,设两点对应的参数分别为,则,,故.23.(1)(2)【解析】分析:(1)讨论x的取值范围,把不等式转化为三个不等式组,分别求解集,最后取并集;(2)对于任意的,都存在,使得成立即的值域为值域的子集.详解:(1)依题意,得由,得或或解得.即不等式的解集为.(2)由(1)知,,,则,解得,即实数的取值范围为.点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观。

(完整word)2018高考数学模拟试卷(衡水中学理科)

(完整word)2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0的距离d=,所以△AOB 的面积是|AB|d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|=的图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且a≥﹣2,求得﹣2≤a≤1.第21页(共21页)。

【衡水金卷】河北省衡水中学2018届高三毕业班模拟演练一理科数学试题(精编含解析)

【衡水金卷】河北省衡水中学2018届高三毕业班模拟演练一理科数学试题(精编含解析)

2018届高三毕业班模拟演练理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】集合集合,则,故选A. 点睛: (1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2. 已知,为虚数单位,若复数为纯虚数,则的值为()A. B. 2 C. -2 D. 0【答案】B【解析】复数为纯虚数,则,解得x=2,故选B.3. 已知等比数列中,,,则()A. B. -8 C. 8 D. 16【答案】C【解析】由题意可得, ,又同号,所以,则,故选C.4. 如图的折线图是某公司2017年1月至12月份的收入与支出数据.若从这12个月份中任意选3个月的数据进行分析,则这3个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为()A. B. C. D.【答案】D【解析】由图知,7月,8月,11月的利润不低于40万元,故所求概率为,故选D.5. 我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为()A. 13.25立方丈B. 26.5立方丈C. 53立方丈D. 106立方丈【答案】B【解析】分析:根据题意,把有关数据代入公式,即可求出刍童的体积.详解:由算法可知,刍童的体积,立方长,\故选:B点睛:本题解题的关键是理解题意,利用题目提供的各个数据代入公式即可.6. 已知偶函数在区间上单调递增,且,,,则满足()A. B.C. D.【答案】D【解析】,故, 又,故,故选D.7. 某几何体的正视图与侧视图如图所示,则它的俯视图不可能是()A. B. C. D.【答案】C【解析】若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.8. 若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为()A. 8B. 3C. 2D. 1【答案】B点睛:本题考查程序框图的应用,属于中档题.算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 已知点分别在正方形的边上运动,且,设,,若,则的最大值为()A. 2B. 4C.D.【答案】C【解析】,又因为,,当且仅当x=y时取等号, ,即的最大值为,故选C.10. 已知函数,将的图象向右平移个单位,所得函数的部分图象如图所示,则的值为()A. B. C. D.【答案】A【解析】由题意得=,则,由图知,则,由,得,解得的值为,故选A.11. 若函数满足:①的图象是中心对称图形;②若时,图象上的点到其对称中心的距离不超过一个正数,则称是区间上的“对称函数”.若函数是区间上的“对称函数”,则实数的取值范围是()A. B. C. D.【答案】A【解析】函数的图象可由的图象向左平移1个单位,再向上平移m个单位得到,故函数f(x)的图象关于点A(-1,m)对称,如图所示,由图可知,当时,点A到函数f(x)图象上的点(-4,m-27)或(2,m+27)的距离最大,最大距离为,根据条件只需,故,应选A.12. 已知双曲线的左、右焦点分别为,点是双曲线上的任意一点,过点作双曲线的两条渐近线的平行线,分别与两条渐近线交于两点,若四边形(为坐标原点)的面积为,且,则点的横坐标的取值范围为()A. B.C. D.【答案】A【解析】由题易知四边形PAOB 为平行四边形,且不妨设双曲线C 的渐近线,设点P(m,n),则直线PB 的方程为y-n=b(x-m),且点P 到OB 的距离为,由,解得,又 ,又,,双曲线C 的方程为,即,又,解得或,所以点P 的横坐标m 的取值范围为,故选A.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.【答案】【解析】=,故填.14. 已知抛物线的焦点坐标为,则抛物线与直线所围成的封闭图形的面积为__________. 【答案】【解析】抛物线的标准方程为,由得或,图形面积,故填.15. 已知实数满足不等式组则目标函数的最大值与最小值之和为__________.【答案】【解析】令t=2x,则x=,原可行域等价于,作出可行域如图所示,经计算得的几何意义是点P(t,y)到原点O的距离d的平方,由图可知,当点P与点C重合时,d取最大值;d的最小值为点O到直线AB:t-y-1=0的距离,故,所以的最大值与最小值之和为,故填.点睛: 应用利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16. 在中,为的中点,与互为余角,,,则的值为__________.【答案】或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC,,当时, ,在△ACD中,,综上可得,的值为或.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和恰好与的展开式中含项的系数相等.(1)求数列的通项公式;(2)记,数列的前项和为,求.【答案】(1) (2)【解析】试题分析:(1)根据数列的前项和等于展开式中含项的系数,以及的关系,求出数列的通项公式;(2)由(1)求出,根据裂项相消法得出结果.试题解析:(1)依题意得,故当时,,又当时,,也适合上式,故.(2)由(1)得,故.18. 在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.(1)当时,求证:;(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.【答案】(1)见解析(2)【解析】试题分析: (1) 当时,点是的中点,由已知证出,根据面面垂直的性质定理证得平面,进而证得结论;(2) 以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.写出各点坐标,求出平面的法向量,根据线面角的公式求出结果.试题解析:(1)当时,点是的中点.∴,.∵,∴.∵,,,∴.∴.又平面平面,平面平面,平面,∴平面.∵平面,∴.(2)以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.则,,.取的中点,∵,∴,∴ 易证得平面,∵,∴,∴.∴,,.设平面的一个法向量为,则令,则.设与平面所成的角为,则,解得或(舍去)∴存在实数,使得与平面所成的角的正弦值为,此时.19. 春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:,,,,,.统计结果如下表所示:该市高中生压岁钱收入可以认为服从正态分布,用样本平均数(每组数据取区间的中点值)作为的估计值.(1)求样本平均数;(2)求;(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于的获赠两次读书卡,压岁钱不低于的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:现从该市高中生中随机抽取一人,记(单位:张)为该名高中生获赠的读书卡的张数,求的分布列及数学期望.参考数据:若,则,.【答案】(1)68.5(2)0.8185(3)【解析】试题分析:(1)根据表中数据以及平均数公式代入计算即可;(2) 由(1)得的值,根据概率的计算公式计算即可;(3) 的所有可能取值为1,2,3,4,分别求出概率写出分布列,并求出期望即可. 试题解析:(1),(2)由(1)得,.∴.(3)易知.∴的所有可能取值为1,2,3,4.;;;.∴的分布列为∴.20. 已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.(1)试求椭圆的标准方程;(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则与之积是否为定值?若是,求出该定值;若不是,试说明理由.【答案】(1) (2) 与之积为定值,且该定值是【解析】试题分析:(1),可得,将坐标代入求出点E,代入椭圆方程,结合焦点坐标可得椭圆方程;(2) 设,,设出直线AB的方程,与椭圆方程联立,消去y得到关于x的一元二次方程并写出韦达定理,根据三点共线得出M,N的坐标,求出与之积得出定值.试题解析:(1)椭圆的上顶点为,右焦点,点的坐标为.∵,可得,又,,∴代入可得,又,解得,,即椭圆的标准方程为.(2)设,,,,.由题意可设直线的方程为,联立消去,得,∴根据三点共线,可得,∴.同理可得,∴的坐标分别为,,∴.∴与之积为定值,且该定值是.点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 已知函数.(1)若函数恰有一个零点,求实数的取值范围;(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).【答案】(1) (2)见解析【解析】试题分析:(1)求出函数的定义域和导函数,对参数m进行讨论得出函数的单调性,根据零点存在性定理判断零点的个数,求出m的取值范围;(2) 记函数,,则函数的两个相异零点为,将零点代入写出方程,并对两式相加和相减,再利用分析法以及变量集中构造新函数,并利用导数求最值的方法证得命题成立.试题解析:(1)由题意知的定义域为,且.①当时,,在区间上单调递增,又,,∴,即函数在区间有唯一零点;②当时,,令,得.又易知函数在区间上单调递增,∴恰有一个零点.③当时,令,得,在区间上,,函数单调递增;在区间上,,函数单调递减,故当时,取得极大值,且极大值为,无极小值.若恰有一个零点,则,解得,综上所述,实数的取值范围为.(2)记函数,,则函数的两个相异零点为不妨设,∵,,∴,,两式相减得,两式相加得.∵,∴要证,即证,只需证,只需证,即证,设,则上式转化为,设,,∴在区间上单调递增,∴,∴,即,即.点睛:本题考查函数的应用,利用导数解决函数的零点以及函数的单调性,最值和不等式的证明等问题.本题也考查了零点存在性定理的应用,如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数在区间[a,b]内有零点,即存在,使得,这个c也就是方程的实数根.但是反之不一定成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.(1)若直线与圆有公共点,试求实数的取值范围;(2)当时,过点且与直线平行的直线交圆于两点,求的值.【答案】(1) (2)【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.试题解析:(1)由,得,即,故直线的直角坐标方程为.由得所以圆的普通方程为.若直线与圆有公共点,则圆心到直线的距离,即,故实数的取值范围为.(2)因为直线的倾斜角为,且过点,所以直线的参数方程为(为参数),①圆的方程为,②联立①②,得,设两点对应的参数分别为,则,,故.23. 选修4-5:不等式选讲已知函数.(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.【答案】(1) (2)【解析】分析:(1)讨论x的取值范围,把不等式转化为三个不等式组,分别求解集,最后取并集;(2)对于任意的,都存在,使得成立即的值域为值域的子集.详解:(1)依题意,得由,得或或解得.即不等式的解集为.(2)由(1)知,,,则,解得,即实数的取值范围为.点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观.。

2018年河北省衡水中学高三一模理科数学试题 (1)

2018年河北省衡水中学高三一模理科数学试题 (1)

河北省衡水中学2018高三第一次模拟理科数学试题一、选择题(本大题共12小题,每小题5分,共60分)1.设全集为实数集R ,{}24M x x =>,{}13N x x =<≤,则图中阴影部分表示的集合是( )AC 2.设,a R i ∈是虚数单位,则”的( ) A.充分不必要条件 C.充要条件 D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2011B .2012C .4022D .40234. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人” ) ;②标准差2S ≤;③平均数且标准差2S ≤;2;⑤众数等于1且极差小于或等于1。

A C .③④⑤D .④⑤ 5. 在长方体ABCD —A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1相交于点E ,则点E 为△A 1BC 1的( )A .垂心B .内心C .外心D .重心6.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 若目标函数y b axz +=)0,(>b a 的最大值是12,则)B .CD ( )( )A. )0,(-∞B. ()+∞,0C. )1,(-∞D. ()+∞,111.已知圆的方程422=+y x ,若抛物线过点A (0,-1),B (0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( ) A.x 23+y 24=1(y ≠0) B.x 24+y 23=1(y ≠0) C.x 23+y 24=1(x ≠0) D.x 24+y 23=1 (x ≠0) 12. 设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =( )A.200722006+ B .200622008+ C .200722008+ D .200822006+二、填空题(本大题共4小题,每小题5分,共20分)6],内任取一个元素x O ,若抛物线y=x 2在x=x o 处的切线的倾角为α,则的概率为 。

2018年河北省高三数学理第一次摸底考试题及答案

2018年河北省高三数学理第一次摸底考试题及答案

2018年高三上学期第一次模拟考数学试卷(理科)第Ⅰ卷(共60分)一.选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合},1|{2R x xy y M ∈-==,}2|{2x y x N -==,则=N M ( )A. ),1[+∞-B. ]2,1[-C. ),2[+∞D. φ2.命题“存在04,2<-+∈a ax x R x 使”为假命题是命题“016≤≤-a ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件3.已知10<<a ,函数|log |)(x a x f a x-=的零点个数为( )A .2B .3C .4D .2或3或44.设232555322555a b c ===(),(),(),则a , b ,c 的大小关系是( )A.b >c >aB.a >b >cC.c >a >bD.a >c >b5.设)(x f 是定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=( )A.3B. 1C.-1D.-36.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12 C.2- D.12-7.函数2ln(43)y x x =+-的单调递减区间是( )A.3(,]2-∞ B.3[,)2+∞ C.3(1,]2- D.3[,4)28.由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积为( ) A.2ln 2 B.1ln 22 C.415 D.4179.函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则( )A .c b a <<B .b a c <<C .a b c <<D .a c b << 10.对任意的实数a 、b ,记{}()max ,()a a b a b b a b ≥⎧=⎨<⎩.若{}()max (),()()F x f x g x x R =∈,其中奇函数y=f(x)在x=l 时有极小值-2,y=g(x)是正比例函数,函数()(0)y f x x =≥与函数y=g(x)的图象如图所示.则下列关于函数()y F x =的说法中,正确的是( )A.()y F x =为奇函数B.()y F x =有极大值(1)F -且有极小值(0)FC.()y F x =在(3,0)-上为增函数D.()y F x =的最小值为-2且最大值为211.正方形ABCD 的顶点(0,2A ,,0)2B ,顶点CD 、位于第一象限,直线:(0l x t t =≤≤将正方形ABCD 分成两部分,记位于直线左侧阴影部分的面积为()f t ,则函数()s f t =的图象大致是( )A B C D12.对于函数)(x f 与)(x g 和区间E ,如果存在E x ∈0,使1|)()(|00<-x g x f ,则我们称函数)(x f 与)(x g 在区间E 上“互相接近”.那么下列所给的两个函数在区间),0(+∞上“互相接近”的是( )A .2)(x x f =,32)(-=x x gB .x x f =)(,2)(+=x x gC .x e x f -=)(,xx g 1)(-= D . x x f ln )(=,x x g =)(第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题纸上相应位置.(13)已知函数()f x 满足(1)f =1 且(1)2()f x f x +=, 则(1)(2)(10)f f f +++…=_______________。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}AB =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=,即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .2 2.答案:D解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否 →输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( )A . 5B .3CD.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,5d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( )A .3B.C. D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )A .110,3⎛⎤ ⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B解析:当,32x ππ⎛⎫∈ ⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈ 212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( )A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭ B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞B.,2⎛-∞- ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当2ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .2±C .12或3D .1或2 12.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= . 13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩ABMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 .14.答案:(0,)e解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 . 15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +=,所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因(2)求2cos 2sin 22B ⎛⎫--⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos 2A ∴=,又因为0πA<<,所以6πA = (2)25cos 2sin sin cos 1sin cos()122πCB BC B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin 116626πππB B B B B B ⎛⎫=-+-=-=-- ⎪⎝⎭由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是212⎛⎤- ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.参考数据:若2(,)X N μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============所以的分布列为()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B1O(2)由已知得1OA OB AB ==2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OCOA 的方向为x 轴,y轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),3)C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,1111130AB m x AC m y ⎧⋅==⎪∴⎨⋅=--=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,3,1)m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA=-=,由122123020AB n x AA n y ⎧⋅=-=⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =,于是cos ,5m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值.20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令2ln ()(0)1x xg x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==, 所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >).(1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分)(2)()21a f x x a ax '=+-+,依题意,1101212a f a a⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分)(3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭.问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+- ⎪⎝⎭恒成立,设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭,则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤.当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭.于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立.综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程 已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的非负半轴重合,直线l 的参数方程为1,12x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c o s ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l的普通方程为10x -+=……………………(5分)(2)把1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t t t +==,所以12PQ t t =-==10分)方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥, 解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 ⎨ ⎩2河北省衡水中学 2018 高三第一次模拟理科数学试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1. 设全集为实数集 R , Mx2, N x 1 x ,则图中阴影部分表示的集合是( )A . {x -2 ≤ x < 1}B . {x -2 ≤ x ≤ 2} C . {x 1 < x ≤ 2}D . {x x < 2}2. 设 a ∈ R , i 是虚数单位,则“ a = 1 ”是“a + i为纯虚数”的( )a - iA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.若{a n } 是等差数列,首项 a 1 > 0, a 2011 + a 2012 > 0 , a 2011 ⋅ a 2012 和 S n > 0 成立的最大正整数 n 是()A .2011B .2012C .4022D .4023< 0 ,则使前 n 项 4. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续 7 天每天新增感染人数不超过 5 人”, 根据连续 7 天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数 x ≤ 3 ;②标准差 S ≤ 2 ;③平均数 x ≤ 3 且标准差 S ≤ 2 ; ④平均数 x ≤ 3 且极差小于或等于 2;⑤众数等于 1 且极差小于或等于 1。

A .①②B .③④C .③④⑤D .④⑤5. 在长方体ABCD —A 1B 1C 1D 1 中,对角线 B 1D 与平面A 1BC 1 相交于点E ,则点 E 为△A 1BC 1 的( )A .垂心B .内心C .外心D .重心⎧3x - y - 6 ≤ 0, 6.设 x , y 满足约束条件 ⎪x - y + 2 ≥ 0, ⎪x , y ≥ 0, a 2 + b 2 的最小值是( )若目标函数 z = ax + b y (a , b > 0) 的最大值是 12,则A. 6 13B. 36 5C. 6 5D. 36137.已知三棱锥的三视图如图所示,则它的外接球表面积为 ( )A .16B .4C .8D .2 8.已知函数 f ( x ) = 2 s in(x +) (ω > 0, -π < ϕ < π) 图像的一部分(如图所示),则ω 与ϕ 的值分别为( )A . 11 , -5π B . 1, - 2π C . 7 , - π D . 10 6 4 , - π 5 33 10 6 9. 双曲线 C 的左右焦点分别为 F 1, F 2 ,且 F 恰为抛物线 y 2= 4x 的焦点,设双 曲线C 与该抛物线的一个交点为 A ,若 ∆AF 1F 2 是以 AF 1 为底边的等腰三角形, 则双曲线C 的离心率为( )A .B .1 +C .1 +D . 2 + 10. 已知函数 f (x ) 是定义在 R 上的奇函数,若对于任意给定的不等实数 x 1, x 2 ,不等式2 3 31线 3 x 1 f (x 1 ) + x 2 f (x 2 ) < x 1 f (x 2 ) + x 2 f (x 1 ) 恒成立,则不等式 f (1 - x ) < 0 的解集为()A. (-∞,0)B. (0,+∞)C. (-∞,1)D. (1,+∞)11. 已知圆的方程 x 2 + y 2 = 4 ,若抛物线过点 A (0,-1),B (0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( ) x 2 y 2 x 2 y2 A.3 +4 =1(y ≠0) B. 4 + 3 =1(y ≠0) x 2 y 2 x 2 y 2C. 3 + 4 =1(x ≠0)D. 4 + 3=1 (x ≠0) 12. 设 f (x ) 是定义在R 上的函数,若 f (0) = 2008 ,且对任意 x ∈ R ,满足f (x + 2) - f (x ) ≤ 3⋅ 2x , f (x + 6) - f (x ) ≥ 63⋅ 2x ,则 f (2008) =() A. 22006 + 2007 B . 22008 + 2006 C . 22008 + 2007 D . 22006 + 2008二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13. 在区间[-6,6],内任取一个元素 x O ,若抛物线 y=x 2 在 x=x o 处的切线的倾角为,则⎡ 3⎤∈ ⎢ , ⎥ 的概率为 。

⎣ 4 4 ⎦14. 某程序框图如图所示,该程序运行后输出的 S 的值是 15. 在 ∆ABC 中, P 是 BC 边中点,角 A , B , C 的对边分别是a, b , c , 若 + + =, 则∆ABC 的 形 状 为 。

c AC aPA bPB 0 16. 在 x 轴的正方向上,从左向右依次取点列 {A j }, j = 1,2, ,以及在第一象限内的抛物 y 2 = 3x 上从左向右依次取点列2{B k }, k = 1,2, ,使 ∆A k -1B k A k ( k = 1,2, )都是等边三角形,其中 A 0是坐标原点,则第 2005 个等边三角形的边长是。

三、解答题(本大题共 6 小题,共 70 分)17.(本小题满分 12 分)在 △ ABC 中 , a , b , c 是 角 m • n = ( + 2)ab .(1)求角C ; A , B , C 对 应 的 边 , 向 量 m = (a + b , c ) , n = (a + b ,-c ), 且 (2)函数 f (x ) = 2 sin( A + B ) cos 2 (x ) - cos( A + B ) sin(2x ) - 1 > 0)的相邻两个极值的横 ( 2坐标分别为 x 0 - 2、 x 0 ,求 f (x ) 的单调递减区间.18.(本小题满分 12 分)已知四边形 ABCD 满足 AD / / B C , BA = AD = DC = 1BC = a ,E 是 BC 的中点,将△BAE2沿 AE 翻折成 ∆B 1 AE , 使面B 1 AE ⊥ 面AECD ,F 为 B 1D 的中点.(1) 求四棱锥 B 1 - AECD 的体积;3 (2) 证明: B 1E / /面ACF ;(3) 求面 ADB 1与面ECB 1 所成锐二面角的余弦值.19.(本小题满分 12 分)现有 4 个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性, 约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为 1 或 2 的人去参加甲游戏,掷出点数大于 2 的人去参加乙游戏. (1) 求这 4 个人中恰有 2 人去参加甲游戏的概率; (2) 求这 4 个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3) 用 X ,Y 分别表示这 4 个人中去参加甲、乙游戏的人数,记 ξ=|X -Y |,求随机变量 ξ 的分布列与数学期望 Eξ. 20.(本小题满分 12 分) 已知函数 f (x ) 是定义在[-e , 0) ⋃(0, e ] 上的奇函数,当 x ∈(0, e ]时, 是自然界对数的底, a ∈ R )(1) 求 f (x ) 的解析式; f (x ) = ax + ln x (其中 e(2) 设 g (x ) =, ,求证:当 a = -1 时,且 x ∈[- e ,0) , f (x ) > g (x ) + 1 恒成立; 2(3)是否存在实数 a ,使得当 x ∈[-e , 0) 时, f (x ) 的最小值是 3 ?如果存在,求出实数 a的值;如果不存在,请说明理由。

请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题记分.答题时用 2B铅笔在答题卡上把所选的题号涂黑.21. (本小题满分 10 分) 选修 4—1:几何证明选讲已知 PQ 与圆 O 相切于点 A ,直线 PBC 交圆于 B 、C 两点,D 是圆上一点,且 AB ∥CD ,DC 的延长线交 PQ 于点 Q(1) 求证: AC 2 = CQ ⋅ AB(2) 若 AQ=2AP ,AB= ,BP=2,求 QD.22.(本小题满分 10 分) 选修 4—4:坐标系与参数方程ln xx⎩+)2在平面直角坐标系中,曲线 C 1 的参数方程为 ⎧x = a c os⎨y = b s in (a >b >0,为参数),以 Ο为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C 2 是圆心在极轴上且经过极点的圆,已知曲线 C 1 上的点 M (2,3) 对应的参数= , =3与曲线 C 2 交于点 D ( 42, )4(1)求曲线 C 1,C 2 的方程;11(2)A (ρ1,θ),Β(ρ2,θ+ )是曲线 C 1 上的两点,求123.(本小题满分 l0 分) 选修 4—5:不等式选讲2 的值。

2已知关于 x 的不等式| 2x +1| - | x -1|≤ log 2 a (其中 a > 0 ).(1) 当 a = 4 时,求不等式的解集; (2) 若不等式有解,求实数 a 的取值范围数学(理科)答案一、选择题 (A )卷 CACDD DBABC CC (B )CCADD BDACB CC 二、填空题 13、1114 、 -115、等边三角形 16. 2005122三、解答题17、解:(1)因为 m = (a + b ,c ), n = (a + b ,-c ), m ⋅ n = (+ 2)ab ,所以a 2 + b 2 - c 2=3ab ,故cos C = 32 , 0 < C <,∴C = 6. ------------ 5 分(2) f (x ) = 2 sin(A + B ) cos 2 (x ) - cos(A + B ) sin(2x ) - 12= 2 sin C cos 2 (x ) + cos C sin(2x ) - 12= cos 2 (x ) + 3 sin(2x ) - 12 2 = sin(2x + ------------------------8 分) 6因为相邻两个极值的横坐标分别为 x 0 - 2、 x 0 ,所以f (x ) 的最小正周期为T =,= 1所以f (x ) = sin(2x +--------------------10 分 6由 2k + < 2x + < 2k + 3, k ∈ Z2 6 2所以 f (x ) 的单调递减区间为[k + , k + 2], k ∈ Z .----------------- 12 分6 3 18、解:(1)取 AE 的中点 M ,连结 B M ,因为1,△ABE 为等边三角形,1BA=AD=DC= BC=a 2则 B 1M= 3a ,又因为面 B 1AE ⊥面 AECD ,所以 B 1M ⊥面 AECD , 2所 以 V= 1 ⨯ 3 a ⨯ a ⨯ a ⨯ sin = a 2 3 4---------4 分 (2)连结 ED 交 AC 于 O ,连结 OF ,因为 AECD 为菱形,OE=OD 所以 FO ∥B 1E , 所以 B 1E / /面ACF 。

相关文档
最新文档