九年级下学期数学期末考试试卷及答案
2017-2018学年九年级数学期末试卷及答案
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
海淀区2024届初三二模数学试题及答案
海淀区九年级第二学期末练习数 学2024.05学校_____________ 姓名______________ 准考证号______________第一部分 选择题一、选择题(共16分,每题2分)第1 - 8题均有四个选项,符合题意的选项只有一个.1.截至2023年底,我国人工智能核心产业规模接近5800亿元,形成了京津冀、长三角、珠三角三大集聚发展区.将580000000000 用科学记数法表示应为 (A )105810⨯(B )115.810⨯(C )125.810⨯(D )120.5810⨯2.右图是一张长方形纸片,用其围成一个几何体的侧面,这个几何体可能是 (A )圆柱 (B )圆锥 (C )球(D )三棱锥3.五边形的内角和为 (A )900︒(B )720︒(C )540︒(D )360︒4.若a b >,则下列结论正确的是 (A )0a b +>(B )0a b −>(C )0ab >(D )0ab> 5.如图,实数5在数轴上对应的点可能是(A )点A(B )点B(C )点C(D )点D6.如图,12l l ,点A 在1l 上,以点A 为圆心,适当长度为半径画弧,分别交1l ,2l 于点B ,C ,连接AC ,BC .若140∠=︒,则ABC ∠的大小为 (A )80︒ (B )75︒ (C )70︒(D )65︒考生须知1.本试卷共7页,共两部分,28道题,满分100分。
考试时间120分钟。
2.在试卷和答题纸上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题纸和草稿纸一并交回。
ABC1l 1l 20 1 2 3–1 A B CD7.九年级(1)班羽毛球小组共有4名队员,其中两名男生,两名女生.从中随机选取两人,恰好能组成一组混双搭档的概率是 (A)14(B )13(C )12(D )238.某种型号的纸杯如图1所示,若将n 个这种型号的杯子按图2中的方式叠放在一起,叠在一起的杯子的总高度为H .则H 与n 满足的函数关系可能是 (A )0.3H n = (B )100.3H n=(C )100.3H n =−(D )100.3H n =+第二部分 非选择题二、填空题(共16分,每题2分) 9. 若代数式12x −有意义,则实数x 的取值范围是 . 10.若1x =是方程230x x m −+=的一个根,则实数m 的值为 . 11.如图,在△ABC 中,D ,E 分别在边AB ,BC 上,DEAC .若2AD =,4BD =,则DEAC的值为 .12.在平面直角坐标系xOy 中,点1(1)A y ,,2(2)B y ,在反比例函数ky x=(0k ≠) 的图象上. 若12y y <,则满足条件的k 的值可以是 (写出一个即可).13.如图所示的网格是正方形网格,A ,B ,C 是网格线的交点,C 在以AB 为直径的半圆上.若点D 在BC 上,则BDC ∠= ︒.14.一组数据3,2,4,2,6,5,6的平均数为4,方差为20s .再添加一个数据4,得到一组新数据.若记这组新数据的方差为21s ,则21s 20s (填“>”“=”或“<”).A DBE C图1图2D CBA15.下表是n 与2n (其中n 为自然数)的部分对应值表:n5 10 15 20 25 30 35 2n321 02432 7681 048 57633 554 4321 073 741 82434 359 738 368根据表格提供的信息,计算102432768⨯的结果为 . 16.在ABC 中,D 为边AB 的中点,E 为边AC 上一点,连接DE .给出下面三个命题:①若AE EC =,则12DE BC =; ②若12DE BC =,则DE BC ∥; ③若DE BC ∥,则AE EC =.上述命题中,所有真命题的序号是 .三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答写出文字说明、演算步骤或证明过程.17.计算:020242sin 45|3|8−︒+−+.18.解不等式组:532342(1).x x x x +⎧<⎪⎨⎪−>+⎩,19.已知2230m n −−=,求代数式2()2()m n n m n +−+的值.20.如图,点A ,B ,C ,D 在一条直线上,AB BC CD ==,AE EC =,四边形ECDF 是平行四边形. (1)求证:四边形EBCF 是矩形; (2)若12AD =,4cos 5A =,求BF 的长.21.我国古代著作《管子·地员篇》中介绍了一种用数学运算获得“宫商角徵羽”五音的方法.研究发现,当琴弦的长度比满足一定关系时,就可以弹奏出不同的乐音.例如,三根弦按长度从长到短排列分别奏出乐音“do ,mi ,so ”,需满足相邻弦长的倒数差相等.若最长弦为15个单位长,最短弦为10个单位长,求中间弦的长度.ODACBFE22.在平面直角坐标系xOy 中,一次函数0y kx b k =+≠()的图象由函数12y x =的图象平移得到,且经过点(24),.(1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,函数y x n =+的值与一次函数0y kx b k =+≠()的值的差大于1,直接写出n 的取值范围.23.一本图鉴中的照片由1开始连续编号,由于装订线脱落,照片散落一地.小云想利用统计学知识估计照片总数,于是从中随机抽取20张照片,将其编号作为样本,数据整理如下: a .20张照片的编号:4,8,15,25,34,39,41,48,68,79,85,86,89,91,102,104,110,121,144,147 b .20张照片编号的最小值、最大值、平均数和中位数:最小值 最大值 平均数 中位数 414772m(1)写出表中m 的值;(2)设照片总数为n ,所有照片编号分别为1,2,…,n ,这n 个数的平均数和中位数均为12n +. ①利用样本平均数估计全体平均数,可估算出照片的总数1n 为_________, ②利用样本中位数估计全体中位数,可估算出照片的总数2n 为_________,小云发现,有一个估算结果不合理,这个不合理的结果是_________(填“1n ”或“2n ”); (3)小云想到还可使用样本数据的“平均间隔长度”进行估计.在下面的示意图中,用1220x x x ,,…,表示随机抽取的20张照片编号从小到大排序,则从0到20x 的平均间隔长度为2020x ,从0到n 的平均间隔长度为21n,直接写出此时估算出照片的总数3n (结果取整数).24.如图,P 是⊙O 外一点,P A ,PB 分别切⊙O 于点A ,B ,PO 与⊙O 交于点H ,AH OH =. (1)求证:△ABP 是等边三角形;(2)过点A 作PO 的平行线,与⊙O 的另一个交点为C ,连接CP .若6AB =,求⊙O 的半径和tan CPB ∠的值.HBAOPnx 20x 19 …x3 x 2x 125.生活垃圾水解法是一种科学处理生活垃圾的技术.有研究表明,在生活垃圾水解过程中添加一些微生物菌剂能够加快原料的水解.某小组为研究微生物菌剂添加量对某类生活垃圾水解率的影响,设置了六组不同的菌剂添加量,分别为0%,2%,4%,6%,8%,10%,每隔12h 测定一次水解率,部分实验结果如下:a .不同菌剂添加量的生活垃圾,在水解48 h 时,测得的实验数据如下图所示:为提高这类生活垃圾在水解48 h 时的水解率,在这六组不同的菌剂添加量中,最佳添加量 为 %;b .当菌剂添加量为p %时,生活垃圾水解率随时间变化的部分实验数据记录如下:时间t (h )1224364860728496108120水解率y (%)0 28.0 35.1 39.4 42.5 44.9 46.8 48.5 50.0 51.2 52.3通过分析表格中的数据,发现当菌剂添加量为p %时,可以用函数刻画生活垃圾水解率y 和时间t 之间的关系,在平面直角坐标系中画出此函数的图象.结合实验数据,利用所画的函数图象可以推断,当水解132 h 时,生活垃圾水解率超过54%(填“能”或“不能”).根据以上实验数据和结果,解决下列问题: (1)直接写出p 的值;(2)当菌剂添加量为6%时,生活垃圾水解率达到50%所需的时间为0t 小时,当菌剂添加量为p %时,生活垃圾水解0(48)t +小时的水解率 50%(填“大于”“小于”或“等于”).t (h)1224364860728496108120132O菌剂添加量 (%)水解率 (%)25 30 35 40 4550 55 46810220 O26.在平面直角坐标系xOy 中,抛物线2y ax bx c =++(0a >)的对称轴为x t =,点1()2A t m ,,(2)B t n ,,00()C x y ,在抛物线上.(1)当2t =时,直接写出m 与n 的大小关系;(2)若对于067x <<,都有0m y n <<,求t 的取值范围.27.在ABC △中,AB AC =,60A ∠<︒,点D 在边AC 上(不与点A ,C 重合),连接BD ,平移线段BD ,使点B 移到点C ,得到线段CE ,连接DE .(1)在图1中补全图形,若2BAC E ∠=∠,求证:CBD ∠与CDE ∠互余;(2)连接AE ,若AC 平分BAE ∠,用等式表示CBD ∠与BAE ∠之间的数量关系,并证明.图1 备用图28.在平面直角坐标系xOy 中,⊙O 的半径为1,AB 是⊙O 的一条弦,以AB 为边作平行四边形ABCD .对于平行四边形ABCD 和弦AB ,给出如下定义:若边CD 所在直线是⊙O 的切线,则称四边形ABCD 是弦AB 的“弦切四边形”.(1)若点(01)A −,,(10)C ,,四边形ABCD 是弦AB 的“弦切四边形”,在图中画出“弦切四边形”ABCD ,并直接写出点D 的坐标;(2)若弦AB 的“弦切四边形”为正方形,求AB 的长;(3)已知图形M 和图形N 是弦AB 的两个全等的“弦切四边形”,且均为菱形,图形M 与N 不重合.P ,Q 分别为两个“弦切四边形”对角线的交点,记PQ 的长为t ,直接写出t 的取值范围.海淀区九年级第二学期期末练习数学试卷参考答案第一部分选择题一、选择题(共16分,每题2分)第二部分非选择题二、填空题(共16分,每题2分)9.2x≠10.211.2312.答案不唯一,0k<即可13.135 14.<15.33 554 432 16.①③三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式1232=−⨯++………………………………………………………………..4分13=+4=+…………………………………………………………………5分18. 解:原不等式组为56342 2.x xx x+<⎧⎨−>+⎩,①②解不等式①,得1x>. ………………………………………………………………….2分解不等式②,得6x>. …………………………………………………………………..4分∴原不等式组的解集为6x>. ……………………………………………………………..5分19. 解:原式222222m mn n mn n=++−−22m n=−. ……………………………………………………………………….3分∵2230m n −−=,∴223m n −=. …………………………………………………………………………4分∴原式3=. ………………………………………………………………………… 5分 20.(1)证明:∵四边形ECDF 为平行四边形,∴EF // CD ,EF CD =. …………………………………………………………1分 ∵B ,C ,D 在一条直线上,BC CD =, ∴EF // BC ,EF =BC .∴四边形EBCF 为平行四边形. ……………………………………………………2分 ∵AE EC =,AB BC =, ∴EB AC ⊥.∴90EBC ∠=.∴四边形EBCF 为矩形. …………………………………………………………3分(2)解:∵A ,B ,C ,D 在一条直线上,AB BC CD ==,12AD =,∴4AB =. …………………………………………………………………….4分 ∵EB AC ⊥. ∴90EBA ∠=. ∵4cos 5A =. ∴5cos ABAE A==. …………………………………………………………………….5分 ∵AE EC =, ∴5EC =.∵四边形EBCF 为矩形, ∴5BF EC ==.∴BF 的长为5. ………………………………………………………………….6分21. 解:设中间弦的长度为x 个单位长. …………………………. ………………. ………………..1分由题意可得11111510x x−=−. …………………………………………………………….3分 解得 12x =. ……………………………………………………………………………. 4分 经检验,12x =是原方程的解且符合题意. ………………………………………………. 5分 答:中间弦的长度为12个单位长. ……………………………………………………….6分22.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到, ∴12k =. .…..…..……………………………………………………………………..1分 ∵一次函数(0)y kx b k =+≠的图象经过点(24),,∴1242b ⨯+=. ∴3b =. .…..…..……………………………………………………………………..2分 ∴该一次函数的解析式为132y x =+. …………………...………………………..3分 (2)3n ≥. ….….….….…………………………………………………………………..5分23.解:(1)82; ….…….……………………………………..…………………………………..1分(2)143,163,1n ; ………………………………………………………………………... 4分 (3)154. ………………………………………………………………………….…..5分24.(1)证明:连接OA ,如图.∵OA OH =,AH OH =, ∴OA OH AH ==. ∴△AOH 为等边三角形.∴60AOH ∠=︒. …………………………………………………………………..….1分 ∵P A 切O 于点A , ∴PA AO ⊥. ∴90PAO ∠=︒.∴30APO ∠=︒. ………………………………………………………………..….2分 ∵P A ,PB 分别切O 于点A ,B , ∴PA PB =,30APO BPO ∠=∠=︒. ∴60APB ∠=︒.∴△ABP 为等边三角形. …………………………………………………………….3分(2)解:如图,连接BC .∵△ABP 为等边三角形,6AB =, ∴6PA PB AB ===.由(1)得,在Rt △P AO 中,90PAO ∠=︒,30APO ∠=︒.P∴tan 3063OA PA =︒=⨯= ∴O的半径为. ……………………………..…………………………4分 ∵△AOH 为等边三角形. ∴60HAO HOA ∠=∠=︒.由(1)得PA PB =,APO BPO ∠=∠, ∴PO AB ⊥. ∵AC // PO , ∴AC AB ⊥. ∴90BAC ∠=︒.∴BC 是O 的直径. ………………………..…………………………5分∴BC = ∵PB 切O 于点B , ∴PB BC ⊥. ∴90PBC ∠=︒.∴tan BC CPB PB ∠===………………………..…………………………6分 25.解:a . 6; ………………………………………………………..……………………………..1分b . 图象如下图.………………………………………..…………………………………....2分 不能. ……………………………………………………..……………………………..3分y(h )P(1) 4; …………………………………………………………..……………………………..4分 (2) 小于. ……………………………………………..……………………………..……..5分 26.解:(1) <; ………………………………………………………………………………………2分(2)∵0a >, 抛物线的对称轴为x t =,∴ 当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ① 当7t ≥时,122t t t <<.点(2)B t n ,关于抛物线对称轴x t =的对称点为'(0)B n ,, 此时点,',A B C 均在抛物线对称轴左侧. ∵对于067x <<,都有0m y n <<,∴06,17.2t ≤⎧⎪⎨≥⎪⎩解得 14t ≥. ② 当67t <<时,取0x t =,此时0y 为最小值,与0m y <矛盾,不符合题意. ③ 当06t <≤时,122t t t <<.点1()2A t m ,关于抛物线对称轴x t =的对称点为3'()2A t m ,, 此时点',,ABC 均在抛物线对称轴右侧. ∵对于067x <<,都有0m y n <<, ∴36,227.t t ⎧≤⎪⎨⎪≥⎩解得742t ≤≤. ④ 当0t =时,122t t t ==,m n =,不符合题意. ⑤ 当0t <时,122t t t <<.点(2)B t n ,关于抛物线对称轴x t =的对称点为'(0)B n ,, 此时点',B C 在抛物线对称轴右侧. ∵'06B x x <<, ∴0n y <,不符合题意.综上所述,t 的取值范围是742t ≤≤或14t ≥. …………………………………………6分 27.(1)补全图形如图1:图1…………………………………………………………………………………………1分 证明:设E α∠=,则22BAC E α∠=∠=.∵AB AC =, ∴180902BACABC ACB α︒−∠∠=∠==︒−.由平移可知,BC // DE ,BC DE =.∴四边形BCED 为平行四边形. ……………………………………………………2分 ∴CBD E α∠=∠=. ∵BC // DE ,∴90CDE ACB α∠=∠=︒−. ∴90CBD CDE ∠+∠=︒.∴CBD ∠与CDE ∠互余. ………………………………………………………3分(2)CBD ∠与BAE ∠之间的数量关系为12CBD BAE ∠=∠. …………………4分解:如图2,连接BE ,交AC 于点O ,延长AC 至F ,使OF OA =,连接EF .图2BB由(1)可得,四边形BCED 为平行四边形.∴OB OE =.∵OA OF =,BOA EOF ∠=∠,∴△BOA ≌△EOF .∴AB FE =,BAO EFO ∠=∠. ∵AC 平分BAE ∠,∴12BAO EAO BAE ∠=∠=∠.∴EFO EAO ∠=∠. ∴AE FE =.∴AB AE =. ………………………………………………………………………5分 ∵OB OE =, ∴AC BE ⊥.∴四边形BCED 为菱形.∴BD BC =. ……………………………………………………………………………6分 ∴BDC BCD ∠=∠.∴在△BCD 中,2180CBD BCD ∠+∠=︒. ∵在△ABC 中,2180BAC BCD ∠+∠=︒. ∴BAC CBD ∠=∠.∴12CBD BAE ∠=∠. ………………………………………………………………7分28.(1)如图,四边形ABCD 即为所求.……………………………………………………………………………………………….1分x点D 的坐标为(1,2)D −. …………………………………………………………………..2分 (2)如图,弦AB 的弦切四边形为正方形ABCD ,设正方形ABCD 的边长为a ,CD 与O 的切点为E ,连接EO 并延长交AB 于点F . ∵CD 与O 的切点为E ,EF 经过圆心O , ∴EF CD ⊥.∵四边形ABCD 为正方形, ∴AB // CD ,AB BC a ==. ∴EF AB ⊥. ∴1122AF AB a ==,EF BC a ==. ∵1OE =, ∴1OF a =−.在Rt △OAF 中,由勾股定理得,222OA OF AF =+.∴22211(1)()2a a =−+.解得 85a =. ∴AB 的长为85. ………………………………………………………………………..5分(3)05t <≤或2t =. ………………………………………………………………………..2分。
人教版2023-2024学年九年级下学期调研考试数学考试试卷含答案
九年级数学(第1页共6页)人教版2023-2024学年九年级下学期调研考试数 学 试 卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置,并将条形码粘贴在答题卡上的指定位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列所给的方程中,是一元二次方程的是A .x 2=xB .2x +1=0C .(x -1)x =x 2D .x +1x=22.下列事件中,是必然事件的是A .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球B .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7C .从车间刚生产的产品中任意抽取一个是次品D .打开电视,正在播放广告3.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为150°,弧BC 长为50πcm ,则半径AB 的长为A .50cm B .60cm C .120cmD .30cm4.如图是国旗中的一颗五角星图案,绕着它的中心旋转,要使旋转后的五角星能与自身重合,则旋转角的度数至少为A .30°B .45°C .60°D .72°5.已知电压U 、电流I 、电阻R 三者之间的关系式为:U =IR (或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是A .B .C .D .九年级数学(第2页共6页)6.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字1,2,3,4表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是A .41B .21C .43D .657.如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =25°,则∠BOC的度数为A .30°B .40°C .50°D .60°8.如图,函数y =-x 与函数6y x=-的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,连接AD ,BC .则四边形ACBD 的面积为A .12B .8C .6D .49.己知⊙O 的半径是一元二次方程x 2-3x -4=0的一个根,圆心O 到直线l 的距离d =6,则直线l 与⊙O 的位置关系是A .相切B .相离C .相交D .相切或相交10.如图是二次函数y =ax 2+bx +c (a <0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②4a +2b +c <0;③-2b +c =0;④若(-52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12).其中说法正确的是A .③④⑤B .①②④C .①④⑤D.①③④⑤二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.已知一元二次方程(x -2)(x +3)=0,将其化成二次项系数为正数的一般形式后,它的常数项是☆.九年级数学(第3页共6页)12.五张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、直角三角形、平行四边形图案.现把它们正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为☆.13.Rt △ABC 中,∠C =90°,AC =3,BC =4,把Rt △ABC 沿AB 所在的直线旋转一周,则所得几何体的全面积为☆.14.抛物线y =-12x 2+3x -52的顶点坐标是☆.15.在等腰直角三角形AB C 中,∠C =90°,BC =2cm .如果以AC 的中点O 为旋转中心,将△OCB 旋转180°,使点B 落在点B 1处,那么点B 1和B 的距离是☆cm .16.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数ky x=在第一象限内的图象经过点D ,且与AB ,BC 分别交于E ,F 两点,若四边形BEDF 的面积为9,则k 的值为☆.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分6分=3分+3分)用适当的方法解下列方程:(1)x 2-2x =0(2)2x 2-3x -1=018.(本题满分7分=3分+4分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1(保留画图痕迹);(2)求线段BC 扫过的面积(结果保留π).九年级数学(第4页共6页)19.(本题满分9分=3分+6分)在一个不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,黄球有1个.(1)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(2)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小聪共摸6次小球(每次摸1个球,摸后放回)得22分,问小聪有哪几种摸法?20.(本题满分9分=5分+4分)已知直线y =-x +m +1与双曲线y =mx在第一象限交于点A ,B ,连接OA ,过点A 作AC ⊥x 轴于点C ,若S △AOC =3.(1)求两个函数解析式;(2)求直线y =-x +m +1在双曲线y =xm上方时x的取值范围.九年级数学(第5页共6页)21.(本题满分9分=4分+5分)在等腰Rt △ABC 中,∠ACB =90°,点D 为AB 的中点,E 为BC 边上一点,将线段ED 绕点E 按逆时针方向旋转90°得到EF ,连接DF ,AF .(1)如图1,若点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)如图2,若点G 为AF 的中点,连接DG .过点D 、F 作DN ⊥BC 于点N ,FM ⊥BC 于点M ,连结BF .若AC =BC =16,CE =2,求DG的长.22.(本题满分9分=4分+5分)已知x 1,x 2是关于x 的一元二次方程x 2+3x +k -3=0的两个实数根.(1)求k 的取值范围;(2)若x 12+2x 1+x 2+k =4,试求k 的值.23.(本题满分10分=4分+3分+3分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若∠DCE =30°,DE =2.求:①AB 的长;②的长.九年级数学(第6页共6页)24.(本题满分13分=3分+5分+5分)如图1,抛物线y =ax 2+bx +c (a ≠0)与直线y =x +1相交于A (-1,0),C (4,5)两点,与x 轴交于点B (5,0).(1)则抛物线的解析式为☆;(2)如图2,点P 是抛物线上的一个动点(不与点A 、点C 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AC 于点E ,连接BC ,BE ,设点P 的横坐标为m .①当PE =2ED 时,求P 点坐标;②当点P 在抛物线上运动的过程中,存在点P 使得以点B ,E ,C 为顶点的等腰三角形,请求出此时m的值.九年级数学参考答案(第1页共4页)人教版2023-2024学年九年级下学期调研考试数学参考答案一、精心选一选,相信自己的判断!题号12345678910答案ABBDACCABD二、细心填一填,试试自己的身手!11.-612.3513.845p 14.(3,2)15.16.6三、用心做一做,显显自己的能力!17.解:(1)∵x 2-2x =0,∴x (x-2)=0,…………………………………1分x =0,x -2=0,∴x 1=0或x 2=2; (3)分(2)2x 2-3x -1=0,,…………………4分x 1,x 2…………………………………6分18.解:(1)△ABC 绕点O 逆时针旋转90°后的△A 1B 1C1如图所示;(无画图痕迹扣1分) (3)分(2)由旋转可得△OB 1C 1≌△OBC……4分∵OC 2=10,OB 2=2,∴OC,OB ……5分∴BC 扫过的面积=11OCC OBB S S -扇形扇形290360p - …………………………………6分=522p p -=2π.…………………………………7分九年级数学参考答案(第2页共4页)19.解:(1)画树状图如下:………………………2分P (两次都摸到红球)=21126=.…………………………………3分(2)设小聪摸到红球有x 次,摸到黄球有y 次,则摸到蓝球有(6-x -y )次,由题意得:5x +3y +(6-x -y )=22,即2x +y =8,∴y =8-2x ,……………4分∵x ,y ,(6-x -y )均为自然数,6-x -y =6-x -8+2x =x -2≥0,8-2x ≥0,∴2≤x ≤4…………………………………5分当x =2时,y =4,6-x -y =0;…………………………………6分当x =3时,y =2,6-x -y =1;…………………………………7分当x =4时,y =0,6-x -y =2.…………………………………8分小聪共有三种摸法:即摸到红球有2次,黄球有4次,蓝球有0次;红球有3次,黄球有2次,蓝球有1次;红球有4次,黄球有0次,蓝球有2次.……………9分20.解:(1)∵S △AOC =3,设A (a ,b ),∴21ab =3,ab =6,…………………………………1分∴m =ab =6,…………………………………2分m +1=7,…………………………………3分∴y =-x +7,y =6x.即两个函数解析式分别为y =-x +7,y =6x.…………………………………5分(2)联立y =-x +7,y =6x得x 2-7x +6=0.解得:x 1=1,x 2=6.………7分∴A 的坐标是(1,6),B 的坐标是(6,1),直线y =-x +m +1在双曲线y =xm上方时x 的取值范围是1<x <6.……………9分21.解:(1)证明:由旋转的性质得:CD =CF ,∠DCF =90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO =90°,CD =BD =AD ,∴∠DCF =∠ADC ,在△ADO 和△FCO 中,∵AOD FOC ADO FCO AD FCìÐ=ÐïïÐ=Ðíï=ïî,∴△ADO ≌△FCO (AAS ),…………………………………3分∴DO =CO ,∴BD =CD =2DO .[注:证四边形ADFC 是平行四边形也正确]………………………4分九年级数学参考答案(第3页共4页)(2)∵DN ⊥BC ,FM ⊥BC ,∴∠DNE =∠EMF =90°,又∵∠NDE =∠MEF =90°-∠FEM ,ED =EF ,∴△DNE ≌△EMF (AAS ),∴DN =EM =12AC =12×16=8,∴NE =MF ,…………………………………6分又∵CE =2,∴BM =BC -ME -EC =16-8-2=6,…………………………………7分∵∠ABC =45°,∴BN =DN =8,∴NE =14-8=6,∴MF =MB =6,∴BF…………………………………8分∵点D 、G 分别是AB 、AF 的中点,∴DG =12BF…………………………………9分22.解:(1)∵一元二次方程x 2+3x +k -3=0有两个实数根,∴△=32-4(k -3)≥0,…………………………………1分∴9-4k +12≥0,-4k ≥-21,…………………………………3分∴k ≤214…………………………………4分(2)∵x 1,x 2是一元二次方程x 2+3x +k -3=0的两个实数根,∴x 12+3x 1+k -3=0,x 12+2x 1=3-k -x 1,…………………………………5分∵x 1+x 2=-3,x 1x 2=k -3,…………………………………6分且x 12+2x 1+x 2+k =4,∴3-k -x 1+x 2+k =4,x 2-x 1=1,………………………7分(x 2-x 1)2=1,(x 2+x 1)2-4x 1x 2=1,(-3)2-4(k -3)=1,∴9-4k +12=1,∴k =5.…………………………………9分23.解:(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC =90°,即∠ODB +∠BDC =90°,……………1分∵AB 为⊙O 的直径,∴∠ADB =90°,即∠ODB +∠ADO =90°,∴∠BDC =∠ADO ,……2分∵OA =OD ,∴∠ADO =∠A ,……………3分∴∠BDC =∠A .……………4分(2)①∵CE ⊥AE ,∴∠E =∠ADB =90°,∴DB ∥EC ,∴∠DCE =∠BDC ,……………5分∵∠BDC =∠A ,∴∠A =∠DCE ,在Rt △CDE 中,∠DCE =30°,DE =2,∴CD =2DE =4∴∠A =∠DCE =30°,∴AD =CD =4.…………………………………6分设AB =2R ,则BD =R ,∴(2R )2-R 2=42,R=AB =2R.……………7分②由①得∠BOD =2∠A =60°,R…………………………………8分则的长为=9.…………………………………10分九年级数学参考答案(第4页共4页)24.解:(1)抛物线的解析式为:y=-x2+4x+5;…………………………………3分(2)①∵点P的横坐标为m,∴点P的纵坐标为-m2+4m+5,则点E的纵坐标为m+1,………………………4分即P(m,-m2+4m+5),E(m,m+1),由题意,分以下两种情况:(ⅰ)当点P在点E的上方,即-1<m<4时,则PE=-m2+4m+5-(m+1)=-m2+3m+4,ED=m+1,∴-m2+3m+4=2(m+1),解得m=2或m=-1(不符题意,舍去),…………………………………5分则-m2+4m+5=-22+4×2+5=9,此时点P的坐标为P(2,9);……………6分(ⅱ)当点P在点E的下方,即m<-1或m>4时,则PE=m+1-(-m2+4m+5)=m2-3m-4,ED=|m+1|,∴m2-3m-4=2|m+1|,解得m=6或m=-1(不符题意,舍去),…………………………………7分则-m2+4m+5=-62+4×6+5=-7,此时点P的坐标为P(6,-7),∴当PE=2ED时,点P的坐标为P(2,9)或P(6,-7);…………………………………8分②∵B(5,0),C(4,5),E(m,m+1),如图,过C点作CH⊥x轴于点H,过C点作CG⊥PE于点G,∴BC2=26,BE2=(m-5)2+(m+1)2,CE2=2(m-4)2,…9分由等腰三角形的定义,分以下三种情况:(ⅰ)若BC=CE时,△BEC为等腰三角形,则BC2=CE2,即2(m-4)2=26,解得m=4或m=4;………………10分(ⅱ)当BC=BE时,△BEC为等腰三角形,则BC2=BE2,即(m-5)2+(m+1)2=26,解得m=0或m=4(此时点P与点C重合,不符题意,舍去);………………11分(ⅲ)当BE=CE时,△BEC为等腰三角形,则BE2=CE2,即(m-5)2+(m+1)2=2(m-4)2,解得m=34;…………………………………12分综上,m的值为4或4或0或34.…………………………………13分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
浙教版数学九年级下学期期末复习试卷(含解析)
九年级(下)期末数学复习试卷一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣15.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.56.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.37.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<28.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.39.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.210.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为.16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为.17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=,y=.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为.19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=时,△AOP为等腰三角形.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.2020 -2021学年浙江省嘉兴市海盐县九年级(下)期末数学复习试卷参考答案与试题解析一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°【解答】解:∵AF∥DE,∴∠ABE=∠F AB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∵BD∥CG,∴∠BCG=47°,∴从C地测B地的方位角是南偏东47°.故选:A.2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°【解答】解:由方向角的意义可知,∠AON=30°,∵∠AOB=90°,∴∠NOB=∠AOB﹣∠AON=90°﹣30°=60°,∴OB的方向角为北偏西60°,故选:B.3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方【解答】解:根据方位角的概念,射线OA表示的方向是北偏东50°方向.又∵AO=3km,∴点A在O点北偏东50°方向,距O点3km的地方,故选:D.4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣1【解答】解:∵不等式组有解,∴a>﹣1,∵0>﹣1,1>﹣1,﹣>﹣1,﹣1=﹣1,a的值不可能是﹣1.故选:D.5.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.5【解答】解:∵x+4≥2,∴x≥﹣2.∴﹣2、0、3.5是不等式的解,﹣3不是不等式的解.故选:A.6.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.3【解答】解:∵不等式x>2的解集是所有大于2的数,∴3是不等式的解.故选:D.7.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<2【解答】解:∵不等式组的整数解有三个,∴1≤a<2,故选:D.8.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.3【解答】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选:D.9.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.2【解答】解:∵EF垂直平分AB,∴A、B关于EF对称,设AC交EF于点D,∴当P和D重合时,BP+CP的值最小,最小值等于AC的长,∴BP+CP的最小值=6.故选:B.10.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是【解答】解:∵AB2=(2+1)2+(4+3)2=58,BC2=(﹣1+3)2+(﹣3+2)2=5,AC2=(2+3)2+(4+2)2=61,而58+5>61,∴AB2+BC2>AC2,∴△ABC的形状不是等腰三角形、也不是直角三角形.故选:D.11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.【解答】解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,方法2:由已知可得,AC==,∵AB=BC=5,∴∠C=∠A,∴cos∠ACB=cos∠A==,故选:B.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.【解答】解:在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=3,∴AE=2,∵AD2=DE2+AE2,∴DE2+22=(4﹣DE)2,∴DE=,∴BD===.故选:D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C.14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、等角的补角相等,是真命题;D、垂线段最短,是真命题;故选:B.二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为(0,).【解答】解:设直线AB的解析式为y=kx+b,∵A(﹣2,0),B(0,4),∴,解得:,∴直线AB的解析式为y=2x+4,∵OD为第一象限的角平分线,∴直线OD的解析式为y=x,∵CD∥AB,C(0,﹣1),∴直线CD的解析式为y=2x﹣1,由题意,,解得:,∴D(1,1),设直线AD的解析式为y=k′x+b′,∵A(﹣2,0),D(1,1),∴,解得:,∴直线AD的解析式为y=x+,当x﹣0时,y=,∴点E的坐标为(0,),故答案为:(0,).16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为(﹣1,2).【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当A点在B点左边时,A(﹣1,2),当A点在B点右边时,A(7,2);∵点A在第二象限,∴A(﹣1,2),故答案为:(﹣1,2).17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=9或﹣1,y=﹣3.【解答】解:若AB∥x轴,则A,B的纵坐标相同,因而y=﹣3;线段AB的长为5,即|x﹣4|=5,解得x=9或﹣1.故答案填:9或﹣1,﹣3.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为(4,2).【解答】解:如图,当BC⊥AC,垂足为C时,BC的长最小,∵AC∥x轴,点A(﹣3,2),∴C点的纵坐标为2,∵BC⊥AC,即BC∥y轴,而B(4,5),∴C点的横坐标为4,∴C(4,2).故答案为(4,2).19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=75°,120°,30°时,△AOP为等腰三角形.【解答】解:分三种情况:①OA=OP时,则∠A=∠OP A=(180°﹣∠O)=(180°﹣30°)=75°;②AO=AP时,则∠APO=∠O=30°,∴∠A=180°﹣∠O﹣∠APO=120°;③PO=P A时,则∠A=∠O=30°;综上所述,当∠A为75°或120°或30°时,△AOP为等腰三角形,故答案为:75°或120°或30°.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.【解答】解:(1)设y=kx+b(k≠0),则,解得,∴y=0.75x+3;(2)当点P在x轴上时,设点P(x,0),则△ABP的面积=×BP×OA=×|m+4|×3=12,解得m=4或﹣12;故点P的坐标为(4,0)或(﹣12,0);当点P在y轴上时,同理可得,点P的坐标为(0,9)或(0,﹣3),故点P的坐标为(4,0)或(﹣12,0)或(0,9)或(0,﹣3);(3)假设存在点C(x,±1.5)到x轴的距离为1.5,则点C(x,±1.5)满足方程y=0.75x+3,①当C(x,1.5)时,1.5=0.75x+3,解得x=﹣2,∴点C(﹣2,1.5)存在;②当C(x,﹣1.5)时,﹣1.5=0.75x+3,解得x=﹣6,所以C(﹣6,﹣1.5)存在.∴存在点C(x,±1.5)到x轴的距离为1.5,其坐标是(﹣2,1.5)或(﹣6,﹣1.5).21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动或8秒时,四边形PMNQ是正方形(直接写出结论).【解答】解:(1)由点A、B的坐标知,OA=8=BC,故点C(2,6),设直线AC的表达式为:y=kx+b,则,解得,故直线CA的表达式为:y=﹣x+8;(2)设点M(x,0),则P(x,3x),则点N(8﹣3x,0),则点Q(8﹣3x,3x),则PQ=|8﹣3x﹣x|=|8﹣4x|,而MN=|8﹣3x﹣x|=|8﹣4x|=PQ,而PQ∥MN,故四边形PMNQ为平行四边形,∵∠PMN=90°,∴四边形PMNQ是矩形.(3)四边形PMNQ是正方形,则MN=QN,即8﹣4x=|3x|,解得:x=或8,故答案为或8.22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.【解答】解:(1)观察表格可知,y是x的一次函数,设y=kx+b,则有,解得,∴y=﹣x+75,当x=150时,y=0,答:y关于x的函数解析式为y=﹣x+75,当x=150时y的值为0;(2)由题意,解得,所以单层部分的长度为90cm;(3)由题意得l=x+y=x﹣x+75=x+75,因为0≤x≤150,所以75≤x+75≤150,即75≤l≤150.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.【解答】解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x≤6时,y=1.1x,当x>6时,y=1.1×6+(x﹣6)×1.6=1.6x﹣3,即y与x之间的函数表达式是y=;(2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m3,将y=5.5代入y=1.1x,解得x=5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m3,将y=9.8代入y=1.6x﹣3,解得x=8;答:这两户家庭这个月的用水量分别是5m3,8m3.25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.【解答】解:(1)由图象可得,小王和小李两人的速度之和为:10÷(1﹣0.75)=40(千米/小时),则甲乙两地的距离为:40×1=40(千米),即甲乙两地之间的距离为40千米;(2)由题意可得,小李的速度为:(40﹣4)÷2=18(千米/小时),则小王的速度为40﹣18=22(千米/小时),则t=40÷22=,即t的值为;(3)点D的横坐标为:40÷18=,纵坐标为:40﹣22×(﹣)=,∴点D的坐标为(,),则点D坐标的实际意义是当小李行驶的时间为小时时,此时小李到达甲地,小李和小王之间的距离为千米.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发1小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?【解答】解:(1)设直线AB的函数表达式为:y=k1x+b1,将A(2,100),B(6,240)代入得解得∴线段AB所在直线的函数表达式为y=35x+30;(2)①乙车行驶的时间为240÷[(240﹣80)÷(4﹣2)]=3(小时),4﹣3=1(小时),∴乙车比甲车晚出发1小时,故答案为:1;②设直线CD的函数表达式为:y=k2x+b2,将(2,80),D(4,240)代入得解得,∴直线CD的函数表达式为y=80x﹣80;联立解得.∵(h),∴乙车出发h后追上甲车;(3)乙车追上甲车之前,35x+30﹣(80x﹣80)=10,,∴,乙车追上甲车之后,即(80x﹣80)﹣(35x+30)=10.解得.∴(h),当乙到达终点之后,即35x+30=240﹣10,解得,﹣1=(h);∴乙车出发或h或h后,甲、乙两车相距10km.27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.【解答】解:设供给站距离甲平台x米,(1)当40<x≤100时,20x+60(100﹣x)=70(x﹣40),解得x=80.答:按方案一建站,供给站应建在距离甲平台80米处;(2)设所有工人的距离之和为y米,①当供给站建在甲乙平台之间,即0≤x≤40时y=20x+70(40﹣x)+60(100﹣x)=﹣110x+8800,∴当x=40时,y取得最小值4400;②当供给站建在乙丙平台之间,即40<x≤100时y=20x+70(x﹣40)+60(100﹣x)=30x+3200,∵y随x增大而增大,并且当x=40时,y=4400,∴本阶段y的值均大于4400;答:按方案二建站,供给站应建在距离甲平台40米处;(3)供给站将离甲平台越来越远,理由如下:①当0≤x≤40时,(20+a)x+60(100﹣x)=70(40﹣x),解得:(不在三个平台之间,不合题意,舍去),②当40<x≤100时,(20+a)x+60(100﹣x)=70(x﹣40),解得,∴x随着a的增大而增大,答:随着a的增大供给站将离甲平台越来越远.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.【解答】(1)证明:当运动时间为t(s)时,∵AP=2×t=2t,CQ=2×t=2t,∴AP=CQ,又∵△ABC是等边三角形,∴AC=CB,∠CAP=∠BCQ=60°,在△ACP与△CBQ中,,∴△ACP≌△CBQ(SAS);(2)证明:∵△DCP和△ABC都是等边三角形,∴DC=CP,CA=CB,∠DCP=∠ACB,∴∠DCA=∠BCP,∴△DCA≌△PCB(SAS),∴BP=AD,∠CAD=∠CBP=60°,∵AQ=BP,∴AQ=AD,∴△ADQ是等边三角形,同理可得:△ACD≌△ABQ(SAS);(3)解:由(2)知,△ADQ是等边三角形,∴C△ADQ=3AQ=3(6﹣2t)=18﹣6t;(4)解:如图,当CP最短时,CP⊥AB,此时CP=3,AP=3,∴t=,此时△APQ是等边三角形,∴AP=PQ=AQ,∵△ADQ是等边三角形,∴C四边形ADQP=AD+DQ+PQ+P A=3×4=12,∴当CP的长最短时,t的值是,C四边形ADQP=12.。
山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)
2024年初中学业水平考试——模拟测评(二)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.的相反数是()A.3B.C.D.2.在中国,鼓是精神的象征,舞是力量的表现,先贤孔子曾说过“鼓之舞之”,可见“鼓舞”一则起之早,如图是集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的左视图是()A.B.C.D.3.下列运算结果正确的是()A.B.C.D.4.山西省2024年政府工作报告中指出,山西省煤炭产量在连续两年每年增产1亿多吨的基础上.再增产万吨,达到亿吨数据“8亿吨”用科学记数法表示为()A.吨B.吨C.吨D.吨5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.小明在探究二次函数的性质时,先用配方法将表达式化为顶点式,得到函数图象的顶点坐标及对称轴,然后在对称轴两侧对称地取值、列表、描点、连线得到函数图象,再借助函数图象研究该函数的增减性、对称性、最值等性质.这种研究方法主要体现的数学思想是()A.数形结合思想B.类比思想C.分类讨论思想D.公理化思想7.如图,、分别表示两块互相平行的平面镜,一束光线照射到平面镜上,反射光线为,光线经平面镜反射后的反射光线为(反射角等于入射角).若,的度数为()A.B.C.D.8.如图,内接于,为的直径,直线与相切于点C,过点O作,交于点E.若,则的度数为()A.B.C.D.9.在物理活动课上,某小组探究电压一定时,电流与电阻之间的函数关系,通过实验得到如下表所示的数据:根据表中数据,下列描述正确的是()A.在一定范围内,随的增大而增大B.与之间的函数关系式为C.当时,D.当时,10.如图,在中,,,,以点C为圆心作半圆,其直径.将沿方向平移5个单位长度,得到,则图中阴影部分的面积为()A.B.C.D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.计算:.12.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等的原料,通常用碳原子的个数命名为甲烷、乙烷、丙烷、…癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……).甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,…,其结构式如图所示,依此规律,十一烷的化学式为.13.李明计划利用周末的时间从“山西博物院”“山西青铜博物馆”“晋商博物院”“山西地质博物馆”四个博物馆中随机地选择两个博物馆参观.他制作了四个博物馆的卡片(除内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好,从中随机抽取一张,不放回.再从中随机抽取一张,则恰好抽到“山西青铜博物馆”和“山西地质博物馆”的概率为.14.如图,在平面直角坐标系中,点在轴正半轴上,点的坐标为.将绕点逆时针旋转.得到(点、的对应点分别为点、),与交于点.当时,,则此时点的坐标为.15.如图,菱形的边长为,对角线、相交于点,为边的中点,连接交于点.若,则的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:;(2)化简:.17.解方程:.18.为推动全民阅读、建设书香社会、增强青少年的爱国情感.某校举办“阅读红色经典,讲好思政故事”主题演讲活动.本次活动共有30名学生进入决赛.七名评委从演讲内容、语言表达、形象风度、综合印象四项对参赛选手评分、去掉一个最高分和一个最低分后取平均分得到每项成绩.再将演讲内容.语言表达、形象风度、综合印象四项成绩按4:3:2:1的比例计算出每人的最终成绩.小蕊,小迪的四项成绩和最终成绩如下表,30名学生最终成绩绘制成的频数直方图(每组包含最小值,不包含最大值)如下图.小蕊、小迪的四项成绩和最终成绩统计表四项成绩/分选手最终成绩/分演讲内容语言表达形象风度综合印象小蕊9796909495小迪888385请根据上述信息,解答下列问题:(1)七名评委给小迪的演讲内容打分分别为87、85、91、94、91、88、93.去掉一个最高分和一个最低分,剩余数据的中位数是________分,众数是________分,平均数是________分.(2)请你计算小迪的最终成绩.(3)学校决定根据最终成绩从高到低设立一等奖、二等奖、三等奖、优秀奖,占比分别为,2、、4.请你判断小蕊和小迪分别获几等奖,并说明理由.19.沁州黄小米是山西省沁县特产,原名糙谷,清朝康熙帝御赐“沁州黄”,以皇家贡米而久负盛名,享有“天下米王”和“国米”的尊号.某商场购进,两种包装的沁州黄小米作为活动奖品发放给顾客.活动开始前、该商场购进种沁州黄小米袋和种沁州黄小米袋,共花费元;活动中因奖品不够.该商场又购进种沁州黄小米袋和种沁州黄小米袋.共花费元.(1)求、两种沁州黄小米的单价.(2)为筹备下次活动,该商场计划再次购进、两种沁州黄小米共袋,若预算不超过元.则该商场最多能购进种沁州黄小米多少袋?20.应县木塔位于山西省朔州市应县佛宫寺院内,建于公元年,是世界上现存最高大、最古老的纯木结构楼阁式建筑.与比萨斜塔、埃菲尔铁塔并称“世界三大奇塔”.某校综合与实践小组的同学借助无人机测量应县木塔的高度.如图、先将无人机垂直上升至距地面的点C处.测得木塔顶端点的俯角为,再将无人机沿水平向木塔方向飞行到达点处,测得木塔底端点的俯角为.已知知点、、、在同一竖直平面内,求应县木塔的高度.(结果精确到;参考数据:,,,)21.阅读下列材料并完成相应的任务.三角形的旁心三角形一个内角的平分域和其他两个内角的外角平分线的交点,称为该三角形的旁心,每个三角形有三个旁心.已知:如图1,在中,的外角与的平分线,相交于点I.作射线.求证:平分.证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.……任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分.(2)图1中各角之间存在特殊的数量关系:①;②;③.请你选择一个结论进行证明.(3)如图3,在中,,点D是的一个旁心,过点D作,交的延长线于点E,且,则的长为________.22.综合与实践问题情境:如图1,在中,,,,、分别为,边的中点,连接.然后将绕点顺时针旋转,旋转角为,连接、,所在的直线与所在的直线交于点.观察发现:(1)在图1中,________.数学思考:(2)如图2,在旋转的过程中.①的值是否会发生变化?请说明理由.②当时,试判断四边形的形状,并说明理由.深入探究:(3)在旋转的过程中,当、、三点共线时,请你直接写出的长.23.综合与探究如图,抛物线与轴交于,,与轴交于点.作直线,是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线的函数表达式.(2)当点P在直线下方时,连接,,.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案与解析1.A2.D3.B4.C5.C6.A7.C8.B9.B10.A11.12.13.14.15.##16.(1);(2)解:(1)原式(2)原式17.或解:,配方,得,即,,即或,解得或.18.(1)91,91,90(2)(3)小蕊获一等奖,小迪获三等奖(1)解:从小到大排列为:85、87、、91、91、93、94,去掉一个最高分和一个最低分,剩余数据为87、、91、91、93中位数为,众数是分,平均数是(分)故答案为:91,91,90.(2)(3)小蕊获一等奖,小迪获三等奖.理由:获一等奖的学生有(名),由频数直方图可知,最终成绩不低于95 分且小于100分的学生有2名,小蕊最终成绩95分在这一组,因此小蕊获一等奖;获一、二等奖的学生共有(名),获三等奖的学生有(名),由频数直方图可知,最终成绩不低于90分的学生获一等奖或二等奖,最终成绩不低于85分且小于90分的学生有9名,均获三等奖.又因为小迪最终成绩为分,所以小迪获三等奖.19.(1)种沁州黄小米的单价为元,种沁州黄小米的单价为元(2)该商场最多能购进B种沁州黄小米5袋(1)解:设种沁州黄小米的单价为元,种沁州黄小米的单价为元.根据题意,得解得答:种沁州黄小米的单价为元,种沁州黄小米的单价为元.(2)解:设该商场购进种沁州黄小米袋,则购进种沁州黄小米袋.根据题意,得.解得.为正整数,的最大值为答:该商场最多能购进B种沁州黄小米5袋.20.应县木塔的高度为解:如图,延长交直线于,则根据题意,得:在中,,.在中,.().答:应县木塔的高度为.21.(1)见解析(2)见解析(3)(1)证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.;在内部,平分(2)解:选择结论①、证明如下:平分、平分,,选择结论②、证明如下:平分,平分选择结论③、证明如下:平分、平分、(3)如图所示,连接,过点作,垂足分别为,∴,又,则∵∴四边形是矩形,∵在中,,点D是的一个旁心,∴是的角平分线,,,∵,∴是等腰直角三角形,∴,∴矩形是正方形,∴,在中,∴,∴,同理可得,则,设,,∴,在中,,∴,解得:,∴,在中,.22.(1);(2)(2)①的值不会变化,理由见解析;②四边形是矩形,证明见解析(3)AE 的长为或解:(1)∵在中,,,,、分别为,边的中点,∴,∴;故答案为:.(2)①的值不会变化,理由如解图1,设与交于点,图1中,分别为,的中点,由旋转的性质知,的值不会发生变化,②四边形是矩形,理由:由旋转的性质,知,,.由①,得.又、,,四边形是矩形,(3)的长为或分以下两种情况讨论:当在的右侧时,如解图:由①得,设,则图中,,分别为,边的中点,,.,..由②,得在中,,解得:或舍弃解得:当在边的左侧时,如解图,同理综上所述,的长为或23.(1);直线的函数表达式为,(2)(3)存在,点的坐标为(),(),(1)解:把,分别代入得解得抛物线的函数表达式为当时,,则设直线的解析式为,将点代入,得,解得:,直线的函数表达式为,(2)如图过点作轴于点,交于,过点作于点,则四边形为矩形设则,解得(舍弃),(3)存在,点的坐标为()或()或()由题知,抛物线抛物线的对称轴,把代入,的)设)分以下三种情况讨论:当为对角线时,, ,解得)当为对角线时,,,解得)当为对角线时,,,解得综上所述,点的坐标为(),(),.。
江西省金溪县第二中学2024届九年级下学期月考数学试卷(答案不全)
数学测试卷本试卷满分120分 考试时间120分钟一、精心选一选(本大题共6小题,每小题3分,共18分)1. 下面是我国各大城市轨道交通的logo ,其中既是中心对称,又是轴对称的是( )A. 温州轨道交通B. 夏门轨道交通C. 南宁轨道交通D. 台北捷运交通2. 2023年中国国内生产总值超过126.06万亿元,比上年增加了近5.6万亿元.把126.06万亿用科学记数法表示为( )A.B.C.D.3. 如图图案的左视图是( )A. B.C. D.4. 下列计算正确的是( )AB.C.D.5. “七巧板”是古代中国劳动人民的发明,被誉为“东方魔板”.图1是由该图形组成的边长为4的正方形,图2是用该七巧板拼成的“和平鸽”图形,则“和平鸽”头部的面积(阴影部分)为( )A. 1B. 2C. 6D. 86. 如图,在等边中,,以为边作正方形,连接交于点F,则的面积为()A B. C. D.二、填空题(本大题共3小题,每小题6分,共18分)7. 计算:a(2a-b)=_____.8. 一个正多边形的内角和为,则这个正多边形的每个内角为________度.9. 已知一元二次方程有一个根为2,则另一根为______.10. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图1,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到的野果数量,由图1可知,她一共采集到的野果数量为个.请你参照图1中的方法计算图2中她采集到的野果总数量为______.11. 如图,直线与两坐标轴分别交于A,B两点,O点与点C关于直线的对称,若反比例函数的图象过C点,则______.12. 已知一个两位数,个位上的数字和十位上的数字和为8,将其个位上的数字与十位上的数字对调后组成一个新的两位数.若原两位数与18的和不大于新两位数,则满足条件的两位数可能是______.三、(本大题共5小题,每小题6分,共30分)13. (1)计算:;(2)如图,菱形和正方形,点在上,点在上,求证:.14. 先化简,再求值:,其中.15. 某校组织八、九年级学生参加学习“学习强国”知识竞赛,并随机抽取八年级和九年级各10名同学的比赛成绩进行整理和分析,数据如下.【收集数据】八年级10名同学的比赛成绩统计如下.68 73 75 75 77 78 83 86 92 93九年级10名同学的比赛成绩统计如下.72 74 75 76 80 80 82 84 85 92【整理数据】将两组数据按如下分数段整理,如表所示.成绩人数年级八年级152九年级0451【分析数据】两组数据的平均数、中位数、众数、方差如表所示.年级统计量平均数中位数众数方差八年级807561.4九年级808033问题解决】根据以上信息,解答下列问题.(1)填空:__________,__________,__________.(2)在计算这两组数据的方差时用的公式是,其中在计算八年级这组数据的方差时,公式中的__________.(3)八年级小杨同学和九年级小强同学的成绩都为80分,则哪位同学的成绩在本年级排名中更靠前?请说明理由.16. 如图,在中,是等边三角形,点M 是边上的中点,请仅用无刻度的直尺按下列要求画图.(1)在图1中,过M 点画的平行线;(2)在图2中,以B ,M 为顶点画菱形.17. 江西是一个旅游资丰富的地方,其中有:A 、龙虎山是中国道教发祥地,是世界地质公园;B 、三清山是道教名山,世界自然遗产地、世界地质公园;C 、庐山素有“匡庐奇秀甲天下”的美誉;D 、望仙谷是一个以山水田园风光和历史文化为特色的旅游景区.(1)小明家和小亮家都打算在今年五一假期期间出去旅游,两个家庭都想从上面四个景区中选一个旅游地游玩,请用树状图或列表的方法求出两家选到同一个景点的概率;(2)若小明家和小亮家都选到同一个景点庐山游玩,两家离景点的路程都是240千米,小明家从家里先出发半小时后,小亮家也从家里出发,已知小明家的车速是小亮家的车速的,结果小亮家比小明提前18分钟到达庐山景点.求小明家和小亮家的车速分别为多少?四、(本大题共3小题,每小题8分,共24分)18. 如图,直径弦CD于点E,.(1)求证:;(2)若直径,,求证:是的切线.19. 学习概念:由9个数字组成的一个三行三列的矩阵,其每一行、每一列和两条对角线的数字的和都相等,这就是三级幻方,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数.探究规律:(1)图1是1~9组成的一个三级幻方,小洁根据图2推出下列四个关系式,①;②;③;④;请你用图1中的数验证上述四个式子,其中正确的有______;应用规律根据上面的规律,用方程组思想解答下面的问题:(2)如图3,若,求、的值,并把空格中的数填补出来.定投影仪的吊杆,,且,.(以下结果精确到)(1)如图1,求投到白板上的影子高和白板下沿离地面的高度.(2)如图2,由于螺丝松动,吊杆顶点P向下偏移,,若、大小无变化,求投影仪投到墙上的影子有多长?(参考数据:,,,)五、(本大题共2小题,每小题9分,共18分)21. 定义:在平面直角坐标系中,当点在一个函数图象上,且点的横坐标和纵坐标相等时,则称点为函数图象的“等坐标点”.(1)点在直线上,则点______一次函数图象上的“等坐标点”(填“是”或“不是”);的坐标是______,求的值和直线的表达式;(3)已知点,是抛物线上的两个“等坐标点”,点在点的左侧,点是抛物线的顶点,连接,,且交轴于点.求的值和的度数.22. 如图,在中,,,,为的中点;与过点的直线交于,直线和的延长线交于点,,.完成下面的填空:过作交直线于点.(1)是______三角形;(2)______,______,则关于的表达式______().完成下面的解答过程:(3)列表:根据()中所求函数关系式计算并补全表格…………描点:根据表中数值,继续描出①中剩余的三个点;连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象;(4)若直线绕点旋转与直线相交于点,当取什么值时,和相似?六、(本大题共12分)23. 定义:在等腰三角形的外部,以一条腰为斜边作直角三角形,那么等腰三角形和直角三角形组成一个四边形,我们就称这个四边形是“等对邻直角四边形”.概念理解如图,在四边形中,若,,则四边形______“等对邻直角四边形”;A.是B.不是问题探究(1)如图,在“等对邻直角四边形”中,,,是的中点,是的中点.则与的数量关系是______;(2)如图,在()的条件下,平分,,问四边形为何种特殊四边形,并说明理由;拓展探究:(3)在中,,是的中点,是的中点.,,以为直角边作等腰直角,且,求以为顶点的四边形的面积.数学测试卷本试卷满分120分考试时间120分钟一、精心选一选(本大题共6小题,每小题3分,共18分)【1题答案】B【2题答案】C【3题答案】D【4题答案】D【5题答案】A【6题答案】C二、填空题(本大题共3小题,每小题6分,共18分)【7题答案】2a2-ab.【8题答案】120【9题答案】【10题答案】269【11题答案】【12题答案】三、(本大题共5小题,每小题6分,共30分)【13题答案】();()证明见解析.【14题答案】,(答案不唯一)【15题答案】(1)2;77.5;80(2)10 (3)八年级小杨同学,理由见解析【17题答案】(1)(2)小亮家的车速为千米/小时,则小明家的车速为千米/小时.四、(本大题共3小题,每小题8分,共24分)【19题答案】(1)①②③;(2),.表见解析【20题答案】(1)(2)投影仪投到墙上影子有.五、(本大题共2小题,每小题9分,共18分)【21题答案】(1)是;(2),,直线的表达式为;(3),.【22题答案】()直角;(),,;(),,;画图见解析;()当取或时,和相似.六、(本大题共12分)【23题答案】(1);(2)四边形为菱形,理由见解析;(3)或.。
2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)
2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)本试卷共8页.总分120分,考试时间120分钟. 注意事项:1.仔细审题,工整作答,保持卷面整洁. 2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点(,3)a -关于原点的对称点是(2,3),则a 的值为( ) A .2-B .2C .3-D .32.抛物线223y x x =-+-与y 轴的交点坐标为( ) A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-3.图1是某几何体的三视图,该几何体是( )A .长方体B .正方体C .球D .圆柱4.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则sin A 的值为( ) A .35B .45C .34D .435.如图2,在ABC △中,DE BC ∥,且23AD AB =.若6DE =,则BC 的长为( )A .8B .9C .12D .156.在如图3所示的44⨯正方形方格中,选取一个白色的小正方形涂灰,使图中阴影部分成为一个中心对称图形,这样的涂法有( )A .0种B .1种C .2种D .3种7.小明解方程2280x x --=的过程如图4所示,开始出现错误..的是( )A .第一步B .第二步C .第三步D .第四步8.不透明布袋中有3个白球,若干个黄球,这些球除颜色外无其他差别.从袋子中随机取出1个球,如果取到白球的概率最大,那么布袋中的黄球可能..有( ) A .2个B .3个C .4个D .4个以上9.已知点11(,)A x y ,22(,)B x y 在反比例函数2k y x+=的图象上,且当120x x <<时,12y y <,则k 的取值范围是( ) A .2k >-B .2k ≥-C .2k <-D .2k ≤-10.已知在矩形ABCD 中,3AB =,6BC =,若以AD 为直径作圆,则与这个圆相切的矩形ABCD 的边共有( ) A .0条B .1条C .2条D .3条11.从地面竖直向上抛出一小球,小球的高度h (米)与运动时间t (秒)之间的解析式是2530(06)h t t t =-+≤≤,则小球到达最高高度时,运动的时间是( )A .1秒B .2秒C .3秒D .4秒12.下列说法正确的是( ) A .阳光下林荫道上的树影是中心投影B .相似图形一定是位似图形C .关于x 的方程220x kx --=有实数根D .三点确定一个圆属于必然事件13.如图5,矩形ABCD 在平面直角坐标系中,点A ,D 分别在反比例函数k y x =和3y x=-的图象上,点B ,C 在x 轴上,若4ABCD S =矩形,则k 的值为( )A .12B .7C .12-D .7-14.如图6,四边形ABCD 内接于O ,135ABC =∠︒,4AC =,则O 的半径为( )A .4B .22C .23D .4215.如图7,在ABC △中,8AB AC ==,6BC =,点P 从点B 出发以每秒1个单位长度的速度向点A 运动,同时点Q 从点C 出发以每秒2个单位长度的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与ABC △相似时,运动时间为( )A .2411秒 B .95秒 C .2411秒或95秒 D .以上均不对16.已知抛物线2()1y x a a =--+-(a 为常数),则下列判断正确的是( ) ①当12x -<<时,y 随x 的增大而增大,则a 的取值范围为2a ≥; ②无论a 为何值,该抛物线的顶点始终在一条直线上 A .两个都对B .两个都错C .只有①对D .只有②对二、填空题.(本大题有3个小题,每小题有2个空,每空2分,共12分.把答案写在题中横线上) 17.如图8,已知AB 是O 的直径,AB CD ⊥于点E ,120COD =∠︒.(1)BAD ∠的度数为_____________.(2)若23CD =AB 的长为_____________. 18.已知一个矩形的周长为56cm .(1)当该矩形的面积为2180cm 时,求矩形的长.设矩形的长为cm x ,则根据题意可列方程为__________________________;(2)该矩形的面积_____________.(填“能”或“不能”)为2200cm .19.如图9,已知在ABC △中,5AB AC ==,8BC =,点P 在边BC 上(点P 与点B ,C 不重合),APF B ∠=∠,射线PF 与边AC 交于点F ,过点A 作BC 的平行线,交射线PF 于点Q .(1)若2BP =,则CF 的长为_____________;(2)当AFQ △是等腰三角形时,BP 的长为_____________.三、解答题.(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(每小题4分,共计8分) 按要求完成下列各小题.(1)解方程:2(23)5(23)x x -=-;(2)计算:22sin 30cos 30︒+︒.21.(本小题满分9分)如图10,为测量一座山峰CD 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长800AB =米,200BC =米,坡面AB 的坡度为1:3坡面BC 的坡度为1:1.过点B 作BE CD ⊥于点E .(1)求点B 到AD 的高度;(2)求山峰的高度CD .2 1.41≈3 1.73≈)22.(本小题满分9分)小明和小亮相约乘坐地铁到“市图书馆”站集合,此站有A ,B ,C ,D 四个出站口,选择每个出站口出站的机会是相同的.(1)小明到“市图书馆”站下车恰好从D 口出站的概率是____________;(2)请用列表法或画树状图法求小明和小亮到“市图书馆”站下车都从D 口出站的概率.23.(本小题满分9分)如图11,已知点(,2)A a ,(1,)B b -是直线26y x =-与反比例函数my x=图象的交点,且该直线与y 轴交于点C .(1)求该反比例函数的解析式;(2)连接OA ,OB ,求AOB △的面积; (3)根据图象,直接..写出不等式26mx x-≥的解集.如图12,已知BE ,CF 分别是ABC △的边AC ,AB 上的高. (1)求证:AE ABAF AC=; (2)连接EF .若1cos 2A =,试判断AEF S △与ABC S △之间的数量关系,并说明理由.25.(本小题满分10分)如图13-1,已知60ABC ∠=︒,点O 在射线BC 上,且4OB =.以点O 为圆心,(0)r r >为半径作O ,交直线BC 于点D ,E . (1)当O 与ABC ∠只有两个交点时,r 的取值范围是__________________;(2)当22r =BA 绕点B 按顺时针方向旋转(0180)αα︒<<︒. ①当α为多少时,射线BA 与O 相切;②如图13-2,射线BA 与O 交于M ,N 两点,若MN OB =,求阴影部分的面积.一小球M从斜坡OA上的点O处抛出,球的抛出路线是抛物线的一部分,建立如图14所示的平面直角坐标系,斜坡可以用一次函数12y x刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x的取值范围);(2)小球在斜坡上的落点A的垂直高度为___________米;(3)若要在斜坡OA上的点B处竖直立一个高4米的广告牌,点B的横坐标为2,请判断小球M能否飞过这个广告牌?通过计算说明理由;(4)求小球M在飞行的过程中离斜坡OA的最大高度.参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分. 2.若答案不正确,但解题过程正确,可酌情给分. 一、(1-10题每题3分,11-16题每题2分,共计42分) 题号 1 2 3 4 5678910111213141516答案ABDABBDACDCCDBCA二、(每小题有2个空,每空2分,共计12分) 17.(1)30︒;(2)418.(1)1568202x x -⎛⎫⎪⎝=⎭(或(28)180x x -=);(2)不能 19.(1)125;(2)5或25819.(2)【精思博考:①当AF FQ =时,易证四边形ABPQ 是平行四边形,APQ ABC ∽△△,5PQ AB ∴==,AQ BP =,AQ PQ AC BC =,258BP ∴=; ②当AQ AF =时,易证BAP CPF ∽△△,AB BPCP CF∴=,5AB BP ∴==; ③当AQ QF =时,QAF QFA ∠=∠.QFA PFC ∠=∠,QAF C ∠=∠,PFC C ∴∠=∠.C B APQ ∠=∠=∠,APQ PFC ∴∠=∠,AP AC ∴∥,与已知矛盾,舍去】三、20.解:(1)方程的解为132x =,24x =;(4分)(2)原式1=.(4分)21.解:(1)过点B 作BF AD ⊥于点F . 设BF x =米.坡面AB 的坡度为1:3,30A ∴∠=︒,14002BF AB ∴==(米),即点B 到AD 的高度BF 为400米;(5分) (2)易得四边形BFDE 为矩形,ED BF ∴=.坡面BC 的坡度为1∶1,222BE CE BC ∴===(米),1002400541CD CE ED ∴=+=≈(米),即山峰的高度CD 为541米.(4分) 22.解:(1)14;(3分) (2)树状图如图,共有16种等可能的结果,小明和小亮到“市图书馆”站下车都从D 口出站的结果有1种,∴小明和小亮到“市图书馆”站下车都从D 口出站的概率为116.(6分)23.解:(1)点(,2)A a 在直线26y x =-上,226a ∴=-,解得4a =.点(4,2)A 在反比例函数m y x =的图象上,24m ∴=,解得8m =,即反比例函数的解析式为8y x=;(4分) (2)直线26y x =-与y 轴交于点C ,当0x =时,6y =-,∴点C 的坐标为(0,6)-,6OC ∴=.1161641522AOB OBC AOC S S S =+=⨯⨯+⨯⨯=△△△;(3分) (3)不等式26mx x-≥的解集为10x -≤<或4x ≥.(2分) 24.解:(1)证明:BE ,CF 分别是ABC △的边AC ,AB 上的高,90AEB AFC ∴∠=∠=︒.又BAE CAF ∠=∠,ABE ACF ∴∽△△,AE ABAF AC∴=;(4分) (2)AEF S △与ABC S △之间的数量关系为14AEF ABC S S =△△; 理由:由(1)得AE AB AF AC =,AE AFAB AC∴=.又EAF BAC ∠=∠,AEF ABC ∴∽△△. 1cos 2AF A AC ==,21124AEF ABC S S ∆∆⎛⎫∴== ⎪⎝⎭,AEF S ∴△与ABC S △之间的数量关系为14AEF ABC S S =△△.(5分) 25.解:(1)023r <<4r >;(2分) (2)①如图1,当射线BA 在射线BC 的上方与O 相切时,设切点为P ,连接OP .4OB =,22OP =2sin 2OP B OB ∴==,45B ∴∠=︒,604515α∴=︒-︒=︒. 如图2,当射线BA 在射线BC 的下方与O 相切时,设切点为P ,连接OP .同理可得6045105α=︒+︒=︒. 综上所述,当α为15︒或105︒时,射线BA 与O 相切;(4分)②如图3,连接OM ,ON ,过点O 作OQ MN ⊥于点Q ,122MQ NQ MN ∴===. 22OM =2sin 2MQ MOQ OM ∴∠==,45MOQ ∴∠=︒,290MON MOQ ∴∠=∠=︒, 2290(22)1(22)243602S ππ∴=-⨯=-阴影.(4分)26.解:(1)小球到达最高点的坐标为(4,8),∴设抛物线的解析式为2(4)8y a x =-+,把(0,0)代入2(4)8y a x =-+,解得12a =-,∴抛物线的解析式为21(4)82y x =--+(或2142y x x =-+);(3分) (2)72;(2分) (3)能;理由:当2x =时,112y x ==,21(4)862y x =--+=.614->, ∴小球M 能飞过这个广告牌;(3分)(4)小球M 在飞行的过程中离斜坡OA 的高度22111749(4)822228h x x x ⎛⎫=--+-=--+ ⎪⎝⎭,∴小球M 在飞行的过程中离斜坡OA 的最大高度为498.(4分)。
人教新课标九年级下数学期末试卷及答案
人教版九年级下册数学期末测试卷第I卷(选择题44分)一. 选择题:本题共11个小题,每小题4分,共44分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1. 若a<0,则点A(-a,2)在A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. x的取值范围是D.3.4. 如图,在⊙O OC//ABA. 25°B. 50°C. 75°D. 15°5. x轴的交点坐标是A. (-3,2)B. (-6,0)C. (0,6)D. (-3,0)6. 如图,等边三角形ABC内接于⊙O,则⊙O的半径为A. 6cmB. 4cmC. 2cm7. y随x的增大而减小,则该函数图象一定不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 如图,半圆O的直径BC=7,延长CB到A,割线AED交半圆于点E、D,且AE=ED=3,则AB的长为B. 2 D. 99. 如图,A B面积是3,则k的值为A. 6B. 3C. -3D. -610. 下列说法(1)相等的弦所对的弧相等(2)圆中两条平行弦所夹的弧相等(3)等弧所对的圆心角相等(4)相等的圆心角所对的弧相等中,正确的是()A. (1),(2)B. (1),(3)C. (2),(3)D. (3),(4)11. 如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是A B C D第II卷(填空题20分,解答题56分)二. 填空题:本大题共5小题,每小题4分,共20分。
把答案填在题中的横线上。
12. __________;13. 已知如图,PA、PB分别切⊙O于点A、B AP=5,则AB长为___________。
14. 一弦长等于圆的半径,则此弦所对的圆周角为__________;15. 在直角坐标系中,如果⊙O1与⊙O2的半径分别为4和6,点O1、O2的坐标分别为(0,6)、(8,0),则这两个圆的公切线有_________条;16. O,AB是⊙O的直径,延长AB到D,连结CD。
2023年人教版九年级数学(下册)期末试卷及答案(下载)
2023年人教版九年级数学(下册)期末试卷及答案(下载)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列计算正确的是( )A .a 2+a 3=a 5B .1=C .(x 2)3=x 5D .m 5÷m 3=m 22.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元4.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,四边形ABCD 内接于⊙O ,F 是CD 上一点,且DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:22﹣|1﹣8|+(﹣12)﹣3=_____. 2.分解因式:x 2﹣9x =________.3.若正多边形的每一个内角为135,则这个正多边形的边数是__________.4.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、B6、D7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-72、x(x-9)3、八(或8)4、70°5、1 46、2三、解答题(本大题共6小题,共72分)1、3x=-2、13、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、(1)略;(2)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.。
新】人教版九年级数学下册期末试卷及答案
新】人教版九年级数学下册期末试卷及答案九年级数学下册期末测试卷(B卷)测试时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.已知 $\frac{b^5-a^b}{a^{13}+b}$ 的值是$\frac{2394}{3249}$,则 $\frac{a^2}{b^2}$ 的值是()A。
$\frac{2394}{3249}$ B。
$\frac{3249}{2394}$ C。
$\frac{13}{5}$ D。
$\frac{5}{13}$2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A。
B。
C。
D。
3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且 $S_{\triangle AEF}=2$,则四边形EBCF的面积为()A。
4 B。
6 C。
16 D。
184.在Rt△ABC中,$\angle C=90°$,若 $\sinA=\frac{3}{5}$,则 $\cos B$ 的值是()A。
$\frac{3}{5}$ B。
$\frac{4}{5}$ C。
$\frac{5}{4}$ D。
$\frac{5}{3}$5.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,$\tan\alpha=\frac{3}{2}$,则t的值是()A。
1 B。
1.5 C。
2 D。
36.反比例函数 $y=\frac{k}{x}$ 的定义域是 $x\neq 0$,则当 $x_1<x_2$ 时,有 $\frac{y_1}{y_2}$ ()A。
$1$ D。
不确定7.已知长方形的面积为20cm²,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A。
B。
C。
D。
8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()。
A。
5.3米 B。
4.8米 C。
4.0米 D。
2.7米9.如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且 $\angle AEF=90°$,则下列结论正确的是()。
江苏省扬州市邗江区2024届九年级下学期中考二模数学试卷(含答案)
2024年邗江区数学九年级二模试卷试卷满分:150 分考试时间:120 分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列各数中,是负数的是( ▲ )A.―(―1)B.|―1|C.+(―1)D.(—1)22.下列运算正确的是(▲)A.x3⋅x2=x6B.2xy―xy=2C.(x+1)2=x2+1D. (―x3)2=x63.“彩缕碧筠粽,香粳白玉团”,端午节吃粽子是我国的传统习俗.小明妈妈在超市购买了红豆粽和蜜枣粽共5个(大小和外包装都相同),其中有3个红豆粽,2个蜜枣粽,从中随机拿出3个粽子,下列事件是不可能事件的是( ▲ )A.拿出的3个粽子都是红豆粽B.拿出的3个粽子中有1个是蜜枣粽、2个是红豆粽C.拿出的3个粽子都是蜜枣粽D.拿出的3个粽子中有2个是蜜枣粽、1个是红豆粽4. 如图,该几何体的主视图是( ▲ )A.B.C.D.5. 如图,点A是反比例函数y=k在第一象限图象上的任意一点,点B、C分别在x、y正半x轴上,且AC∥x轴,若△ABC的面积为2,则k的值为( ▲ )A.1B.2C.3D.46.如图,△ABC的顶点A,B在⊙O上,点C在⊙O内(O,C在AB同侧),∠AOB=66∘,则∠C的度数可能是(▲)A. 33°B. 43°C. 24°D. 23°第8题第6题B.第18题第17题7.函数y =x 3的大致图象是( ▲ )8. 如图,在△ABC 中,若∠A ―∠C =90°,AB =1,BC =3,则AC 的值为( ▲ )A .4510B .3510C .532D .545二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.三月的扬州春和景明、草长莺飞,全国各地的游客纷至沓来.据统计,今年清明小长假全市共接待游客314.3万人次,人数3 143 000用科学记数法表示为 ▲ .10.若代数式2x ―4在实数范围内有意义,则x 的取值范围是 ▲ .11.分解因式:a 2―2a b +b 2= ▲ .12.扬州市今年三月份某五天的空气质量指数为:33,27,34,40,26,则这组数据的中位数是▲ .13.已知关于x 的一元二次方程x 2﹣2x ﹣a =0有两个相等的实数根,则a 的值是 ▲ .14.一个正多边形的内角和是外角和的4倍,这个正多边形的每个外角是 ▲ °.15.在平面直角坐标系中,若点A (m ―13,―2m )在第三象限,则实数m 的取值范围是 ▲ .16.随着城市中汽车保有量的增多,交通噪声对人们生活的影响越来越大.用声压级来度量声音的强弱,其中声压级L p 、听觉下限阈值p 0(p 0是大于0常数)、实际声压p 满足如下关系:p =p 0⋅10L p20.下表为不同声的声压级及声压:声与声的距离/m声压级L p /dB实际声压p /pa燃油汽车1080p 1电动汽车1040p 2已知在距离燃油汽车、电动汽车10m 处测得实际声压分别为p 1,p 2则p 1= ▲ p 2.17.如图,点A、B、C、D在网格中小正方形的顶点处,AD与BC相交于点O,则tan∠AOB的值为 ▲ .18.将正奇数按照如图方式排列,我们称“3”是第2行第2个数,“15”是第4行第3个数,若“2023”是第m行第n个数,则m+n的和为 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题8分)计算或化简:(1)|3―8|+4cos45°―1;(2)x+1x ÷x2―12x.20.(本题8分)对于有序实数对(a,b)、(c,d),定义关于“⊕”的一种运算如下:(a,b)⊕(c,d)=a⋅c+b∙d.例如(1,2)⊕(3,4)=1×3+2×4=11.(1)求(2,3)⊕(―4,3)的值;(2)若(4,y)⊕(x,3)=―1,且(x,1)⊕(2,y)=3,求x+y的值.21.(本题8分)为了更好地满足家长和学生的需求,扬州某中学校积极响应国家政策开展了丰富多彩的课后延时服务活动,开设了“法眼看世界,科幻时空,羽你争锋,篮球小将......”等社团课程供学生自由选择.为了了解学生对课后延时服务的满意情况(A.非常满意;B.比较满意;C.基本满意;D.不满意),在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)m= ▲,n= ▲;(2)扇形统计图中“D”所在扇形的圆心角为▲度;(3)若该校有4000名学生,请你估计全校学生对课后延时服务满意度达到A级和B级共有多少人?22.(本题8分)扬州大运河博物馆是古城扬州的一张新名片,其中2号馆“运河上的舟楫”、3号馆“因运而生”、8号馆“河之恋”、10号馆“隋炀帝与大运河”这四个馆最受游客喜爱,周末小明一家准备到这四个馆游玩.(1)若小明一家随机选择其中一个馆游玩,恰好选中10号馆的概率是▲;(2)若小明一家随机选择其中两个不同馆游玩,求恰好选中2号馆和8号馆的概率(用画树状图或列表的方法求解).23.(本题10分)为贯彻落实《省教育厅关于开展“阳光下成长”中小学班集体艺术展示活动的通知》要求,扬州市各校纷纷举办“班班有歌声”的合唱比赛活动.某校分别花费320元购进A,B两款笔袋作为对获奖班级的奖励,购进A款笔袋的数量比B款笔袋多4个,且每个A款笔袋的价格比每个B款笔袋的价格少20%,求每个B款笔袋多少元?24.(本题10分)如图,已知、分别是平行四边形ABCD的边AB、AD上的高,对角线AC、BD相交于点O,且CE=CF.(1)求证:四边形是菱形;,CE=4时,求菱形ABCD的边长.(2)当tan∠CAE=125.(本题10分)如图,CD是⨀O的直径,点A为DC延长线上一点,点B在⨀O上,F点为弧BD 的中点,连接OF ,延长OF 与AB 的延长线交于点E ,∠D =∠E .(1)求证:AB 是⨀O 的切线;(2)若点F 是OE 的中点,⨀O 的半径为3,求阴影部分的面积.26.(本题10分)定义:若直角三角形的两直角边的比值为k ∶1(k 为正整数),这样的直角三角形称为“k 型三角形”.(1)利用尺规在图1中作出以点B 为直角顶点,以AB 为直角边的“1型三角形”;(作出一种情况即可)(2)如图2,已知Rt △ABC 是“2型三角形”,其中AC <BC ,∠C =90°,点D 在斜边AB 上,且BD =BC ,过点D 作DE ⊥AC 于点E ,连接BE ,证明△BCE 是“3型三角形”;(3)如图3,已知Rt △ABC 是“k 型三角形”(k 为正整数),其中AC <BC ,∠C =90°,利用尺规作图在Rt △ABC 中作出一个△BCE ,使得△BCE 是“k +1型三角形”(其中∠C =90°,CE <BC ).27.(本题12分)如图,在平面直角坐标系xOy 中,O 为坐标原点,抛物线y =ax 2+bx +2(其中a ≠0,a 、b 为常数)与x 轴分别交于点A 、B 两点,点A 在点B 的左侧,与y 轴交于点C ,且抛物线经过点F (m ,―3)、G (n ,―3).(1)若点A 的坐标为(―1,0),m +n =3,①b = ▲ ,点B 的坐标为 ▲ ;②点D 是线段BC 上方抛物线上的一动点,连接OD 交BC 于点E ,若OE =2DE ,直接写出点D 的横坐标为 ▲ ;(2)若n =―3m ,求证:3b 2+20a =0.图1图2图328.(本题12分)如图,点E是边长为2的正方形ABCD边AD上一动点,连接BE,将射线BE绕点B顺时针旋转45°交边CD于点F,过点E作EH⊥BF,垂足为点H,连接AH 交BE于G,在点E从点A运动到点D运动过程中.(1)直接写出∠DAH的度数为▲°;(2)连接CH,①DE的比值是否为定值,是定值求出该比值,不是定值请说明理由;CH②当DH∥BE时,直接写出DE的长;(3)在点E运动过程中,△ABG的面积记为S1,△EGH的面积记为S2,求出S1―S2的最大值.九年级数学二模试卷答案一、选择题(每小题3分,共24分)二、填空题(本大题共10小题,每小题3分,共30分)9.3.143×106 10.x ≥211.(a ―b)212. 33 13.-1 14.36° 15.0<m <116. 100 17.318.6719.(本题8分)计算或化简:(1)|3―8|+4cos 45°―1; (2)x +1x ÷x 2―12x=3―22+22―2 .........3分 =x +1x×2x(x ―1)(x +1).........................2分=1..............4分=2x ―1.........................4分20.(本题8分)(1)(2,3)⊕(―4,3)=2×(―4)+3×3=1.........................2分(2)(4,y )⊕(x ,3)=4x +3y =―1.........................4分(x ,1)⊕(2,y )=2x +y =3.........................6分方程组的解为x =5y =―7 .........................7分x +y =―2.........................8分(也可用整体法进行求解)21.(本题8分)(1) m =63,n =44 ..................................4分(2) 18..................................6分(3) (44%+30%)×4000=2960 人 ..................................8分22.(本题8分)(1)14..................................2分题号12345678答案CDCADBBA(2) (6)分A事件:选中2号和8号馆P(A)= 16.................................8分23.(本题10分)解:设每个B款笔袋为x元,A款笔袋为0.8x元.................................2分320 x =3200.8x―4.................................5分x=20.................................8分经检验:x=20是原方程的解................................9分答:每个B款笔袋为20元...............................10分24.(本题10分)(1)∵S▱ABCD =S▱ABCD∴AD∙CF=AB∙CE∵CF=CE∴AD=AB∴▱ABCD是菱形(方法不唯一).................................5分(2)设CB为x由tan∠CAE=13,CE=4可知AE=12在Rt△BCE中,BC2=EC2+BE2x2=(12―x)2+42x=203.................................10分25.(本题10分)(1)理由:F点为弧BD的中点,易证OF⊥BD;又由于∠D=∠E,易证OB⊥AB;即AB为⨀O的切线............................5分(2)理由:点F为OE的中点,易证∠BOF=60o阴影部分面积为:923―32π............................10分2号3号8号10号2号(3号,2号)(8号,2号)(10号,2号)3号(2号,3号)(10号,3号)8号(2号,8号)(3号,8号)(10号,8号)10号(2号,10号)(3号,10号)(8号,10号)图326.(本题10分)(1)(2)证明:∵Rt △”∴BCAC =2设AC =m ,则BC =2m ∵∠C =90°,DE ⊥AC ∴∠C =∠DEA =90°,AB =3m ∴DE ∥BC ∴DB AB =ECAC∵BD =BC =2m ∴EC =63m ∴BC EC=2m63m =3∴Rt △BEC 是“3型三角形” .........................................7分(3)图2.........................................10分27.(本题12分)(1)①b =32,点B 的坐标为(4,0).........................................4分②直接写出点D 的横坐标为2±2.........................................8分(2)根据题意可得方程组9am 2―3bm =―5①am 2+bm =―5 ②,①─②得:m =b 2a ③ ,将③代入① 即可证明 。
2023-2024学年山东省济南市槐荫区九年级上学期数学期末试题及答案
山东省济南市槐荫区九年级上学期数学期末试题及答案本试题分试卷和答题卡两部分.第I 卷满分为40分;第II 卷满分为110分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共40分)注意事项:第I 卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题.每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知四条线段a ,b ,c ,d 是成比例线段,其中3cm 6cm 9cm b c d ===,,,则线段a 的长度为( )A. 8cmB. 2cmC. 4cmD. 1cm 【答案】B【解析】【分析】根据比例线段定义求解,注意线段顺序;【详解】解:由题意,得a cb d =∴632(cm)9c a bd =×=´=.故选:B【点睛】本题考查成比例线段的定义,掌握成比例线段的定义是解题的关键.2. 如图,点B ,C ,D 在O e 上,若30BCD Ð=°,则BOD Ð的度数是( )A. 75°B. 70°C. 65°D. 60°【答案】D【解析】【分析】本题考查了圆周角定理;根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【详解】解:30BCD Ð=°Q ,223060BOD BCD \Ð=Ð=´°=°.故选:D .3.已知ABC DEF ∽△△,且3AB =,6DE =,若ABC V 的周长为20,则DEF V 的周长为( )A. 5B. 10C. 40D. 80【答案】C【解析】【分析】本题考查的是相似三角形的性质.根据相似三角形周长的比等于相似比解答即可.【详解】解:ABC DEF Q △∽△,∴ABC V 的周长:DEF △的周长:3:61:2AB DE ===,ABC Q V 周长为20,DEF \V 的周长为40.故选:C .4.10月8日,杭州亚运会乒乓球比赛全部结束,国乒揽获除女双项目外的6块金牌,展现了在乒乓球领域强大的统治力.乒乓球比赛采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A. ()113802x x -= B. ()1380x x -=C. ()21380x x -= D. 2380x =【答案】B【解析】的【分析】本题考查由实际问题抽象出一元二次方程,关键是设参赛队伍有x 支,根据参加乒乓球比赛的每两队之间都进行两场比赛,共要比赛380场,可列出方程.【详解】解:设参赛队伍有x 支,由题意可得:()1380x x -=,故选B .5.如图,矩形ABCD 为一个正在倒水的水杯的截面图,18AB =cm ,杯中水面与CD 的交点为E ,当水杯底面BC 与水平面的夹角为30°时,杯中水的最大深度为( )cmA. 9B. 15C.D. 【答案】D【解析】【分析】过点B 作BF AE ^于点F ,如图,则BF 的长即为杯中水的最大深度,然后根据含30度角的直角三角形的性质和勾股定理求解即可.【详解】解:过点B 作BF AE ^于点F ,如图,则90AFB Ð=°,∵四边形ABCD 是矩形,∴90ABC Ð=°,∵30CBH Ð=°,∴30ABF CBH Ð=Ð=°,∵18AB =cm ,∴192AF AB ==cm ,∴BF ==cm ,即杯中水的最大深度为cm ;故选:D.【点睛】本题考查了矩形的性质、含30度角的直角三角形的性质和勾股定理等知识,正确理解题意、掌握解答的方法是关键.6.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴,小陶家有一个菱形中国结装饰,测得12BD cm =,16AC cm =,直线EF AB ^交两对边于点E ,F ,则EF 的长为( )A. 8cmB. 10cmC. 48cm 5D. 96cm 5【答案】C【解析】【分析】根据菱形的性质与勾股定理可求出菱形的边长,再根据菱形的面积为对角线乘积的一半,或底乘以高可求出高EF .【详解】∵四边形ABCD 是菱形∴AC BD ^()11168cm 22AO CO AC ===´=()11126cm 22BO DO BD ===´=∴在Rt ABO △中,()10cm AB ===∵12ABCD S AC BD =×菱形或ABCD S AB EF =×菱形∴12AC BD AB EF ×=×,即11612102EF ´´=∴48cm 5EF =故选:C【点睛】本题考查菱形的性质,菱形的面积,熟练运用菱形的面积公式是解题的关键.7.的卡塔尔世界杯受到广泛关注,在半决赛中,梅西的一脚射门将足球沿着抛物线飞向球门,此时,足球距离地面的高度h 与足球被踢出后经过的时间t 之间的关系式为2h t bt =-+.已知足球被踢出9s 时落地,那么足球到达距离地面最大高度时的时间t 为( )A. 3sB. 3.5sC. 4sD. 4.5s【答案】D【解析】【分析】根据题意可得当9t =时,0h =,再代入,可得到该函数解析式为29h t t =-+,然后化为顶点式,即可求解.【详解】解:根据题意得:当9t =时,0h =,∴2099b =-+,解得:9b =,∴该函数解析式为29h t t =-+,∵()229 4.520.25h t t t =-+=--+,∴足球到达距离地面最大高度时的时间t 为4.5s .故选:D【点睛】此题主要考查了二次函数的应用,关键是正确确定函数解析式,掌握函数函数图象经过的点必能满足解析式.8.翻花绳是中国民间流传的儿童游戏,在中国不同的地域,有不同的称法,如线翻花、翻花鼓、挑绷绷、解股等等,如图1是翻花绳的一种图案,可以抽象成如右图,在矩形ABCD 中,,IJ KL EF GH ∥∥,1230Ð=Ð=°,3Ð的度数为( ).A. 30°B. 45°C. 50°D. 60°【答案】D【解析】【分析】由矩形的性质可得90D C Ð=Ð=°,进而可得60HGC IJD Ð=Ð=°;再根据三角形内角和定理可得60GMJ Ð=°;然后再证四边形NUMV 是平行四边形,由平行四边形的性质可得60VNU GMJ Ð=Ð=°,最后由对顶角相等即可解答.【详解】解:如图:∵矩形ABCD 中,∴90D C Ð=Ð=°∵1230Ð=Ð=°,∴60HGC IJD Ð=Ð=°,∴60GMJ Ð=°,∵,IJ KL EF GH ∥∥,∴四边形NUMV 是平行四边形,∴60VNU GMJ Ð=Ð=°,∴360VNU Ð=Ð=°.故选D .【点睛】本题主要考查了矩形的性质、平行四边形的判定与性质等知识点,灵活运用相关判定、性质定理是解答本题的关键.9.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设,计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A ,曲线终点为B ,过点,A B 的两条切线相交于点C ,列车在从A 到B 行驶的过程中转角a 为60°.若圆曲线的半径1.5km OA =,则这段圆曲线»AB 的长为( ).A. km 4pB. km 2pC. 3km 4pD.3km 8p 【答案】B【解析】【分析】由转角a 为60°可得120ACB Ð=°,由切线的性质可得90OAC OBC Ð=Ð=°,根据四边形的内角和定理可得36060AOB ACB OAC OBC Ð=°-Ð-Ð-Ð=°,然后根据弧长公式计算即可.【详解】解:如图:∵60a Ð=°,∴120ACB Ð=°,∵过点,A B 的两条切线相交于点C ,∴90OAC OBC Ð=Ð=°,∴36060AOB ACB OAC OBC Ð=°-Ð-Ð-Ð=°,∴602 1.5km 3602p p °´´´=°.故选B .【点睛】本题主要考查了圆的切线的性质、弧长公式等知识点,根据题意求得60AOB Ð=°是解答本题的关键.10.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A ,()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A. 45c -£<B. 43c -£<-C. 164c -£<D. 114c -£<【答案】A【解析】【分析】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数与一次函数的交点问题,由题意得,三倍点所在的直线为3y x =,根据二次函数2y x x c =--+的图象上至少存在一个“三倍点”转化为2y x x c =--+和3y x =至少有一个交点,求0D ³,再根据3x =-和1x =时两个函数值大小即可求出答案.【详解】解:由题意得,三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,二次函数2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得,240x x c +-=,则241640b ac c D=-=+³,解得4c ³-,把3x =-代入2y x x c =--+得6y c =-+,代入3y x =得9y =-,96c \->-+,解得3c <-;把1x =代入2y x x c =--+得2y c =-+,代入3y x =得3y =,32c \>-+,解得:5c <,综上,c 的取值范围为:45c -£<.故选:A .第II 卷(非选择题共110分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.不按以上要求作答,答案无效.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是_______.【答案】4a >-##4a-<【解析】【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x a --=有两个不相等的实数根,∴()()22Δ44410b ac a =-=--´×->,∴4a >-,故答案为:4a >-.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.12. 如图,P 是反比例函数y = 3x图象上一点,PA⊥x轴于点A ,则PAO S =V _______________.【答案】32【解析】【分析】根据反比例函数k 的几何意义即可求解.【详解】解:∵P是反比例函数y = 3x图象上一点PA⊥x轴于点A ,∴PAO S =V 32,故答案为:32.【点睛】本题考查了反比例函数k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.13.如图,有一个直径为4cm 的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的面积是__________.【答案】2【解析】【分析】如图,连接OA OB 、,则,60OA OB AOB =Ð=°,可得AOB V 是等边三角形,作OC AB ^于C ,利用等边三角形的性质求出OC ,进而求解.【详解】如图,连接OA OB 、,则,60OA OB AOB =Ð=°,∴AOB V 是等边三角形,作OC AB ^于C ,∵AOB V 是等边三角形,∴60OAB Ð=°,∴30AOC Ð=°,∵2OA =cm ,∴1AC =cm ,∴OC ==cm ,∴这个正六边形纸片的面积是21622´´=;故答案为:2.【点睛】本题考查了正多边形和圆,本题中,求出OC 是解题的关键.14.如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG =_________.【答案】3【解析】【分析】本题主要考查矩形的性质、直角三角形斜边中线的性质和勾股定理,根据中点和矩形的性质5BG =,利用勾股定理即可求得答案.【详解】解:∵10CE =,F 为CE 的中点,∴5CF FE ==,∵四边形ABCD 是矩形,∴90ABC Ð=°,∴5BG FB FC ===,在Rt ABG V 中,3AG ===.故答案为:3.15.只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为7cm ,6cm AB =,8cm CD =.请你帮忙计算纸杯的直径为___________cm .【答案】10【解析】【分析】设圆心为O ,根据垂径定理可以得到4CE =,3AF =,再根据勾股定理构建方程解题即可.【详解】解:设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF CD ^,EF AB ^,∴118422CE CD ==´=,116322AF AB ==´=,设OE x =,则7OF x =-,又∵OC OA =,∴2222CE OE AF OF +=+,即()2222437x x +=+-,解得:3x =,∴半径5OC ==,即直径为10cm ,故答案为:10.【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.16.京剧是中国一门传统文化艺术.如图,在平面直角坐标系xOy 中,某脸谱轮廓可以近似的看成是一个半圆与抛物线的一部分组合成的封闭图形,记作图形G .点A ,B ,C ,D 分别是图形G 与坐标轴的交点,已知点D 的坐标为()0,3-,AB 为半圆的直径,且4AB =,半圆圆心M 的坐标为()1,0.关于图形G 给出下列五个结论,其中正确的是______(填序号).①图形G 关于直线1x =对称;②线段CD的长为3+;③图形G 围成区域内(不含边界)恰有12个整点(即横、纵坐标均为整数的点);④当42a -££时,直线y a =与图形G 有两个公共点;⑤图形G 的面积小于2π8+.【答案】①②【解析】【分析】本题以半圆为抛物线合成的封闭图形为背景、曲线的对称性、整点问题、构造直角三角形、勾股定理等知识点,掌握数形结合思想是解题的关键.由题意很明显可以得到图形G 的对称轴为,故①正确;构造直角三角形、利用勾股定理求得OC 的长,进而求得CD 的长,故②正确;从图中可以很直观的得到③错误;根据图形可得当4a =-、2a =,直线y a =与图形G 有一个公共点,即不能得出结论④,故④错误;如图:连接AE BE ,,可求得28ABE S S p +=+V 半圆,从而判定⑤错误.【详解】解:如图:由圆M 可知()()()1,0,3,0,1,0A B M -且点A ,B 在抛物线上,∴图形G 关于1x =对称,即①正确;如图:连接CM ,的在Rt MOC V 中,∵1OM =, 2CM =,OC \==又(03),D -Q ,3OD \=,3CD OC OD \=+=根据题意得,由图形G 围成区域内(不含边界)恰有13个整点(即横、纵坐标均为整数的点),故③错误;由图形可得:当4a =-、2a =,直线y a =与图形G 有一个公共点,故④错误;如图:连接AE BE ,, 2114448,2222ABE S S p p æö=´´===ç÷èøV 半圆,∴82ABE G S S S p +=+<V 半圆,故⑤错误.故答案为①②.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17. 计算:2tan 452sin 30cos 45cos 60°+°-°+°.【答案】2【解析】【分析】本题考查特殊锐角的三角函数值.利用特殊锐角的三角函数值计算即可.【详解】解:2tan 452sin 30cos 45cos 60°+°-°+°2111222=+´-+111122=+-+2=.18. 在ABC V 中,C Ð = 90°,A Ð = 30°且AB = 20cm ,求边AC 的长度.【答案】【解析】【分析】根据含30度角的直角三角形的性质可得10cm BC =,进而勾股定理即可求解.【详解】ABC Q V 中,90C Ð=°,30A Ð=°,20cm AB =,BC \=1210cm AB =,AC \===cm .【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,熟练掌握勾股定理是解题的关键.19.如图,在ABC V 中,D 为AB 上一点,64ACD B AC AD Ð=Ð==,,.求AB 的长.【答案】AB 的长为9.【解析】【分析】根据已知条件证明ACD ABC △∽△,得到AD AC AC AB=求出即可.【详解】解:∵ACD B A A Ð=ÐÐ=Ð,,∴ACD ABC △∽△∴AD AC AC AB=∴23694AC AD AB ===.故AB 的长为9.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据相似三角形的性质求解.20.如图,在平面直角坐标系中,ABC V 的顶点坐标为()1,2A -,()4,3B -,()3,1C -.(1)以点B 为位似中心,在点B 的下方画出11A BC V ,使11A BC V 与ABC V 位似,且位似比为2:1;(2)求四边形11CC A A 的面积.【答案】(1)作图详见解析(2)152【解析】【分析】本题考查了位似的性质,平面直角坐标系内三角形面积的求法,(1)根据相似比的以及点,,A B C 的坐标即可求得11A BC V ;(2)根据位似的性质可得到的坐标,利用割补法即可求得四边形11CC A A 的面积.【小问1详解】解:如图所示,11A BC V 即为所求,【小问2详解】解:35231122=´---=△ABC S ,∵11A BC V 与ABC V 位似,且位似比为2:1;则1114ABC A BC S S =△△,∴1110A BC S =△.11115151022A BC ABC CC A A S S S =-=-=△△四边形.21. 祖冲之发明的水碓(duì)是一种舂米机具(如图1),在我国古代科学家宋应星的著作《天工开物》中有详细记载,其原理是以水流推动轮轴旋转进而拨动碓杆上下舂米.图2是碓杆与支柱的示意图,支柱OM 高4尺且垂直于水平地面,碓杆AB 长16尺,3OB OA =.当点A 最低时,60AOM Ð=°,此时点B 位于最高点;当点A 位于最高点A ¢时,108.2A OM Т=°,此时点B 位于最低点B ¢.(1)求点A 位于最低点时与地面的垂直距离;(2)求最低点B ¢与地面的垂直距离.(参考数据:sin18.20.31°»,cos18.20.95°»,tan18.20.33°»)【答案】(1)点A 距离地面2尺(2)点B ¢到地面之间的垂直距离约为0.28尺【解析】【分析】(1)分别过点O 作直线EF OM ^,作AH OM ^,H 为垂足,分别过点B 、B ¢作BC EF ^、B D EF ¢^,垂足分别为C 、D ;根据30度角所对的边是斜边的一半,可得122OH OA ==,2MH OM OH =-=,即可求得;(2)根据16AB =,3OB AO =,求得3124OB AB ==,根据三角函数的定义,可得sin18.2120.31 3.72DB OB =×°=´»¢¢,即可求得.【小问1详解】分别过点O 作直线EF OM ^,作AH OM ^,H 为垂足,分别过点B 、B ¢作BC EF ^、B D EF ¢^,垂足分别为C 、D .∵90EOM Ð=°,60AOM Ð=°∵4OA =∴122OH OA ==,2MH OM OH =-= ∴点A 距离地面2尺;【小问2详解】∵16AB =,3OB AO=∴33161244OB AB ==´=∴sin18.2120.31 3.72DB OB =×°=´»¢¢∴4 3.720.28-=故点B ¢到地面之间的垂直距离约为0.28尺.【点睛】本题考查含30度角的直角三角形,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.22.芯片目前是全球紧缺资源,市政府通过资本招商引进“芯屏汽合、集终生智”等优势产业,发展新兴产业.某芯片公司,引进了一条内存芯片生产线,开工第一季度生产200万个,第三季度生产288万个.试回答下列问题:(1)已知每季度生产量的平均增长率相等,求前三季度生产量的平均增长率;(2)经调查发现,1条生产线最大产能是600万个/季度,若每增加1条生产线,每条生产线的最大产能将减少20万个/季度.现该公司要保证每季度生产内存芯片2600万个,在增加产能同时又要节省投入成本的条件下(生产线越多,投入成本越大),应该再增加几条生产线?【答案】(1)20% (2)4条【解析】【分析】(1)设求前三季度生产量的平均增长率为x ,根据第一季度生产200万个,第三季度生产288万个,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设应该增加m 条生产线,则每条生产线的最大产能为(600-20m )万个/季度,利用总产量=每条生产线的产量×生产线的数量,即可得出关于m 的一元二次方程,解之即可得出m 的值,再结合在增加产能同时又要节省投入,即可确定m 的值.【小问1详解】解:设求前三季度生产量的平均增长率为x ,依题意得:2200(1)288x +=,解得:1x =02=20%,2x =-2.2(不合题意,舍去).答:前三季度生产量的平均增长率20%;【小问2详解】解:设应该增加m 条生产线,则每条生产线的最大产能为(600-20m )万个/季度,依题意得:(1+m )(600-20m )=2600,整理得:2291000m m -+=,解得:1m =4,2m =25,∵在增加产能同时又要节省投入,∴m=4.答:应该再增加4条生产线.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.23. 如图,AB 为O e 的直径,D E 、是O e 上两点,延长AB 至C ,连接CD ,BDC A Ð=Ð.(1)求证:CD 是O e 的切线;(2)若tan 34E =,8AC =,求O e 的半径.【答案】(1)证明见解析(2)O e 的半径为74【解析】【分析】本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键;(1)连接OD ,由圆周角定理得出90ADB Ð=°,证出OD CD ^,由切线的判定可得出结论;(2)证明BDC DAC ∽△△,由相似三角形的性质得出34CD BC BD AC CD DA ===,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.【小问1详解】证明:连接OD ,∵AB 为O e 的直径,∴90ADB Ð=°,∴90Ð+Ð=°A ABD ,∵OB OD =,∴ABD ODB Ð=Ð,∵BDC A Ð=Ð,∴90BDC ODB Ð+Ð=°,∴90ODC Ð=°,∴OD CD ^,∵OD 是O e 的半径,∴CD 是O e 切线;【小问2详解】解:∵90ADB Ð=°,tan 34E Ð=,∴3tan 4BD BAD AD Ð==,∵BDC A Ð=Ð,C C Ð=Ð,∴BDC DAC ∽△△,∴34CD BC BD AC CD AD ===,∵8AC =,∴384CD =,∴6CD =,∴364BC =,∴92BC =,∴97822AB AC AB =-=-=.∴O e 的半径为74.24. 【背景】在一次物理实验中,小冉同学用一固定电压为12V 的蓄电池,通过调节滑动变阻器来改变电流大小,完成控制灯泡L (灯丝的阻值L 2ΩR =)亮度的实验(如图),已知的串联电路中,电流与电阻L RR 、之间关系为L U I R R =+,通过实验得出如下数据:/ΩR …1a 346…/A I …43 2.42b …(1)=a _______,b =_______;(2)【探究】根据以上实验,构建出函数()1202y x x =³+,结合表格信息,探究函数()1202y x x =³+的图象与性质.①在平面直角坐标系中画出对应函数()1202y x x =³+的图象;②随着自变量x 的不断增大,函数值y 的变化趋势是_________.(3)【拓展】结合(2)中函数图象分析,当0x ³时,123622x x ³-++的解集为________.【答案】(1)2,1.5(2)①见解析;②函数值y 逐渐减小(3)2x ³或0x =【解析】【分析】(1)根据解析式求解即可;(2)①根据表格数据,描点连线画出函数图象;②根据图象可得出结论;(3)求出第一象限的交点坐标,结合图象可得结论.【小问1详解】解:由题意,122I R =+,当3I =时,由1232a =+得2a =,当6R =时,12 1.562b ==+,故答案为:2,1.5;【小问2详解】解:①根据表格数据,描点、连线得到函数()1202y x x =³+的图象如图:②由图象可知,随着自变量x 的不断增大,函数值y 逐渐减小,故答案为:函数值y 逐渐减小;【小问3详解】解:当2x =时,32632y =-´+=,当0x =时,6y =,∴函数()1202y x x =³+与函数362y x =-+的图象交点坐标为()2,3,()0,6,在同一平面直角坐标系中画出函数362y x =-+的图象,如图,由图知,当2x ³或0x =时,123622x x ³-++,即当0x ³时,123622x x ³-++的解集为2x ³或0x =,故答案为:2x ³或0x =.【点睛】本题考查函数的图象与性质、描点法画函数图象、两个函数图象的交点问题,根据表格画出函数的图象,并利用数形结合思想探究函数性质是解答的关键.25. 如图1,已知二次函数图象与y 轴交点为(0,3)C ,其顶点为(1,2)D .(1)求二次函数的表达式;(2)直线CD 与x 轴交于M ,现将线段CM 上下移动,若线段CM 与二次函数的图象有交点,求CM 向上和向下平移的最大距离;(3)若将(1)中二次函数图象平移,使其顶点与原点重合,然后将其图象绕O 点顺时针旋转90°,得到抛物线G ,如图2所示,直线2y x =-+与G 交于A ,B 两点,P 为G 上位于直线AB 左侧一点,求ABP D 面积最大值,及此时点P 的坐标.【答案】(1)223y x x =-+(2)CM 向下平移的最大距离为14,向上平移的最大距离为6. (3)11,42P æö-ç÷èø【解析】【分析】(1)由待定系数法即可求解;(2)①设直线CD 向下平移最大距离为m ,由△140m =-=,即可求解;②设直线CD 向上平移最大距离为n ,同理可解;(3)由1()2ABP A B S PQ y y D =-,即可求解.【小问1详解】解:Q 顶点(1,2)D ,设二次函数的解析式为2(1)2y a x =-+,把(0,3)代入得:32a =+,1a \=,2(1)2y x \=-+,即223y x x =-+;【小问2详解】解:由点C 、D 的坐标得,直线CD 解析式为3y x =-+,(3,0)\M ,①设直线CD 向下平移最大距离为m ,\平移后的直线解析式为3y x m =-+-,此时直线与抛物线有一个交点,把3y x m =-+- 代入223y x x =-+,得2233x x x m -+=-+-,20x x m -+=,△140m =-=,即:14m =.②设直线CD 向上平移最大距离为n ,此时C ,M 对应点为C ¢,M ¢,则(3,)M m ¢,当M ¢恰在二次函数上时,23233m \-×+=,6m \=,\向上平移的最大距离为6.综上,CM 向下平移的最大距离为14,向上平移的最大距离为6;【小问3详解】解:二次函数平移后顶点与原点重合时顶点为(0,0),则函数的解析式为:2y x =,设2(,)F m m 为2y x = 上一点,F 绕O 顺时针旋转90° 后,对应点为F ¢,则FMO F M O ¢¢≌△△,则FM F M m ¢==,2FN OM OM m ¢===,2:()F m m ¢-,,若F 在y 轴左侧同理可证成立,即满足横坐标为纵坐标的平方,所以2:G x y =,把2y x =-+ 代入2x y =,22y y \=-+,解得:12y =-,21y =;则(1,1)A ,(4,2)B -,设:2()P m m ,,过点P 作PQ x ∥轴交AB 于点Q ,:2AB y x =-+Q ,(2,)Q m m \-,22PQ m m \=--,\1()2ABP A B S PQ y y D =-21(2)32m m =--×233322m m =--+,当12m =- 时,ABP S D 有最大值,278max S =,此时11,42P æö-ç÷èø.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本性质、待定系数法求函数表达式、面积的计算、图象的旋转等,有一定的综合性,难度较大.26.在矩形ABCD 中,3AB =,AD =E 在射线BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE AG ,为邻边作矩形AEFG .(1)如图1,若E 在线段BC 上,连接AC ,则tan ACB Ð=______,BE DG=______;(2)如图2,若E 在线段BC 延长线上,当点F B D 、、共线时,求线段BE 的长;(3)如图3,若E 在线段BC 上,当2EA EC =时,在平面内有一动点P ,满足2PE EF =,连接PA PC ,,请直接写出12+PC PA 的最小值.【答案】(1(2)BE =(3)【解析】【分析】(1)通过证明ABE ADG ∽△△,可得BE AB DG AD ==;(2)同理可证,ABE ADG ABE EMF V V V V ∽∽,可求EM 的长,由锐角三角函数可列出方程,即可求解;(3)由勾股定理可求,,BE AE EC 的长,由锐角三角函数可求60AEB Ð=°,通过证明AEP CEP ¢V V ∽,可得12P C AP ¢=,则当P 、C 、P ¢三点共线时,12PC AP +有最小值,最小值为PP ¢的长,由相似三角形的性质和勾股定理可求解.【小问1详解】解:∵四边形ABCD 是矩形,3,AB DC BC AD \====tan AB ACB BC \Ð==∵将射线AE 绕点A 逆时针旋转90°,90,EAG BAD \Ð=Ð=°,BAE DAG \Ð=Ð又90,ADG ABC Ð=Ð=°∴ABE ADG ∽△△,BE AB DG AD \==【小问2详解】过F 作FM BE ^交BE 延长线于M ,由(1)可知:ABE ADG ∽△△,90,ABC M AHF Ð=Ð=Ð=°Q 90,AHB MHF AHB BAH \Ð+Ð=°=Ð+Ð∴,BAH MHF Ð=ÐABE EMF \V V ∽,则AB BE AE AE AB EM MF EF AG AD =====,3EM \=EM \=设3,BE x FM ==,∴在Rt BMF V 中,tan FM FBM BM Ð====解得x =,3BE x \==【小问3详解】设EC a =,2,AE EC =Q2,,AE a BE a \==-2223,AB AB BE AE =+=Q ,2223)(2),a a \+-=a \=2AE a BE EC \====tan BEA \Ð=60BEA \Ð=°120,AEC \Ð=°作120PEP ¢Ð=°,且12EP PE ¢=,连接,P C PP ¢¢,120,AEC PEP ¢\Ð=Ð=°,AEP CEP ¢\Ð=Ð又2,AE PE EC P E==¢Q ,AEP CEP ¢\V V ∽1,2P C AP ¢\=1,2P C AP ¢\=1,2PC AP PC P C ¢\+=+∴当P 、C 、P ¢三点共线时,12PC AP +有最小值,最小值为PP ¢的长,,ABE ADG QV V ∽AB AE AD AG \==又AE =Q 4,AG EF \==又28,PE EF ==Q 14,2P E PE ¢\==120,PEP ¢Ð=°Q 18060,HEP PEP ¢¢\Ð=°-Ð=°9030,HP E HEP ¢¢\Ð=°-Ð=°12,2HE HE PH \====10,PH HE PE \=+=在Rt HPP ¢V 中,PP ¢===【点睛】本题是相似形综合题,考查了正方形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.。
第二学期期末考试九年级数学试卷及参考答案
第二学期期末考试九年级数学试卷说明:本试卷分第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷满分120分,考试用时120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(共12小题,每小题3分,共36分)1. -2的绝对值是A .2BC .12D .-122.函数y x 的取值范围是A .x ≥﹣1B .x ≥1C .x ≤﹣1D .x ≤13.在数轴上表示不等式组⎩⎨⎧x +2>1,x -2≤0的解集,正确的是A .B .C .D .4.下列事件中,是必然事件的是A .掷两次硬币,必有一次正面朝上.B .小明参加2011年武汉市体育中考测试,“坐位体前屈”项目获得7分.C .任意买一张电影票,座位号是偶数.D .在平面内,平行四边形的两条对角线相交.5.武汉不仅是“江城”、“湖城“、“钢城”、“车城”、“诗城”,还是“桥城”喔!坐拥大小桥梁1200多座,令武汉充满诗情画意和文化魅力. 将1200这个数用科学记数法表示为 A .60.1210⨯ B .41210⨯ C .31.210⨯ D .41.210⨯6.图中几何体的俯视图是( )正面A .B .C .D .CPBC EA7.一元二次方程x 2-3x +2=0 的两根分别是x 1、x 2,则x 1+x 2的值是 A . 3B .2C .﹣3D .﹣28.如图,菱形ABCD 中,∠A =30°,若菱形FBCE 与菱形ABCD 关于BC 所在的直线对称,则∠BCE 的度数是 A .20° B .30° C .45° D .60°9.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是 A .48 B .56C .63D .7410.如图,⊙P 的直径AB =10,点C 在半圆上,BC =6.PE ⊥AB 交AC 于点E ,则PE 的长是A .154B .4C .5D .15211.武汉素有“首义之区”的美名,2011年9月9日,武汉与台湾将共同纪念辛亥革命一百周年.某校为了了解全校学生对辛亥革命的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.第16题图根据以上的信息,下列判断:①参加问卷调查的学生有50名;②参加进行问卷调查的学生中,“基本了解”的有10人;③扇形图中“基本了解”部分的扇形的圆心角的度数是108°;④在参加进行问卷调查的学生中,“了解”的学生占10%. 其中结论正确的序号是 A .①②③ B .①②④ C .①③④ D .②③④12.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,AF 为△ABC 的角平分线,分别过点C 、B 作AF 的垂线,垂足分别为E 、D .以下结论:①CE =DE =22BD ;②AF =2BD ;③CE +EF =12 AE ;④DF AF =2-12 .其中结论正确的序号是A .①②③B .①②④C .①③④D .②③④第Ⅱ卷 (非选择题 共84分)二、填空题(共4小题,每小题3分,共12分)13.计算:cos60°= .14.武汉市2011年初中毕业生学业考试6门学科的满分值如下表:请问数据120,120,120,130,80,30中,众数是 ,极差是 ,中位数是 .15.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元)与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26元和18元,则四月份比三月份节约用水 吨.16.如图,点P 在双曲线y =kx (x >0)上,以P 为圆心的⊙P 与两坐标轴都相切,点E为y 轴负半轴上的一点,过点P 作PF ⊥PE 交x 轴于点F ,若OF -OE =6,则k 的值是 .三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x 2-2x -1=0.18.(本题满分6分)先化简,再求值:(1+23-a )÷412-+a a ,其中a =3.19.(本题满分6分)已知:如图,E 为BC 上一点,AC ∥BD ,AC =BE ,BC =BD . 求证:AB =DE .D20.(本题满分7分)在一个不透明的口袋中有分别标有数字﹣4,﹣1,2,5的四个质地、大小相同的小球,从口袋中随机摸出一个小球,记录其标有的数字作为x ,不放回...,再从中摸出第二个小球,记录其标有的数字为y .用这两个数字确定一个点的坐标为(x ,y ). (1)请用列表法或者画树状图法表示点的坐标的所有可能结果; (2)求点(x ,y )位于平面直角坐标系中的第三象限的概率.21.(本题满分7分)在边长为1个单位长度的小正方形组成的网格中,平面直角坐标系和四边形的位置如图所示.(1)将四边形ABCD 关于y 轴作轴对称变换,得到四边形A 1B 1C 1D 1,请在网格中画出四边形A 1B 1C 1D 1;(2)将四边形ABCD 绕坐标原点O 按逆时针方向旋转90°后得到四边形A 2B 2C 2D 2,请直接写出点D2的坐标为__ _ ___,点D旋转到点D2所经过的路径长为____ __.22.(本题满分8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为BD弧的中点,AC、BD交于点E.(1)求证:△CBE∽△CAB;(2)若S△CBE∶S△CAB=1∶4,求sin∠ABD的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x 为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?24.(本题满分10分)如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN 、DM 的数量关系与位置关系,并说明理由;(2)如图(2),设CN 、DM 的交点为H ,连接BH ,求证:△BCH 是等腰三角形; (3)将△ADM 沿DM 翻折得到△A ′DM ,延长MA ′交DC 的延长线于点E ,如图(3),求tan ∠DEM .MB ADMB ADMBAD图1 图2 图3 25.(本题满分12分)如图1,在平面直角坐标系中,直线l :2343--=x y 沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线22-h 3y x =()与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧). (1)求直线AB 的解析式;(2)若线段DF ∥x 轴,求抛物线的解析式;(3)如图2,在(2)的条件下,过F 作FH ⊥x 轴于点G ,与直线l 交于点H ,在抛物线上是否存在P 、Q 两点(点P 在点Q 的上方),PQ 与AF 交于点M ,与FH 交于点N ,使得直线PQ 既平分△AFH 的周长,又平分△AFH 面积,如果存在,求出P 、Q 的坐标,若不存在,请说明理由.数学试题参考答案及评分细则一、选择题(12小题,每小题3分,共36分)二、填空题(4小题,每小题3分,共12分)13.0.5 14.120;100;120. 15.3 16.9 三、解答题(9小题,共72分)17.方法1:解:∵1,2,1a b c ==-=-,………………3分 ∴2480b ac ∆=-=>………………4分∴2=12x ±=±5分 1x =2x =………6分 方法2:解:x 2﹣2x+1=2………………………………………2分 (x ﹣1)2=2………………………………………3分 x ﹣15分 1x =2x =6分18.解:(1+23-a )÷412-+a a =(2322a a a -+--)·(2)(2)1a a a -++…………3分=a+2……………………………………………4分 当a =3时,原式= a+2=5……………………………………………6分19.证明:∵AC ∥BD ,∴∠ACB =∠DBC …………………………1分在△ABC 和△EDB 中, B C AC BE BC BDAC DB =⎧⎪=⎨⎪=⎩∠∠,………3分∴△ABC ≌△EDB ……………………………………5分 ∴AB =DE ………………………………………………6分BA20.(1)①用表格表示点的坐标的所有可能结果如下:(共4分)(2)由表可知,共有12种等可能结果,其中位于第三象限的点有(﹣4,﹣1)、 (﹣1,﹣4)共有2个可能; …………………………6分 将依次摸出的两个小球所标数字为横坐标,纵坐标的点位于第三象限记为事件A ,则 ∴P (A )=212 =16 ……………………7分21. (1)A 2…………………4分(2) (﹣2,﹣4),134 π . …………………7分22.(1)证明:∵点C 为弧BD 的中点,∴∠DBC =∠BAC , 在△CBE 与△CAB 中;∠DBC =∠BAC ,∠BCE =∠ACB ,∴△CBE∽△CAB.……4分(2)解:连接OC交BD于F点,则OC垂直平分BD ∵S△CBE:S△CAB=1:4,△CBE∽△CAB∴AC:BC=BC:EC=2:1,∴AC=4EC∴AE:EC=3:1∵AB为⊙O的直径,∴∠ADB=90°∴AD∥OC,则AD:FC=AE:EC=3:1设FC=a,则AD=3a,∵F为BD的中点,O为AB的中点,∴OF是△ABD的中位线,则OF=12AD=1.5a,∴OC=OF+FC=1.5a+a=2.5a,则AB=2OC=5a,在Rt△ABD中,sin∠ABD=ADAB=3a3=5a5…………………………8分(本题方法众多,方法不唯一,请酌情给分)23.(1)y=[100-2(x-60)](x﹣40)=—2x2+300x—8800;(60≤x≤110且x为正整数)………………………3分(2)y=—2(x—75)2+2450,当x=75时,y有最大值为2450元………………6分(3)当y=2250时,—2(x—75)2+2450=2250,解得x1=65,x2=85 ∵a=—2<0,开口向下,当y≥2250时,65≤x≤85∵每件商品的利润率不超过80%,则x-4040≤80%,则x≤72则65≤x≤72.……………………………………………………………………10分24.(1)CN=DM,CN⊥DM,证明:∵点M、N分别是正方形ABCD的边AB、AD的中点∴AM=DN.AD=DC.∠A=∠CDN∴△AMD≌△DNC,∴CN=DM.∠CND=∠AMD∴∠CND+∠NDM=∠AMD+∠NDM=900∴CN⊥DM∴CN =DM ,CN ⊥DM …………………………………………3分(2)证明:延长DM 、CB 交于点P .∵ AD ∥BC ,∴∠MPC =∠MDA ,∠A =∠MBP∵ MA =MB △AMD ≌△BMP ,∴ BP =AD =BC .∵∠CHP =900 ∴BH =BC ,即△BCH 是等腰三角形……………………6分(3)∵AB ∥DC ∴∠EDM =∠AMD =∠DME ∴EM =ED设AD =A ′D =4k ,则A ′M =AM =2k ,∴DE =EA ′+2k .在Rt △DA ′E 中,A ′D 2+A ′E 2=DE2 ∴(4k )2+A ′E 2=(E A ′+2k )2解得A ′E =3k ,∴tan ∠DEM =A ′D :A ′E =43.………………………………10分 25.解:(1)设直线AB 的解析式为b kx y +=.直线2343--=x y 与x 轴、y 轴交点分别为(-2,0),(0,23-) 沿x 轴翻折,则直线2343--=x y 、直线AB 与x 轴交于同一点(-2,0) ∴A (-2,0).与y 轴的交点(0,23-)与点B 关于x 轴对称 ∴B (0,23) ∴⎪⎩⎪⎨⎧==+-.23,02b b k 解得43=k ,23=b . ∴直线AB 的解析式为 2343+=x y .………………………………3分 (2)抛物线的顶点为P (h ,0),抛物线解析式为:2)(32h x y -==22323432h hx x +-. ∴D (0,232h ).∵DF ∥x 轴,∴点F (2h ,232h ), 又点F 在直线AB 上,∴23)2(43322+⋅=h h . 解得 31=h ,432-=h .(舍去) ∴抛物线的解析式为6432)3(3222+-=-=x x x y .……………………7分(3)过M 作MT ⊥FH 于T ,∴R t △MTF ∽R t △AGF .∴5:4:3::::==FA GA FG FM TM FT . 设FT =3k ,TM =4k ,FM =5k .则FN =)(21AF HF AH ++-FM =16-5k . ∴24)516(21k k MT FN S MNF -=⋅=∆. ∵8122121⨯⨯=⋅=∆AG FH S AFH =48, 又AFH MNF S S ∆∆=21. ∴2424)516(=-k k . 解得56=k 或2=k (舍去). ∴FM =6,FT =518,MT =524,GN =4,TG =512. ∴M (56,512)、N (6,-4). ∴直线MN 的解析式为:434+-=x y . 联立434+-=x y 与22=463y x x -+,求得P (1,83); Q (3,0)…………………12分。
苏教版九年级数学下册期末试卷及答案【完整】
苏教版九年级数学下册期末试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94kB .94k -且0k ≠C .94k 且0k ≠D .94k - 7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.64的立方根是____________.2.因式分解:x 3﹣4x=_______.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2 (2)解方程;13223x x =--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m 的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、B6、C7、A8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、x (x+2)(x ﹣2)3、增大.4、10.5、5.6、3三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)34m ≥-;(2)m 的值为3.3、(1)略;(2)S 平行四边形ABCD =244、(1)反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =. 5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。
人教版九年级下册数学期末试卷及答案【完整版】
人教版九年级下册数学期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-. 3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:2ab a -=_______.3x 2-x 的取值范围是__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、A6、A7、D8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、a(b+1)(b﹣1).3、x2≥4、85、40°6、 1三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、(1)k﹥34;(2)k=2.3、(1)略;(2)2.4、(1)二次函数的表达式为:213222y x x=--;(2)4;(3)2或2911.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)4元或6元;(2)九折.。
河北省石家庄市44中2021-2022学年九年级下学期数学期末试卷及解析
河北省石家庄市44中2021-2022学年九年级下学期数学期末试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若⊙O 的半径为4cm ,点A 到圆心O 的距离为3cm ,那么点A 与⊙O 的位置关系( ) A .点A 在圆内B .点A 在圆上C .点A 在圆外D .不能确定2.图中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N3.甲,乙、丙、丁四名选手100m 短跑测试的平均成绩都是13.2s .方差如表,则成绩最稳定的选手是( )A .甲B .乙C .丙D .丁4.如图,在Rt ABC △中,90C ∠=︒,sin 0.5B =,若6AC =,则BC 的长为( )A .6B .12C .D .5.一个正多边形的中心角为30︒,这个正多边形的边数是( ) A .8B .12C .3D .66.如图,四边形ABCD 为⊙O 的内接四边形,若四边形OBCD 为菱形,A ∠为( ).A .45°B .60°C .72°D .36°7.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m 时,标注视力表中⊙号“E ”字的高度BC 长为b ,当测试距离为3m 时,⊙号“E ”字的高度DF 长为( )A .5bB .3bC .35bD .23b8.某蔬菜种植基地2018年的蔬菜产量为800吨,2020年的蔬菜产量为968吨,设每年蔬菜产量的年平均增长率都为x ,则年平均增长率x 应满足的方程为( ) A .2800(1)968x -= B .2800(1)968x += C .2968(1)800x -=D .2968(1)800x +=9.如图,点A 在反比例函数()0ky x x=>图象上,AB x ⊥轴于点B ,C 是OB 的中点,连接AO ,AC ,若AOC 的面积为2,则k =( )A .4B .8C .12D .1610.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘.将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为( )A .14B .13C .12D 11.图1是一把扇形书法纸扇,图2是其完全打开后的示意图,外侧两竹条OA 和OB 的夹角为150︒,OA 的长为30cm ,贴纸部分的宽AC 为18cm ,则CD 的长为( )A .5πcmB .10πcmC .20πcmD .25πcm12.如图,是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体的个数最少是( )A .6B .3C .4D .513.已知Rt⊙ABC 中,⊙BAC =90°,过点A 作一条直线,使其将⊙ABC 分成两个相似的三角形.观察下列图中尺规作图痕迹,作法错误的( )A .B .C .D .14.若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12D .6 15.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:下列各选项中,正确的是A .这个函数的图象开口向下 B .这个函数的图象与x 轴无交点 C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大 16.如图,已知抛物线()()31916y x x =---与x 轴交于A ,B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,C 的半径为1,G 为C 上一动点,P 为AG 的中点,则DP 的最小值为( )A .72B .2C .1D .3二、填空题17.如图,将等边⊙ABC 折叠,使得点C 落在AB 边上的点D 处,折痕为EF ,点E ,F分别在AC 和BC 边上.若AC =8,AD =2,则⊙AED 周长为 _____,CECF的值为 _____.18.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是242cm 的有盖的长方体铁盒,则剪去的正方形的边长为______cm ,此盒子体积是_____3cm .19.在平面直角坐标系中,函数y =x 2﹣4x 的图象为C 1,C 1关于原点对称的函数图象为C 2,则C 2对应的函数表达式为_____,直线y =a (a 为常数)分别与C 1、C 2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a 的取值范围_____.三、解答题20.(1)解方程:2430x x --=(2)计算:034sin 453π--︒-() 21.某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:根据以上信息,解答下列问题:(1)上表中m 、n 的值分别为 , ;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.22.如图,在△ABC 中,AB =AC ,AD 为BC 边上的中线,DE ⊙AB 于点E .(1)求证:△BDE ⊙⊙CAD .(2)若AB =13,BC =10,求线段DE 的长.23.某景区A 、B 两个景点位于湖泊两侧,游客从景点A 到景点B 必须经过C 处才能到达.观测得景点B 在景点A 的北偏东30°,从景点A 出发向正北方向步行600米到达C处,测得景点B 在C 的北偏东75°方向.(1)求景点B 和C 处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A 到景点B 的笔直的跨湖大桥.大桥修建后,从景点A 到景点B 比原来少走多少米?(结果保留整数.,)24.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动,OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.请仅就图2的情形解答下列问题. (1)求证:2PAO PBO ∠=∠; (2)若O 的半径为5,203AP =,求BP 的长. 25.在平面直角坐标系中,一次函数()0y ax b a =+≠的图象与反比例函数()0ky k x=≠的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH y ⊥轴,垂足为H ,6OH =,4tan 3AOH ∠=,点B 的坐标为(),4m -.(1)求AOH △的周长;(2)求该反比例函数和一次函数的解析式; (3)根据图象直接写出使kax b x+>成立的x 的取值范围. 26.如图是进行小球平抛实验的截面示意图,平台AB 距x 轴(水平)20分米,与y 轴交于点B ,且2AB =分米.小球(看成点)在BA 方向获得速度v 分米/秒后,从A 处向右下飞向x 轴,点M 是下落路线的某位置,忽略空气阻力,实验表明:M A ,的竖直距离h (分米)与飞出时间t (秒)的平方成正比,且1t =时,5h =,M A ,的水平距离是vt 分米,在x 轴上垂直竖立一根高杆DC ,且12.95DC =分米.(1)用含t 的代数式表示h =______; (2)设10v =,点M 的坐标为()x y ,,则⊙用含t 的代数式表示M 的横坐标x =______,纵坐标y =_____;并求y 与x 的关系式(不写x 的取值范围);⊙当15y =时,求小球与点A 的水平距离.(3)要保证小球飞到高杆上方时,小球与高杆顶部C 的距离恰为1分米,已知5v ≥分米/秒,直接写出高杆DC 与y 轴的距离d 的取值范围.参考答案:1.A【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来判断,设点与圆心的距离d ,则d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内. 【详解】解:⊙点A 到圆心O 的距离为3cm ,小于⊙O 的半径4cm , ⊙点A 在⊙O 内. 故选:A .【点睛】本题考查了对点与圆的位置关系的判断,关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内. 2.A【详解】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:⊙位似图形的位似中心位于对应点连线所在的直线上,点M 、N 为对应点,所以位似中心在M 、N 所在的直线上, 因为点P 在直线MN 上, 所以点P 为位似中心. 故选A . 考点:位似变换. 3.A【分析】根据方差的意义求解.【详解】解:⊙甲的方差为:0.019,乙的方差为:0.021,丙的方差为:0.020,丁的方差为:0.022,⊙甲的方差最小, ⊙成绩最稳定的选手是甲. 故选:A .【点睛】本题考查方差的应用,熟练掌握方差的意义是解题关键. 4.C【分析】根据三角函数可得AB 的长,然后根据勾股定理可求解. 【详解】解:⊙90C ∠=︒,sin 0.5B =,6AC =,⊙12sin ACAB B==,⊙BC = 故选C .【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键. 5.B【分析】根据正n 边形的中心角的度数为360n︒,列方程即可得到答案. 【详解】解:36030n︒=︒,解得12n =. 这个正多边形的边数为12. 故选:B .【点睛】本题考查的是正多边形中心角的知识,掌握中心角的计算公式是解题的关键. 6.B【分析】根据菱形性质,得OB OD BC CD ===;连接OC ,根据圆的对称性,得OB OC OD ==;根据等边三角形的性质,得BOD ∠,再根据圆周角和圆心角的性质计算,即可得到答案.【详解】⊙四边形OBCD 为菱形 ⊙OB OD BC CD === 连接OC⊙四边形ABCD 为⊙O 的内接四边形 ⊙OB OC OD ==⊙OBC △,OCD 为等边三角形 ⊙60BOC COD ∠=∠=︒⊙120BOD BOC COD ∠=∠+∠=︒⊙1602A BOD ︒∠=∠= 故选:B .【点睛】本题考查了圆内接多边形、等边三角形、菱形的知识;解题的关键是熟练掌握圆的对称性、等边三角形、菱形、圆周角、圆心角的知识;从而完成求解.7.C 【分析】由题意易得∽ADF ABC ,然后可得35DF AD BC AB ==,进而问题可求解. 【详解】解:由题意得:∽ADF ABC ,3m,5m AD AB ==, ⊙35DF AD BC AB ==, ⊙BC b =, ⊙35DF b =; 故选C .【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.8.B【分析】根据该种植基地2018年及2020年的蔬菜产量,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意得:2800(1)968x +=.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.B【分析】根据三角形中线的性质得出4AOB S =△,然后根据反比例函数k 的几何意义得解.【详解】解:⊙点C 是OB 的中点,AOC 的面积为2,⊙4AOB S =△,⊙AB x ⊥轴于点B , ⊙142AB OB ⋅=,⊙8AB OB ⋅=,⊙8k ,故选:B .【点睛】本题考查了反比例函数k 的几何意义以及三角形中线的性质,熟知反比例函数k 的几何意义是解本题的关键.10.B【分析】首先作出正六边形的外接圆,根据正多边形的性质,得出阴影部分是正六边形,即将问题转化为阴影部分的面积与大正六边形的面积比,再表示出阴影部分面积和大正六边形的面积,一比即可求得概率.【详解】作正六边形ABCDEF 的外接圆,圆心为O ,如图,设正六边形ABCDEF 的边长为2,AC 与BF ,BD 的交点为H ,N ,过点O 作OM ⊙AB 于点M ,则1AM BM == ,则,,,,,ABO BCO CDO DOE EOF AOF 为等边三角形,⊙S 正六边形ABCDEF =6ABO S,⊙30BOM ∠=︒,⊙2,BO MO == 132ABO S AB OM ==,⊙S 正六边形ABCD =66ABO S =由题可知阴影部分为正六边形,所以60AOF AOB BOC COD DOE EOF ∠=∠=∠=∠=∠=∠=︒,⊙30ABF BAC ∠=∠=︒,⊙ABH 为等腰三角形,⊙,120AH BH AHB =∠=︒,⊙60BHN ∠=︒,同理可得BNC 为等腰三角形,⊙60BNH ∠=︒,BN NC = ,⊙BHN △ 为等边三角形,⊙,BH BN HN ==⊙AH HN CN == ,在Rt ⊙AMH 中,30MAH ∠=︒ ,1cos AM MAH AH AH ∠===解得AH =,⊙HN =⊙S 2243OHN ====⊙S 阴影=6OHN S =⊙P =S 阴影:S 正六边形ABCDEF 13= , 故选:B . 【点睛】本题考查正多边形与圆,垂径定理,同弧所对圆周角等于圆心角的一半,等边三角形的判定与性质,三角函数,概率,解题关键在于熟练相关知识点.11.B【分析】由题意易得12cm OC OA AC =-=,然后根据弧长计算公式可进行求解.【详解】解:OA 的长为30cm ,贴纸部分的宽AC 为18cm ,⊙12cm OC OA AC =-=,又⊙OA 和OB 的夹角为150︒,∴CD 的长为:1501210(cm)180ππ⨯=. 故选:B .【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.12.D【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出第二层的个数,从而算出总的个数.【详解】解:由俯视图易得最底层有4个小正方体,第二层最少有1个小正方体,那么搭成这个几何体的小正方体最少为4+1=5个.故选:D .【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.13.B【分析】根据相似三角形的判定方法即可一一判断.【详解】解:A 、由作图可知:⊙CAD=⊙B ,可以推出⊙C=⊙BAD ,故△CDA 与△ABD 相似,故本选项不符合题意;B 、无法判断△CAD⊙⊙ABD ,故本选项符合题意;C 、由作图可知:AD⊙BC ,⊙⊙BAC=90°,故△CAD⊙⊙ABD ,故本选项不符合题意;D 、由作图可知:AD⊙BC ,⊙⊙BAC=90°,故△CAD⊙⊙ABD ,故本选项不符合题意; 故选B .【点睛】本题考查作图-相似变换,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.14.D【分析】根据题意,先将方程27120x x -+=的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程27120x x -+=得13x =,24x =当3和4分别为直角三角形的直角边时,面积为134=62⨯⨯;当4为斜边,3,面积为12则该直角三角形的面积是6 故选:D . 【点睛】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.15.C【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.【详解】解:设二次函数的解析式为2y ax bx c =++,依题意得:42646a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩,解得:134a b c =⎧⎪=-⎨⎪=-⎩,⊙二次函数的解析式为234y x x =--=232524x ⎛⎫-- ⎪⎝⎭, ⊙10a =>,⊙这个函数的图象开口向上,故A 选项不符合题意;⊙()()2243414250b ac =-=--⨯⨯-=>,⊙这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;⊙10a =>,⊙当32x =时,这个函数有最小值2564-<-,故C 选项符合题意; ⊙这个函数的图象的顶点坐标为(32,254-), ⊙当32x >时,y 的值随x 值的增大而增大,故D 选项不符合题意; 故选:C .【点睛】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.16.B【分析】如图,连接BG .利用三角形的中位线定理证明12DP BG =,求出BG 的最小值,即可解决问题.【详解】解:如图,连接BG .AP PG =,AD DB =,12DP BG ∴=, ∴当BG 的值最小时,DP 的值最小,233(1)(9)(5)31616y x x x =---=--+, (5,3)C ∴,(9,0)B ,5BC ∴,当点G 在BC 上时,BG 的值最小,最小值514=-=,DP ∴的最小值为2,故选:B .【点睛】本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17. 10 57. 【分析】根据等边三角形的性质和折叠的性质可得:,DF +CF +CD =10,DF +BF +BD =BC +BD =14,再证明⊙AED ⊙⊙BDF ,由相似三角形周长的比等于相似比,即可得出结果.【详解】解:⊙⊙ABC 是等边三角形,⊙BC =AB =AC =8,⊙ABC =⊙ACB =⊙BAC =60°,⊙AD =2,⊙BD =6,由折叠的性质可知:CE =DE ,CF =DF ,⊙EDF =⊙C =60°,⊙AE +DE +AD =AC +AD =10,即△AED 周长为10,故答案为:10;⊙DF +BF +BD =BC +BD =14,⊙⊙EDF =⊙BAC =⊙ABC =60°,⊙⊙FDB +⊙EDA =⊙AED +⊙EDA =120°,⊙⊙FDB =⊙AED ,⊙⊙B =⊙A =60°,⊙⊙AED ⊙⊙BDF , ⊙AE AD ED BD BF DF == ⊙AE AD ED ED CE BD BF DF DF CF ++==++ ⊙105147CE CF ==, 故答案为:57. 【点睛】本题考查了等边三角形的性质、折叠变换的性质、相似三角形的判定与性质等知识;本题综合性强,熟练掌握直角三角形的性质,证明三角形相似是解决问题的关键.18. 2 48【分析】设剪去的正方形的边长为x cm ,则制成有盖的长方体铁盒的底面长为(102)cm x -,宽为(6)cm x -,根据长方体铁盒的底面积是224cm ,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设剪去的正方形的边长为x cm ,则制成有盖的长方体铁盒的底面长为(102)cm x -,宽为122(6)cm 2x x -=-, 依题意得:(102)(6)24x x --=,整理得:211180x x -+=,解得:12x =,29x =(不合题意,舍去).⊙该纸盒的体积为324648cm ⨯⨯=;故答案为2,48【点睛】本题考查了一元二次方程的应用以及全等图形,找准等量关系,正确列出一元二次方程是解题的关键.19. y =﹣x 2﹣4x ﹣2<a <﹣1【分析】(1)根据关于原点对称的关系,可得C 2;(2)根据图象可得答案.【详解】解:(1)函数y =x 2﹣4x 的图象为C 1,C 1关于原点对称的图象为C 2,将(-x ,-y )代入C 1可得y =﹣x 2﹣4x ,则C 2对应的函数表达式为y =﹣x 2﹣4x ;故答案为y =﹣x 2﹣4x ;(2)由图象可知,直线y =a (a 为常数)分别与C 1、C 2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a 的取值范围﹣2<a <﹣1. 故答案为:﹣2<a <﹣1.【点睛】本题考查了二次函数的图象与几何变换,解题的关键是求出二次函数的表达式并准确做出图象.20.(1)1222x x ==(2)4【分析】(1)根据一元二次方程的解法可进行求解;(2)根据特殊三角函数值、零次幂及二次根式的运算可进行求解.【详解】解:(1)2430x x --=2447x x -+=()227x -=2x -=⊙1222x x ==(2)原式341=- 322221 4=.【点睛】本题主要考查一元二次方程的解法、特殊三角函数值、零次幂及二次根式的运算,熟练掌握各个运算是解题的关键.21.(1)18,19;(2)中位数;(3)90(人);(4)16【分析】(1)根据条形统计图中的数据,结合众数和中位数的概念可以得到m 、n 的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.(4)根据题意先画出树状图,得出所有等可能性的结果,再根据概率公式即可得出答案.【详解】(1)由条形图知,数据18出现的次数最多,所以众数m =18;中位数是第10、11个数据的平均数,而第10、11个数据都是19,所以中位数n =19+192=19, 故答案为18,19;(2)由题意可得,如果想让60%左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为中位数;(3)若该部门有300名工人,估计该部门生产能手的人数为300×2+420=90(人); (4)将小王、小张、小李、小刘分别记为甲、乙、丙、丁,画树状图如下:⊙共有12种等可能性的结果,恰好选中乙、丙两位同学的有2种,⊙恰好选中小张、小李两人的概率为21=126. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)见解析(2)60 13【分析】(1)由等腰三角形的性质可知⊙B=⊙C,再证⊙DEB=⊙ADC=90°即可解决问题;(2)先求出AD的长,由12•AD•BD=12•AB•DE,即可求解DE的长.【详解】(1)⊙AB=AC,BD=CD,⊙AD⊙BC,⊙B=⊙C,⊙DE⊙AB,⊙⊙DEB=⊙ADC,⊙⊙BDE⊙⊙CAD.(2)⊙AB=AC,BD=CD,⊙AD⊙BC,在Rt△ADB中,AD=12,⊙12•AD•BD=12•AB•DE,⊙DE=6013.【点睛】本题考查相似三角形的判定,勾股定理、等腰三角形的性质等知识,解题的关键是熟练掌握基本知识.23.(1)(2)205m【分析】(1)过点C作CD⊙AB于点D,分别在Rt△ACD和Rt△CDB中,解直角三角形即可求得BC的长;(2)由题意可得AC+BC及AB的长,则计算AC+BC−AB即可求得结果.【详解】(1)过点C作CD⊙AB于点D,由题意得,⊙A=30°,⊙BCE=75°,AC=600m,在Rt⊙ACD中,⊙A=30°,AC=600,⊙CD=1AC=300(m),2AD=m),⊙⊙BCE=75°=⊙A+⊙B,⊙⊙B=75°﹣⊙A=45°,⊙CD=BD=300(m),BC=(m),故景点B和C处之间的距离为;(2)由题意得:AC+BC=(m,m,AB=AD+BD=(AC+BC﹣AB=(≈204.6≈205(m),即大桥修建后,从景点A到景点B比原来少走约205m.【点睛】本题是解直角三角形的实际应用,关键理解方位角,并通过作辅助线把非直角三角形转化为直角三角形是解题的关键.对于非直角三角形问题,常常作垂线转化为直角三角形问题解决.24.(1)见解析;(2)【分析】(1)利用等腰三角形的性质及三角形的外角,找到角与角之间的等量关系,再通过等量代换即可证明;(2)添加辅助线后,证明三角形相似,得到对应角相等,所以角的正切值也相等,求出直角三角形的直角边长,再把BP 放到直角三角形中,利用勾股定理求解.【详解】解:(1)证明:连接OP ,取y 轴正半轴与O 交点于点Q ,如下图:,OP ON OPN PBO =∴∠=∠,POQ ∠为PON △的外角,2POQ OPN PBO PBO ∴∠=∠+∠=∠,90POQ POA POA PAO ∠+∠=∠+∠=︒,PAO POQ ∴∠=∠,2PAO PBO ∴∠=∠.(2)过点Q 作PO 的垂线,交PO 与点C ,如下图:由题意:在Rt APO 中,53tan 2043OP PAO AP ∠===,由(1)知:,QOC OAP APO OCQ ∠=∠∠=∠,Rt APO Rt OCQ ∽,3tan ,54CQ COQ OQ CO ∴∠===, 4,3CO CQ ∴==,541PC PO CO ∴=-=-=,PQ ∴==由圆的性质,直径所对的角为直角;在Rt QPB △中,由勾股定理得:BP =即BP =【点睛】本题考查了圆的性质,等腰三角形的性质、直角三角形、相似三角形的判定与性质、切线的性质、勾股定理、特殊角度的正切值,解答的关键是:掌握相关的知识点,会添加适当的辅助线,找到角与角、边与边的等量关系,通过等量代换,利用勾股定理建立等式求解. 25.(1)AOH △的周长为24(2)反比例函数为48y x =-;一次函数的解析式为122y x =-+ (3)使k ax b x+>成立的x 的取值范围为8x <-或012x <<【分析】(1)根据三角函数可知8AH =,然后根据勾股定理可得10OA =,然后问题可求解; (2)由(1)可知点()8,6A -,则可得反比例函数解析式,然后把点B 的坐标代入求解,进而可求解一次函数的解析式;(3)根据题意及结合图象可进行求解.【详解】(1)解:⊙AH y ⊥轴,⊙90AHO ∠=︒,⊙6OH =,4tan 3AOH ∠=, ⊙tan 8AH OH AOH =⋅∠=,⊙10OA ==,⊙AOH △的周长为24OH AH OA ++=;(2)解:由(1)可知:点()8,6A -,⊙8648k =-⨯=-,⊙反比例函数的解析式为48y x=-,把点(),4B m -代入48y x =-得:48124m =-=-, ⊙点()12,4B -, ⊙86124a b a b -+=⎧⎨+=-⎩, 解得:122a b ⎧=-⎪⎨⎪=⎩, ⊙一次函数的解析式为122y x =-+; (3)解:由图象及(2)可知:使k ax b x +>成立的x 的取值范围为8x <-或012x <<. 【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.26.(1)25t(2)⊙102t +,2205t -,211992055y x x =-++;⊙小球与点A 的水平距离10分米 (3)高杆DC 与y 轴的距离d 的取值范围7.5d ≥【分析】(1)设2h at =,将15t h ==,代入可得; (2)⊙将10v =代入2vt +横坐标102x t =+,可得y 与x 的关系式;⊙把15y =代入2205y t =-求得t ,再把t 的值代入102t +即可;(3)将12.95113.95+=代入2205t -,求出 1.1t =,可得代数式1.12v +,当5v ≥时,利用不等式性质求得d 的范围.【详解】(1)解:由题意设:2h at =,把15t h ==,代入得, 5a =,⊙25h t =,故答案为:25h t =;(2)⊙当10v =时,2102vt t +=+,220205y h t =-=-,故答案为:102t +,2205t -;由102x t =+得,210x t -=, ⊙22220510205y x t -⎛⎫=-= ⎝-⨯⎪⎭211992055x x =-++, ⊙211992055y x x =-++; ⊙当15y =时,220515t -=,⊙1t =或(1t =-舍去),⊙1010t =,⊙当15y =时,小球与点A 的水平距离是10分米;(3)由题意得,220512.951t -=+,解得: 1.1t =或 1.1t =-(舍去)⊙2 1.12vt v +=+⊙5v ≥⊙1.12 5.527.5v +≥+=,⊙7.5d ≥.【点睛】本题考查了二次函数的应用,解决问题的关键是正确理解题意,转化为二次函数的问题.。
2023年安徽省合肥市庐阳中学九年级下学期绿色调研数学试卷含答案解析
庐阳中学2022—2023学年第二学期九年级绿色调研数学试卷(考试时间120分钟,试卷分值150)一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列各数中,比2-小的数是( )A. 3- B. 1- C. 0 D. 1【答案】A【解析】【分析】根据有理数比较大小的方法进行求解即可.【详解】解:∵112233-=<-=<-=,∴32101-<-<-<<,故选A .【点睛】本题主要考查了有理数比较大小,熟知正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小是解题的关键.2. 下列运算结果为6a 的是( )A. ()23a -B. ()32a -C. 23a a ⨯D. 33a a +【答案】A【解析】【分析】分别根据幂的乘方和积的乘方,同底数幂的乘法,合并同类项法则计算即可.【详解】解:A 、()236a a -=,故符合题意;B 、()326a a -=-,故不符合题意;C 、235a a a ⨯=,故不符合题意;D 、3332a a a +=,故不符合题意;故选A .【点睛】本题主要考查了幂的乘方和积的乘方,同底数幂的乘法,合并同类项,熟记幂的运算法则是解答本题的关键.3. 2023年2月合肥轨道交通日客运量超过100万人次有22天,日均107.6万人次,107.6万用科学记数法表示为( )A. 41.07610⨯B. 4107.610⨯C. 61.07610⨯D. 70.107610⨯的【答案】C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:61076000 1.07610=⨯故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如图,直线a b P ,直线c 交直线a 、直线b 与A 、B 两点,BA BC =,140CBA ∠=∠=︒,则2∠的度数为( )A. 40︒B. 30︒C. 35︒D. 20︒【答案】B【解析】【分析】根据等边对等角以及三角形内角和求出70BAC BCA ∠=∠=︒,再根据平行线的性质得到12180CAB ABC ∠+∠+∠+∠=︒,再代入计算即可.【详解】解:∵BA BC =,∴()1180702BAC BCA CBA ∠=∠=︒-∠=︒,∵a b P ,∴12180CAB ABC ∠+∠+∠+∠=︒,∴()2180130CAB ABC ∠=︒-∠+∠+∠=︒,故选B .【点睛】本题考查了等边对等角,平行线的性质,三角形内角和,解题的关键是利用等边对等角求出CAB ∠的度数.5. 圆柱切除部分之后及其俯视图如图所示,则其主视图为( )A. B.C. D.【答案】D【解析】【分析】根据主视图的定义,即可进行解答.【详解】解:根据题意可得:其主视图为:故选:D .【点睛】本题主要考查了主视图,解题的关键是掌握主视图的定义:从正面看到的是主视图;注意看得见的棱用实线,看不见的棱用虚线.6. 关于x 的一元二次方程()22210x k x k k --+-=的根的情况,以下说法正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 根的情况与k 的取值有关【答案】A【解析】【分析】根据一元二次方程根的判别式即可进行解答.【详解】解:∵21,21,a b k c k k ==-=-,∴()()222421410b ac k k k ∆=-=----=>⎡⎤⎣⎦,∴该方程有两个不相等的实数根,故选:A .【点睛】本题主要考查了已知一元二次方程根的情况求参数的取值范围,解题的关键是熟练掌握当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根.7. 在疫情防控期间,某校门口设置了A ,B ,C 三条入校测温通道,甲乙两同学从同一条通道进入校园的概率是( )A. 12 B. 13 C. 14 D. 15【答案】B【解析】【分析】画树状图,共有9种等可能的结果,甲乙两同学从同一个测温通道进入校园的结果有3种,再由概率公式求解即可.【详解】解:画树状图如图:共有9种等可能的结果,甲乙两同学从同一个测温通道进入校园的结果有3种,∴甲乙两同学从同一个测温通道进入校园的概率为3193=,故选B .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,等边三角形ABC 的顶点B ,C 在O e 上,A 在O e 内,OD AC ⊥于D 点,4AB =,OD =O e 的半径为( )A.B.C.D.【答案】D【解析】【分析】连接AO并延长,交BC于点E,连接OB,OC,证明AO垂直平分BC,根据等边三角形的性质,求出1302CAE BAC∠=∠=︒,利用特殊角的三角函数值,求出3tan2ODADOAD====∠,从而求出52CD=,根据勾股定理求出圆的半径即可.【详解】解:连接AO并延长,交BC于点E,连接OB,OC,如图所示:∵ABCV为等边三角形,∴4AB BC AC===,60BAC ABC ACB==︒=∠∠∠,∵OB OC=,∴A、O两点在线段BC的垂直平分线上,∴AO垂直平分BC,∴AE BC⊥,∵AB AC=,AE BC⊥,∴AE平分BAC∠,∴1302CAE BAC∠=∠=︒,∵OD AC⊥,∴90ADO∠=︒,∵30OAD∠=︒,OD=∴3tan 2OD AD OAD ====∠,∴35422CD =-=,∴CO ===,即O e,故D 正确.故选:D .【点睛】本题主要考查了垂直平分线的判定,等边三角形的性质,特殊角的三角函数值,勾股定理,解题的关键是作出辅助线,熟练掌握垂直平分线的判定,证明AO 垂直平分BC .9. 已知一次函数2y ax b =+的图象如图所示,则二次函数22y ax bx =+的图象可能是( )A. B.C. D.【答案】C【解析】【分析】根据已知一次函数图像得到a ,b 的符号以及2b a =-,据此判断二次函数图像即可.【详解】解:根据2y ax b =+的图像可知:20a <,0b >,且图像经过()1,0,∴a<0,20y a b =+=,即2b a =-,∴二次函数22y ax bx =+图像中,开口向下,对称轴为直线2222b b a x a a a-=-=-=-=,∴可判断二次函数22y ax bx =+图像经过()4,0,∴符合要求的图像为C ,故选C .【点睛】本题考查了二次函数和一次函数图像的综合判断,解题的关键是根据图像获得各部分系数的符号.10. 矩形ABCD 中,E 为边CD 上一点,延长AE 与BC 的延长线交于点F ,G 在CD 的延长线上且GAD EAD ∠=∠,连接FG .以下结论错误的是( )A. BC CE GD CF⋅=⋅ B. AG CD AF DE ⋅=⋅C. CFG ABCES S =四边形△ D. AGF ABCD S S =四边形△【答案】C【解析】【分析】证明()ASA ADG ADE △≌△,得到AG AE =,DE DG =,证明ADE FCE V V ∽,得到ADG FCE △∽△,推出AD CE DG CF ⋅=⋅,等量代换可得BC CE DG CF ⋅=⋅,可判断A ,再证明ABF EDA ∽△△,得到AB AE AF DE ⋅=⋅,代换可得CD AG AF DE ⋅=⋅,可判断B ,再分别表示AGF S △和ABCD S 四边形,根据ADE FCE V V ∽推出AD CE CF DE ⋅=⋅,可推出AGF ABCD S S =四边形△,即可判断D ,最后由于无法证明CFG ABCE S S =四边形△可得结果.【详解】解:在矩形ABCD 中,90ADE ∠=︒,AD BC ∥,AD BC =,AB CD =,在ADG △和ADE V 中,GAD EAD AD ADADG ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADG ADE △≌△,∴AG AE =,DE DG =,∵AD BC ∥,∴ADE FCE V V ∽,∴ADG FCE △∽△,∴AD DG CF CE=,即AD CE DG CF ⋅=⋅,∴BC CE DG CF ⋅=⋅,故A 正确,不合题意;∵AD BC ∥,∴DAE AFB ∠=∠,又ADE ABF ∠=∠,∴ABF EDA ∽△△,∴AB AF DE AE=,即AB AE AF DE ⋅=⋅,∵AB CD =,AG AE =,∴CD AG AF DE ⋅=⋅,故B 正确,不合题意;∵()()11222AGF EG AD CF DE AD CF AD DE CF DE S =⨯⨯+=⨯⨯+=⋅+⋅△,()ABCD S AD CD AD DE CE AD DE AD CE =⨯=⨯+=⋅+⋅四边形,∵ADE FCE V V ∽,∴AD DE CF CE=,∴AD CE CF DE ⋅=⋅,∴AGF ABCD S S =四边形△,故D 正确,不合题意;由于缺乏条件,故无法证明CFG ABCE S S =四边形△,故C 错误,符合题意;故选C .【点睛】本题考查了矩形的性质,相似三角形的判定和性质,多边形的面积,全等三角形的判定和性质,解题的关键是灵活运用相似三角形的性质,得到线段的关系.二、填空题(本大题共4小题,每小题5分,满分20分)11. + =_____.【答案】【解析】【分析】+=+=故答案为:12. 因式分解:22mx mx m -+=_____.【答案】2(1)m x -【解析】【分析】利用提公因式法提取m 再利用完全平方公式分解因式即可.【详解】解:()()2222211-+=-+=-mx mx m m x x m x ,故答案为:()21m x -【点睛】本题考查用提公因式法,完全平方公式法分解因式,熟练掌握提公因式法,完全平方公式法是解题的关键.13. 如图,在等腰直角三角形ABC 中,AB AC ==,点E ,F 分别为AB ,BC 上的点,将BEF △沿EF 折叠,点B 的对应点恰好落在AC 边的中点D 处,则sin DFC ∠=__________.【答案】35##0.6【解析】【分析】过D 作DG BC ⊥于G ,利用等腰直角三角形的性质得出DG ,BC 的长,进而得出BG ,设BF x =,根据折叠得到DF x =,再利用勾股定理得出DF 的长,最后利用根据正弦的定义求解即可.【详解】解:过D 作DG BC ⊥于G ,∵AB AC ==D 为AC 中点,∴12AD CD AC ===∵ABC V 是等腰直角三角形,∴45C ∠=︒,4BC ==,∴CDG V 是等腰直角三角形,∴1CG DG ===,∴413BG =-=,设BF x =,则3FG x =-,由折叠可知:DF x =,在DFG V 中,222DG FG DF +=,∴()22213x x +-=,解得:53x =,即53DF BF ==,∴13sin 553DG DFC DF ∠===,故答案为:35.【点睛】此题主要考查了等腰直角三角形的判定和性质,翻折变换以及勾股定理,解直角三角形等知识,根据已知得出DG CG =的长是解题关键.14. 已知a ,b ,c ,d 四个数满足:42234a b c --==,234d a b c =++,其中a ,b ,c 为非负数.(1)若a b =,则c =__________.(2)d 可取的整数有__________个.【答案】①. 265 ②. 15【解析】【分析】(1)设42=234a b c k --==,可得=2a k ,=43b k -,再根据a b =求出k 的值即可求解;(2)设42=234a b c k --==,可得=2a k ,=43b k -,=42c k +,再根据a ,b ,c 为非负数即可求出k 取值范围,从而求出d的取值范围即可求解.的【详解】解:(1)设42=234a b c k --==,=2a k ∴,=43b k -,=42c k +,a b =,2=43k k ∴-,4=5k ∴,426=42=42=55c k ∴+⨯+,故答案为:265;(2)解:42=234a b c k --==设, =2a k ∴,=43b k -,=42c k +,∵a ,b ,c 为非负数,20k ∴≥,430k -≥,420k +≥,403k ∴≤≤,()()234=434=11204342d a b c k k k k =+++++-+ ,220343d ∴≤≤,∴d 可取的整数有15(个),故答案为:15.【点睛】本题考查了比例的性质和不等式的性质,熟练掌握比例的性质是解题的关键.三、(本大题共2小题,每小题8分,总计16分)15. 011)2sin 60()4π--+︒+.【答案】3+【解析】【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案.124-++14=-++=3【点睛】本题主要考查了实数运算,掌握运算法则正确化简各数是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下学期期末考试试卷
数 学
一、选择题(本大题共10道小题,每小题3分,满分30分.每道小题给出的四个选项中,只有一项是符合题设要求的,
请把你认为符合题目要求的选项填写在下表内)1.若反比例函数)0(≠=
k x
y 的图象经过点P (-1,1),则k 的值是 A .0 B .-2 C .2 D .-1 2.一元二次方程652=+x x 的一次项系数、常数项分别是
A. 1,5
B. 1,-6
C. 5,-6
D. 5,6 3.一元二次方程210x x ++=的根的情况为 A .有两个相等的实数根; B .没有实根;
C .只有一个实数根;
D .有两个不相等的实数根;
4.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm 2,则较大多边形的面积为
A .9cm 2
B .16cm 2
C .56cm 2
D .24cm 2 5.000sin30tan 45cos60+-的值等于
B.0
C.1
D.
6.在直角三角形ABC中,已知∠C=90°,∠A=60°,AC=103,则BC等于
A.30 B.10 C.20
D.53
7.如图1,Rt△ABC∽Rt△DEF,
∠A=35°,则∠E的度数为
A.35°
B.45°
C.55°
D.65°
图1 图2 图3
8.如图2,为测量河两岸相对两电线杆A、B间的距离,在距A点16m的C处(AC⊥AB),测得∠ACB=52°,则A、B之间的距离应为
A.16sin 52°m B.16cos 52°m C.16tan 52°m D.
16
tan 52°
m
9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?
A.100只B.150只C.180只D.200只
2=++c bx ax 10.如图3,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为 A
B
C
D
二、填空题(本大题共8道小题,每小题3分, 满分24分)
11.已知函数是反比例函数,则m 的值为 1 .
12.已知关于
x 的一个一元二次方程一个根为1,则
c b a ++=____0___.
13.甲同学的身高为1.5m ,某一时刻他的影长为1m ,此时一塔影长为20 m ,则该塔高为__30__m.
14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是.22S 17,15S ==乙甲.则成绩比较稳定的是乙(填“甲”、“乙”中的一个). 15.已知α是锐角,且3
5
Sin α=
,则tan α=43.
16.如图4,王伟家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60度方向上的500m 处,那么水
塔所在的位置到公路的距离
AB 是250
图4
22
(1)m y m x
-=+
17.已知锐角A 满足关系式22sin 7sin 30A A -+=,则sin A 的值为
2
1
. 18.已知关开220x x x a +-=的一元二次方程的两个实根为12,x x 且121123
x x +=则a 的值为3. 三、解答题(每小题6分, 满分12分)
19.解下列方程
(1)x (x -2)+x -2=0.(2)x 2-4x -12=0
解:(1)提取公因式,得(x -2)(x +1)=0,解得x 1=2,x 2=-1. 3分 (2). x 1=6,x 2=-26分
20.已知1-=x 是一元二次方程022=--mx x 的一个根,求m 的值和方程的另一个根.
解:m =1, 3分; 另一个根为2=x 6分
四、解答题(每小题8分, 满分16分)
21.如图5,在△ABC 中,∠ACB=90°,CD ⊥AB,垂足为D,若角B=30°,
CD=6,
求AB 的长.
解:3
8=AB
图5
22.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的
方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图6).
图6 根据以上提供的信息解答下列问题:
(1)本次问卷调查共抽取的学生数为___200_人,表中m的值为__90__;
(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少?
解:(1)40÷20%=200人,
200×45%=90人;2分
(2)50
200
×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图所
示:
第22题答图5分
(3) 2000×10%=200人,
答:这些学生中“不太了解”梅山文化知识的人数约为200人.8分
五、解答题(每小题9分, 满分18分)
23.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
解:(1)设平均每次下调的百分率为x.
由题意,得5(1-x)2=3.2.
解方程,得x1=0.2,x2=1.8.
因为降价的百分率不可能大于1,所以x2=1.8不符合题意,
符合题目要求的是x1=0.2=20%.
答:平均每次下调的百分率是20%. 5分
(2)小华选择方案一购买更优惠.
理由:方案一所需费用为3.2×0.9×5 000=14 400(元),
方案二所需费用为3.2×5 000-200×5=15 000(元).
∵14 400<15 000,
∴小华选择方案一购买更优惠.9分
24.如图7,已知△ABC∽△ADE,AE=5 cm,EC=3 cm,BC=7 cm,∠BAC=45°,∠C=40°.
(1)求∠AED和∠ADE的大小;
(2)求DE的长.
图7
解:(1)∠AED=40°,∠ADE=95°. 4分
(2)∵△ABC∽△ADE,∴AE
AC
=
DE
BC
,即
5
537
DE
=
+
,∴DE=4.375 cm
9分
六、综合探究题(每小题10分,满分20分)
25.超速行驶是引发交通事故的主要原因之一,上周末,小明和三位同学尝试用自己所学的知识检测车速,如图8,观测点设在A处,离娄新高速的距离(AC)为30 m,这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为4s,∠BAC=75°.
(1)求B、C两点的距离;
(2)请判断此车是否超过了娄新高速100km/h的限制速度?(计算时距离精确到得分
1 m,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,3≈1.732,100 km/h≈27.8m/s)
图8
解:(1)在Rt△ABC中,∠ACB=90°,
∠BAC=75°,AC=30 m,
∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112 m;6分(2)∵此车速度112÷4=28m/s>27.8m/s≈100 km/h,
∴此车超过限制速度.
10分
26.如图9,一次函数y=kx+b与反比例函数y=6
x(x>0)的图象交于A(m,6),B(3,
n)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.
图9
解:(1)分别把A (m ,6),B (3,n )代入y =6
x (x >0)得,6m =6,3n =6,解得m =1,
n =2,∴A 点坐标为(1,6),B 点坐标为(3,2).把点A (1,6),B (3,2)代入y =kx
+b 得,⎩⎪⎨⎪⎧k +b =6,3k +b =2,解得⎩⎪⎨⎪⎧k =-2,
b =8.∴一次函数的解析式为y =-2x +8;
5分
(2)设一次函数y =kx +b 与y 轴交于点C ,与x 轴交于点D.当x =0时,y =-2x +8=8,则C 点坐标为(0,8).当y =0时,则有-2x +8=0,解得x =4,∴D 点坐标为(4,0),∴S △AOB =S △COD -S △COA -S △BOD =12×4×8-12×8×1-1
2×4×2=8.
10分
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。