20-21第5章习题课4带电粒子在磁场中的运动

合集下载

带电粒子在磁场中的运动习题含答案.docx

带电粒子在磁场中的运动习题含答案.docx

带电粒子在磁场中的运动练习题如图所示,一个带正电荷的物块m由静止开始从斜面上 A 点下滑,滑到水平面 BC上的 D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过 B 处时的机械能损失.先在 ABC所在空间加竖直向下的匀强电场,第二次让物块 m从 A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从 A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是()A.D′点一定在B.D′点一定与C.D″点一定在D.D″点一定与D点左侧D点重合D点右侧D点重合2.一个质量为 m、带电荷量为 +q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v0,在以后的运动过程中,圆环运动的速度图象可能是()A.B.C.D.3.如图所示,在长方形abcd 区域内有正交的电磁场,ab=bc/2= L,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc边的中点P 射出,若撤去磁场,则粒子从 c 点射出;若撤去电场,则粒子将(重力不计)()A.从C.从b 点射出a 点射出B.从D.从b、P间某点射出a、b 间某点射出4.如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴 a、b、c 带有等量同种电荷,其中 a 静止, b 向右做匀速运动,关系,正确的是()c 向左匀速运动,比较它们的重力Ga、Gb、Gc的大小A.Ga最大C.Gc最大B.Gb最大D.Gb最小5.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB方向射入磁场,经过t 时间从 C点射出磁场, OC 与OB成60°角。

现将带电粒子的速度变为v/3,仍从A点射入磁场,不计重力,则粒子在磁场中的运动时间变为()A. 1t B. 2 t C. 1 t D. 3 t236.如图所示,在 xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-2L ,0)、Q(0,-2L )为坐标轴上的两个点.现有一电子从P 点沿 PQ方向射出,不计电子的重力,则. ( )A.若电子从P 点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一定为L2B.若电子从P 点出发经原点O到达 Q点,则电子运动的路程一定为LC.若电子从P 点出发经原点O到达 Q点,则电子运动的路程可能为2LD.若电子从P 点出发经原点O到达 Q点,则 n L( n 为任意正整数)都有可能是电子运动的路程7.如图,一束电子(电量为e)以速度 v0垂直射入磁感应强度为B,宽为 d 的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求:( 1)电子的质量是多少?( 2)穿过磁场的时间是多少?( 3)若改变初速度,使电子刚好不能从 A 边射出,则此时速度v 是多少?8. 点S为电子源,它只在下图所示的纸面上360°范围内发射速率相同、质量为、电荷量为e的电m子, MN是一块足够大的竖直挡板,与S 的水平距离 OS=L。

(物理)物理带电粒子在磁场中的运动专项习题及答案解析及解析

(物理)物理带电粒子在磁场中的运动专项习题及答案解析及解析

(物理)物理带电粒子在磁场中的运动专项习题及答案解析及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (23B E【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()22211r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子21L v t =,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(-,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a4.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1. 匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线 运动.2. 匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周 运动. 质量为m 、电荷量为q 的带电粒子以初速度 v 垂直进入匀强磁场 B 中做匀速圆周运动, 其角速度为3,轨道半径为R ,运动的周期为T ,推导半径和周期公式:推导过程:运动时间t=3•对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点. (1)粒子圆轨迹的圆心的确定的常规方法① 若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线, 同时作两位置连线的中垂线, 两垂线的交点为圆轨迹的圆心, 如图4— 2所示.② 若已知做圆周运动的粒子通过某两个具体位置的速度方向, 可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图 4—3所示.③ 若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径 R ,可在该位 置上作速度的垂线,垂线上距该位置 R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已 知位置的哪一侧),如图4 — 4所示.x 正方向成60°的方向射入第一象限内的匀强磁场中, 匀强磁场的磁感应强度 B 和射出点的坐标。

(坐标为(o , , 3a ))例2、电子自静止开始经 M 、N 板间(两板间的电压为 U )的电场加速后从 A 点垂直 于磁场边界射入宽度为 d 的匀强磁场中,电子离开磁场时的位置 P 偏离入射方向的距离为 L , 如图2所示,求:例1、一个质量为 m 电荷量为q 的带电粒子从x 轴上的P ( a , 0)点以速度v ,沿与并恰好垂直于y 轴射出第一象限。

求 图4— 2图4 — 3 图4— 4(1)正确画出电子由静止开始直至离开磁场时的轨迹图;(2)匀强磁场的磁感应强度.(已知电子的质量为m,电量2L 2mU⑵利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

习题课:带电粒子在电磁场中的运动

习题课:带电粒子在电磁场中的运动

(1)若粒子的初速度方向与y轴正向夹角为60°, 且粒子不经过圆形区域就能到达B点,求粒子的初速度 大小v1;
r1 sin 30 r1 3a
0
r1 2a
2qBa v1 m
600
v12 qv1 B m r1
(2)若粒子的初速度方向与y轴正向夹角为60°, m t 在磁场中运动的时间为 ,且粒子也能到达B点, 3qB 求粒子的初速度大小v2; t 1 2m T T 6 qB
【例16】如图所示,在x-o-y坐标系中,以(r,0)为圆心、r为 半径的圆形区域内存在匀强磁场,磁场的磁感应强度大 小为B,方向垂直于纸面向里.在y>r的足够大的区域内,存 在沿y轴负方向的匀强电场,场强大小为E.从O点以相同 速率向不同方向发射质子,质子的运动轨迹均在纸面内, 且质子在磁场中运动的轨迹半径也为r.已知质子的电荷 量为q,质量为m,不计质子所受重力及质子间相互作用力 的影响. ⑬若质子沿与x轴正方向成夹角θ的方向从O点射入第一 象限的磁场中,求质子在磁场中运动的总时间.
6.隐形磁场边界:
【例10】一匀强磁场,磁场方向垂直于xy平面,在xy 平面上,磁场分布在以O为中心的一个圆形区域内。一 个质量为m、电荷量为q的带电粒子,由原点O开始运 动,初速为v,方向沿x正方向。后来,粒子经过y轴上 的P点,此时速度方向与y轴的夹角为30°,P到O的距 离为L,如图所示。不计重力的影响。求磁场的磁感强 度B的大小和xy平面上磁场区域的半径R。
【例15】如图甲所示,在第Ⅱ象限内有水平向右的匀 强电场,电场强度为E,在第Ⅰ、Ⅳ象限内分别存在 如图所示的匀强磁场,磁感应强度大小相等.有一个 带电粒子以垂直于x轴的初速度v0从x轴上的P点进入 匀强电场中,并且恰好与y轴的正方向成45°角进入 磁场,又恰好垂直进入第Ⅳ象限的磁场.已知OP之 间的距离为d,则带电粒子在磁场中第二次经过x轴时, 求在电场和磁场中运动的总时间.

带电粒子在匀强磁场中的运动(习题课)

带电粒子在匀强磁场中的运动(习题课)
6 qB 3qB
1、两个对称规律:
粒子在磁场中做圆周运动的对称规律: 从同一直线边界射入的粒子,从同一边界射出时, 速度与边界的夹角相等。
2、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求正电子的电量和质量之比?
一侧有匀强磁场,磁场方向垂直纸面向里,磁感 应强度大小为B 。一带电粒子从平板上的狭缝O处 以垂直于平板的初速v射入磁场区域,最后到达平 板上的P 点。已知B 、v以及P 到O的距离l .不计 重力,求此粒子的电荷q与质量m 之比。
解:粒子初速v垂直于磁场,粒子在磁场中受洛伦兹 力而做匀速圆周运动,设其半径为R ,
变化2、假如 化1。
mg
2qE
问题同变
变化3、小球下滑速度为最大速
度一半时的加速度。
变化4:假如电场反向,判断 运动情形。
(2)圆周运动情形
例1、用绝缘细线悬吊着的带正电小 球在匀匀强磁场中做简谐运动, 则
A、当小球每次通过平衡位置时, 动能相同
B、当小球每次通过平衡位置时,速 度相同
C、当小球每次通过平衡位置时, 丝线拉力相同
带电粒子做圆周运动的 分析方法-圆心的确定
(1)已知入射方向和出射方向,可以通过入射点和出 射点分别作垂直与入射方向和出射方向的直线,两条 直线的交点就是圆弧轨道的圆心
O
V
M
P
V0
带电粒子做圆周运动的 分析方法-圆心的确定
(2)已知入射方向和出射点的位置时,可以通过入射 点作入射方向的垂线,连接入射点和出射点,作其中 垂线,这两条垂线的交点就是圆弧轨道的圆心.

物理物理带电粒子在磁场中的运动练习题含答案

物理物理带电粒子在磁场中的运动练习题含答案

【物理】物理带电粒子在磁场中的运动练习题含答案(总27页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除【物理】物理带电粒子在磁场中的运动练习题含答案一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB∥CD、AD∥BC,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R=解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

(完整版)带电粒子在磁场中的运动习题含答案

(完整版)带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动练习题2016.11.231. 如图所示,一个带正电荷的物块m由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( )A.D′点一定在D点左侧B.D′点一定与D点重合C.D″点一定在D点右侧D.D″点一定与D点重合2. 一个质量为m、带电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v0,在以后的运动过程中,圆环运动的速度图象可能是()A.B.C.D.3. 如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L,一带电粒子从ad的中点垂直于电场和磁场方向射入,恰沿直线从bc边的中点P射出,若撤去磁场,则粒子从c点射出;若撤去电场,则粒子将(重力不计)()A.从b点射出B.从b、P间某点射出C.从a点射出D.从a、b间某点射出4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左匀速运动,比较它们的重力Ga、Gb、Gc的大小关系,正确的是()A.Ga最大B.Gb最大C.Gc最大D.Gb最小5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。

现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ∆21B. t ∆2C.t ∆31D. t ∆36. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个点.现有一电子从P 点沿PQ 方向射出,不计电子的重力,则. ( )A .若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则电子运动的路程一定为2LπB .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为L πC .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程可能为2L πD .若电子从P 点出发经原点O 到达Q 点,则n L π(n 为任意正整数)都有可能是电子运动的路程7. 如图,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求: (1)电子的质量是多少? (2)穿过磁场的时间是多少?(3)若改变初速度,使电子刚好不能从A 边射出,则此时速度v 是多少?8. 点S为电子源,它只在下图所示的纸面上360°范围内发射速率相同、质量为m、电荷量为e的电子,MN是一块足够大的竖直挡板,与S的水平距离OS=L。

带电粒子在磁场中的运动精品文档

带电粒子在磁场中的运动精品文档

⑴这个结论与离子带何种电荷、电荷多少都无关。
⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力
方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹
既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛
伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨
迹是一条复杂曲线。
(3)带电质点在第四象限空间运动过程中最小速度的
大小和方向.
【解析】(1)参见图3-3-5,带电质点从P1到P2,由 平抛运动规律,得
h 1 gt2

2
v0

2h t

vy gt

求出v
v
2 0

v
2 y

2
gh

方 向 与 x轴 负 方 向 成 45角
2 带 电 质 点 从 P2到 P3, 重 力 与 电 场 力 平 衡 , 洛 伦 兹 力
带电粒子在组合场中的运动问题,解题的关 键是正确地画出粒子的运动轨迹图.解题时将其 在匀强电场中的运动分解为沿着电场方向的匀加 速直线运动,垂直于电场方向的匀速直线运 动.在磁场中运动的核心问题还是“定圆心,求 半径,画轨迹”.
【例3】(2019·全国大纲卷)如图3-3-4, 与水平面成45°角的平面MN将空间分成 Ⅰ和Ⅱ两个区域.一质量为m、电荷量为 q(q>0) 的 粒 子 以 速 度 v0 从 平 面 MN 上 的 P0 点水平向右射入Ⅰ区.粒子在Ⅰ区运动
理解复合场中的几个特殊物理模型的原理
3、电磁流量计
如图所示,一圆形导管 直径为d,用非磁性材料制 成,其中有可以导电的液体
向左流动。
原理:

带电粒子在磁场中的运动习题知识点及练习题含答案

带电粒子在磁场中的运动习题知识点及练习题含答案

带电粒子在磁场中的运动习题知识点及练习题含答案一、带电粒子在磁场中的运动压轴题1.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==2.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比; (2)框架以CD 为轴抬起后,AB 边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起后,AB 边距桌面的高度为222v g.【解析】 【分析】 【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r 2+r 2=L 2, 解得:r =22L , 小球在磁场中做圆周运的周期:T =02rv π,小球在磁场中的运动时间:t1=1 4 T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x=r=v0t2,运动时间:t2=2L,则:t1:t2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222v,对小球,由牛顿第二定律得:a=mgsinmθ=g sinθ,AB边距离桌面的高度:h=L sinθ=222v;3.如图所示,直线y=x与y轴之间有垂直于xOy平面向外的匀强磁场1B,直线x=d与y=x 间有沿y轴负方向的匀强电场,电场强度41.010V/mE=⨯,另有一半径R=1.0m的圆形匀强磁场区域,磁感应强度20.20TB=,方向垂直坐标平面向外,该圆与直线x=d和x轴均相切,且与x轴相切于S点.一带负电的粒子从S点沿y轴的正方形以速度0v进入圆形磁场区域,经过一段时间进入磁场区域1B,且第一次进入磁场1B时的速度方向与直线y=x垂直.粒子速度大小51.010m/sv=⨯,粒子的比荷为5/ 5.010C/kgq m=⨯,粒子重力不计.求:(1)粒子在匀强磁场2B中运动的半径r;(2)坐标d 的值;(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】解:(1) 由带电粒子在匀强磁场中运动可得:2020v B qv m r= 解得粒子运动的半径:1r m =(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212y at =Eq a m=tan 45v at︒=联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:)12r y R =+02v v =由带电粒子在匀强磁场中运动可得:211vB qv m r '=解得:10.1B T '=若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r由如图所示几何关系得:()2222r r y R +=+由带电粒子在匀强磁场中运动可得:212vB qv m r ''=解得1210.2410B T T +''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:1114t T =102RT v π= 20x t v =3212t T =222r T vπ=解得:()551232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===,所以()()00tan 22H x x x y y θ=-=-,由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。

高中物理带电粒子在磁场中的运动技巧和方法完整版及练习题含解析

高中物理带电粒子在磁场中的运动技巧和方法完整版及练习题含解析

高中物理带电粒子在磁场中的运动技巧和方法完整版及练习题含解析一、带电粒子在磁场中的运动专项训练1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=2.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0<y <2R 的区间内,均匀分布着质量为m ,电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR (2)(21),0R ⎡⎤+⎣⎦ (3)21042R +- 【解析】 【分析】 【详解】(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,由2v qvB m r=得:mv B qR=(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =P 点的坐标为((21)R ,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(1OG R R ==+② 225-22=2FG OF OG R=-③22EG R =④ 挡板上被粒子打中的区域长度l =FE 2R +5-222R 2+10-42R ⑤3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档