第八章水平地震作用下的内力和位移计算
2.7水平地震作用内力计算

2.7⽔平地震作⽤内⼒计算2.7 ⽔平地震作⽤内⼒计算设计资料:根据《建筑抗震设计规范》(GB50011—2001)第5.1.3条:屋⾯重⼒荷载代表值Gi =屋⾯恒载+屋⾯活荷载+纵横梁⾃重+楼⾯下半层的柱及纵横墙⾃重;各楼层重⼒荷载代表值G i =楼⾯恒荷载+50%楼⾯活荷载+纵横梁⾃重+楼⾯上下各半层的柱及纵横墙⾃重;总重⼒荷载代表值∑==ni iGG 1。
主梁与次梁截⾯尺⼨估算:主梁截⾯尺⼨的确定:当跨度取8000L mm =,主梁⾼度应满⾜:1111(~)(~)8000667~1000812812h L mm mm ==?=,考虑到跨度较⼤,取700h mm =,则:1111(~)(~)700233~3502323b h mm mm ==?=,取350b mm =。
当跨度取6000L mm =,主梁⾼度应满⾜:1111(~)(~)6000500~750812812h L mm mm ==?=,考虑到跨度较⼤,取500h mm =,则:1111(~)(~)500167~2502323b h mm mm ==?=,取250b mm =。
⼀级次梁截⾯尺⼨的确定:跨度取4800L mm =,次梁⾼度应满⾜:1111(~)(~)4800320~40012181218h L mm mm ==?=,考虑到跨度较⼤,取350h mm =,则:1111(~)(~)350117~1752323b h mm mm ==?=,取200b mm =。
⼆级次梁截⾯尺⼨的确定:跨度取3000L mm =,次梁⾼度应满⾜:1111(~)(~)3000167~25012181218h L mm mm ==?=,考虑到跨度较⼤,取300h mm =,则:1111(~)(~)300100~1502323b h mm mm==?=,取200b mm =。
柱的截⾯尺⼨估算: 根据公式:11C c r nAN C A =公式来估算每层柱的截⾯尺⼨其中1r 为放⼤系数,通常范围为1.1—1.3 n 为层数,A :代表柱的受荷⾯积)(2m:1N 代表每平⽅⽶的重量 13~~182M KN:C υ表⽰轴压⽐:c f 表⽰混凝⼟的抗压强度)(2MM N根据设计图纸可得柱的截⾯尺⼨如下:2.7.1 各层楼⾯的重⼒荷载代表值计算梁柱⾃重计算列表2.7.2 重⼒荷载代表值的计算 2.7.2.1 楼板恒活荷载标准值屋⾯(8层):⼆毡三油铺⼩⽯⼦ 0.3530mm ⽔泥砂浆找平层 20.0320=0.60kN/m ? 150mm 加⽓混凝⼟保温层 20.156=0.9kN/m ? 120mm 现浇混凝⼟楼板20.1225=3kN/m ? 20mm 厚⽯灰砂浆抹底 20.0217=0.34kN/m ? 恒荷载标准值:合计:25.19kN/m 活载标准值: 20.5kN/m 楼⾯(1~7层):25mm ⽔磨⽯⾯层 20.02525=0.625kN/m ? 30mm ⽔泥砂浆找平层 20.0320=0.60kN/m ? 120mm 现浇混凝⼟楼板 2 0.1225=3kN/m ? 20mm 厚⽯灰砂浆抹底 20.0217=0.34kN/m ? 恒荷载标准值:合计:24.6kN/m 活载标准值: 22.0kN/m 屋⾯:总板⾯积:21393.5m81393.527.636183 5.196621.92G kN =---??=恒载()81393.527.6361830.5637.95G kN =---??=活载()80.56621.920.5637.956940.9G G G kN kN kN =+?=+?=8恒载8活载第⼀~七层:1~71393.527.636183 4.65869.14G kN =---??=恒载()1~71393.527.63618322551.8G kN =---??=活载()1~71~71~70.55869.140.52551.87145.04G G G kN kN kN =+?=+?=恒载活载建筑物总重⼒荷载代表值:81i i G =∑=6940.9+7145.04×7=56956.18N k2.7.2.2 楼梯恒活荷载标准值1)平梯段⾯层:20mm 厚⽔泥砂浆 0.02×20=0.42kN/m 梯板:120厚混凝⼟板 0.12×25=32kN/m 板底:15mm 厚⽯灰浆粉刷:0.015×17=0.255 2kN/m 恒荷载标准值:k g =3.662kN/m 活荷载标准值:k q =2.02kN/m2)⼀层的斜梯段⾯层:0.02×20×(0.27+0.175)/0.27=0.662kN/m 梯踏步:0.175×25/2=2.192kN/m 梯斜板:0.12×25/cos θ=3.582kN/m 板底:0.015×17/cos θ=0.32kN/m 恒荷载标准值:k g =6.732kN/m 活荷载标准值:k q =2.02kN/m3)⼆~⼋层的斜梯段⾯层:0.02×20×(0.27+0.15)/0.27=0.622kN/m 梯踏步:0.15×25/2=1.882kN/m 梯斜板:0.12×25/cos θ=3.432kN/m 板底:0.015×17/cos θ=0.292kN/m 恒荷载标准值:k g =6.222kN/m 活荷载标准值:k q =2.02kN/m第⼀层楼梯:6.7383 3.66475.49G kN=??+??=1恒载(27.6+36+18-83)2163.2G kN =?=1活载(27.6+36+18)10.5475.490.5163.2557.09G G G kN kN kN =+?=+?=1恒载1活载第⼆~⼋层楼梯:6.2283 3.66446.11G kN=??+??=2~8恒载(27.6+36+18-83)2163.2G kN =?=2~8活载(27.6+36+18)2~8~8~80.5446.110.5163.2527.71G G G kN kN kN =+?=+?=2恒载2活载电梯荷载标准值:0.50.57182126G G G kN =+?==电梯电梯恒载电梯活载质点重⼒荷载值如下:1557.09527.717145.04225497.875830.923899.0633514.16520765.0622G KN=++++++=2527.717145.045830.923899.0633514.1652142.7220231.1822G KN=+++++=3527.717145.045830.923899.0632142.7219545.45G KN=++++=4527.717145.045830.923899.0632142.7219545.45G KN =++++= 5527.717145.045830.923899.0631964.162142.7219456.1722G KN=+++++=6527.717145.045830.923899.0631946.1619366.89G KN=++++=75830.92928.456940.93899.06321964.1619297.972G KN=++++=8527.711267145.045830.923899.06321946.1619229.04G KN=+++++= 如下图所⽰:2.7.3 ⽔平地震作⽤计算横向框架⾃振周期:按顶点位移法计算框架的⾃振周期,对于质量和刚度沿⾼度分布⽐较均匀的⾼层钢筋混凝⼟框架,可以简化为等截⾯悬臂杆,得到由结构顶点位移表⽰的计算结构基本周期的半经验公式,按以下公式计算:1 1.7T α=式中:0α——基本周期调整系数。
水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文3 抗震设计的基本要求3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。
3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。
对不利地段,应提出避开要求,当无法避开时应采取有效的措施。
对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。
3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。
不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。
注:形体指建筑平面形状和立面、竖向剖面的变化。
3.5.2结构体系应符合下列各项要求:1应具有明确的计算简图和合理的地震作用传递途径。
2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。
3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。
4对可能出现的薄弱部位,应采取措施提高其抗震能力。
3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。
3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。
3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。
3.9.2 结构材料性能指标,应符合下列要求:1 砌体结构材料应符合下列规定:1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5;2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应低于Mb7.5。
2混凝土结构的材料应符合下列规定:1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20;2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋在最大拉力下的总伸长率实测值不应小于9%。
水平荷载作用下的内力计算

水平荷载作用下的内力计算
- 反弯点法:柱子的抗侧移刚度可以通过柱顶产生单位水平位移在柱顶所施加的水平力计算得出。
柱子的线刚度越大,柱子的抗侧移刚度越好,抵抗水平荷载的能力也就越强。
- 平面协同分析模型:通过对交错桁架结构在水平荷载作用下受力特点的分析,把结构中的楼板等效为与横向框架铰接的刚性链杆,建立了构件内力、层间侧移和楼层侧移计算的平面协同分析模型。
在进行水平荷载作用下的内力计算时,需要根据实际情况选择合适的计算方法,并对计算结果进行详细的分析和验证。
如果你需要更详细的计算方法或有其他相关问题,请提供更多信息继续向我提问。
水平地震作用下框架结构的内力计算抗震设计

2 抗震设计(水平地震作用下框架结构的内力计算)抗震计算单元及动力计算简图取整个衡宇或抗震缝区段(设防震缝时)为计算单元,动力计算简图为串联多自由度体系。
即将各楼层重力荷载代表值集中于每一层楼盖或屋盖标高处。
多自由度体系的抗震计算可采用振型分解反映谱法和底部剪力法。
本工程总高不超过40m,以剪切变形为主,且质量和刚度沿高度散布比较均匀,近似于单质点体系,故采用底部剪力法。
此法是先计算出作用于结构的总水平地震作用,然后将其按必然规律分派给各质点。
计算简图2—1 如下示:图2—1重力荷载代表值按照抗震规范1.0.2 抗震设防烈度为6度及以上地域的建筑,必须进行抗震设计。
按照抗震规范5.1.3 计算地震作用时,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。
各可变荷载的组合值系数,应按表2—1采用。
组合值系数重力荷载代表值计算:1)屋面及楼面的永久荷载标准值1.屋面(上人)苏J01—2005:a. 10厚防滑地砖铺面,干水泥擦缝,每3—6m留10宽缝m2b. 20厚1:水泥砂浆加建筑胶结合层找平层20×= kN/m2厚C20细石混凝土,内配Φ4@150双向钢筋25×= kN/m2d.隔离层/e. 三粘四油沥青油毡防水层m2f. 冷底子油一道/g. 20厚1:3水泥砂浆找平层20×= kN/m2h.保温层5×= kN/m2厚1:3水泥砂浆找平层20×= kN/m2j.现浇或预制钢筋混凝土屋面25×= kN/m2 合计kN/m2 2.1~4层楼面苏J01—2005a. 15厚1:2白水泥白石子磨光打蜡kN/m2b.耍素水泥浆结合层一道/c. 20厚1:3水泥砂浆找平层20×= kN/m2d.现浇钢筋混凝土楼面25×= kN/m2合计kN/m2 2)屋面及楼面的可变荷载标准值上人屋面均布荷载标准值kN/m2 楼面活荷载标准值kN/m2 屋面雪荷载标准值S k=μr×S o=×= kN/m2式中:μr为屋面积雪散布系数,取μr=3)梁、柱、墙、窗、门重力荷载计算:a.梁、柱可按照截面尺寸、材料容重及粉刷等计算出的单位长度上的重力荷载;对墙、门、窗等可计算出单位面积上的重力荷载,计算结构如表2—2梁、柱重力荷载标准值表b.墙、门、窗重力荷载标准值:外墙体为200mm厚的粘土空心砖,外墙面贴马赛克(kN/m2),内墙面为20mm厚的抹灰,则外墙的单位墙面重力荷载为:+15×+17×= kN/m2内墙为200mm厚的粘土空心砖,双侧均为20mm厚抹灰,则内墙单位面积重力荷载为:15×+17××2= kN/m2电梯井墙为240mm粘土空心砖,双侧均为20mm厚抹灰,则电梯井墙单位面积重力荷载为:15×+17××2= kN/m2木门单位墙面重力荷载为kN/m2,钢铁门单位墙面重力荷载为kN/m2铝合金单位墙面重力荷载为kN/m2门、窗、雨棚重力荷载代表值:一层门窗:×(2××2+××2+××3+××1+××2)+×××13+××1+××2+××2+××3+××2) +×××2)=二~四层门窗:×××2+××3)+×××16+××2+××2+××2+××3+××2)= kN五层门窗:×××2+×+×××3+××2)= kNA轴的雨蓬:25×(2××+×××3+×××2= kN9轴雨蓬:25×××= kN五层雨蓬:25×××3= kN楼梯重力荷载代表值:一层:25××××2+25×××+25××××10+25×××9×2= kN二~四层:25××××2+25×××12+25×××12= kN外墙的重力荷载代表值:一层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××13-××1-××2-××2-××3-××2-××2-2××2-××1-××2-×]=二~四层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××16-××2-××2-××2-××3-××2]= kN五层(包括女儿墙):×[×4+×2) ×+4××+××1-××2-××3-××3]+25×[+59+9+9+--×2)×2+--×2)×5]××+25×[4×4+×4+9×2]××=内墙的重力荷载代表值:一层:×[(4×2+×2)×++×-×++++×-×-×+4×3×-××2]= kN二~四层:×[+++×+4×3×-××3-×+×+×-×]= kN五层:×4×=电梯井墙重力荷载代表值:一层:×[+-×+(4+×]= kN二~四层:×[+-×+(4+×]= kN屋顶装饰架重力荷载代表值:25××5+×2)××= kN总的重力荷载代表值:恒荷载取全数,活荷载取50%(按均布等效荷载计算),则集中于各楼层的标高出的重力荷载代表值为:G i的计算进程:一层:×(59×-×4×2-4×+++++++++×4×59×= kN二~三层:×(59×-4××2-4×+++++++×4×59×= kN四层:×9×4+++++++×(59×-×4×2-9×4)+×4×(9×4+×4×2)+××(59×-×4×2-9×4)= kN五层:××4×2+9×4)+++++++××(9×4+×4×2)= kN 故G1=G2= kNG3= kNG4= kNG5=图2—2如下:G5=3124.87kNG4=18184.16kNG1=17311.22kNG2=17311.22kNG5=18568.35kN图2—2 各质点的重力荷载代表值框架侧移刚度计算梁线刚度:i b=E c I b/l,I b=(中框架梁),I b=(边框架梁)。
第八章-结构的位移计算

绝对位移
相对位移
截面A角位移A ,
A点线位移 A 包含: 水平线位移 AH 竖向线位移 AV
CD两点的水平相对线位移:
(CD )H C D
AB两截面的相对转角:AB A B
以上线位移、角位移及相对位移统称为广义位移
一.局部变形时的位移公式
如图所示,为一悬臂梁在B点附近有微段ds 有局部变形,结构其他部分没有变形,微
段 ds 局部变形包括三部分:
⑴ 轴向应变 ;⑵ 平均剪切应变 0 ;
⑶ 轴线曲率 ( 1 R,R 为轴线变形后
§8-2 结构位移计算的一般公式
—般情况下,结构发生位移在结构内部产生应变,因此,结构的位移计算 属于变形体体系的位移计算问题。计算变形体体系的位移采用的方法以虚 功原理最为普通。推导结构位移(变形体)计算的一般公式有两种途径:
一是根据变形体体系的虚功原理,然后由此导出变形体体系的位移公式, 另一种是先应用刚体体系的虚功原理导出局部变形时的位移公式,然后应 用叠加原理,导出整体变形时的位移公式。
第 六 章 结构位移计算
本章主要内容
➢ 应用虚功原理求刚体体系的位移 ➢ 结构位移计算的一般公式 ➢ 荷载作用下的位移计算 ➢ 图乘法 ➢ 温度作用及支座移动时的位移计算 ➢ 广义位移的计算 ➢ 互等定理
§8-1 应用虚功原理求刚体体系的位移
一.结构位移计算概述
◆结构位移的种类:结构在外界因素作用下发生变形。因此而使结构各点的 位置发生相应的改变,这种改变称为结构的位移。
在材料力学中,曾学过求梁的位移计算方法(如直接积分法等)。但这
些方法对于结构力学的研究对象,如多跨静定梁、桁架、刚架等结构,是
高层建筑结构设计水平地震作用

水平荷载与结构计算简化原则
第二节 地震作用
一、特点
地震时,地震波产生地面运动,通过房屋基础使上部结构产生振动, 这就是地震作用。地震作用使结构产生的运动称为地震反应,包括位移、 速度、与加速度,加速度将使结构产生惯性力,过大的惯性力将会影响 结构的正常使用,甚至造成结构的破坏。 地震波使建筑房屋产生竖向振动和水平振动,一般对房屋的破坏主要 由水平振动造成。设计中主要考虑水平地震作用,只有震中附近的高烈 度区域才考虑竖向地震作用。 地震动三要素: 1、强度:反应地震波的幅值,烈度大,强度大。 2、频谱:反应地震波的波形,1962年墨西哥地震时,墨西哥市a=0.05g, 但由于地震卓越周期与结构接近,从而破坏严重。 3、持时:反应地震波的持续时间,短则对结构影响不大。
动速度和位移可能对结构的破坏具有更大影响,但振型反应谱法或底部剪力尚无 法对此作出估计。出于结构安全的考虑,《高层规程》规定了结构各楼层水平地 震剪力最小值的要求,给出了不同烈度下的楼层地震剪力系数(即剪重比),结 构的水平地震作用效应应据此进行相应的调整。 水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要 求:
1、计算范围: 水平地震作用:
• 6度区 (除甲类建筑和IV类场地上的较高房屋
外)可不算 • 7-9度区 (除可不进行上部结构抗震验算的房 屋外)均算
竖向地震作用:
•8、9度大跨度结构和长悬臂结构 •9度的高层建筑
2、水平地震作用的计算原则: – 一般正交布置抗侧力构件的结构,可沿纵横主轴方向分别计算 – 斜交布置抗侧力构件的结构,宜按平行于抗侧力构件方向计算 – 质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的 扭转影响
5、动力时程分析法
《建筑结构抗震设计》 课程设计指导书

《建筑结构抗震设计》课程设计指导书建筑与土木工程学院土木工程专业建筑结构抗震设计指导书一、题目多层钢筋混凝土框架结构办公楼地震作用分析二、设计内容根据已有设计资料进行五层钢筋混凝土框架结构办公楼的抗震设计,具体设计内容如下:1. 确定结构平面布置,确定结构承重方案,估算梁、柱尺寸,绘制结构平面布置图;2. 确定框架结构的计算简图(绘制计算简图);3. 横向框架结构侧向刚度计算,并进行侧向刚度比验算;4. 重力荷载代表值计算,求出各层的重力荷载代表值;5. 水平地震作用计算,采用底部剪力法求出每层的水平地震力,并进行剪重比验算;6. 内力计算:采用D值法进行一榀横向框架结构在水平地震作用下内力计算并绘制相应的内力图。
三、设计内容指导1.结构平面布置(1)确定结构承重方案及构件布置:应根据建筑的使用和造型的要求,确定一个相对合理的结构布置方案。
结构布置基本原则为结构受力合理;传力体系简单明确。
结构构件布置内容包括框架梁、柱布置;非框架梁布置;楼、屋面板布置;以及其它构件布置。
框架的布置可根据具体情况选择采用:●横向承重体系—竖向荷载主要由横向框架梁承担,用纵向连系梁连接各榀横向框架。
●纵向承重体系—竖向荷载主要由纵向框架梁承担,用横向连系梁连接各榀纵向框架。
●双向承重体系—纵、横向框架梁均要承担楼板传来的竖向荷载,有抗震设防要求的房屋宜采用此方案。
非框架梁一般优先布置于墙下和较重设备下,然后再根据楼板的大小和框架承重体系布置。
●构件的材料及施工方法:框架结构梁、板、柱混凝土等级不低于C20,目前框架梁、柱混凝土等级通常采用C30及以上。
多层框架结构梁、板、柱常采用相同的混凝土等级;高层框架结构梁、板、柱常采用不同的混凝土等级。
梁、柱主筋常采用热轧II级钢筋;箍筋常采用热轧I级钢筋;现浇板、楼梯构件及非主结构构件常采用热轧I级钢筋。
在抗震设防区,全现浇框架被广泛采用,也可采用现浇装配整体式框架。
(2)构件截面估算:●梁高h b:主、次梁交接时,主梁梁高一般比次梁梁高大50mm以上。
混凝土课程设计钢筋混凝土框架结构设计

钢筋钢筋混凝土结构课程设计任务书一、题目:钢筋混凝土结构设计(框架结构)二、设计地址:长春市三、设计任务:钢筋混凝土框架结构设计四、设计内容:一、计算简图的确信:确信计算模型及相应的计算参数。
二、荷载计算:竖向荷载考虑竖向恒荷载、竖向活荷载,不考虑竖向活荷载不利布置。
3、框架结构内力分析及内力组合:选取一榀有代表性的框架在应考虑荷载作用下的内力和位移;别离对框架梁、柱进行内力组合。
4、一榀框架梁、柱,截面设计并知足相应的抗震方法。
五、计算书上画出相应结构施工图。
五、设计条件:一、该建筑为多层办公楼,,地形平坦,Ⅱ类场地;二、建筑平、剖面图的尺寸如图一、2所示。
3、学生承担的具体设计组号见表一4、荷载:(1)永久荷载——2,板底、梁底、梁側采纳20厚混合砂浆抺灰,自重为17kN/m3,钢筋混凝土自重为25kN/m3。
屋盖自重:按2取用(未计入荷载分项系数)。
(2)可变荷载——活、风、雪荷载查标准。
五、材料:混凝土强度品级为不低于C30,梁、柱的主筋采纳HRB400级,其余钢筋均采纳HPB235级。
六、内、外墙别离采纳200mm、300mm厚陶砾混凝土,室内外高差为450mm,土壤冻结深度为,屋面檐口处混凝土女儿墙高600mm平均厚为80mm。
图1图2六、设计功效:结构设计计算书一份:要求有封皮、、目录、详细的计算内容;并在计算书里绘出相应的结构施工图。
计算书(第七组)一、工程概况与设计条件(一)工程概况与结构选型1.该工程为长春市某办公楼,地面以上为3层办公楼,首层层高m,标准层层高为3.6m,室内外地面高差为0.45m,建筑物总高度为3.9+3.6*2+0.45=m,建筑物沿X方向的宽度为33m,沿Y方向的宽度为14.1m。
2.依照建筑的利用功能,衡宇的高度和层数,地质条件,结构材料和施工技术等因素综合考虑,抗侧力结构拟采纳现浇钢筋混凝土框架结构体系。
(二)设计依据本工程依据以下现行国家标准或行业标准进行结构设计:一、《建筑结构靠得住度设计统一标准》GB50068----2001二、《建筑结构荷载标准》(2006版)GB50009----20013、《建筑工程抗震设防分类标准》GB50223---20204、《建筑抗震设计标准》GB50011----2020五、《混凝土结构设计标准》GB50010----2002六、《高层建筑混凝土结构技术进程》JGJ3---2002(三)设计的大体条件1.建筑结构的设计利用年限、平安品级及建筑抗震设防类别本工程为一般多层民用办公楼,属于一样的建筑物。
水平地震作用下的内力和位移计算

水平地震作用下的内力和位移计算水平地震是指地震震源产生的地震波在地球表面传播时,地面以水平方向发生振动的地震现象。
水平地震作用会导致结构物内部产生内力和发生位移。
计算结构物在水平地震作用下的内力和位移是结构工程中重要的问题,其结果对于结构的设计和地震灾害抗震能力具有重要指导意义。
在计算水平地震作用下的内力和位移时,一般需要进行如下步骤:1.确定地震波参数:首先要确定地震波的参数,如震源距离、峰值加速度、地震波形等。
这些参数将决定地震的强度和特征。
2.建立结构模型:根据建筑物的几何形状和材料特性,建立结构模型。
可以采用有限元法、等效静力法、等效动力法等方法对结构进行建模。
3.地震载荷计算:通过结构的模型,根据地震波参数计算结构物受到的地震载荷。
这个过程需要将地震波转化为等效的静力或动力荷载。
4.结构响应分析:将地震波作用下的地震载荷输入到结构模型中,进行结构响应分析。
可以采用时程分析法、反应谱分析法等方法,计算结构在地震下的响应。
5.内力和位移计算:根据结构的响应分析结果,计算结构内部产生的内力和结构发生的位移。
内力包括弯矩、剪力和轴力等,位移包括水平位移和旋转角度等。
内力和位移计算的具体方法和步骤因结构模型和分析方法的不同而有差异。
对于简单结构,可以采用手算的方法进行近似计算;对于复杂结构,常采用计算机进行数值模拟。
在内力计算中,可以根据结构的受力特点和几何形状,采用力平衡原理、弹性力学理论和应变能原理等方法,计算结构物内部的受力状态,如悬臂梁的弯矩、剪力等。
在位移计算中,需要根据结构的位移边界条件和材料的刚度特性,采用弹性力学理论和动力学理论等方法,计算结构物的位移响应,如整体的水平位移和各个节点的旋转角度。
结构的内力和位移计算结果可以用于结构耐震设计、结构性能评估和地震响应分析等方面。
通过对结构内力和位移的计算,可以评估结构的抗震性能,并采取相应的抗震措施,提高结构的抗震能力,保证结构的安全性。
第八章结构位移计算

西华大学土木工程学院 舒志乐讲授
6
广义力 单个力
广义位移 力作用点沿力作用方向上的线位移 力偶作用截面的转角 两力作用点间距的改变,即两力 作用点的相对位移Δ 两力偶作用截面的相对转角Δ
P β ΔB
单个力偶
等值反向共线的一对力 一对等值反向的力偶
P P A ΔA t t
m B
m
A
B m
T=PΔA+PΔB =P( ΔA+ΔB) =PΔ T=mA+mB =m( A+ B)=mΔ
m=1
m=1
P=1
P=1
l
求AB两点 的相对位移
1/l
求AB两截面 的相对转角
1/l
求AB两点 连线的转角
西华大学土木工程学院 舒志乐讲授
17
§8· 4 荷载作用下的位移计算举例
例:图示屋架 的压杆采用钢 筋混凝土杆, 拉杆采用钢杆。 求C的竖向位 移。 解:1)将q 化为结点荷 载P=ql/4 2)求 N 3)求NP
11
2、应用虚功原理求静定结构的位移 Δ c b a P=1
a RA P b
建立虚功方程:PΔ+Rac=0
a a P P c 0 c(↑) b b
1)由虚力原理建立的虚功方程,实质上是几何方程。 2)虚荷载与实际位移是彼此独立无关的,为了方便,可以 随意虚设,如设P=1。故称单位荷载法。 3)虚功法求位移的特点是采用平衡的方法求解几何问题。
c1 P=1
i i
该式是结构位移计算的一般公式, 1) 适用于静定结构和超静定结构。 2) 适用于不同的材料、产生位移的各 种原因、不同的变形类型。 3) 该式右边四项乘积,当力与变形 的方向一致时,乘积取正。
第八章水平地震作用下的内力和位移计算

楼层
层高
(m)
(m)
屋面层
3.9
1127.96
44180
0.0255
0.4381
四层
3.9
2241.57
44180
0.0507
0.4126
三层
3.9
3355.18
44180
0.0759
0.3619
二层
3.9
4468.79
44180
0.1011
0.2860
首层
5.2
5612.57
30354
0.1849
8.1.2.1半层柱自重:同第五层,为48.75KN则整层为48.75×2=97.5KN
8.1.2.2 楼面梁自重:
8.1.2.3半墙自重:同第五层,为27.66KN则整层为2×27.66×4=221.28 KN
8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN
8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN
C
1.35
0.40
12623
D
0.875
0.30
9467
二
A
0.875
0.30
9467
44180
B
1.35
0.40
12623
C
1.35
0.40
12623
D
0.875
0.30
9467
首层
A
1.17
0.53
7056
30354
B
1.80
0.61
8121
(整理)六层框架建筑在水平地震作用下的内力计算

DE跨梁: mkNikDEb4976104.14101031042.2.1=1 (2)柱的线刚度 mkNkc497610610103102 § 3 框架柱的侧移刚度D值计算 柱的抗侧移刚度修正系数采用下列公式计算: 表 1 2-6层D值的计算 表 2 1层D值的计算 D cbkkk2 )2(kk )/(122mKNhkDc 边柱C 0.98 0.497 27611 边柱F 0.98 0.497 27611 中柱D 2.4 0.659 36616 中柱E 2.4 0.659 36616 mKND/1284540 § 4 框架自振周期的计算 按公式计算: sBHT52.09.15/6.21035.022.0/035.022.0331 D cbkkk2 )2(kk )/(122mKNhkDc 边柱C 0.98 0.329 18278 边柱F 0.98 0.329 18278 中柱D 2.4 0.545 30278 中柱E 2.4 0.545 30278 mKND/971120
注:iikVDDV hyVMik0下为柱下端弯矩 hyVMik)(上0-1为柱上端弯矩,其中0y为框架承受倒三角形分布水平力作用时标反弯点的高度比。 DD 0.031 0.031 0.031 0.031 0.031 0.029 ikV 36.21 62.53 83.61 99.42 109.96 107.3 K 2.4 2.4 2.4 2.4 2.4 2.4 0y 0.42 0.45 0.47 0.50 0.50 0.55 下M 54.75 101.3 141.47 178.96 197.93 212.45 上M 75.61 123.81 159.53 178.96 197.93 173.83 层数 1 2 3 4 5 6 边柱 h(m) 3.6 3.6 3.6 3.6 3.6 3.6 iV 1168 2017 2697 3207 3547 3700 D 971120 971120 971120 971120 971120 1284540 D 18278 18278 18278 18278 18278 27611 DD 0.019 0.019 0.019 0.019 0.019 0.021 ikV 22.19 38.32 51.24 60.93 67.39 77.70 K 0.98 0.98 0.98 0.98 0.98 0.98 0y 0.35 0.40 0.45 0.45 0.5 0.65 下M 27.96 55.18 83.0 98.71 121.3 181.82 上M 51.92 82.77 101.46 133.43 121.3 69.93
水平地震作用下的内力和位移计算

第8章水平地震作用下的内力和位移计算重力荷载代表值计算顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。
其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。
第五层重力荷载代表值计算层高H=,屋面板厚h=120mm半层柱自重(b×h=500mm×500mm):4×25×××2=柱自重:屋面梁自重()() kNmmmkNmmmkNmmm kN16. 1472)25.06.6(/495.145.06.616 .3)3.03(/495.123.06.7/16 .3=⨯-⨯+⨯-⨯++⨯+⨯-⨯屋面梁自重:半层墙自重顶层无窗墙(190厚):()KN25.316.66.029.3202.02019.025.14=⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯带窗墙(190厚):()()KN98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯+⨯⨯⨯-⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯墙自重: KN女儿墙:()KN04.376.66.1202.02019.025.14=⨯⨯⨯⨯+⨯屋面板自重kNmmmmkN78.780)326.7(6.6/5.62=+⨯⨯⨯第五层重量 ++++= KN 顶层重力荷载代表值 G 5 = KN第二至四层重力荷载代表值计算层高H=,楼面板厚h=100mm半层柱自重:同第五层,为 KN 则整层为×2= KN 楼面梁自重:()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=⨯-⨯+⨯-⨯++⨯+⨯-⨯半墙自重:同第五层,为则整层为2××4= KN 楼面板自重:4××(+3+)= KN 第二至四层各层重量=+++= KN 第二至四层各层重力荷载代表值为:()KN G 61.111336.65.326.76.65.2%5056.9534-2=⨯⨯+⨯⨯⨯⨯+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=⨯⨯⨯+⨯⨯⨯)(第一层重力荷载代表值计算层高H=,柱高H 2=++=,楼面板厚h=100mm 半层柱自重:(b ×h=500mm ×500mm ):4×25×××2=65 KN 则柱自重:65+= KN 楼面梁自重:同第2层,为 KN 半层墙自重(190mm ):()()KN 14.3145.002.02019.025.1428.15.16.66.022.4202.02019.025.14=-⨯+⨯⨯⨯-⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯二层半墙自重(190mm ): KN则墙自重为:(+)×4= KN 楼面板自重:同第2层,为 第1层重量=+++=第1层重力荷载代表值为:G 1=+50%×(×××2+××3)= KN 活载:Q=50%×(×××2+××3)= KN 综上所述,结构等效总重力荷载代表值为:()()123450.850.850.851013.46917.3731106.654141.39eq E G G G G G G G KN==⨯++++=⨯+⨯+=G eq ==×(G 1+G 2+G 3+G 4+G 5)=×+×3+ =水平地震作用计算和位移计算结构基本自振周期的计算框架梁柱的抗侧刚度计算见表6-1、表6-2、表6-3. 表6-1 横梁、框架柱线刚度计算考虑梁柱线刚度比,用D 值法计算各楼层框架柱的侧向刚度。
地震作用下框架结构的内力和侧移计算

地震作用下框架结构的内力和侧移计算4.1横向自振周期的计算横向自振周期的计算采用瑞利(Rayleigh )法。
瑞利法也称为能量法。
这个方法是根据体系在震动过程中能量守恒定 律导出的。
自振周期T 1(s )可按下式计算: 21112ni ii Tni i i G u T G u ψ===∑∑注:u i 为第i 层的侧移;T ψ0.5;u i 按照下式计算: δi = ∑G i /∑D i u i =∑δk注:∑D i 为第i 层的层间侧移刚度; δi 为第i 层的层间相对位移。
δk 为第k 层的层间侧移。
基本周期T 1就算表层次 G i (kN ) ∑G i (kN ) ∑D i (kN/m ) δi (m) u i (m ) G i u i (kN ·m)2i i G u ( kN ·m 2)4 8549.73 8549.73 375964 0.0227 0.1794 194.4279 275.0652 3 9593.83 18143.56 669856 0.0271 0.1566 491.4321 445.0913 2 9347.36 27490.92 669856 0.0410 0.1295 1128.229 461.3148 19827.22 37318.14 4218240.08850.0885 3301.48292.2850 统计∑11239.121473.756321112ni ii Tn i ii G uT G uψ===∑∑=2×0.5×=0.362(s )4.2水平地震作用及楼层地震剪力的计算本结构高度不超过40m,质量和刚度沿高度分布比较均匀,变形以剪切型为主,故可用底部剪力法计算水平地震作用,即:4.2.1结构等效总重力荷载代表值GeqG eq=0.85∑G i=0.85×37318.14=31720.419(kN)4.2.2计算水平地震影响系数а1查表得II类场地,设计地震分组第三组地震特征周期值T g=0.45s。
《结构力学》第八章 位移法

位移未知数确定举例
位移未知数确定举例
位移未知数确定举例
位移未知数确定举例
位移未知数确定练习
na 5 nl 2
na 2 nl 2
位移未知数确定练习
na 3 nl 4
na 0 nl 1
位移未知数确定练习
na 3 nl 1
na 3 nl 0
位移未知数确定练习
na 2 nl 3
基本思路
两种解法对比:
典型方程法和力法一样,直接对结构按统 一格式处理。最终结果由迭加得到。
平衡方程法对每杆列转角位移方程,视具 体问题建平衡方程。位移法方程概念清楚, 杆端力在求得位移后代转角位移方程直接可 得。
位移法方程:
两法最终方程都是平衡方程。整理后形式 均为:
K R 0
典型方程法基本概念
有一(A 点
转角,设为
).
位移法第一种基本思路
利用转角位移 方程可得:
M AD M
M AC
3i
ql 2 8
M AB
4i
FP l 8
M AE
i
FP l 2
在此基础上,由图示结点平衡得 M 0
第一种基本思路
位移法思路(平衡方程法)
以某些结点的位移为基本未知量 将结构拆成若干具有已知力-位移(转角-位移) 关系的单跨梁集合 分析各单跨梁在外因和结点位移共同作用下 的受力 将单跨梁拼装成整体 用平衡条件消除整体和原结构的差别,建立 和位移个数相等的方程 求出基本未知量后,由单跨梁力-位移关系可 得原结构受力
超静定单跨梁的力法结果(3) 载
载 载
1
超静定单跨梁的力法结果(4) 载 形 形 载
超静定单跨梁的力法结果(5) 载 载 载
高层建筑结构与抗震综合练习题及参考答案(2)

高层建筑结构与抗震综合练习题一、单项选择题(每小题3分,共计30分,将选择结果填入括弧内)1.()既具有极大的抗侧移刚度,又能因剪力墙的集中而获得较大的空间,使建筑平面获得良好的灵活性,适用于30层以上的超高层房屋。
A.框架结构B.剪力墙结构C.砌体结构D.筒体结构2.我国《建筑结构抗震规范》以()作为抗震设计的依据,其数值应依据烈度、场地类别、设计地震分组以及结构自振周期和阻尼比确定。
A.地震系数B.动力系数C.地震影响系数D.冲击影响系数3.框架结构在节点水平集中力作用下,()。
A.柱的弯矩图呈直线形,梁的弯矩图呈曲线形B.梁的弯矩图呈直线形,柱的弯矩图呈曲线形C.梁和柱的弯矩图都呈直线形D.梁和柱的弯矩图都呈曲线形4.地震作用或风荷载对框架结构的水平作用,一般都可简化为作用于()上的水平力。
A.框架梁B.框架柱C.框架板D.框架节点5.关于框架-剪力墙结构刚度特征值λ,下列叙述错误的是()。
A.λ是框架抗推刚度与剪力墙抗弯刚度的比值B.λ值很大,结构的变形特性及受力将以框架为主C.λ值很小,结构的变形特性及受力将以剪力墙为主D.λ是剪力墙抗弯刚度与框架抗推刚度的比值6.所谓框架的抗推刚度,是使框架产生()。
A.单位扭转角所需的剪力值B.单位扭转角所需的弯矩值C.单位剪切角所需的剪力值D.单位位移所需的推力值7.()在水平荷载作用下,利用材料力学公式计算内力和侧移,再考虑局部弯曲应力的影响,进行修正。
A.整体剪力墙B.小开口整体剪力墙C.双肢剪力墙D.多肢剪力墙8.下列关于高层建筑结构平面布置的一般规定中,不正确的是()。
A.平面宜简单、规则、对称,减少偏心B.平面长度不宜过长,突出部分长度宜减小C.宜选用风压较小的形状,并应考虑邻近高层建筑对其风压分布的影响D.应尽量设置变形缝来划分结构单元9.目前,国内设计规范,仍沿用()方法计算结构内力,按弹塑性极限状态进行截面设计。
A.弹性B.塑性C.弹塑性D.刚性10.下列关于荷载对结构影响的叙述中,错误的是()。
筒体结构设计教材

Ac
N N N N N
A cj
图 7
此法的关键是找到每层的恰当的等代角柱截面。方 法是要使等代后角柱的轴向变形与等代前角柱的轴 向变形相等。 设框筒第j层原角柱面积为Ac,所受轴力为N1;等代 角柱的截面面积为 Acj ,所受轴力为 N ,则各自的 轴向变形为:
N1h EAc
Nh E Acj
第8章 筒体结构设计
一、概
述
筒体是一种双向具有抗侧能力的空间受 力结构,具有很大的刚度和承载力,适合在 高层和超高层建筑中采用,其混凝土强度等 级不宜低于C30。筒中筒结构的高度不宜低 于60m,高宽比不应小于3。 当相邻层的柱不贯通时,应设置转换 梁等构件。转换梁的高度不宜小于跨度的 1/6。
(一) 实腹筒结构(图1a)
1. 等效平面法
(a)
(b) 图 13
(c)
外框筒可用翼缘展开法(图13b)或等代角柱法(图13c)简 化为平面框架,内筒为在水平荷载方向的剪力墙,按框架-剪力 墙结构计算。
2. 等效连续体法Βιβλιοθήκη x x0xj
x
n-1
(a) 图 14
(b)
外框筒可按单筒中的方法化为等效连续体,内筒一般为薄壁 杆,因为对称荷载通过剪力中心,只产生弯曲,可按普通梁 计算。计算简图如图14a,用力法可以求解(图14b)。
c
V A c,I c
x
V
D Ic
V
t2 / 2
z
Aj
hb h
A
Ib1
Ib2 C
t1 / 2
A b,I b
d
B
d
(a)
(b)
(c)
图 10
(1)等效板的弹性模量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 水平地震作用下的内力和位移计算8.1 重力荷载代表值计算顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。
其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。
8.1.1第五层重力荷载代表值计算层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重(b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重()()kNm m m kN m m m kN m m m kN 16.1472)25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=⨯-⨯+⨯-⨯++⨯+⨯-⨯ 屋面梁自重:147.16KN 8.1.1.3 半层墙自重顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯ 带窗墙(190厚):()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯+⨯⨯⨯-⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯ 墙自重:114.23 KN女儿墙:()KN 04.376.66.1202.02019.025.14=⨯⨯⨯⨯+⨯ 8.1.1.4 屋面板自重kN m m m m kN 78.780)326.7(6.6/5.62=+⨯⨯⨯8.1.1.5 第五层重量48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN8.1.2 第二至四层重力荷载代表值计算层高H=3.9m ,楼面板厚h=100mm8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重:()()kNm m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=⨯-⨯+⨯-⨯++⨯+⨯-⨯8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为:()KN G 61.111336.65.326.76.65.2%5056.9534-2=⨯⨯+⨯⨯⨯⨯+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=⨯⨯⨯+⨯⨯⨯)(8.1.3 第一层重力荷载代表值计算层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重:(b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ):()()KN 14.3145.002.02019.025.1428.15.16.66.022.4202.02019.025.14=-⨯+⨯⨯⨯-⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯二层半墙自重(190mm ):27.66 KN则墙自重为:(31.14+27.66)×4=235.2 KN8.1.3.4 楼面板自重:同第2层,为480.48KN第1层重量=113.75+154.3+235.2+480.48=983.73KN 第1层重力荷载代表值为:G 1=983.73+50%×(2.5×6.6×7.6×2+3.5×6.6×3)= 1143.78 KN 活载:Q=50%×(2.5×6.6×7.6×2+3.5×6.6×3)=160.05 KN 综上所述,结构等效总重力荷载代表值为:()()123450.850.850.851013.46917.3731106.654141.39eq E G G G G G G G KN==⨯++++=⨯+⨯+=G eq =0.85G E =0.85×(G 1+G 2+G 3+G 4+G 5)=0.85×(1127.96+1113.61×3+1143.78)=4770.68KN8.2 水平地震作用计算和位移计算8.2.1结构基本自振周期的计算8.2.1.1 框架梁柱的抗侧刚度计算见表6-1、表6-2、表6-3. 表6-1 横梁、框架柱线刚度计算考虑梁柱线刚度比,用D 值法计算各楼层框架柱的侧向刚度。
表6-2 各层柱侧向刚度计算层次 柱别 Kc α()kN/m D ij()∑m KN D /ij屋面层A0.875 0.30 9467 44180B 1.35 0.40 12623C 1.35 0.40 12623D 0.875 0.30 9467 四 A 0.875 0.30 9467 44180B 1.35 0.40 12623C 1.35 0.40 12623D 0.875 0.30 9467 三 A 0.875 0.30 9467 44180B 1.35 0.40 12623C 1.35 0.40 12623D 0.875 0.30 9467 二 A 0.875 0.30 9467 44180B 1.35 0.40 12623C 1.35 0.40 12623D 0.875 0.30 9467 首层 A 1.17 0.53 7056 30354B 1.80 0.61 8121C 1.80 0.61 8121 D1.170.5370568.2.1.2 结构在重力荷载代表值作用下的假想顶点位移计算详见表6-3.表6-3楼层层高(m)()kNVi()∑mkND/ij()iiijVuDm∆=∑iu(m)屋面层3.9 1127.9644180 0.0255 0.4381四层 3.9 2241.57 44180 0.0507 0.4126三层 3.9 3355.18 44180 0.0759 0.3619二层 3.9 4468.79 44180 0.1011 0.2860首层 5.2 5612.57 30354 0.1849 0.1849采用假想顶点位移法近似计算结构基本自振周期,考虑填充墙对框架结构的影响,取周期折减系数T=0.7,则结构的基本自振周期为:T1= 1.7= 1.7=0.7877s8.3 横向水平地震作用计算该建筑的质量刚度沿高度分布比较均匀,高度不超过40m,并以剪切变形为主(房屋高宽比小于4),故采用底部剪力法计算横向水平地震作用。
场地影响系数:本工程所在场地为7度设防,设计地震分组为第一组,场地土为Ⅱ类,结构的基本自振周期采用经验公式计算,T1=0.7877s,根据《建筑抗震设计规范》(GB50011-2010)查表5.1.4-1得αmax=0.08,查表5.1.4-2得,T g=0.35s。
因T g =0.35s <T 1=0.7877s <5T g =1.75s ,查图5.1.5,则地震影响系数为:0386.008.00.17877.035.09.0max 2g 1=⨯⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=αηαγT T (其中0.9γ=,2η=1.0)各个层水平地震作用标准值、楼层地震剪力及楼层层间位移计算 对于多质点体系,根据式1αeq EK G F =EK F ----结构总水平地震作用标准值;eqG ----结构等效总重力荷载;eq G =E G χ=∑=nj j G 1χχ----等效重力荷载系数,《建筑抗震设计规范》规定χ=0.85;jG ----集中于质点j 的重力荷载代表值;EK F =4770.68×0.0386=184.15KN根据表5.2.1可知,T 1=0.7877s>1.4T g =0.49s ,故考虑顶部附加水平地震作用的影响,即n δ=0.08×0.7877+0.07=0.13由式KN F F EK n 94.2315.18413.0n =⨯==∆δ 由式EK n nj jjii i F HG H G F )1(1δ-=∑=计算各层水平地震作用标准值,进而求出各楼层地震剪力及楼层层间位移,各层水平地震作用标准值、楼层地震剪力及楼层层间位移计算,计算过程详见表8.1。
表8.1楼层 i G (KN)i H (m) i iG Hi i G H ∑iF (KN)i V (KN) D ∑(KN/m ) eV ∆(m)5 1127.96 20.8 23461.57 72839.0251.60 75.54 44180 0.0017 4 1113.61 16.9 18820.01 41.39 116.93 44180 0.0026 3 1113.61 13 14476.93 31.84 148.77 44180 0.0034 2 1113.61 9.1 10133.85 22.29 171.06 44180 0.0039 11143.785.25946.6613.08184.14303540.0061楼层最大位移与楼层层高之比:550185212.50061.0h u <==∆ 故满足位移要求。
8.4 内力计算横向框架在水平作用下的内力计算采用D 值法。
8.4.1 反弯点高度计算反弯点高度比的计算结果如下表8.2表8.28.4.2 弯矩、剪力计算水平地震作用下的柱端剪力按下式计算,即:jijijij V DD V ∑=式中 ij V ----第j 层第i 柱的层间剪力; jV ----第j 层的总剪力标准值;∑ijD-----第j 层所有柱的抗侧刚度之和;ijD ----第j 层第i 柱的抗侧刚度。
水平地震作用下的柱端弯矩按下式计算,即h y M ij c )1(V -=上yhM ij c V =下框架在水平地震作用下的柱端剪力和柱端弯矩计算方法与风荷载作用下的柱端弯矩、柱端剪力计算方法相同。