增量式编码器及绝对式编码器的特点及应用范围
增量式编码器及绝对式编码器的特点及应用范围
增量式编码器和绝对式编码器的特点及应用范围深圳职业技术学院刘遥生1、什么是编码器――编码器是把角位移或直线位移转换成电信号的一种装置。
2、编码器分类及原理按照工作原理编码器可分为增量式(SPC)和绝对式(APC)两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
两者一般都应用于转速控制或位置控制系统的检测元件。
3、特点及应用范围增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相,A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一圈输出一个脉冲,用于基准点定位。
编码器转动时输出脉冲,通过计数设备来知道其位置和转速。
当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。
这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
优点是构造简单,平均寿命长,抗干扰能力强,可靠性高,适合于连续运转高精度定位控制。
其缺点是无法输出轴转动的绝对位置信息。
绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数。
绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
编码器类型以及应用场合
编码器可以分为以下几种类型:
1.增量式编码器:在旋转时,输出的脉冲信号个数与转过的角度成正比,主
要用于测量旋转速度。
2.绝对值编码器:输出的是绝对位置值,即每个位置是唯一的,不存在误差,
适用于需要测量角度、位置、速度等参数的系统。
3.旋转变压器:是一种测量角度的绝对值编码器,测量精度高,抗抖动干扰
能力强,但同时也存在成本高、体积大、结构复杂、可靠性差等缺点。
4.正弦波编码器:输出的是正弦信号,其抗干扰能力比旋转变压器强,但其
精度和稳定性不如前者。
5.霍尔编码器:是一种光电编码器,具有体积小、重量轻、结构简单、可靠
性高、寿命长等优点,但同时也存在精度低、稳定性差等缺点。
编码器的应用场合如下:
1.速度检测:将编码器和电动机同轴联接,通过测量电动机的旋转速度,就
可以得到编码器的脉冲信号个数,从而计算出电动机的旋转速度。
2.位置控制:在生产线上,需要测量物体的位置,可以使用绝对值编码器来
测量物体的位置。
3.运动控制:在自动化设备中,需要精确控制物体的运动轨迹和运动速度,
可以使用编码器来测量物体的运动轨迹和速度。
4.旋转方向检测:在生产线上,需要检测物体的旋转方向,可以使用旋转变
压器来检测物体的旋转方向。
5.速度反馈:在自动化设备中,需要将物体的运动速度反馈到控制器中,可
以使用编码器来测量物体的运动速度并反馈到控制器中。
绝对值编码器用途
绝对值编码器用途全文共四篇示例,供读者参考第一篇示例:绝对值编码器是一种常用的测量装置,通常用于测量机械位置、速度和方向。
绝对值编码器能够准确地测量物体相对于某一基准位置的绝对位置,而不需要进行复位操作,因此在许多领域如机床加工、物流自动化、机器人技术等领域发挥着重要作用。
绝对值编码器使用编码盘和传感器共同完成测量任务。
编码盘是一种带有黑白相间的条纹的圆盘,通过光电传感器检测光学信号来确定编码盘的运动状态,进而确定物体的位置。
传感器则负责将接收到的信号转换为数字信号,然后传输给计算机或控制器,实现对被测对象的准确测量。
绝对值编码器的用途非常广泛,下面就主要介绍几个重要的应用场景:1. 机床加工:在数控机床等精密机械设备上,绝对值编码器被用于测量工件相对于刀具的位置,从而实现精密加工。
由于绝对值编码器能够准确测量物体的绝对位置,因此可以确保加工的精度和稳定性,提高产品质量和生产效率。
2. 物流自动化:在物流自动化系统中,绝对值编码器被广泛应用于输送带、自动堆垛机、自动包装机等设备上,用于测量物料的位置和速度,实现自动化控制和管理。
通过绝对值编码器的准确测量,可以确保物料的顺利运输和处理,提高物流效率。
3. 机器人技术:在工业机器人和服务机器人等领域,绝对值编码器被用于测量机器人关节的角度和位置,从而实现精准的运动控制和定位。
绝对值编码器能够帮助机器人实现复杂的动作和任务,提高其工作效率和精度,广泛应用于汽车制造、电子生产等行业。
4. 航空航天:在航空航天领域,绝对值编码器被广泛应用于飞机发动机、导航系统等设备上,用于测量飞机的位置、速度和方向,为飞行控制和导航提供重要数据支持。
绝对值编码器的高精度和可靠性能够满足航空航天领域对精密测量的要求,确保航空器的安全飞行。
绝对值编码器在现代工业生产和科学研究中发挥着重要作用,通过准确测量物体的位置和运动状态,实现精密控制和管理,提高生产效率和产品质量。
随着技术的不断发展,相信绝对值编码器将在更多领域得到应用,并为人类创造更美好的未来。
编码器的分类、特点及其应用详解
编码器的分类、特点及其应用详解编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。
按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量。
编码器及其应用实验报告
编码器及其应用实验报告一、实验目的本次实验的主要目的是深入了解编码器的工作原理,并通过实际操作和实验数据,探究编码器在不同应用场景中的性能和特点,从而为今后在相关领域的应用提供实践基础和理论支持。
二、实验原理编码器是一种将旋转运动或直线运动转化为数字信号的装置。
根据工作原理的不同,编码器主要分为增量式编码器和绝对式编码器。
增量式编码器通过记录脉冲的数量来确定位置的变化。
每当编码器的轴旋转一定角度,就会产生一个脉冲信号。
通过计算脉冲的数量,可以计算出轴的旋转角度或移动距离。
然而,增量式编码器在断电后重新上电时,无法记住之前的位置信息。
绝对式编码器则在每一个位置都有唯一的编码输出。
即使在断电后重新上电,也能立即准确地知道当前的位置。
三、实验设备本次实验所使用的设备包括:1、旋转编码器:选用了精度为每转 1024 个脉冲的增量式编码器和分辨率为 12 位的绝对式编码器。
2、数据采集卡:用于采集编码器输出的脉冲信号。
3、计算机:安装了相应的数据采集和分析软件。
4、电机驱动系统:用于控制电机的旋转速度和方向,以带动编码器旋转。
四、实验步骤1、设备连接与设置将编码器安装在电机轴上,并确保连接牢固。
将编码器的输出信号连接到数据采集卡的相应通道。
在计算机上打开数据采集软件,设置采集参数,如采样频率、通道选择等。
2、增量式编码器实验启动电机,使其以不同的速度匀速旋转。
观察数据采集软件中脉冲数量的变化,并记录下来。
改变电机的旋转方向,再次观察脉冲数量的变化。
停止电机,然后重新上电,观察编码器是否能准确记录位置变化。
3、绝对式编码器实验同样启动电机,使其旋转到不同的位置。
读取数据采集软件中编码器输出的绝对位置编码,并与实际位置进行对比。
重复多次,验证绝对式编码器的位置准确性和稳定性。
4、应用场景模拟实验搭建一个简单的位置控制系统,使用编码器作为反馈元件。
通过调整控制参数,观察系统的响应性能和精度。
五、实验数据与结果分析1、增量式编码器实验结果在电机匀速旋转时,脉冲数量与旋转角度呈线性关系,符合预期。
脉冲编码器的分类
脉冲编码器的分类按脉冲编码器码盘的读取方式分:光电式、接触式、电磁式。
其中,光电码盘在数控机床上应用较多。
按测量的坐标系分:增量式、绝对式。
(一)增量式脉冲编码器增量式脉冲编码器的型号是用脉冲数/转(p/r)来区分,数控机床上常用的脉冲编码器每转的脉冲数有:2000p/r、2500p/r和3000p/r等。
在高速、高精度的数字伺服系统中,应用高分辨率的脉冲编码器,如:20000p/r、25000p/r和30000p/r等。
光电式脉冲编码器由光源、透镜、光电盘、圆盘(光栅板) 、光电元件和信号处理电路等组成(图6-12 )。
光电盘用玻璃材料研磨抛光制成,玻璃表面在真空中镀上一层不透光的铬,再用照相腐蚀法在上面制成向心透光窄缝。
透光窄缝在圆周上等分,其数量从几百条到几千条不等。
圆盘(光栅板)也用玻璃材料研磨抛光制成,其透光窄缝为两条,每一条后面安装一只光电元件。
当圆光栅旋转时,光线透过两个光栅的线纹部分,形成明暗条纹。
光电元件接受这些明暗相间的光信号,转换为交替变化的电信号,该信号为两组近似于正弦波的电流信号A和B(如图6-13),A和B信号的相位相差90°。
经放大整形后变成方波形成两个光栅的信号。
光电编码器还有一个“一转脉冲”,称为Z相脉冲,每转产生一个,用来产生机床的基准点。
脉冲编码器输出信号有A、、B、、Z、等信号,这些信号作为位移测量脉冲以及经过频率/电压变换作为速度反馈信号,进行速度调节。
(二)绝对式编码器绝对式编码器可直接把被测转角用数字代码表示出来,且每一个角度位置均有其对应的测量代码,它能表示绝对位置,没有累积误差,电源切除后,位置信息不丢失,仍能读出转动角度。
编码器是按一定的编码形式,如二进制编码等,将圆盘分成若干等分,利用电子、光电或电磁元件把代表被测位移的各等分上的数码转换成电信号输出用于检测。
图6-14是一个四位二进制编码盘,涂黑部分是导电的,其余部分是绝缘的。
对应于各码道装有电刷。
光电编码器分类
光电编码器分类
光电编码器分类
光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器。
一、增量式编码器
增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。
它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。
一般来说,增量式光电编码器输出A、B两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。
同时还有用。
编码器的种类
工业编码器追求性能的工业编码器工业编码器具有标准的外型尺寸并适应大多数应用场合,可在严酷的工业环境下提供精确的位置信号。
工业编码器是编码器的一种。
根据应用的场合和对精度的要求,我们一般将工业编码器分为四个等级。
由于工业编码器在寿命和性能上的优势,所以在大多数应用场合我们都会选择工业型编码器。
不同的负载级别对应不同的应用场合根据不同的应用场合,从重载应用到轻载应用,我们把工业编码器分为四大类:重载应用,伺服电机,一般工业应用及轻载应用。
就像他们的名字,重载编码器可以承担大多数恶劣场合的应用。
他们在高温,潮湿,剧烈震动或肮脏的环境下具有优秀的寿命,特别适合于造纸,冶金,采矿等行业。
重载编码器的可靠性是通过牺牲成本和体积来实现的,所以说除非环境确实非常恶劣,一般情况下我们可能不会考虑重载型编码器。
对于大多数工厂应用场合,我们一般优先考虑工业应用级编码器。
他们可以提供出色的速度和定位性能,在各种场合都可以发挥作用。
与重载和工业级编码器不同的是,伺服电机用的编码器一般都安装在电机的罩壳内,所以一般不需要太高的防护等级,但是对于工作温度范围和震动冲击的抵抗有很高的要求。
除了这些,编码器的尺寸也是一个非常重要的考虑因素。
轻载编码器在我们生活中的各个领域有非常广泛的应用,例如:复印机,传真机或一些实验室设备。
由于这些环境非常舒适,所以轻载编码器在舒适的环境下可以提供更优秀的性能。
编码器细节工业编码器的种类可以满足所有的需求:•绝对式和增量式编码器•光学或磁性传感器•中空轴或者实心轴,包括非常多的尺寸•分辨率最高可达10,000PPR不仅如此,我们可以根据客户的特殊应用进行产品的定制,例如:•无罩壳设计•无轴承•双列轴承设计•更高的防护等级•对于一些光电编码器可选择不易破碎的码盘对于绝对值型编码器,我们还有更多的特点:•多种不同的信号输出方式•无电池的多圈编码器方案防爆编码器符合防爆标准的编码器要求非常严格。
很多生产场所都会产生某些可燃性物质。
增量型编码器与绝对型编码器区别是什么意思
增量型编码器与绝对型编码器区别是什么意思增量型编码器与绝对型编码器区别是什么意思一、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。
,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
1.3混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
二、光电编码器的应用1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。
重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。
摆锤冲击实验机,利用编码器计算冲击是摆角变化。
2、长度测量计米器,利用滚轮周长来测量物体的长度和距离。
拉线位移传感器,利用收卷轮周长计量物体长度距离。
联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。
介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。
增量式绝对值编码器概述
增量式绝对值编码器概述增量式绝对值编码器(Incremental Absolute Encoder)是一种用于测量旋转物体角度或线性位移的装置。
它通常由光电器件和编码盘组成,能够将物体的旋转或位置变化转化为相应的电信号。
增量式绝对值编码器具有较高的精度、可靠性和灵敏度,广泛应用于机械工程、自动化控制、仪器设备等领域。
增量式绝对值编码器的原理是基于光电传感技术。
光电器件一般由光源和接收器组成。
编码盘上有一定的刻痕或光刻图案,光源会发射光线照射在编码盘上,通过接收器接收到光线的反射或透过情况来判断编码盘的位置。
光电器件会将光线的状态转化为相应的电信号,传输给读取电路进行后续处理。
根据编码盘上的光刻图案不同,可以分为基本型和绝对型两种编码器。
基本型增量式绝对值编码器通过插值原理测量物体的角度或位移。
编码盘上的光刻图案通常为等宽的刻痕,光电器件接收到的电信号的波形会有明显的变化,可以根据波形的周期、升降沿等特征来计算出物体的角度或位移。
基本型编码器具有简单、成本低、分辨率高等特点,但无法在断电后立即恢复到上一次的位置。
绝对型增量式绝对值编码器通过将编码盘分成多个扇区,每个扇区上都有特定的光刻图案来测量物体的角度或位移。
光电器件会接收到相应的光刻图案信号,转化为二进制编码信号,通过读取电路解码还原成绝对角度或位移值。
绝对型编码器具有高精度、无需参考点、能立即恢复位置等优点,但成本较高且复杂度较高。
增量式绝对值编码器还可以根据输出信号的特点进一步分为模拟输出和数字输出两种形式。
模拟输出编码器通常通过电压或电流来表示角度或位移,输出信号连续变化。
数字输出编码器则以数字信号的形式输出,通常使用脉冲方式,输出信号离散变化。
数字输出编码器在工业自动化领域中应用广泛,由于数字信号的稳定性和可靠性高,适用性强。
增量式绝对值编码器广泛应用于各个领域。
在机械工程方面,它被广泛用于机床、机器人、纺织机械、印刷机械等设备中,用于测量零件的位置、速度等信息。
常见编码器分类及特点
常见编码器分类及特点按照运动部件的运动方式来分:1、旋转式(容易做成封闭式、小型化。
可以借助机械机构变换成直线运动,如丝杠)2、直线式(实际中应用很少)旋转编码器从脉冲对应位置(角度)的关系来分:1、增量式编码器2、绝对式编码器3、伪绝对式编码器增量式编码器:分辨率单位为PPR(pulse per revolution)如2500PPR,说明分辨率为每圈2500个脉冲,即360°对2500个脉冲。
假如伺服电机要相对原位置转270°,需要2500×270/360=1875个脉冲。
增量式编码器只控制相对位移量,容易造成误差累积。
断电后会造成当前位置信息丢失。
重新上电后需执行回原点(定位控制参考点)操作。
绝对式编码器:分辨率单位为Bit如17Bit,相当于360°被等分成2的17次方份。
转轴的任意位置都能读出一个固定的、与位置相对应二进制编码(二进制码、格雷码、BCD 码等)。
断电后位置不会丢失,无累积误差。
绝对式编码器只能在单圈范围(360°以内)进行位置检测,后来的多圈编码器(带表示转动圈数的码盘)解决了该问题。
多圈编码器在安装时不必费劲找零点,将某一中间位置作为起始点即可。
绝对式编码器输出的多位数码,其与PLC连接有并行输出(接到PLC输入口,一位数据一线)、串行输出两种。
伪绝对式编码器:在日系伺服控制系统里比较常见。
中心码盘仍然是增量式,在此基础上仿造多圈绝对式编码器增加了记录中心码盘旋转圈数的附加码盘。
位置数据:圈数、增量脉冲数。
需加后备电池和存储器。
在首次开机、电池未及时更换、传输线断开时都必须重新进行一次原点回归(对零点脉冲固定)操作。
绝对值编码器的介绍
绝对值编码器的介绍什么是绝对值编码器的“绝对式”的含义旋转编码器是工业中重要的机械位置角度、长度、速度反馈并参与控制的传感器,旋转编码器分增量值编码器、绝对值编码器、绝对值多圈编码器。
从外部接收的设备上讲(如伺服控制器、PLC),增量值是指一种相对的位置信息的变化,从A点变化到B点的信号的增加与减少的计算,也称为“相对值”,它需要后续设备的不间断的计数,由于每次的数据并不是独立的,而是依赖于前面的读数,对于前面数据受停电与干扰所产生的误差无法判断,从而造成误差累计;而“绝对式工作模式”是指在设备初始化后,确定一个原点,以后所有的位置信息是与这个“原点”的绝对位置,它无需后续设备的不间断的计数,而是直接读取当前位置值,对于停电与干扰所可能产生的误差,由于每次读数都是独立不受前面的影响,从而不会造成误差累计,这种称为接收设备的“绝对式”工作模式。
而对于绝对值编码器的内部的“绝对值”的定义,是指编码器内部的所有位置值,在编码器生产出厂后,其量程内所有的位置已经“绝对”地确定在编码器内,在初始化原点后,每一个位置独立并具有唯一性,它的内部及外部每一次数据刷新读取,都不依赖于前次的数据读取,无论是编码器内部还是编码器外部,都不应存在“计数”与前次读数的累加计算,因为这样的数据就不是“独立”“唯一”“量程内所有位置已经预先绝对确立”了,也就不符合“绝对”这个词的含义了。
所以,真正的绝对编码器的定义,是指量程内所有位置的预先与原点位置的绝对对应,不依赖于内部及外部的计数累加而独立、唯一的绝对编码。
关于“绝对式”编码器的概念的“故意混淆”与认识的误区关于绝对值编码器,很多人的认识还是停留在“停电”的位置保存这个概念,这个是片面而有局限性的,“绝对值”编码器不仅仅是停电的问题,对于接收设备,真正的“绝对值”的意义在于其数据刷新与读取无论在编码器内部还是外部,每一个位置的独立性、唯一性、不依赖于前次读数的“绝对编码”,对于这个“绝对”的定义市场上还是模糊不清的,为此有些商家就会对于此概念的“故意混淆”:混淆一:将接收设备的“绝对式工作模式”与绝对值编码器的“绝对式”的混淆。
各种编码器的种类及应用
各种编码器的种类及应用编码器是一种用于将输入信号转换为特定编码形式的设备或系统,其本质是一种信息转换的过程。
根据不同的应用领域和需求,编码器有多种不同的类型。
以下将介绍几种常见的编码器类型及其应用。
1. 绝对值编码器绝对值编码器可以将输入信号转化为特定的离散数值,每个数值代表一个确定的位置。
常见的绝对值编码器有光电编码器、磁性编码器和接触式编码器等。
应用领域:绝对值编码器广泛用于机械控制系统中,如数控机床和机器人等,用于测量和控制位置信息。
2. 增量编码器增量编码器输出的编码信号是关于位置变化的增量量。
在每个位置变化时,增量编码器会输出一个脉冲信号,可以通过计数这些脉冲信号来测量位置变化的大小。
应用领域:增量编码器常用于测量转速和角度变化,广泛应用于机械设备和自动化系统中,如汽车发动机、风力发电机组等。
3. 旋转编码器旋转编码器是一种用于测量旋转物体角度和方向的编码器。
它通常有两个输出通道,一个用于测量角度大小,另一个用于测量旋转方向。
应用领域:旋转编码器常用于手动控制设备,如电子游戏手柄、机械表盘等。
此外,旋转编码器还广泛应用于汽车、机械设备和机器人等领域。
4. 数字编码器数字编码器基于数字电子技术,将输入信号转化为数字形式的编码输出。
数字编码器通常具有较高的精度和可靠性,并且能够通过数字信号处理实现更高级的功能。
应用领域:数字编码器广泛用于自动化控制系统、数字通信系统、数字音频设备等领域。
如工业自动化系统中的位置控制、机器人控制等。
5. 视觉编码器视觉编码器通过图像传感器对图像进行捕捉和处理,将图像信息转化为编码输出。
视觉编码器的主要优点是能够实现非接触测量和高精度测量。
应用领域:视觉编码器广泛应用于计算机视觉、机器人视觉、图像处理等领域。
如机器人的导航和定位、物体识别和测量等。
6. 频率编码器频率编码器是一种将输入信号转化为频率输出的编码器。
通过测量输出的脉冲信号频率,可以获取输入信号的频率大小。
绝对编码器与增量编码器的区别
绝对编码器与增量编码器的区别文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)一、光电编码器:光电编码器是集光、机、电技术于一体的数字化传感器,可以高精度测量被测物的转角或直线位移量。
增量式旋转编码器定义:用光信号扫描分度盘(分度盘与转动轴相联),通过检测、统计信号的通断数量来计算旋转角度增量式旋转编码器的特点:1)编码器每转动一个预先设定的角度将输出一个脉冲信号,通过统计脉冲信号的数量来计算旋转的角度,因此编码器输出的位置数据是相对的;2)由于采用固定脉冲信号,因此旋转角度的起始位可以任意设定;3)由于采用相对编码,因此掉电后旋转角度数据会丢失需要重新复位。
增量式编码器综述特点:数字编码,根据旋转角度输出脉冲信号;根据旋转脉冲数量可以转换为速度选型:-旋转一周对应的脉冲数(256,512,1024,2048);输出信号类型(TTL,HTL,push-pullmode);电压类型(5V,24V);最大分辨速度优点:分辨能力强;测量范围大;适应大多数情况缺点:断电后丢失位置信号;技术专有,兼容性较差绝对式旋转编码器定义:用光信号扫描分度盘(分度盘与传动轴相联)上的格雷码刻度盘以确定被测物的绝对位置值,然后将检测到的格雷码数据转换为电信号以脉冲的形式输出测量的位移量绝对式旋转编码器的特点:1)在一个检测周期内对不同的角度有不同的格雷码编码,因此编码器输出的位置数据是唯一的;2)因使用机械连接的方式,在掉电时编码器的位置不会改变,上电后立即可以取得当前位置数据;3)检测到的数据为格雷码,因此不存在模拟量信号的检测误差;绝对式编码器综述特点:数字编码,根据旋转角度输出脉冲信号;根据输出的脉冲信号可以转化为速度.选型:单编码盘/多编码盘(测量一个或二个旋转变量);代码(格雷码,BCD码,二进制码)信号传输方式(并口,串口);分辨率;最大旋转速度优点:1)结构简单2)角行程编码(通过旋转轴获得)3)线性编码(激光远距离测量)4)掉电不影响编码数据的获得5)最大24位编码缺点:比较贵混合式旋转编码器定义:用光信号扫描分度盘(分度盘与转动轴相联),通过检测、统计光信号的通断数量来计算旋转角度,同时输出绝对旋转角度编码与相对旋转角度编码混合式旋转编码器的特点:具备绝对编码器的旋转角度编码的唯一性与增量编码器的应用灵活性。
Z-多摩川绝对编码器的特点和应用
多摩川绝对式编码器特点和应用作者:姜燕平摘要:本文简要介绍日本多摩川绝对式编码器应用特点和接口方法,其中重点介绍产品通信协议和硬件接口电路以及专用的接收芯片AU5561应用方法。
概念日本多摩川是旋转编码器的专业生产厂家,主要生产增量式和绝对式编码器。
增量式是编码器轴每转过一个单位,编码器就输出一个脉冲,故称之为增量式,英文叫做Increamental;绝对式编码器则是以某一点为参考原点,数据线始终输出编码器轴的当前位置偏离原点的位置数据信息,是称绝对式,英文叫做Absoulute。
比如,一款10位BCD码输出的编码器分辨率为360C/T,那么每个单位对应1°,如果轴偏离原点一个单位,也就是处在1°的位置,那么输出00 0000 0001,如果偏离50°,也就是在50°的位置,那么输出就是00 0101 0000。
绝对式编码器总是输出当前位置信息。
分类多摩川绝对式编码器型号齐全,从输出信号的编码方式来分类的话,有BCD码、GRAY码和纯2进制码(PB)输出;从输出方式来划分的话并行输出和串行输出;从分辨率来划分的话有从8位到33位不等。
用户可以根据自己的需要进行选择。
输出电路接口对于分辨率不是很高的绝对式编码器来讲,一般适合采用并行输出,这样接口电路简单,而且通信速率高。
采用并行输出的编码器输出回路主要有集电极开路(如图1所示)和射极跟随(如图2示)两种方式。
集电极开路输出模式用户端需要加接上拉电阻,如图1中虚线所示;射极跟随模式下,则应加下拉电阻,如图2中虚线所示。
输出数据线对应从1、2、2²…2ⁿ的数据位,用户只需从数据总线直接读取编码器数据即可。
图1 图2并行输出因为占用的数据线太多只被低分辨率的编码器采用,而高精度的编码器多不采用并行输出,而一般采用串行输出,以节省输出线。
多摩川提供专用串并行转换芯片,用户可依照通信协议对其进行编程,将串行输出的编码器数据转换为并行输出,用户从转换芯片的输出端读取编码器位置数据。
增量式伺服控制器与绝对位置式伺服控制器的区别
增量式伺服控制器与绝对位置式伺服控制器的区别伺服控制器是一种用于控制运动系统的设备,通过接收指令信号并对电机进行控制,实现精确的位置、速度或力控制。
在现代自动化控制系统中,常见的伺服控制器有增量式伺服控制器和绝对位置式伺服控制器,它们在工作原理、控制方式和应用领域上存在一些区别。
一、工作原理区别增量式伺服控制器是基于位置差值进行控制的。
它在初始状态下设定一个参考位置,然后通过计算当前位置与参考位置的差值来确定电机的控制信号,从而实现动作的精确控制。
增量式伺服控制器适用于要求相对位置控制的应用,如机械加工、印刷、装配和精密定位等。
绝对位置式伺服控制器则是基于绝对位置进行控制的。
它通过使用绝对编码器等装置来测量物体的精确位置,并将这个位置信息传递给伺服控制器。
绝对位置式伺服控制器适用于要求绝对位置控制的应用,如机器人、自动化仓储系统和精密测量设备等。
二、控制方式区别增量式伺服控制器的控制方式主要分为开环控制和闭环控制两种。
在开环控制中,控制器只根据输入信号发送指令,而无法检测实际位置与目标位置之间的差异。
闭环控制则通过不断读取反馈信号,并与设定值进行比较,使得实际位置与目标位置之间的偏差最小化。
绝对位置式伺服控制器通常采用闭环控制方式。
它能够实时反馈当前位置,并根据设定值进行精确调整,从而确保系统能够达到预定的位置。
三、应用领域区别增量式伺服控制器由于其相对较低的成本和简单的控制方式,主要应用于需要相对位置控制的场景。
例如,工业机器人的关节控制、机床的输送控制和印刷机的进纸控制等。
绝对位置式伺服控制器则在需要绝对位置控制或高精度控制的应用中应用广泛。
例如,在需要精确测量位置的自动化仓储系统中,绝对位置式伺服控制器能够精确控制货物的运动轨迹,确保货物准确到达指定位置。
综上所述,增量式伺服控制器和绝对位置式伺服控制器在工作原理、控制方式和应用领域上存在一些区别。
选择合适的伺服控制器取决于具体的应用需求,以及对位置控制精度和成本的要求。
绝对值编码器和增量编码器的工作原理
绝对值编码器和增量编码器的工作原理一、引言编码器是将机械运动转换为数字信号的设备,广泛应用于自动化控制系统中。
其中,绝对值编码器和增量编码器是两种常见的编码器类型。
本文将详细介绍它们的工作原理。
二、绝对值编码器1. 原理绝对值编码器通过在旋转轴上安装一组光电传感器和光源,检测旋转轴上的刻度盘上的标记来确定角度位置。
刻度盘通常由磁性或光学条纹组成,每个条纹代表一个特定的角度位置,并且与传感器相对应。
当旋转轴旋转时,光电传感器会读取刻度盘上的标记,并将其转换为数字信号输出。
2. 类型根据不同的检测方式和输出类型,绝对值编码器可以分为以下几种类型:(1)单圈型:只能检测单圈角度范围内的位置。
(2)多圈型:可以检测多圈角度范围内的位置。
(3)线性型:可以检测线性位移范围内的位置。
3. 优缺点优点:(1)精度高:由于采用了高精度刻度盘和光电传感器,因此具有很高的精度。
(2)不受干扰:由于输出的是绝对位置信息,所以不受外界干扰影响。
(3)快速响应:由于无需进行复位操作,因此具有快速响应的特点。
缺点:(1)成本高:由于采用了高精度刻度盘和光电传感器,因此成本较高。
(2)复杂结构:由于需要安装刻度盘和光电传感器,因此结构较为复杂。
三、增量编码器1. 原理增量编码器通过在旋转轴上安装一组光电传感器和光源,检测旋转轴上的齿轮或条纹运动来确定角度位置。
齿轮或条纹通常由磁性或光学条纹组成,每个条纹代表一个特定的角度位置,并且与传感器相对应。
当旋转轴旋转时,光电传感器会读取齿轮或条纹上的标记,并将其转换为数字信号输出。
2. 类型根据不同的检测方式和输出类型,增量编码器可以分为以下几种类型:(1)单路型:只能检测正转方向或反转方向的角度变化。
(2)双路型:可以同时检测正转方向和反转方向的角度变化。
(3)三路型:可以同时检测正转方向、反转方向和速度信息。
3. 优缺点优点:(1)成本低:由于采用了简单的齿轮或条纹结构,因此成本较低。
哪位能告诉伺服电机绝对值编码器和增量编码器的区别
ቤተ መጻሕፍቲ ባይዱ容介绍
一、指代不同 1、增量式编码器:将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的 个数表示位移的大小。 2、绝对值编码器:在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方 到2的n-1次方的唯一的2进制编码。 二、工作方式不同 1、增量式编码器:以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时, 依靠计数设备的内部记忆来记住位置。
哪位能告诉伺服电机绝对值编码器和 增量编码器的区别。
参考资料:伺服电机编码器
伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从 物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算 一种特殊的伺服编码器,市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有 可靠,价格便宜,抗污染等特点,有赶超光电编码器的趋势。
内容介绍
2、绝对值编码器:由机械位置确定编码,无需记忆,无需找参考点,而且不用一直计数,什么 时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大 大提高了。 三、用处不同 1、增量式编码器:钢铁冶金设备、重型机械设备、精密测量设备、机床、食品机械、电梯等特 种设备。 2、绝对值编码器:纺织机械、灌溉机械、造纸印刷、水利闸门、机器人及机科-绝对值编码器
谢谢观看
里程编码器原理
里程编码器原理里程编码器是一种测量位移的装置,其原理是将角位移转换成电信号,并进行转速测量。
里程编码器通过测量列车车轮在两个连续周期的角位移来实现上述测量。
它设置在列车车轴的尾部,通过一个内部圆盘与列车车轴的相同速度转动,圆盘上有一系列的孔,孔的出现可以被光电耦合器组成的传感器检测到。
传感器将圆盘上的孔转换成脉冲信号,通过计数这些脉冲信号的数量,可以确定列车车轮的旋转角度和速度。
里程编码器可以分为增量式编码器和绝对式编码器两种类型。
增量式编码器通过脉冲数来表示位移的大小,计数器起点可任意设定,并可实现多圈的无线累加和测量。
绝对式编码器是利用自然二进制或者循环二进制方式进行光电转换的,每个角度对应一个数字码,再利用外部记圈器件进行位置纪录和测量。
里程编码器的应用非常广泛,例如在列车控制系统中用于测量列车的位置和速度,在机器人运动控制中用于测量机器人的位移和速度等。
里程编码器在许多领域都有应用,以下是一些常见的应用场景:1.轨道交通:在轨道交通领域,里程编码器常用于测量列车的位置和速度,以实现列车自动控制系统对列车进行精确控制和优化运行。
2.机器人技术:在机器人技术领域,里程编码器可用于测量机器人的位移和速度,从而实现机器人的自主跟随、定位和避障等功能。
3.航空航天:在航空航天领域,里程编码器可用于测量飞机的姿态和位置,以及卫星的轨道和姿态控制等。
4.自动化生产线:在自动化生产线中,里程编码器可用于测量生产线上物品的位置和速度,从而实现自动化生产和质量控制。
5.医疗器械:在医疗器械领域,里程编码器可用于测量医疗设备的位置和速度,例如放射治疗设备、内窥镜等。
6.运动控制:在运动控制领域,里程编码器可用于测量运动物体的位置和速度,例如数控机床、打印机等精密设备。
总之,里程编码器的应用非常广泛,涉及到了许多工业领域和民用领域。
它的出现为精确测量和控制位置、速度等参数提供了可靠的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增量式编码器和绝对式编码器的特点及应用范围
深圳职业技术学院刘遥生
1、什么是编码器――编码器是把角位移或直线位移转换成电信号的一种装置。
2、编码器分类及原理
按照工作原理编码器可分为增量式(SPC)和绝对式(APC)两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
两者一般都应用于转速控制或位置控制系统的检测元件。
3、特点及应用范围
增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相,A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一圈输出一个脉冲,用于基准点定位。
编码器转动时输出脉冲,通过计数设备来知道其位置和转速。
当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。
这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
优点是构造简单,平均寿命长,抗干扰能力强,可靠性高,适合于连续运转高精度定位控制。
其缺点是无法输出轴转动的绝对位置信息。
绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数。
绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。
优点是可以直接读出角度坐标的绝对值,没有累积误差,电源切除后位置信息不会丢失。
但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。