直线、射线、线段测试题及答案
人教版数学四年级上册《线段、直线、射线》练习卷(含答案)
人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。
①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。
这个游戏规则不公平。
①如果被除数末尾有2个0,那么商的末尾至少有1个0。
①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。
A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。
5.下面的图形中哪些是线段?在其下面的()里画“○”。
()()()()()()()()6.下图中有______条线段。
7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。
( )9.放风筝时的风筝线可以看成是一条直线。
( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。
( )12.两个直角就是一个平角。
()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。
根据这一原理人们制作了度量角的工具——量角器。
( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。
( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。
画一条比1分米短1厘米的线段。
18.画一条比3厘米长15毫米的线段,并标出长度。
数学四年级上册《线段直线射线》练习题(含答案)
3.1线段、直线、射线(基础应用篇)一、单选题(共10题)1.过一点可以画出( )条直线.A. 1B. 2C. 无数D. 无法判断2.下面( )是线段.A. B. C. D.3.下面( )是射线。
A. 米尺B. 手电筒的光C. 竹棍D.卷尺4.一条直线长( )A. 5厘米B. 35厘米C. 70厘米D. 无法测量5.一只由几条线段组成的小鱼经过平移后,它( )平行。
A. 只有一组线段B. 有两组对应线段C. 所有线段都D. 所有对应线段都不6.把线段向一端无限延长,就得到一条( )A. 线B. 线段C. 射线D. 直线7.下图中共有( )线段。
A. 4条B. 5条C. 6条D.8条8.左图中有( )线段。
A. 2条B. 3条C. 4条D.10条9.下面说法中,正确的是( )A. 小明画了一条5厘米的射线B. 用二倍放大镜看45°的角,看到的角是90°C. 两个完全相同的梯形可以拼成一个平行四边形D. 教室的面积约是50公顷10.三条直线相交最多有( )个交点.A. 1B. 2C. 3D.4二、填空题(共10题)11.量一量下面各角的度数,再写出它们的名称.________________12.线段有________个端点,射线有________个端点,直线________个端点。
13.把线段的________端无限延长,就得到一条直线.14.________线、________线都可以无限延伸,其中________线没有端点,________只有一个端点。
15.画线段,量距离.以A、B为线段的两个端点,画出一条线段,并测量出它们的距离.(精确到毫米)这条线段的长度是________.16.过一个圆的圆心可画________条射线?17.________是直线,________是射线,________是线段,________是直角,________是锐角,________是平角,________是周角,________是钝角。
初中数学直线射线线段综合练习题(附答案)
初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。
人教版数学七年级上册4.2直线 射线 线段测试带答案解析
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
人教版四年级数学上册第3单元线段、直线、射线附答案
人教版四年级数学上册第3单元4.线段、直线、射线一、我会选。
(每小题2分,共10分)1.小米画出了一条5厘米长的()。
A.直线B.射线C.线段2.直线和射线相比,()。
A.直线长B.射线长C.无法比较3.把线段向一端无限延伸后,就可以得到一条()。
A.线段B.射线C.直线4.把一条长5厘米的线段向两端各延长3厘米,得到的是一条()。
A.直线B.线段C.射线5.下列说法正确的是()。
A.直线的长度是射线的两倍B.线段比射线短,射线比直线短C.射线只是直线的一部分,所以直线比射线长D.直线和射线都能无限延伸二、我会填。
(每空2分,共24分)1.照样子,用字母来表示线段。
()或()2.线段有()个端点,()可以量出长度。
3.直线()端点,射线有()个端点,无法测量()和()的长度。
4.把线段的两端无限延长,就可以得到一条()。
线段和射线都是()的一部分。
5.射线可以用端点和射线上的另一个点来表示。
如:记作()记作()三、我会辨(对的在括号里打“√”,错的打“×”)。
(每小题2分,共8分) 1.小明用尺子测量出射线的长度是5分米。
() 2.直线很长,可以画出1万米长的直线。
() 3.直线和射线都没有端点,所以它们都不能量出长度。
() 4.手电筒射出的光线可以看成是射线。
()四、分一分。
(9分)五、数一数。
(每空2分,共18分)1.下图中共有()条射线,列式:________________2.下图中共有()条线段,列式:________________3.下图中共有()条线段,列式:________________4.下图中共有()条直线,有()条射线,有()条线段。
六、按要求做一做。
(共23分)1.过A点画一条直线。
(4分)2.过A、B两点画直线。
(4分)3.先以点A为端点画一条射线。
(6分)4.下面有5个点,经过任意2个点画直线能画几条?动手画一画,并列式计算出来。
(9分)七、我会应用。
(8分)小米家装一根长条状晾衣架,至少需要几颗钉子才能把这根长条状晾衣架固定在墙上?说说你的理由。
中考数学专题复习《直线、射线、线段》测试卷(附带答案)
中考数学专题复习《直线射线线段》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________知识点1. 定义与性质:线段:线段是由两个端点及其之间的所有点组成的。
它有一个固定的长度并且可以在数轴上表示一个区间。
例如线段AB表示从点A到点B的所有点的集合。
射线:射线有一个起点(称为端点)并从该点沿一个方向无限延伸。
射线有一个端点和一个方向但没有固定的长度。
例如射线AB表示从点A出发沿AB方向无限延伸的线的集合。
直线:直线由无数个点组成没有端点并且向两端无限延伸。
直线没有固定的长度并且可以通过任意两个不重合的点来确定。
例如通过点A和点B可以确定一条直线。
2. 表示方法:线段:通常使用两个端点的字母来表示如线段AB。
在数轴上也可以使用一个区间来表示如[A, B]。
射线:使用起点和另一个点的字母来表示并指明方向如射线AB(从A出发经过B)。
直线:可以通过两点来表示如直线AB。
在数轴上直线可以用一个小写字母或两个不等的点来表示。
3. 几何特性:线段:是有限长的可以度量其长度。
线段是构成其他几何图形(如三角形四边形等)的基本元素。
射线:有一个端点和一个方向因此是无限长的不能度量其长度。
射线在几何学和物理学中有应用如光线和雷达波的传播。
直线:没有端点因此是无限长的也不能度量其长度。
直线是构成平面图形和立体图形的基本元素如平行四边形圆等。
4. 轴对称性:线段:线段是轴对称图形其对称轴是垂直于线段并通过其中点的直线。
射线:射线也是轴对称图形其对称轴是包含其端点的直线。
直线:直线是轴对称图形有无数条垂直于它的直线可以作为对称轴。
专项练一单选题1.下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2.我们知道若线段上取一个点(不与两个端点重合以下同)则图中线段的条数为++=条若线段上取三个点123+=条若线段上取两个点则图中线段的条数为1236+++=条……请用你找到的规律解决下列实际问题:杭甬铁路则图中线段的条数为123410(即杭州—宁波)上有萧山绍兴上虞余姚4个中途站则车站需要印的不同种类的火车票为( )A .6种B .15种C .20种D .30种3.下列命题中 是假命题的是( )A .三个角对应相等的两个三角形全等B .﹣3a 3b 的系数是﹣3C .两点之间 线段最短D .若|a |=|b | 则a =±b4.在下列说法①联接两点的线中 线段最短 ①相等的角是对顶角 ①过直线外一点有且只有一条直线与已知直线平行 ①两点间的线段是这两点的距离 ①20.196精确到百分位得20.2中 正确的是( )A .①①B .①①C .①①D .①①5.已知线段AB 长2cm .现延长AB 到点C 使3BC AB =.取线段AB 的中点D 线段CD 的长为( )A .5cmB .3cmC .7cmD .1cm6.如图 以A B C D E 为端点 图中共有线段( )A .7条B .8条C .9条D .10条7.如图所示 下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线 ①图中有两条射线 ①直线AB 和直线BA 是同一条直线 ①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .18.如图 在菱形ABCD 中 60ABC ∠=︒ E 是边BC 的中点 P 是对角线BD 上的一个动点 连接AE AM 若12AP BP +的最小值恰好等于图中某条线段的长 则这条线段是( )A .AB B .AEC .BD D .BE9.如图 点C 是线段AB 的中点 点D 是线段CB 上任意一点 则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12ABD .AD =12(CD +AB ) 10.若将点A (-1 3)向右平移2个单位 再向下平移4个单位得到点B 则点B 在第( )象限A .一B .二C .三D .四二 填空题11.绷紧的琴弦 人行横道都可以近似地看做 它有 个端点 手电筒 探照灯所射出的光线可以近似地看做 它有 个端点 笔直的铁轨可以近似地看做 它有 端点.12.A B C 三点在同一条直线上 若BC=2AB 且AB=m 则AC= . 13.如图 已知线段12AB = 延长线段AB 至点C 使得12BC AB =点D 是线段AC 的中点 则线段BD 的长是 .14.如图 等边ABC 的边长为4 AD 是BC 边上的中线 F 是AD 边上的动点 E 是AC 边上一点 若2AE = 当EF CF +取得最小值时 则ECF ∠= .15.若O 的半径为33 圆心O 为坐标系的原点 点P 的坐标是()3,5 点P 在O .16.已知线段AB=18cm P Q 是线段AB 上的两个点 线段AQ=12cm 线段BP=14cm 则线段PQ= .17.如图 直线243y x =+与x 轴 y 轴分别交于点A 和点B 点C D 分别为线段AB OB 的中点 点P 为OA 上一动点 PC PD +最小值是 .18.菱形OBCD 在平面直角坐标系中的位置如图所示 顶点B (2 0) ①DOB =60° 点P是对角线OC 上一个动点 E (0 则EP +BP 的最小值为 .19.如图 C 为线段AD 上一点 点B 为CD 的中点 且8cm AD = 2cm BD =.若点E 在AD 上 且EA=3cm BE 的长为 .20.如图 AD 为等边ABC 的高 E F 分别为线段AD AC 上的动点 且AE CF = 当BF CE +取得最小值时 AFB ∠的度数为 .三 解答题21.线段和角是我们初中数学常见的平面几何图形 它们的表示方法 和差计算以及线段的中点 角的平分线的概念等有很多相似之处 所以研究线段或角的问题时可以运用类比的方法.(1)特例感知:如图1 已知10cm AB = 点D 是线段AC 的中点 点E 是线段BC 的中点.若6cm BC 则线段DE =________cm .(2)数学思考:如图1 已知10cm AB = 若C 是线段AB 上的一个动点 点D 是线段AC 的中点 点E 是线段BC 的中点 线段DE 的长会发生变化吗?说明理由.(3)知识迁移:如图2 OB 是AOC ∠内部的一条射线 把三角尺中60︒角的顶点放在点O 处 转动三角尺 当三角尺的边OD 平分AOB ∠时 在角尺的另一边OE 也正好平分BOC ∠ 求AOC ∠的度数.22.如图 C 为线段AB 的中点 点D 在线段CB 上.(1)图中共有_________条线段(2)图中AD AC CD =+ BC AB AC =- 类似地 请你再写出两个有关线段的和与差的关系式:①_________ ①_________(3)若8AB = 1.5DB = 求线段CD 的长.23.补全解题过程已知:如图 点C 是线段AB 的中点 2CD =cm 8BD =cm 求AD 的长.解:①2CD=cm 8BD=cm①CB CD=+______=______cm①点C是线段AB的中点①AC CB==______cm①AD AC=+_______=_______cm24.(1)已知线段8AB=点C在线段AB的延长线上M N分别是线段AC与线段BC 的中点求线段MN的长(2)已知线段8cmAB=点C在线段AB的反向延长线上M N分别是线段AC与线段BC的中点则线段MN的长为cm.25.如图线段1134BD AB CD==点M N分别是线段AB CD的中点且20cmMN=求AC的长.参考答案:1.D2.D3.A4.A5.C6.D7.C8.B9.D10.D11.线段两射线 1 直线0个. 12.m或3m13.314.30︒15.外16.8cm17.5183119.3或9cm20.105︒/105度21.(1)5(2)不会(3)120︒22.(1)6 (2)(2)①BC=CD+DB ①AD=AB−DB (答案不唯一)(3)CD=2.5.23.BD10 10 CD12.24.(1)4 (2)425.48cm。
七年级 直线、射线、线段,带答案
直线射线线段典题探究例1.点A、B是直线l上的两点,AB=12cm,在直线l上取一点C,使BC=5cm,则线段AC的长是____________.例2.如图一列往返于甲乙两站的火车,中途停靠三站,你认为要准备()种车票才满足乘客的需要.A.10 B.20C.30 D.40例3.如图所示,在平整的地面上放有一个正方体,一只蚂蚁在顶点A处,它要爬到顶点B,问蚂蚁有几条最短路线,它应怎样确定爬行路线?例4.已知点B在直线AC上,AB=6,AC=10,P、Q分别是AB、AC的中点,求PQ 的长演练方阵A档(巩固专练)1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到CC.平角是一条直线; D.延长线段AB到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.7.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
8.图中共有线段________条。
9.如图,已知C点为线段AB的中点,D点为BC中点,AB=10cm,求AD的长度。
10.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。
B档(提升精练)1.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个2. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B3.如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b B .2a b C .a b D .a b4.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝5.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外6.如图,学生要去博物馆参观,从学校A处到博物馆B处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A处赶到B处,假设行走的速度不变,你认为应该走第________条线路(只填番号)最快,理由是___________________。
直线、射线、线段练习题(含答案)
1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。
4-2 直线、射线、线段(基础训练)(解析版)
4.2 直线、射线、线段 【基础训练】 一、单选题1.如图,4,7CB cm DB cm ==,点D 为AC 的中点,则AB 的长为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【分析】由图形可知,AB 等于各线段的和,即分别求出AD ,DC .然后相加即可得出AB 的长度. 【详解】解:由题意知,CB =4cm ,DB =7cm ,所以DC =3cm ,又点D 为AC 的中点,所以AD =DC =3cm ,故AB =AD +DB =10cm .故选:B . 【点睛】 本题主要考查学生灵活运用线段的和、差、倍、分转化线段之间的数量关系的能力.2.在开会前,工作人员进行会场布置在主席台上由两人拉着一条绳子然后以“准绳”为基准摆放茶杯这样做的理由是( )A.两点之间线段最短B.两点确定一条直线C.两点之间,直线最短D.过一点可以作无数条直线【答案】B【分析】根据直线的性质:两点确定一条直线可得答案.【详解】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【点睛】此题主要考查了直线的性质,关键是掌握两点确定一条直线.3.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【分析】根据两点间的距离定义即可求解.【详解】解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.【点睛】本题考查了两点间的距离的定义.4.日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段【答案】C【分析】根据直线,射线和线段的区别即可得出答案.【详解】手电筒可近似看成一个点,所以手电筒发射出来的光线相当于一个从一个端点出发的一条射线,故选:C.【点睛】本题主要考查射线,掌握直线,射线和线段的区别是关键.5.下列说法中,错误的是()A.射线AB和射线BA是同一条射段B.经过两点只能作一条直线C.经过一点可以作无数条直线D.两点之间,线段最短【答案】A【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:A、射线AB和射线BA不是同一条射线,故此选项错误,符合题意;B、经过两点只能作一条直线,正确,不合题意;C、经过一点可以作无数条直线,正确,不合题意;D、两点之间,线段最短,正确,不合题意;故选:A.【点睛】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点之间直线最短C.两点确定一条直线D.以上说法都不对【答案】C【分析】根据题意可知应用的是两点确定一条直线,从而可得出答案.【详解】把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是两点确定一条直线,故选:C.【点睛】本题主要考查数学知识的实际应用,掌握基本的数学事实是解题的关键.7.如图,AB=CD,那么AC与BD的大小关系是()A.AC<BD B.AC=BD C.AC>BD D.不能确定【答案】B【分析】由题意可知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【详解】根据题意和图示可知AB=CD,而BC为AB和CD共有线段,故AC=BD,故选:B.【点睛】注意根据等式的性质进行变形,读懂题意是解题的关键.8.如图,从A地到B地有四条路线,由上到下依次记为路线①、①、①、①,则从A地到B地的最短路线是路线().A.①B.①C.①D.①【答案】C【分析】结合题意,根据两点之间线段最短的性质分析,即可得到答案.【详解】根据题意得,从A地到B地的最短路线是路线①故选:C.【点睛】本题考查了最短路径的知识;解题的关键是熟练掌握两点之间线段最短的性质,从而完成求解.9.下列说法错误的是()A.0既不是正数也不是负数B.经过两点有一条直线,并且只有一条直线C.两点之间,线段最短D.射线AB与射线BA是同一条射线【答案】D【分析】据有理数的知识和基本图形的相关知识逐一分析,先出符合题意的选项.【详解】对于A,0既不是正数也不是负数,说法正确,不符合题意;对于B,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意;对于C,两点之间,线段最短,说法正确,不符合题意;对于D,射线AB与射线BA的端点不同,延伸方向不同,故“射线AB与射线BA是同一条射线”这一说法错误,符合题意.故选:D.【点睛】此题考查有理数的分类和基本几何图形的相关知识,理解相关知识点是关键.10.下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;①把弯曲的公路改直,就能缩短路程;①用两个钉子就可以把木条固定在墙上;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①①B.①①C.①①D.①①【答案】A【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【详解】①从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确;①把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”.故错误;故选:A.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.11.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线【答案】D【分析】根据直线、射线、线段的意义和表示方法进行判断即可.【详解】解:A.直线AB与直线BA是同一条直线,因此A不正确,故A不符合题意;B.射线AB与射线BA不是同一条射线,因此B不正确,故B不符合题意;C.延长线段AB和延长线段BA的含义不一样,因此C不正确,故C不符合题意;D.经过两点有一条直线,并且只有一条直线是正确的,故D符合题意;故选:D.【点睛】本题考查直线、射线、线段的意义,理解直线、射线、线段的意义是正确判断的前提,掌握直线的性质是正确判断的关键.12.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点【答案】B【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,A C D不符合题意,B符合题意,故,,故选:.B【点睛】本题考查的是直线的性质,掌握两点确定一条直线的实际应用是解题的关键.13.如图,某同学用剪刀治直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这现象的数学知识是()A.两点之间,直线最短B.两点之间,线段最短C.两点确定一条直线D.经过一点有无数条直线【答案】B【分析】根据线段的性质,可得答案.【详解】解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选:B.【点睛】本题考查的是线段的性质,利用线段的性质是解题关键.14.下列语句正确的有()(1)线段AB就是A、B两点间的距离;AB=;(2)画射线10cm(3)A,B两点之间的所有连线中,线段AB最短;=,那么B是AC的中点.(4)如果AB BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点间的距离,射线的定义与性质,线段的中点的定义,对各小题分析判断即可得解.【详解】解:因为线段AB的长度是A、B两点间的距离,所以(1)错误;因为射线没有长度,所以(2)错误;因为两点之间,线段最短.即A,B两点之间的所有连线中,最短的是A,B两点间的距离,所以(3)正确;因为点A、B、C不一定共线,所以(4)错误.综上所述,正确的有1个.故选:A.【点睛】本题考查的是线段、射线的定义与性质,线段的中点,两点间的距离,要求学生准确把握概念与性质是解决本题的关键.15.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【分析】根据直线的表示方法可判定A ,利用射线的表示方法可判定B ,C ,利用线段表示方法可判定D . 【详解】解:A . 根据直线MN 与直线NM 表示方法是同一条直线,故选项A 正确;B . 射线PM 与射线MN 是端点不同,不是同一条射线,故选项B 说法不正确;C . 射线PM 与射线PN 是同一条射线,端点相同,方向相同,故选项C 正确;D . 根据线段MN 与线段NM 表示方法是同一条线段,故选项D 正确.故选择:B . 【点睛】 本题考查直线,射线,线段的定义与表示方法,掌握直线,射线,线段的表示方法是解题关键. 16.下列说法正确的是( )A .两点之间直线最短B .平面内的三点可以在一条直线上C .延长射线AB 到点C ,使得BC AB =D .作直线5OB =厘米【答案】B 【分析】 根据线段的性质和直线的性质,以及射线的定义分别判定可得. 【详解】A. 两点之间线段最短,错误,故A 不合题意;B. 平面内的三点可以在一条直线上,表述正确,故B 符合题意;C. 延长线段AB 到点C ,使得BC =AB ,表述错误,故C 不符合题意;D. 作直线OB =5厘米,错误,直线没有长度,故D 不符合题意.故选:B .【点睛】考查了线段的性质,直线的性质,以及射线的定义,熟记概念内容,理解题意是解题的关键.17.把一条弯曲的道路改成直道,可以减少路程,其理由是()A.过两点有且只有一条直线B.两点之间线段最短C.垂线段最短D.两点间线段的长度叫两点间的距离【答案】B【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短.【详解】解:把一条弯曲的道路改成直道,可以减少路程,其理由是两点之间线段最短故选B.【点睛】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.18.下列说法正确的是()A.两点之间的所有连线中,直线最短B.一个角的余角一定比这个角大C.同角(或等角)的补角相等D.经过两点有无数条直线【答案】C【分析】根据“两点之间,线段最短“;互余的两个角的和为90°;补角的性质以及两点确定一条直线逐一判断即可.【详解】A、两点之间的所有连线中,线段最短,故原说法错误,故本选项不合题意;B、一个角的余角不一定比这个角大,如60°角的余角是30°,故原说法错误,故本选项不合题意;C、同角(或等角)的补角相等,说法正确,故本选项符合题意;D、经过两点有且只有一条直线,故原说法错误,故本选项不合题意;故选:C.【点睛】本题主要考查了“两点之间,线段最短“,两点确定一条直线以及补角的定义与性质,熟记相关定义是解答本题的关键.19.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【分析】根据射线,直线的性质以及线段的性质解答.【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.【点睛】 本题考查直线、射线的性质,是基础考点,难度较易,掌握相关知识是解题关键.20.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =( )cm .A .4B .3C .2D .1【答案】C 【分析】由10AB =cm ,4BC =cm .于是得到14AC AB BC =+=cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD AD AM =-,于是得到结论. 【详解】解:①10AB =cm ,4BC =cm ,14AC AB BC ∴=+=cm , D 是AC 的中点, 172AD AC ∴==cm ; M 是AB 的中点,152AM AB ∴==cm , 2D M AD AM ∴=-=cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.21.如图所示,下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线;①图中有两条射线;①直线AB 和直线BA 是同一条直线;①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .1【答案】C 【分析】 根据射线、直线、线段的表示方法判断即可. 【详解】解:①射线AB 和射线BA 不是同一条射线,端点不同,故①错误;①图中有四条射线,故①错误;①直线AB 和直线BA 是同一条直线,故①正确;①线段AB 和线段BA 是同一条线段,故①正确;故选:C . 【点睛】 本题考查了射线、直线、线段的表示方法,解题关键是注意它们的联系和区别.22.下列说法,其中正确的个数有( )(1)绝对值越小的数离原点越近;(2)多项式2235x x -+是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.A .4个B .3个C .2个D .1个 【答案】C【分析】 根据绝对值的定义、多项式、两点间的距离、相交线的定义即可得出结论. 【详解】解:(1)绝对值越小的数离原点越近,此说法正确;(2)多项式2235x x -+是二次三项式,此说法正确;(3)连接两点之间的线段的长度是两点之间的距离,此说法错误;(4)三条直线两两相交有1个或3个交点,此说法错误.故选C . 【点睛】 本题考查了两点间的距离、绝对值、多项式、相交线的定义,熟练掌握各定义是解题的关键.23.下列说法正确的是( )A .延长直线AB 到点CB .射线是直线的一部分C .画一条长2cm 的射线D .比较射线、线段、直线的长短,直线最长【答案】B 【分析】利用直线定义可判断A ,利用射线定义判断B ,利用射线的性质判断C ,利用直线与射线性质判断D 即可. 【详解】解:A. 延长直线AB 到点C ,直线向两方无限延伸,不能延长,故A 选项不正确;B. 射线是直线的一部分,故B 选项正确;C. 画一条长2cm 的射线,射线向一方无限延伸,射线不能度量,故C 选项不正确 ;D. 比较射线、线段、直线的长短,直线最长,射线向一方无限延伸,直线向两方无限延伸不能比较长短,故D选项不正确.故选择:B.【点睛】本题考查直线的定义与性质,射线的定义与性质,线段定义,掌握直线的定义与性质,射线的定义与性质,线段定义是解题关键.24.观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;①射线AC和射线AD是同一条射线;①线段AC和线段CA是同一条线段;①三条直线两两相交时,一定有三个交点.A.1B.2C.3D.4【答案】C【分析】根据直线的表示方法对①进行判断;根据射线的表示方法对①进行判断;根据线段的性质对①进行判断;通过分类讨论对①进行判断.【详解】解:①直线没有方向,直线BA和直线AB是同一条直线,故①说法正确;①射线AC和射线AD是同一条射线,故①说法正确;①线段AC 和线段CA 是同一条线段,故①说法正确;①三条直线两两相交时,一定有三个交点,还可能有一个,故①说法不正确.共3个说法正确.故选:C . 【点睛】 本题考查了直线、射线、线段的含义,解题的关键在于结合图形进行分析.25.如图,已知C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A .4B .6或8C .6D .8【答案】B 【分析】由于E 在直线AD 上位置不明定,可分E 在线段DA 的延长线和线段AD 上两种情况求解. 【详解】解:若E 在线段DA 的延长线,如图1,①EA =1,AD =9,①ED =EA +AD =1+9=10,①BD =2,①BE =ED -BD =10-2=8;若E 线段AD 上,如图2,EA =1,AD =9,①ED =AD -EA =9-1=8,①BD =2,①BE =ED -BD =8-2=6,综上所述,BE 的长为8或6.故选:B . 【点睛】 本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键.26.已知点P 是CD 中点,则下列等式中:①PC PD =;①12PC CD =;①2CD PD =;①PC PD CD +=;正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【分析】根据线段中点的性质进行判断即可.【详解】解:①P 是CD 中点,①12PC PD CD ==,2CD PD =,PC PD CD +=, 因此①①①①都正确,故选:D.【点睛】本题考查了与线段中点有关的各线段之间的熟练关系,熟悉线段中点的含义是解题的关键.27.已知点C为线段AB上一点,AC=2BC,若线段AB的长为6cm,则线段AC的长为()A.6cm B.4cm C.3cm D.2cm【答案】B【分析】根据AC=2BC,可知AC=23AB,代入求值即可.【详解】解:①点C为线段AB上一点,AB=6cm,AC=2BC,①AC=23AB=4cm;故选:B.【点睛】本题考查了线段的计算,解题关键是准确理解题意,熟练的进行计算.28.2019年11月1日,隆生大桥正式通车,缓解了东江大桥与中信大桥的交通压力,其特点是“直”,明显缩短了江北与水口的距离,其主要依据是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两点之间,线段最短【答案】D【分析】直接利用线段的性质分析得出答案.【详解】解:隆生大桥正式通车,最大的特点是“直”,明显缩短了江北与水口的距离,其主要依据是:两点之间,线段最短.故选:D.【点睛】此题主要考查了线段的性质,正确理解题意是解题关键.29.下列叙述正确的是()A.线段AB可表示为线段BA B.直线可以比较长短C.射线AB可表示为射线BA D.直线a,b相交于点m【答案】A【分析】分别根据直线、射线以及线段的定义判断得出即可.【详解】解:A、线段AB可表示为线段BA,此选项正确;B、直线不可以比较长短,此选项错误;C、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;D、点用大写字母表示的,此选项错误,故选:A【点睛】此题主要考查了直线、射线以及线段的定义,正确区分它们的定义是解题关键.30.已知线段AB长为5,点C为线段AB上一点,点D为线段AB延长线上一点,若12BC BD AC==,则线段AC的长为()A.53B.103C.153D.203【答案】B【分析】利用线段的和差和等量关系用AC表示AB,根据5AB=即可得出AC.【详解】解:如图所示:①12BC BD AC==,①1322AB AC BC AC AC AC =+=+=,①5 AB=,①22105333 AC AB==⨯=,故选:B.【点睛】本题考查线段的和差.能结合题意正确构造出线段图是解题关键. 二、填空题31.如图,已知点B 在线段AC 上,9AB =,6BC =,P 、Q 分别为线段AB 、BC 上两点,13BP AB =,13CQ BC =,则线段PQ 的长为_______.【答案】7【分析】根据已知条件算出BP 和CQ ,从而算出BQ ,再利用P A =BP +BQ 得到结果.【详解】解:①AB =9,BP =13AB , ①BP =3,①BC =6,CQ =13BC , ①CQ =2,①BQ =BC -CQ =6-2=4,①PQ =BP +BQ =3+4=7,故答案为:7.【点睛】本题考查了两点间距离,线段的和差,熟练掌握线段上两点间距离的求法,灵活运用线段的和差倍分关系解题是关键.32.如图,线段AB =10,BC =6,点D 上线段AC 的中点,则线段AD 的长为 __.【答案】8【分析】根据线段AB=10,BC=6,可以求得线段AC的长,再根据点D是线段AC的中点,从而可以求得线段AD的长.【详解】解:①线段AB=10,BC=6,①AC=AB+BC=16,①点D是线段AC的中点,①AD=12AC=11682⨯=,故答案为:8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.33.如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.【答案】20【分析】由题意易得11,22MC AC CN CB==,进而可得111222MN MC CN AC CB AB=+=+=,进而问题可求解.【详解】解:①M 、N 分别为AC 、BC 的中点, ①11,22MC AC CN CB ==, ①AB =40, ①11120222MN MC CN AC CB AB =+=+==; 故答案为20.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.34.如图,C 是线段AB 上的一点,且13,5AB CB ==,M 、N 分别是AB 、CB 的中点,则线段MN 的长是_____________.【答案】4【分析】根据中点定义可得到AM =BM =12AB ,CN =BN =12CB ,再根据图形可得NM =BM -BN ,即可得到答案. 【详解】解:①M 是AB 的中点,①AM =BM =12AB =6.5, ①N 是CB 的中点,①CN =BN =12CB =2.5, ①MN =BM -BN =6.5-2.5=4.故答案为:4.【点睛】此题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.35.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:①MN=MB+BC+CN,MN=7cm,BC=3cm,①MB+CN=7﹣3=4cm,①M是AB的中点,N是CD的中点,①AB=2MB,CD=2CN,①AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.【点睛】本题考查了两点间的距离;利用中点性质转化线段间的关系是解题关键.三、解答题36.已知:如图,点,C D在线段AB上,点D是AB中点,1,123AC AB AB==.求线段CD长【答案】2 【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论. 【详解】①D 为线段AB 的中点,①AD =12AB =12×12=6, ①AC =13AB , ①AC =13×12=4, ①CD =AD -AC =6-4=2.【点睛】本题考查线段中点相关的计算,理解中点的定义,掌握线段中的计算法则是解题关键.37.如图,已知C 、D 两点将线段AB 分成2①3①4三段,点E 是线段BD 的中点,点F 是线段CD 上一点,且2CF DF =,12cm EF =,求线段AB 的长.【答案】36【分析】设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,根据题意可用x 表示出DF 、DE 的长,再根据12EF =,即可求出x ,最后即可求出AB 的长.【详解】解:根据题意可设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,①2CF DF =, ①133DF x x =⨯=, ①12DE BD =, ①1422DE x x =⨯=. ①EF DF DE =+,①212x x +=,解得:4x =.①24344436AC D DB A C B =⨯+⨯+⨯==++.【点睛】本题考查线段的n 等分点和中点的有关计算.根据题意找出线段之间的数量关系是解答本题的关键. 38.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;①延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;①见解析;(2)1cm【分析】(1)①根据题意画出图形即可;①根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可. 【详解】(1)①如图,①如图,(2)如图,2cm,AB BC AB ==,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.①点E 是线段BD 的中点, 13cm 2DE DB ∴==, 1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.39.如图,点C 在线段AB 上,AC =6cm ,MB =10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;【答案】(1)7cm ;(2)6.5cm . 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长. 【详解】解:(1)①AC=6cm ,点M 是AC 的中点, ①132MC AC cm ==, ①1037BC M B M C cm . (2)①N 是BC 的中点, ①1 3.52CNBC cm ①3 3.5 6.5M N M C CN cm .【点睛】本题考查了两点间的距离,熟悉相关性质是解题的关键.40.如图,线段6cm AC =,线段15cm BC =,点M 是AC 的中点,在线段CB 上取一点N ,使得:1:2CN NB =,求MN 的长.【答案】8cm【分析】因为点M 是AC 的中点,则有12MC AM AC ==,又因为:1:2CN NB =,则有13CN BC =,故MN MC NC =+可求.【详解】解:M 是AC 的中点,6AC =cm ,132MC AC ∴==cm , 又因为:1:2CN NB =,15BC =,153NC BC ∴==cm . 8MN MC NC ∴=+=cm ,MN ∴的长为8cm .【点睛】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有12MC AM AC ==,还利用了两条线段成比例求解. 41.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;①延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;①见解析;(2)1cm(1)①根据射线和直线的定义作图即可,①作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得. 【详解】解:(1)①如图所示:①如图所示:(2)由图可知2AB cm =,236AE cm =⨯=, 116322OA AE cm ∴==⨯=, 1OB OA AB cm ∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.42.如图,已知线段AB =6,延长AB 至C ,使BC =2AB ,点P 、Q 分别是线段AC 和AB 的中点,求PQ 的长.【答案】PQ 的长为6.结合图形、根据线段中点的定义计算. 【详解】解:①BC =2AB ,AB =6,①BC =2×6=12,①AC =AB +BC =6+12=18,①点P 、Q 分别是线段AC 和AB 的中点,①AP =12AC =12×18=9, AQ =12AB =12×6=3, ①PQ =AP -AQ =9-3=6,故PQ 的长为6.【点睛】本题考查了两点间的距离、线段中点的定义,掌握线段的和差的计算方法、中点的定义是解题的关键. 43.尺规作图,已知:线段(),a b a b >,求作:AB a b =+.(保留作图痕迹,不写作法)【答案】见解析【分析】先在射线AM 上依次截取AC =a ,再截取CB =b ,则线段AB =a +b .【详解】解:如图,线段AB 即为所作.【点睛】本复考查了作图-复杂作图:杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.44.如图,延长线段AB 到点C ,使2BC AB =,取AC 的中点D .已知3cm BD =,求AC 的长.【答案】18 【分析】设cm AB x =,则2cm BC x =,先根据线段的和差可得3cm AC x =,再根据线段的中点的定义可得3cm 2CD x =,然后根据线段的和差可得1cm 2BD x =,结合3cm BD =可求出x 的值,由此即可得出答案. 【详解】设cm AB x =,则2cm BC x =,3cm AC AB BC x ∴=+=,点D 是AC 的中点,13cm 22CD AC x ∴==, 1cm 2BD BC CD x ∴=-=,。
人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)
人教版七年级数学上册4.2 直线、射线、线段同步测试一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定条直线.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN解:A、画直线MN,在直线MN上任取一点P,正确;B、以点M为端点画射线MA,正确;C、直线a,b相交于点M,故错误;D、延长线段MN到点P,使NP=MN,正确;故选:C.2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短解:把一根木条固定在墙面上,至少需要两枚钉子,是因为两点确定一条直线.故选:B.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB 解:由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=AB,选项A,AC=AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=AB,选项正确选项C,AE=3AC⇒AE=AB,选项正确选项D,因为AD=2AC,CB=3AC,所以AD=,选项错误故选:D.4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个解:①过两点只能画一条直线,故正确;②过两点可以画2条射线,故错误;③过两点只能画一条线段,故正确.综上所述,正确的结论有2个.故选:B.5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对解:当三点在同一直线上时经过此三点可以画一条直线,当三点不在同一直线上时经过此三点可以画三条直线,所以经过三点中的任两点可以画1或3条直线,故选:C.6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:C.7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定1或4或6条直线.解:如图所示:(1)四点在一条直线上,1条,如图1;(2)三点在一条直线上,4条,如图2;(3)两点在一条直线上,6条,如图3;故答案为:1或4或6.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有①③④(只填写序号)解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为4cm或1cm.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=1(cm),综上所述,AC和BC中点间的距离为4cm或1cm.故答案为:4cm或1cm.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在E 处(填“C”“E”或“D”),理由是两点之间线段最短.解:公共自行车存放点应该建在E处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm 或1cm.解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.解:(1)如图所示:(2)点A在直线l上,点P在直线l外.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=BC;(2)若BC=3,求AD的长.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
数学四年级上册线段直线射线练习题(含答案)
三角的度量第1课时线段直线射线本课导学知识点:知道什么是线段、直线和射线,能正确区分线段、直线和射线.①②③④⑤⑥⑦⑧上图中()是直线,()是射线,()是线段.特别提醒:明确线段是有两个端点,直线没有端点,射线有一个端点.线段和射线是直线的一部分. 【快乐训练营】一、想一想,填一填.1.像汽车灯、手电筒和太阳等射出来的光线,都可以近似地看成是()线.2.过任意一点可以画()条直线,()条射线.3.()线和()线是无限长的,()的长度是有限的.4.直线上两点间的部分叫做().二、判断.(对的打“√”,错的打“×”)1.小军画了一条4厘米长的直线.()2.过两点只可以画一条直线.()3.线段没有端点. ()4.直线比射线长. ()三、选择.1.()可以量出长度.A.直线B. 射线C. 线段2.直线有()个端点,射线有()个端点,线段有()个端点.A.0B.1C. 23.经过平面上的任意两点,可以画()条直线.A.1B.2C.无数【知识加油站】四、按要求分一分.五、画一画.1.画出一条5厘米长的线段.2.画一条直线,并在上面截取一条3厘米长的线段.3.过下面两点画一条射线.4.经过其中两点画直线,你能画几条?画出来. ····(1)(3)(4)(5)(6)(8)(9)直线线段射线参考答案一、1.射 2.无数无数 3.直线射线线段 4.线段二、1.× 2.√ 3.× 4.×三、1. C 2. A B C 3. A四、直线(1)(9)(5)线段(8)(3)射线(2)(4)五、略。
小学四年级数学线段直线射线-60题专项训练含答案解析
32.数一数下面的图形中各有几条线段?
① ________条
② ________条
③ ________条
④ ________条
⑤ ________条
⑥ ________条
33.把线段的一端无限延长就成了一条_____,把线段的两端无限延长就变成一条_____.
3.经过平面内的两点可以画()条直线.
A.两B.一 C.无数
4.如图,有( )条线段。
A.3B.4C.5D.6
5.过两点能画( )条直线。
A.无数B.10C.2D.1
6.射线( )端点.
A.没有 B.有一个 C.有两个 D.不能确定
7.丫丫画了一条长20厘米的( )。
A.直线B.射线C.线段D.以上答案均错
A. B. C.
二、填空题
18.下图中(________)是直线,(________)是射线,(________)是线段。
19.像汽车灯、手电筒和太阳等射出来的光线,都可以近似地看成是(________)线。
20.过任意一点可以画(________)条直线,(________)条射线。
21.(______)线和(______)线是无限长的,(________)的长度是有限的。
小学四年级数学线段直线射线-60题专项训练含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.可以测量长度的线是( )。
A.直线B.射线C.线段
2.直线有( )个端点,射线有( )个端点,线段有( )个端点。
四年级 直线、线段、射线 带答案
1.⼀个三⻆形是由三条( )围成的。
A.直线B.射线C.线段2.图中有( )条线段。
A.条B.条C.条D.条3.经过两点可以画( )条直线。
A.B.C.⽆数条4.经过下⾯三点中的任意两点,⼀共可以画( )条直线。
A.B.C.D.⽆数5.直线、射线和线段三者⽐较⻓度,( )。
A.直线⽐射线⻓B.射线⽐线段⻓C.线段⽐直线⻓D.三者⽆法⽐6.从直线外⼀点到这条直线的距离,是指这⼀点到这条直线的( )的⻓。
456712123C.直线D.垂直线段7.直线上两点间的⼀段叫( )。
A.直线B.射线C.线段8.下列说法正确的是( )。
A.最⼩的⾃然数是B.公顷⼤于平⽅千⽶C.直线⽐射线⻓D.正⽅形相邻的两条边垂直9.下列线中,( )是直线,( )射线,( )是线段。
A.B.C.D.10.琪琪画了⼀条厘⽶的线段,浩浩画了⼀条射线,( )画的线⻓。
A.琪琪B.浩浩C.不能确定11.画⼀条毫⽶的( )。
A.直线1101154512.下⾯的图中有( )条射线。
A.B.C.13.⼀条( )⻓⽶,⻆的两条边都是( )。
A.线段;线段B.射线;直线C.线段;射线14.直线、射线和线段三者⽐较( )A.直线⽐射线⻓B.射线⽐线段⻓C.线段⽐直线⻓D.三者⽆法⽐15.同⼀平⾯内有五个点,经过任意两点画⼀条线段,最多可画( )条不同的线段。
A.B.C.D.16.图中有( )线段。
A.条B.条C.条17.在⼀条射线上截取厘⽶的线段,可以截取( )段。
16830005810156434C.D.⽆数18.在⼀条直线上⼀共有三个不同的点,这些点⼀共可以组成( )条不同的线段。
A.B.C.19.经过平⾯内的两点可以画( )条直线。
A.两B.⼀C.⽆数20.是由两条( )组成的。
A.线段B.射线C.直线D.曲线21.下列语句,表达正确的是( )A.在同⼀个圆内,半径的⻓度是直径的⼀半B.直线⽐射线⻓C.过两个点可以画出⽆数条直线D.⼤于的⻆都是钝⻆22.下⾯说法错误的是( )。
初一数学直线射线线段试题
初一数学直线射线线段试题1.如图1,图中共有____条线段,它们是_________.【答案】3条,线段AC、AB、CB【解析】本题考查的是线段的知识根据线段的定义结合图形即可得出答案.根据线段的定义可得:图中的线段有:AC、AB、CB,共3条.2.如图2,图中共有_______条射线,指出其中的两条________.【答案】4,射线BA,射线AB【解析】本题考查的是射线的知识直线上的一点和它一旁的部分所组成的图形称为射线,即可以得出直线上一点可以找到两条射线,进而得出图中共有4条射线.根据射线的定义:直线上的一点和它一旁的部分所组成的图形称为射线,可以知道直线上的一点可以作2条射线,如图所示:A、B两点共有4条射线,其中包括:射线AB和射线BA.3.下列语句准确规范的是( )A.直线a、b相交于一点m B.延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB【答案】D【解析】本题主要考查几何语言的规范性根据几何语言的规范对各选项分析判断后利用排除法求解.A、交点应该用大写字母,故本选项错误;B、直线是向两方无限延伸的,不能延长,故本选项错误;C、端点应该是A,故本选项错误;D、延长线段AB到C,使BC=AB,正确.故选D.4.下列四个图中的线段(或直线、射线)能相交的是( )A.(1)B.(2)C.(3)D.(4)【答案】A【解析】本题考查了直线、射线和线段的性质.根据直线能向两方无限延伸,射线能向一方无限延伸,线段不能延伸,进行选择.(1)两条直线能相交;(2)(3)(4)不能相交.故选A.5.如果点C在AB上,下列表达式:①;②;③AC=BC;④中,能表示C是AB中点的有( )A.1个B.2个C.3个D.4个【答案】C【解析】本题考查的是线段的中点根据题意,画出图形,观察图形,一一分析选项,排除错误答案.若C是线段AB的中点,则,而,可是线段上的任意一点,∴表示是线段的中点的有①②③共3个.故选C.6.如上图,从A到B有3条路径,最短的路径是③,理由是( )A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短【答案】D【解析】本题考查的是最短路径问题根据“两点之间,线段最短”的特征即可得到最短路径.走路径③,是因为路径③是一条直线,根据“两点之间,线段最短”.故选D.7.如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P在直线AB上又在直线CD上.【答案】见解析【解析】本题考查的是平面图形的基本作图根据直线向两方无限延伸;射线向一方无限延伸;线段有两个端点再结合题意画出图形即可,要注意作图的规范性。
人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)
人教版七年级数学上册4.2 直线、射线、线段同步测试一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定条直线.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN解:A、画直线MN,在直线MN上任取一点P,正确;B、以点M为端点画射线MA,正确;C、直线a,b相交于点M,故错误;D、延长线段MN到点P,使NP=MN,正确;故选:C.2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短解:把一根木条固定在墙面上,至少需要两枚钉子,是因为两点确定一条直线.故选:B.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB 解:由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=AB,选项A,AC=AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=AB,选项正确选项C,AE=3AC⇒AE=AB,选项正确选项D,因为AD=2AC,CB=3AC,所以AD=,选项错误故选:D.4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个解:①过两点只能画一条直线,故正确;②过两点可以画2条射线,故错误;③过两点只能画一条线段,故正确.综上所述,正确的结论有2个.故选:B.5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对解:当三点在同一直线上时经过此三点可以画一条直线,当三点不在同一直线上时经过此三点可以画三条直线,所以经过三点中的任两点可以画1或3条直线,故选:C.6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:C.7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定1或4或6条直线.解:如图所示:(1)四点在一条直线上,1条,如图1;(2)三点在一条直线上,4条,如图2;(3)两点在一条直线上,6条,如图3;故答案为:1或4或6.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有①③④(只填写序号)解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为4cm或1cm.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=1(cm),综上所述,AC和BC中点间的距离为4cm或1cm.故答案为:4cm或1cm.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在E 处(填“C”“E”或“D”),理由是两点之间线段最短.解:公共自行车存放点应该建在E处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm 或1cm.解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.解:(1)如图所示:(2)点A在直线l上,点P在直线l外.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=BC;(2)若BC=3,求AD的长.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
直线、射线、线段练习题及答案
直线、射线、线段测试题一、选择题1. 下列说法错误的是( )A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成( )部分 A .3 B .6 C . 7 D .93.如果A BC 三点在同一直线上,且线段AB=4CM ,BC=2CM ,那么AC 两点之间的距离为( )A .2CMB . 6CMC .2 或6CMD .无法确定4.下列说法正确的是( )A .延长直线AB 到C ; B .延长射线OA 到C ;C .平角是一条直线;D .延长线段AB 到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子( )A .一个B .两个C .三个D .无数个6.点P 在线段EF 上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P 是EF 中点的有( ) A .4个 B .3个 C .2个 D .1个7. 如图所示,从A 地到达B 地,最短的路线是( ).A .A →C →E →B B .A →F →E →BC .A →D →E →B D .A →C →G →E →B8..如右图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b , AD 的长是( ) A .2()a b - B .2a b -则线段C .a b +D .a b -9..在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线段AC 的中点,那么线段OB 的长度是( )A .2㎝B .0.5㎝C .1.5㎝D .1㎝10.如果AB=8,AC=5,BC=3,则( )A . 点C 在线段AB 上 B . 点B 在线段AB 的延长线上C . 点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外二、填空题1.若线段AB=a ,C 是线段AB 上的任意一点,M 、N 分别是AC 和CB 的中点,则MN=_______.2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定 条直线。
四年级数学直线射线线段试题答案及解析
四年级数学直线射线线段试题答案及解析1.在一条直线上截取4cm长的线段可以截取( )条。
A.1 B.2 C.无数【答案】C【解析】略2.右图中有( )条射线。
A.4 B.2 C.3【答案】A【解析】以其中一个点为端点有两条射线,共有4条射线。
3.过平面上两点可以画()条直线。
A、1B、2C、无数条【答案】A【解析】略4.和最小的六位数相邻的数是()A.99999B.999999C.100001D.1000001【答案】C【解析】最小的六位数是100000,100001是和它相邻的数。
5.线段有________个端点,射线有________个端点.【答案】2;1【解析】解:由射线和线段的特点知:线段有 2个端点,射线有1个端点;故答案为:2,1.【分析】根据线段和射线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;进行解答即可.6.图中有________条直线,________条射线,________条线段.【答案】1;8;6【解析】解:图中的直线有1条:直线L;射线有8条:射线AB,射线BC,射线CD,射线CA,射线DA,射线BA,以A为端点向左的射线,以D为端点向右的射线;线段有6条:AB,AC,AD,BC,BD,CD;故答案为:1,8,6.【分析】根据直线、线段和射线的含义:直线无端点,无限长;射线有一个端点,无限长;线段两头都有端点,有限长;进行解答.7.通过两点可以画()条线段,通过一点可以画()条直线。
【答案】1 无数【解析】略8.线段比射线短,射线又比直线短。
………………………()【答案】×【解析】略9. ( )是直线,( )是射线,( )是线段。
【答案】C E F【解析】略10.过两点可以画()条直线。
A、1B、2C、无数【答案】A【解析】略11.下图3中有( )条线段。
A.4B.15C.10D.7【答案】C【解析】略12.一条射线长10厘米,在这条射线上截取一长4厘米的线段。
四年级数学直线射线线段试题
四年级数学直线射线线段试题1.一条射线长5米。
()【答案】×【解析】略2.百万位上的“6”表示的数是百位上的“6”表示的数的一万倍。
()【答案】√【解析】百万位上的6表示6个百万,百位上的6表示6个百,6个百万是6个百的一万倍。
3.明明画了一条长5厘米的直线.(判断对错)【答案】错误【解析】解:因为直线没有端点,所以不能量得其长度.所以明明画了一条5厘米长的直线的说法是错误的.故答案为:错误.【分析】依据直线的定义:直线没有端点,无限长,不能度量;据此判断即可.4.明明画了一条30cm长的()A、射线B、线段C、直线【答案】B【解析】解:明明画了一条30cm长的线段;故选:B.【分析】根据直线、射线和线段的含义可知,直线没有端点,射线只有一个端点,二者都无限长,不能量得其长度,而线段有两个端点,可以量得其长度,据此解答即可.5.经过一点可以画________条直线.【答案】无数【解析】解:由分析可知:经过一点可以画无数条直线;故答案为:无数.【分析】根据“两点确定一条直线,经过一点可以画无数条直线”可知:经过一点可以画无数条直线;进而得出结论.6.把线段的一端无限延长就得到一条(),如果把线段的两端无限延长就得到一条()。
【答案】射线直线【解析】略7.过一点可以画()条直线。
【答案】无数【解析】略8. ( )是直线,( )是射线,( )是线段。
【答案】C E F【解析】略9.一条射线长6厘米。
()【答案】×【解析】射线是无限长的10.亮亮画了一条长8厘米的射线。
()【答案】×【解析】射线无限长,所以不能说画了8厘米长的射线。
11.过一点可以画( )条直线,过两点可以画( )条直线。
【答案】无数 1【解析】略12.一条射线长10厘米。
( )【答案】×【解析】略13.在下面的横线上填上合适的图形序号。
直线:__________ 射线:________ 线段:________【答案】④②⑧③⑦【解析】略14.下图中共有5个点,经过每两点可以画一条直线,最多可以画多少条直线?(先画一画,再回答)【答案】答:最多可以画10条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:_______________班级:_______________分数:_______________
一、选择题。
(每题3分)
1、如图,小华的家在A处,书店在B处,星期日小华到书店去买书,他想尽快地赶到书店,请你帮助他选择一条最近的路线( )
题1 题2
A.A→C→D→B →C→F→B →C→E→F→B →C→M→B
2、如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的( )
A.木条是直的
B.两点确定一条直线
C.过一点可以画无数条直线
D.一个点不能确定一条直线
3、如右图是一条射线,一条线段和一条直线,则它们的交点的个数有()个.
4、下列四个图中的线段(或直线、射线)能相交的是( )
A.(1)
B.(2)
C.(3)
D.(4)
5、
A、3cm
B、4cm
C、5cm
D、6cm
6、如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是
()
A.两点之间,线段最短
B.两点确定一条直线
C.两点之间,直线最短
D.两点确定一条线段
题6 题7 题9
7、.如图,C、D是线段AB上两点,D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长等于( )
A. 2 cm B. 3 cm C. 4 cm D. 6 cm
8、平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )
条条条条或3条
9、如图3,图中有( )
条直线条射线条线段 D.以上都不对
10、如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,MN=,那么线段AB的长等于
A. B. C.8cm D.
二、填空题。
(每题3分)
11、已知线段AB=6cm,点C是它的三等分点之一,则线段AC= cm.
12、如图,将射线OA反向延长得射线,线段CD向延长得直线CD.
12题 14题
13、在直线上取A、B、C三点,使得AB=9cm,BC=4cm,如果O是线段AC的中点,则线段OA的长为__________cm。
14、如图,点B是线段AC上的点,点D是线段BC的中点,若AB=4cm,AC=10cm,则CD=______.
15、一列火车往返于A地与B地之间,途中有C、D、E三个车站停靠,那么往返于A、B两地之间的不同车票共有种.
16、若线段AB=10㎝,在直线AB上有一点C,且BC=4㎝,M是线段AC的中点,AM= ___㎝.
17、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.
18、已知线段AB=10cm,直线AB上有点C,且BC=4cm,M是线段AC的中点,AM= cm。
19、手枪上瞄准系统设计的数学道理是。
20、如图3,点C、D在线段AB上,AC=BD,若AD=8cm,则BC= .
三、作图题。
21、如图,A,B是两个村庄,若要在河边l上修建一个供水站向两村供水,问供水站应修在河边的什么位置才能使铺设的管道最短,并说明理由.(8分)
22、如图,已知A、B、C三点. (8分)
(1)画直线AC;(2)画射线BC;
(3)画线段AB;(4)找出线段AB的中点D,连结CD;
四、简答题
23、如图所示,已知AB=80,M为AB的中点,P在AB上,N为PB的中点,且NB=14,求MP的长.(8分)
24、如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB的长度.(8分)
25、如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.(8分)
参考答案
一、选择题
1、B.根据两点之间,线段最短,可知应选择A→C→F→B.
2、B.根据两点确定一条直线,故选B.
3、C
4、A
5、D
6、C
7、B
8、D
9、C
10、B
二、填空题
11、2或4【解析】一条线段的三等分点有两个,所以AC=2cm或4 cm.
12、:OB 两方
13、或解析:有点C在线段AB上或其延长线上两种情况。
14、3 cm 解析:BC=AC-AB=6 cm,因为点D是线段BC的中点,所以CD=BC=3 cm.
15、20 ;
16、3或7
17、10,20
18、3cm或7cm
19、两点确定一条直线
20、8cm;
三、作图题
21、【解析】如图,连接AB交直线l于点C,则点C就是供水站位置.理由:两点之间线段最短.
22、如图所示:
四、简答题
23、【解析】因为N为PB的中点,
所以PB=2NB=2×14=28.
又因为AP=AB-PB,AB=80,
所以AP=80-28=52.
∵M为AB的中点,∴AM=AB=40,
∴MP=AP-AM=52-40=12.
24、
25、解:点C是线段AB的中点AC= CB = = 5cm
点D是线段CB的中点
CD = DB = = cm-
AD = AC+CD = cm-。