全等三角形判定一(基础)知识讲解

合集下载

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形的判定(一)

全等三角形的判定(一)

14.2 三角形全等的判定(一)教学目标】知识技能:1、理解并掌握三角形全等的判定方法——“边角边” 。

2 、经历探究“边角边”判定方法的过程,能运用“ SAS”判定方法解决有关问题。

数学思考:经历探究三角形全等的过程,体会分析问题的方法,积累数学活动,学习有条理的思索方式。

问题解决:使学生充分经历探索的过程,进一步培养学生合作交流与自主探究的能力。

情感态度:通过几何证明的学习,培养学生严谨的分析能力,使学生养成尊重客观事实和形成质疑的习惯。

【教学重、难点】1 .应用“边角边”证明两个三角形全等,进而得出线段或角相等(重点)2 .能运用“ SAS”证明简单的三角形全等问题,寻找判定三角形全等的条件(难点)。

【教学准备】1.教师准备:课件2.学生准备:剪刀、白纸、作图工具。

【学情介绍】这节课是探究三角形全等条件的第一课,学生已了解全等三角形的概念及特征,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也具备了利用已知条件作三角形的基本作图能力,这为学生主动参与本节课的操作和探究做好了准备。

“SAS”条件掌握好了,再学习其他条件就不困难了。

【内容分析】教材通过尺规作图作出一个与已知三角形的两边及其夹角对应相等的三角形,发现这两个三角形能够重合,从而归纳出判定三角形全等的第一种方法“ SAS” 。

【教学过程】一、温故知新1.什么叫全等三角形?2、全等三角形的性质是什么?二、探究新知:问题:1、如何判定连个三角形全等?2、三角形中共有几个元素?3、三角形有六个基本元素(三条边和三个角),只给定其中的一个或两个元素,能够确定一个三角形的形状和大小吗?分类讨论、探究:1、只给定一个元素(一边或者一角)学生验证。

2、只给定两个元素(请学生画图验证)①两条边长分别为4cm,5cm;②一条边长为4cm,一个角为45°;③两个角分别为45°,60 °。

教师几何画板演示,得出结论:一个或者两个元素不能判定两个三角形全等。

八年级数学上册《全等三角形》知识点梳理

八年级数学上册《全等三角形》知识点梳理

八年级数学上册《全等三角形》知识点梳理在学习新知识的同时,既要及时跟上老师步伐,也要及时复习巩固,知识点要及时总结,这是做其他练习必备的前提,下面为大家总结了全等三角形知识点梳理,仔细阅读哦。

一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要注意以下几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)三、疑点、易错点1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。

全等三角形 全等三角形的判定(一)

全等三角形 全等三角形的判定(一)

全等三角形全等三角形的判定(一)一、知识概述1、全等三角形的概念能够完全重合的两个图形叫做全等形.如果两个三角形是全等形,就说它们是全等三角形.全等三角形中互相重合的边叫做对应边,互相重合的角叫做对应角,互相重合的顶点叫做对应顶点.全等三角形用符号“≌”表示,表示全等,读作“全等于”,注意对应顶点写在对应位置上.将两个三角形的顶点同时按1→2→3→1的顺序轮换,可写出所有对应边和对应角相等的式子.如图,△ABC和△DEF全等,记作△ABC≌△DFE.读作“△ABC全等于△DFE”.2、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.如图,若△ABC≌△DFE,则AB=DF,AC=DE,BC=FE,(全等三角形的对应边相等)∠A=∠D,∠B=∠F,∠C=∠E.(全等三角形的对应角相等)3、全等三角形的判定方法方法一:两边和它们的夹角对应相等的两个三角形全等.简记为“边角边”或“SAS”.方法二:两角和它们的夹边对应相等的两个三角形全等.简记为“角边角”或“ASA”.二、重难点知识1、常见的全等三角形的基本图型(1)平移全等型(如图);(2)对称全等型(如图);(3)旋转全等型(如图).2、判定方法一中的角是两边的夹角,方法二中的边是两角的夹边.有两边和其中一边的对角对应相等的两个三角形不一定全等.说明一个结论不成立只需举一个反例即可。

如图在△ABC与△ABD中,AB=AB,AC=AD.∠B=∠B,但△ABC与△ABD不能重合,故△ABC与△ABD不全等.所以应与两边及夹角对应相等的两个三角形全等区别开来,不能混为一谈。

三、典型例题分析例1、如下图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,试求∠DFB和∠DGB的度数.分析:根据全等三角的对应角相等的性质,并结合三角形的内角和进行计算求解.例2、如图(1),等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE、AD,若BC=AC,EC=DC,求证:BE=AD,若将等腰△DEC绕点C旋转至图(2)、(3)、(4)情况时,其余条件不变,BE与AD还相等吗?为什么?(1)(2)(3)(4)分析:先结合图形(1)证明结论BE=AD成立,是运用边角边公理证明的,比较(2)、(3)、(4)和(1)的关系,图形的位置变了,仔细观察,什么变了,什么没变,可以发现△EDC绕C旋转过程中,虽然∠BCE和∠ACD的大小变了,但它们总是相等的,所以△BCE≌△ACD,从而结论成立.例3、如图,AE是∠BAC的平分线,AB=AC.(1)若D是AE上任意一点,求证:△ABD≌△ACD.(2)若D是AE反向延长线上一点,结论还成立吗?试证明你的猜想.例4、如图所示,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.例5、已知:如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,CE⊥BD的延长线于E.求证:BD=2CE.例6、如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.证明:在AC上截取AF=AE,连接OF.1、全等三角形是()A.三个角对应相等的两个三角形B.周长相等的两个三角形C.面积相等的两个三角形D.能够完全重合的两个三角形2、如下图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3、已知线段BC交AD于O点,连接AB、CD,且△OAB≌△OCD,则AB与CD()A.不一定相等B.一定平行C.一定相等且平行D.一定相等可能平行4、下列说法中错误的是()A.两个全等三角形的面积相等B.面积不相等的两个三角形不全等C.不全等的两个三角形面积可能相等D.面积相等的两个三角形全等5、如下图,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店中去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②去6、如图所示,AD=AE,BE=CD,∠1=∠2,∠1=110°,∠BAE=60°,那么∠CAE=()A.20°B.30°C.40°D.50°7、如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC8、△ABC≌△DEF,若满足以下条件一定全等的是()A.AB=DE,∠B=∠E,AC=DF B.AB=DF,∠A=∠D,AC=DEC.BC=EF,∠B=∠E,AB=DF D.AB=DF,∠A=∠F,BC=EF9、在△ABC与△DEF中,∠A=40°,∠B=80°,AB=4,∠D=40°,∠E=80°,EF=4,则△ABC和△DEF()A.一定全等B.不一定全等C.一定不全等D.以上都不对10、如图,在四边形ABCD中,BD平分∠ABC,AD=CD.∠A=120°,则∠C=()A.30°B.60°C.90°D.45°B 卷二、解答题11、如图,△ABD≌△EBC,AB=3cm,BC=5cm,(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.12、已知,如图A、F、C、D四点在一直线上,AF=CD,AB//DE,且AB=DE,求证:(1)△ABC≌△DEF(2)∠CBF=∠FEC13、如图,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,求证;AC⊥CE.14、如下图1,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB.(1)△ABE与△ADF全等吗?请说明理由.(2)阅读下面的材料:如图2,把△ABC沿直线BC平行移动线段BC的长度可以变到△ECD的位置.如图3,以BC所在的直线为轴把△ABC旋转180°可以变到△DBC的位置.如图4,以点A为中心,把△ABC旋转180°可以变到△AED的位置.像这样,其中一个三角形是另一个三角形按平移、翻折、旋转等方法变成的,这种只改变图形的位置,不改变图形大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平移、翻折、旋转中的哪一种变换方法,使△ABE变到△ADF的位置;②指出图1中线段BE与DF之间的关系,并说明理由.15、(2003年青海)此题有A、B、C三类题目,其中A类题4分,B类题6分,C类题8分,请你任选一类做,多做的题目不记分.(A类)已知:如图(1)所示,AB=AC,AD=AE,那么∠B=∠C.(B类)已知:如图(2)所示,CE⊥AB于点E,BD⊥AC于D,BD、CE交于点O,且AO平分∠BAC,那么OB=OC.(C类)如图(3)所示,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等三角形,并写出推理过程.。

全等三角形的判定知识点

全等三角形的判定知识点

学习重点:三角形全等的条件.难点:三角形全等的条件的探索.知识点:1.三角形全等的条件.2了解三角形的稳定性.一、三角形全等的条件首先我们看只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?只给定一条边时(如图中的实线)由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).由画图可知:这三个三角形也不全等.因此,只给出一个条件时,不能保证所画出的三角形一定全等.接下来我们探索:给出两个条件时,所画的三角形一定全等吗?(1)三角形的一个内角为30°,一条边为3厘米(如图).这三个三角形不全等.(2)三角形的两个内角分别为30°和50°(如图).它们看起来的形状一样,但大小不一样.这两个三角形不能重合,所以也不全等.(3)三角形的两条边分别为4cm、6cm(如图).它们也不全等.我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那么给出三个条件时,又怎样呢?如果给出三个条件画三角形,有四种可能.即:三条边,三个角,两边一角和两角一边.下面我们来逐一探索.1.已知三角形的三个内角如果已知一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但有的能完全重合,有的不重合,所以它们不一定重合(如图).通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.2.已知三角形的三条边如果已知一个三角形的三条边分别是4cm,5cm和7cm.画出这个三角形如图.比较可知:这样的所有三角形都是全等的.由此可知:已知三角形的三边,则画出的所有三角形都全等.这样就得到了三角形全等的条件:三边对应相等的两个三角形全等.简写为:“边边边”或“SSS”.如下图.这是用符号语言来表示该三角形全等的条件.注意:三边对应相等是前提条件,三角形全等是结论.3.已知三角形的“两角一边”如果“两角一边”条件中的边是两角所夹的边.如:三角形的两个内角分别是60°和80°,它们所夹的边为2cm,我们来画出这个三角形(如图).经过比较,它们全等.也就是说已知一个三角形的两个内角及其夹边,那么由此得到的三角形都是全等的.由此我们得到了判定三角形全等的另一条件:两角和它们的夹边对应相等的两个三角形全等.简写为:“角边角”或“ASA”.如图,在△ABC和△DEF中.在“两角一边”中,除“两角及其夹边”外,还有两角及一角的对边.如果“两角及一边”条件中的边是其中一角的对边,如:三角形的两个角分别为60°和45°,一边长为3cm(如图).已知两角及一角的对边画三角形时,不容易画,但如果把“两角及一角的对边”转化为“两角及其夹边”时,就可以了.因为三角形的内角和为180°,已知两个内角,那么第三个内角就可求出,这样就把“两角及一角的对边”转化为“两角及其夹边”.(1)如果60°角所对的边为3cm时,画出的图形如下:经比较:这样得到的三角形都全等.(2)如果45°角所对的边为3cm时,画出的图形如下.经比较:这样条件的所有三角形都全等.由此我们又得到了判定三角形全等的另一条件:两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.如图.在△ABC和△DEF中.4.已知三角形的两边及一角如果已知一个三角形的两边及一角,有两种情况:两边及这两边的夹角,两边及一边的对角.先看第一种情况下,两个三角形是否全等.如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5cm、3.5cm.它们的夹角为40°(如图).经过比较,如果已知三角形的两边及其夹角,那么所得的三角形都全等.由此我们得到了三角形全等的条件:两边和它们的夹角对应相等的两个三角形全等.简称“边角边”或“SAS”.如图,在△ABC和△DEF中.接下来我们研究第二种情况.如果“两边及一角”条件中的角是其中一边的对角.如:两条边分别为2.5cm、3.5cm.长度为2.5cm的边所对的角为40°(如图).按上述条件画的三角形不唯一,存在不同的三角形满足上述条件,如图.由图可知:这两个三角形不全等.所以,两边及其中一边的对角对应相等,两个三角形不一定全等.因此可知:“两边及一角”中的两种情况中只有一种能判定三角形全等.即:两边及其夹角对应相等的两个三角形全等.二、三角形的稳定性如果我们取三根长度适当的木条,用钉子钉成一个三角形的框架,所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?图(1)是用三根木条钉成的三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构,它就坚固和稳定.图(2)的形状是可以改变的,它不具有稳定性.那么要使图(2)的框架不能活动,在相对的顶点上钉一根木条,使它变为两个三角形框架即可.在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.小结:通过上表可以看出,两个三角形全等至少要有三个条件对应相等;我们常用主要是“SSS”、“ASA”、“AAS”、“SAS”.。

全等三角形—知识讲解及典型例题解析

全等三角形—知识讲解及典型例题解析

中考总复习:全等三角形—知识讲解及典型例题解析【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE 上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高,∴∠1+∠CAE=90°,∠2+∠CAE=90°.∴∠1=∠2,∵在△AQC和△PAB中,∴△AQC≌△PAB.∴ AP=AQ.(2)∵ AP=AQ,∠QAC=∠P,∵∠PAD+∠P=90°,∴∠PAD+∠QAC=90°,即∠PAQ=90°.∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【变式】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE=CM.又∵∠1=∠2,∠3=∠4 ,∠1+∠2+∠3+∠4=180°,∴∠3+∠2=90°,即∠EDF=90°,∴∠FDM=∠EDF =90°.在△EDF和△MDF中∴△EDF≌△MDF(SAS),∴EF=MF (全等三角形对应边相等),∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边),∴BE+CF>EF.【总结升华】当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.举一反三:【变式】如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,∵ D为BC中点,∴ BD=DC,在△ADC和△HDB中,∴△ADC≌△HDB(SAS),∴ AC=BH, ∠H=∠HAC,∵ EA=EF,∴∠HAE=∠AFE,又∵∠BFH=∠AFE,∴ BH=BF,∴ BF=AC.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB-AD与CD-CB的大小关系,并证明你的结论.【思路点拨】解答本题的关键是熟练运用三角形中大边对应大角的关系.【答案与解析】AB-AD>CD-CB;证明:在AB上取一点E,使得AE=AD,连结CE.∵AC平分∠BAD,∴∠1=∠2.∵在△ACE和△ACD中,∴△ACE≌△ACD.∴CD=CE.∵在△BCE中,BE>CE-CB,即AB-AE>CE-CB,∴AB-AD>CD-CB.【总结升华】本题也可以延长AD到E,使得AE=AB,连结CE.涉及几条线段的大小关系时,用“截长补短”法构造全等三角形是常用的方法.举一反三:【变式】如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】证明:∵AB>AC,在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.【思路点拨】在AC上取AF=AE,连接OF,即可证得△AEO≌△AFO,得∠AOE=∠AOF;再证得∠COF=∠COD,则根据全等三角形的判定方法AAS即可证△FOC≌△DOC,可得DC=FC,即可得结论.【答案与解析】在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∵AE AFEAO FAO AO AO=⎧⎪=⎨⎪=⎩∠∠∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=12(180°-∠B)=60°则∠AOC=180°-∠ECA-∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,(对顶角相等)则∠COF=60°,∴∠COD=∠COF,又∵∠FCO=∠DCO,CO=CO,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.【总结升华】本题考查了全等三角形的判定和性质,涉及到三角形内角和定理,熟练掌握全等三角形的判定方法是解题的关键.类型三、综合运用5 .如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【思路点拨】(1)由等边三角形的性质可写出结论.(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【答案与解析】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB 中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【总结升华】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.举一反三:【变式】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有( ) .A.1个 B.2个 C.3个 D.4个B【答案】D.6.如图,已知△ABC.(1)请你在BC边上分别取两点D、E(BC的中点除外),连结AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE.【思路点拨】考查了三角形面积的求法,全等三角形的判定以及三角形三边的关系.本题(2)中通过构建全等三角形将已知和所求条件转化到相关的三角形中是解题的关键.【答案与解析】(1)令BD=CE≠DE,有△ABD和△ACE,△ABE和△ACD面积相等.(2)取DE的中点O,连结AO并延长到F点,使得FO=AO,连结EF,CF.在△AD0和△FEO中,又∠AOD=∠FOE,DO=EO,可证△ADO≌△FEO.所以AD=FE.因为BD=CE,DO=EO,所以BO=CO.同理可证△ABD≌△FCO,所以AB=FC.延长AE交CF于G点,在△ACG中,AC+CG>AE+EG,在△EFG中,EG+FG>EF,可推得AC+CG+EG+FG>AE+EG+EF,即AC+CF>AE+EF,所以AB+AC>AD+AE.【总结升华】正确构造全等和利用三角形的任意两边之和大于第三边的结论是关键.举一反三:【变式】在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD-BE.(3)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=BE-AD.。

全等三角形(知识点讲解)

全等三角形(知识点讲解)

学习必备 欢迎下载全等三角形 全等三角形 知识梳理性质对应角相等 对应边相等二、基础知识梳理 一)、基本概念1、“全等 ”的理解 全等的图形必须满足: (1)形状相同的图形; (2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质( 1)全等三角形对应边相等; (2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理、知识网络全等形 全等三角形边边边SSS边角边SAS判定 角边角ASA角角边 AAS斜边、 直角边HL角平分线作图性质与判定定理应用1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1) 已知条件中有两角对应相等, 可找:①夹边相等( ASA )②任一组等角的对边相等 (AAS ) (2) 已知条件中有两边对应相等, 可找①夹角相等 (SAS ) ②第三组边也相等 (SSS ) (3) 已知条件中有一边一角对应相等, 可找①任一组角相等 (AAS 或 ASA ) ②夹等角的另一组边相等 (SAS ) 5. 经典例题透析 证明图形全等 基础版—— “ SSS ” (1)已知: AB=DC ,AD=BC ,求证:∠ A= ∠C2)如图, E 是 AD 上的一点, AB=AC ,AE=BD ,CE=BD+DE ,求证:∠ CED=∠ B+ C基础版—— “ SAS ”(3)如图, AD ∥ BC ,AD=CB , AE=CF ,求证: BE=DF4) 已知:如图,点 A 、B 、C 、D 在同一条直线上, EA AD ,FD AD , AE DF , AB DC .求证: ACE DBF .基础版——“ ASA ”与“ AAS ”(5)如图,已知: AB = AC ,点 D 在 AB 上,点 E 在 AC 上,BE 和CD 相交 于点 O ,∠B =∠ C ,求证: BD =CEDB举一反三:变式 1】如图,△ABC ≌△ DBE . 问线段 AE 和 CD 相等吗?为什么?( 6)如图,△ABC 中,∠BAC=90 ,AB =AC ,直线 MN 过点 A , 于 E ,求证: DE =BD+CE基础版 HL ”( Rt △) N(7)如图, AB AC ,AB//CD ,AC=CD ,BC=DE ,BC 与 DE 相交于点 O ,求 证: DE BC 类型一:全等三角形性质的应用 1、如图,△ ABD ≌△ ACE , AB =AC ,写出图中的对应边和对应角、如图,已知ΔABC≌ΔDEF,∠A=30°,∠ B=50°,BF=2,求∠ DFE的度数与EC举一反三:如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°求证:( 1)CD⊥AB;( 2) EF∥ AC.变式 1】类型二:全等三角形的证明3、如图, AC=BD,DF=CE,∠ ECB=∠ FDA,求证:△ ADF≌△BCE.举一反三:【变式 1】如图,已知 AB∥DC,AB= DC,求证:AD∥BC【变式 2】如图,已知 EB⊥ AD于 B,FC⊥ AD 于 C,且 EB= FC,AB=CD.求证 AF =DE.、类型三:综合应用4、如图,AD为ΔABC的中线。

11全等三角形判定一(ASA,SAS)(基础)知识讲解

11全等三角形判定一(ASA,SAS)(基础)知识讲解

全等三角形的判定一(ASA ,SAS )【学习目标】1.理解和掌握全等三角形判定方法1——“角边角”,判定方法2——“边角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“角边角”全等三角形判定1——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】'A ''A B 'B '''A BC ''A B 'A ''A C '''A BC1、如图,已知AD ,BC 相交于点O ,OB=OD ,∠ABD=∠CDB求证:△AOB≌△COD.【思路点拨】由OB=OD ,得出∠OBD=∠ODB,进而得出,∠ABO=∠CDO,再利用ASA 证明即可.【答案与解析】解:∵OB=OD,∴∠OBD=∠ODB,∵∠ABD=∠CDB,∴∠ABO=∠CDO,在△AOB 和△COD 中,,∴△AOB≌△COD(ASA ).【总结升华】此题考查全等三角形的判定,关键是得出∠ABO=∠CDO.举一反三:【变式】如图,AB ∥CD ,AF ∥DE ,BE =CF.求证:AB =CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE.在△ABF 和△DCE 中,∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD=90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD【总结升华】通过观察,我们也可以把△CBD 看作是由△ABE 绕着B 点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩【变式】如图,在Rt△ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB 连接EF ,证明△AED≌△AEF.【答案】证明:∵△AFB 是△ADC 绕点A 顺时针旋转90°得到的,∴AD=AF,∠FAD=90°,又∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=90°﹣45°=45°=∠DAE,又AE=AE ,在△ADE 与△AFE 中,,∴△ADE≌△AFE(SAS ).类型三、全等三角形判定的实际应用4、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB ,点C 是碉堡的底部,点D 是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD =∠BAC ,∠ABD =∠ABC =90°.在△ABD 和△ABC 中,∴△ABD ≌△ABC (ASA )∴BD =BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.ABD ABC AB ABBAD BAC ∠=∠⎧⎪=⎨⎪∠=∠⎩。

三角形全等的判定(第一课时)

三角形全等的判定(第一课时)

数$。
SSS判定定理的证明
第十步
根据三角形的性质,我们知道三角形的一个外角等于与它 不相邻的两个内角之和,即$angle A+angle B=angle C$。
第十一步
根据三角形的性质,我们知道三角形的一个内角等于与它 相邻的两个外角之差的一半,即$angle A=frac{1}{2}(angle B+angle C)$。
第三步,由全等三角形的性质,我们知道$BC = AC$。
ASA判定定理和AAS判定定理的应用
应用一
当已知两个三角形有两个角和一 个角的对边分别相等时,我们可 以使用ASA或AAS判定定理来判 断这两个三角形是否全等。
应用二
当已知两个三角形有一个角、一 边和另一角的对边分别相等时, 我们可以使用ASA或AAS判定定 理来判断这两个三角形是否全等 。
三角形全等的判定(第一课时)
目录 Contents
• 三角形全等的基本概念 • 三角形全等的SSS判定 • 三角形全等的SAS判定 • 三角形全等的ASA判定和AAS判定 • 三角形全等的特殊情况
01
三角形全等的基本概念
三角形全等的定义
01
三角形全等是指两个三角形能够 完全重合,即它们的形状和大小 都相同。
实例二
在平面几何中,我们经常需要证明两个三角形是全等的。利用SAS判定定理,我们可以很容易地证明两个三角形 是全等的。例如,已知三角形ABC和三角形DEF,其中AB=DE,BC=EF,并且角A=角D,角B=角E。根据SAS判 定定理,我们可以证明三角形ABC和三角形DEF是全等的。
04
三角形全等的ASA判定和 AAS判定
ASA判定定理和AAS判定定理的证明
第三步,由全等三角形的性质,我们知道$BC = AC$。 AAS判定定理证明

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS,ASA ,AAS )(基础)撰稿:常春芳【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边” 1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明:∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE在△ABC和△ADE中AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△ADE(SAS)∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD证明:延长AE交CD于F,∵△ABC和△DBE是等腰直角三角形∴AB=BC,BD=BE在△ABE和△CBD中90AB BCABE CBDBE BD=⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,PC⊥AC,PB⊥AB,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型二、全等三角形的判定2——“角边角”【高清课堂:379110 全等三角形判定二,例5】2、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中A CAD CBD B∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△CBE (ASA)∴AF =CE ,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE. 在△ABF 和△DCE 中,B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”【高清课堂:379110 全等三角形的判定二,例6】3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EADB ECB=DE∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD为△ABC的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED和△CFD中BED CFDBDE CDFBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【思路点拨】(1)证△ABO≌△CDO,得AO=OC,BO=DO(2)证△AEO≌△CFO或△BEO≌△DFO【答案与解析】证明:∵AB∥DC∴∠A=∠C在△ABO与△CDO中A C(AOB COD∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等)AB=CD∴△ABO≌△CDO(AAS)∴AO=CO ,BO=DO在△AEO和△CFO中A C(AOE COF∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等)∴△AEO≌△CFO(ASA)∴OE=OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用5、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB,点C是碉堡的底部,点D是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD=∠BAC,∠ABD=∠ABC=90°.在△ABD和△ABC中,ABD ABCAB ABBAD BAC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD≌△ABC(ASA)∴BD=BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.。

全等三角形证明判定方法分类归纳

全等三角形证明判定方法分类归纳

全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”. 【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求EDF∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EF例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④ 2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、3D第3题图第4题图第5题图B第6题图5.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC 6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 . 7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,8.如图,若AB=AC,BE=CD,AE=AD ,则ABE ∆ ACD ∆,所以=∠AEB,=∠BAE ,=∠BAD .9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆D第7题图第8题图第9题题图全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( ) A 、7cm B 、5cm C 、8cm D 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CD6.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ∆≌FED ∆②AB//EFAB D EACDFACEFD7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠E全等三角形(二)【知识要点】 定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.CADBE C【例4】如图,B,C,D在同一条直线上,△ABC,△ADE是等边三角形,求证:①CE=AC+DC;②∠ECD=60°.【例5】如图,已知△ABC、△BDE均为等边三角形。

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。

一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。

2.书写格式①先写出所要判定的两个三角形。

②列出条件:用大括号将两个三角形中相等的边分别写出。

③得出结论:两个三角形全等。

如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。

如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。

3.作一个角等于已知角已知:∠AOB 。

求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。

②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。

D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。

全等三角形证明方法归纳经典-(1)

全等三角形证明方法归纳经典-(1)

..【第1部分 全等基础知识归纳、小结】1、全等三角形的定义: 能够完全重合的两个三角形叫全等三角形。

两个全等三角形中,互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。

概念深入理解:(1)形状一样,大小也一样的两个三角形称为全等三角形。

(外观长的像)(2)经过平移、旋转、翻折之后能够完全重合的两个三角形称为全等三角形。

(位置变化)2、全等三角形的表示方法:若△ABC 和△A′B′C′是全等的,记作“△ABC≌△A′B′C′”其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:全等是工具、手段,最终是为了得到边等或角等,从而解决某些问题。

(1)全等三角形的对应角相等、对应边相等。

(2)全等三角形的对应边上的高,中线,角平分线对应相等。

(3)全等三角形周长,面积相等。

4、寻找对应元素的方法图3图1图2(1)根据对应顶点找如果两个三角形全等,如果两个三角形全等,那么,那么,以对应顶点为顶点的角是对应角;以对应顶点为顶点的角是对应角;以对应顶点为端点的边以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的;运动一般有3种:平移、对称、旋转;5、全等三角形的判定:(深入理解)①边边边(①边边边(SSS SSS SSS)) ②边角边(②边角边(SAS SAS SAS)) ③角边角(③角边角(ASA ASA ASA)) ④角角边(④角角边(AAS AAS AAS)) ⑤斜边,直角边(⑤斜边,直角边(HL HL HL)) 注意:(容易出错)(1)在判定两个三角形全等时,至少有一边对应相等(边定全等);(2)不能证明两个三角形全等的是,㈠三个角对应相等,即AAA AAA;;㈡有两边和其中一角对应相等,即SSA SSA。

(完整版)全等三角形知识总结和经典例题

(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS)9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测等距离。

以及等角,用于工业和军事。

有一定帮助。

5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。

如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.

有复习资料-直角三角形全等判定(基础)知识讲解

有复习资料-直角三角形全等判定(基础)知识讲解

直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.【答案及解析】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°在Rt△ABD 和Rt△CDB中,∴Rt△ABD≌Rt△CDB(HL)∴AB=CD(全等三角形对应边相等)(2)由∠ADB=∠CBD∴AD∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【答案】证明:∵AE⊥AB,BC⊥AB,∴∠DAE=∠CBA=90°在Rt△DAE 及Rt△CBA中,∴Rt△DAE≌Rt△CBA (HL)∴∠E=∠CAB∵∠CAB+∠EAF=90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED⊥AC.2、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案及解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 及Rt △BCD 中,∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC=⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案及解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 及△CBE 中,∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参及,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,AB=AC,AD⊥ BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt△ABC及Rt△'''A B C中, ∠C =∠'C= 90, A=∠'B, AB =''A B, 那么下列结论中正确的是( )A. AC =''B C D. ∠A C B.BC =''B C C. AC =''A =∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形()A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE 的依据是“______”.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC ≌_______.9. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC及右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B 点及O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上及AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.13.【解析】解:在Rt △AOB 及Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等)∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得: ∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 及Rt △EDF 中 B EDF BC DFC F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠2.证明:∵AE⊥EC,AF⊥BF,∴△AEC、△AFB为直角三角形在Rt△AEC及Rt△AFB中∴Rt△AEC≌Rt△AFB(HL)∴∠EAC=∠FAB∴∠EAC-∠BAC=∠FAB-∠BAC,即∠1=∠2.【答案及解析】一、选择题1. 【答案】C;【解析】等腰直角三角形确定了两个锐角是45°,可由AAS定理证明全等.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF ≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C;【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】C;【解析】等底等高的两个三角形面积相等.6. 【答案】C;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD;【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】6;【解析】DB=DC+CB=AB+ED=4+2=6;11.【答案】90°;【解析】通过HL证Rt△ABC≌Rt△DEF,∠BCA=∠DFE. 12.【答案】45°;【解析】证△ADC及△BDF全等,AD=BD,△ABD为等腰直角三角形.。

《全等三角形》知识梳理

《全等三角形》知识梳理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的对边相等(AAS)
你会做吗?
变式1:改AD//BC,AB//CD为 又如何?能得到一样的结论吗?
变式2:若将“AD//BC,AB//CD”改为AD//BC ,能得到一样的结论吗?
例2、如图, 平分
于 于 ,求证:
证明:因为 平分
所以 ,
即 是 的平分线。
因为
所以 (角平分线上的点到角边的距离相等)
点评:本题主要应用了全等三角形的有关知识和角平分线性质,解决本题的关键是把要证明相等的两条线段看作一个平分线上的点到该角两边的距离。
怎样添加辅助线
解决数学问题的一个基本思想就是转化思想,把复杂的问题转化为简单的或熟悉的或已经解决的问题.好多几何问题往往需要添加辅助线才能进行这种转化,作辅助线时应考虑以下几个方面:
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)
三、疑点、易错点
1、对全等三角形书写的错误
在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。切记不要弄错。
因为AB=AF+FB
所以AB=AD+BC(等量代换)
第二种方法(延长法):
延长线段AE和BC,相交于点F。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学是科学的大门和钥匙--培根
数学是最宝贵的研究精神之一--华罗庚 全等三角形判定一(SSS,ASA ,AAS )(基础)
责编:杜少波
【学习目标】
1.理解和掌握全等三角形判定方法1——“边边边”,判定方法2——“角边角”,判定方法
3——“角角边”;能运用它们判定两个三角形全等.
2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.
【要点梳理】
【高清课堂:379110 全等三角形判定二,知识点讲解】
要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”
三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).
要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .
要点二、全等三角形判定2——“角边角”
全等三角形判定2——“角边角”
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .
要点三、全等三角形判定3——“角角边”
1.全等三角形判定3——“角角边”
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.
2.三个角对应相等的两个三角形不一定全等.
如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.。

相关文档
最新文档