梳理中考数学易错点

合集下载

中考数学高频错题集锦

中考数学高频错题集锦

易错点 12:对平行四边形的判定方法把握不准导致漏解
例题:四边形 ABCD 中,对角线 AC,BD 相交于点 O,给
出下列四个条件:①AD∥BC;②AD=BC;③O ABCD 为平行四边形的选
法有( )
A.3 种
B.4 种
C.5 种
D.6 种
分析:从一组对边平行且相等(①②),对角线互相平分(③ ④),以及条件组合(①③、①④),通过判定三角形全等进一步 判定四边形为平行四边形,仅仅满足条件②③或者是②④不能 证明三角形全等,故选法有 4 种.
面积越来越大,并且增大的速度越来越快;②直线 l 经过DC
段时,阴影部分的面积越来越大,并且增大的速度保持不变;
③直线 l 经过DC 段时,阴影部分的面积越来越大,并且增大
的速度越来越小.故选A.
正解:A
失误与防范:错误的原因是忽略对阴影部分的面积增加的 速度进行细节分析,从而选择错误的选项 C.防范这种错误的方 法是仔细观察图形的变化细节,才能更准确地得出函数图象的 变化特点.
易错点10:对平行线判定不准确
例题:如图 G-4,在下列条件中,能判断 AD∥BC 的是( )
A.∠DAC=∠BCA
B.∠DCB+∠ABC=180°
C.∠ABD=∠BDC D.∠BAC=∠ACD
图 G-4
分析:∠DAC 和∠BCA 是直线 AD 和直线 BC 被 AC 所截
形成的内错角,又∵∠DAC=∠BCA,∴AD∥BC.
时,如果方程的两边同时除以一个代数式,一定要注意它是否
会等于 0.
易错点 6:注意反比例函数的图象有两支 例题:反比例函数 y=—2x ,当 x≤3 时,y 的取值范围是( )
A.y≤
2 3

中考数学常考易错点:2 2《分式方程》

中考数学常考易错点:2 2《分式方程》

中考数学常考易错点:2 2《分式方程》中考数学常考易错点:2-2《分式方程》分数阶方程易错清单1.为什么解分数阶方程容易出错?[示例1](2022新疆)求解分数阶方程:+=1【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.[答:]将方程两边乘以(x+3)(x-3),得到3+x(x+3)=x-9。

去掉括号,得到3+X+3x=X-9,解为X=-4检验:把x=-4代入(x+3)(x-3)≠0,二2二∴x=-4是原分式方程的解.【纠错】最简单的公分母是错误的,这会增加计算负担并导致错误;在计算中,应注意常数项应乘以最简单的公分母【例2】(2021内蒙古呼和浩特)解方程:-=0.【分析】首先去掉分母,将其转换成积分方程。

这个问题最简单的公分母是x(x+2)(x-2)[回答]去掉分母,得到3x-6-x-2=0。

解为x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【纠错】解分数阶方程会产生额外的根并忘记测试根【例3】(贵州省黔西南地区2022年)解方程:=【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.[答:]将方程两边乘以(x+2)(x-2)得到x+2=4,解为x=2,经检验,x=2不是分式方程的解,故原分式方程无解.[错误纠正]增加根不是分数方程式的根。

学生经常犯漏掉最后一句话的错误:“原始分数阶方程没有解”2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2022年)云南“母亲节”前夕,根据市场调查,一家商店以3000元的价格购买了第一批盒装鲜花,上市后很快就售罄,然后用5000元买了第二批盒花据了解,第二批购买的盒花数量是第一批的两倍,每箱花的购买价格比第一批低5元第一批盒花的购买价格是多少?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经测试,x=30是原始方程的根,因此,第一批盒装鲜花的购买价格为每盒30元【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师忠告1.会利用分式方程的定义判断分式方程.2.能用最简单的公分母将分数阶方程转化为积分方程,能用代换的思想求解分数阶方程。

中考数学易错题复习专题:三角形(1)

中考数学易错题复习专题:三角形(1)

三角形易错点1:三角形的概念,三角形中三种重要的线段——角平分线、中线、高.易错题1:如图,点A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是______________.CBA1B 1A 1错解:4 正解:7赏析:错解的主要原因在对三角形中线的有关性质理解错误,以为外侧三个三角形与里面的△ABC 面积相等.三角形的一条中线把原三角形分成的两部分是两个等底同高的等积三角形,由此,连接B 1A ,C 1B ,A 1C ,图中的7个小三角形面积均相等,故答案为7.易错点2:三角形三边之间的关系——三角形任意两边之和大于第三边,任意两边之差小于第三边.易错题2:现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中的三根组成一个三角形,那么可组成三角形的个数是……………………………………………………………( )A .1个B .2个C .3个D .4个 错解:C 正解:B 赏析:本题对三角形三边的关系理解错误,可能以为三角形任意两边之和大于第三边的对立面是三角形任意两边之和小于第三边,其实,其对立面还包括等于的情况.从四根木棒中任取三根,共有3cm ,4cm ,7cm ;3cm ,4cm ,9cm ;3cm ,7cm ,9cm ;4cm ,7cm ,9cm 四种情况,但3+4=7,3+4<9,所以这两种情况不能组成三角形,故选B .易错点3:三角形按边、按角的分类,三角形内、外角的性质,特别是外角的两条性质. 易错题3:如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,下列结论:①∠BAC =70°;②∠DOC =90°;∠BDC =35°;∠DAC =55°.其中,不正确的有………………( )A .①③B .②④C .②D .④F M O NP DA B错解:B 正解:C赏析:本题对①,②,③可利用三角形内角和定理及三角形外角的性质就可判断对错,关键是对④的判断易产生错误本题错解就是这种情况.判断④对错的关键是能否判定AD 是△ABC 的外角∠F AC 的平分线,为此,过点D 分别作DM ⊥AF 于点M ,DN ⊥AC 于点N ,DP ⊥CE 于点P ,由BD ,CD 分别平分∠BAC ,∠ACE ,可得DM =DP ,DN =DP ,所以DM =DN ,由角平分线的判定可得AD 平分∠F AC ,从而可通过计算判断④正确.易错点4:全等三角形的性质,三角形全等的判定,特别是两边一角对应相等的两个三角形不一定全等.易错题4:如图,已知AB =DC ,∠ACF =∠DBE ,则添加下列条件之一,能判定△ACF ≌△DBE 且是用“SAS ”判断全等的是……………………………………………………( )A .AF =DEB .∠A =∠DC .AF ∥DED .FC =EBF EDC AB错解:A 正解:D赏析:三角形全等的判定方法通常有SAS 、ASA 、SSS 、AAS 四种,本题错解的原因是对SAS 的条件没有理解清楚.两边一角对应相等的情况有两种:一种是SAS ,其条件是两边及其夹角对应相等,另一种是两边及其一组等边的对角对应相等,这样的两个三角形不全等.易错题5:如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AE =BE .EBCDA错解:∵∠DAB =∠CBA ,∴∠DAE =∠CBE ,在△ADE 和△BCE 中,∵AD =BC ,∠DAE =∠CBE ,∠DEA =∠CEB ,∴△ADE ≌△BCE (AAS ),∴AE =BE .正解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠D =∠C . 在△ADE 和△BCE 中,∵AD BC DEA CEB D C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ADE ≌△BCE (AAS ),∴AE =BE .又解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠ABD =∠BAC ,即∠ABE =∠BAE ,∴AE =BE .赏析:本题错在第一步,由∠DAB =∠CBA ,不能得出∠DAE =∠CBE ,可能是把未知条件当做已知条件用了.应先根据“SAS ”证△ADB ≌△BCA ,注意,这里的理由是“SAS ”而不是“SSA ”,由“SSA ”不能判断三角形全等,接下来可用“AAS ”或“ASA ”证△ADE≌△BCE 而得出结论,也可根据等腰三角形的判定“等角对等边”得出结论.易错点5:等腰三角形(含等边三角形)的性质与判定.易错题6:已知△ABC 是等边三角形,BD 为中线,延长BC 至点E ,使CE =CD =a ,连接DE ,则DE =__________.EBCDA错解:2a 正解赏析:本题可能以为DE =AC 而得出错解,在△DCE 中,用三边的关系也可判断2a 不正确.应先由等边三角形的性质得出BD 垂直平分AC ,∠CBD =30°,∠BCD =60°,又CE =CD ,∴∠E =∠CDE ,又∵∠BCD =∠E +∠CDE ,∴∠E =∠CBD =30°,∴BD =ED .再在Rt △BCD 中,由tan ∠BCD =BDCD得出BD =CD tan60,也可在Rt △BCD 中先得出BC =2CD ,再由勾股定理求得BD,∴DE.易错点6:运用等腰三角形的性质与判定计算或证明有关问题时注意分类讨论思想的运用.易错题7:在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线相交所得锐角为40°,则∠B 的度数为_______________.错解:65°正解:65°或25°赏析:本题只考虑了△ABC 中顶角∠BAC 为锐角的情况.由于等腰三角形的顶角可以是锐角,也可以是直角或钝角,∴本题应分三种情况讨论求解:①当∠BAC 为锐角时,如图1:40°图1E BCD A40°图2EBCDA图3EBCDADE 垂直平分AB ,∠ADE =40°,则∠A =50°,又∵AB =AC ,∴∠B =∠C ,∴∠B =180502︒-︒=65°;当∠BAC 为钝角时,如图2,DE 垂直平分AB ,∠ADE =40°,则∠DAB =50°,∴∠BAC =180°-50°=130°,又∵AB =AC ,∴∠B =∠C ,∴∠B =1801302︒-︒=25°(或:由∠DAB =∠B +∠C ,而∠B =∠C ,∴∠B =12∠DAB =12×50°=25°);当∠BAC 为直角时,如图3,DE ∥AC ,不合题意,此种情况舍去.∴答案为65°或25°.易错点7:全等三角形与等腰三角形的综合应用.易错题8:我们把由不平行于底边的直线截等腰三角形两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,其中∠B =∠C .在由不平行BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E ,若EB =EC ,请问当点E 在四边形ABCD 内部时(如图2所示),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)图1BCP D A 图2EBCDA图3BCDA错解:是“准等腰梯形”,理由:∵EB =EC ,∴∠EBC =∠ECB ,∴∠ABC =∠DCB ,∴是“准等腰梯形”.当点E 不在四边形ABCD 内部时,如图3,四边形ABCD 是“准等腰梯形”.正解:如图4,过点E 分别作EF ⊥AB 于点F ,EG ⊥AD 于点G ,EH ⊥CD 于点H .∵AE 、DE 分别平分∠BAD 、∠ADC ,∴EF =EG =EH .又∵EB =EC ,∴Rt △BFE ≌Rt △CHE ,∴∠3=∠4,又∵EB =EC ,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC =∠DCB .又∵四边形ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴四边形ABCD 是“准等腰梯形”. 当点E 不在四边形ABCD 内部时,有两种情况:当点E 在四边形ABCD 的边BC 上时,如图5,四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图6,四边形ABCD 是“准等腰梯形”.4321HGF图4EBCD A 图5BCDA 图6BDA赏析:本题中第一问的理由不正确,没有充分利用两条角平分线的条件,第二问没有理解不在四边形内部的含义,不在四边形内部应包括在四边形上和四边形外部两种情况.这两种情况的理由是:当点E 在四边形ABCD 的边BC 上时,如图7,同理可得Rt △BFE ≌Rt △CHE ,∴∠B =∠C ,∴四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图8,同理可得Rt △BFE ≌Rt △CHE ,∴∠EBF =∠ECH ,∵EB =EC ,∴∠EBC =∠ECB ,∴∠EBF -∠EBC =∠ECH -∠ECB ,即∠ABC =∠DCB .∴四边形ABCD 是“准等腰梯形”.HGF 图7BCD A H GF 图8BCD A易错练1.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条边上,若∠1=25°,则∠2的度数为……………………………………………………………………………( ) A .53° B .55° C .57° D .60°2.如图,在△ABC 中,AB =AC ,点D 、E 在BC 上,连接AD 、AE .若只添加一个条件就能得到∠DAB =∠EAC ,则下列条件中不正确的是………………………………………( ) A .BE =CD B .AD =AE C .∠BAE =∠CAD D .∠DAE =∠DEA30°21第1题图第2题图BCDA3.已知等腰三角形ABC 中,AD ⊥BC 于点D ,AD =12BC ,则△ABC 的底角度数为_________. 4.在△ABC 中,AB =AC ,点E 、F 分别在AB 、AC 上,AE =AF ,BF 与CE 相交于点D .求证:DB =DC ,并直接写出图中其他相等的线段.FEBC DA5.已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示,易证MF +FN =12BE . (1)当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 边的延长线上时,如图3所示,请证明你发现的结论. (3)你能用式子综合概括本题中MF 、FN 与BE 之间的关系吗?NMF EBC DA图1N MFEBCDA图2NMFE BC DA 图3参考答案3.75°或45°或15°解析:分三种情况:如图①,AD为腰上的高,且在△ABC内部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠B=ADAB,∴sin∠B=12,∴∠B=30°,∴底角为180302︒-︒=75°;如图②,AD为底边上的高,∵AB=BC,AD⊥BC,∴BD=CD,又∵AD=12BC,∴BD=AD,∴△ABD为等腰直角三角形,∴底角为45°;如图③,AD为腰上的高,且在△ABC外部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠DBA=ADAB,∴sin∠DBA=12,∴∠DBA=30°,又∵∠DBA=∠B +∠C,∠B=∠C,∴底角为30°÷2=15°.4.证明:在△ABF和△ACE中,∵AB ACBAF CAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE,∴BF=CE,∵AB=AC,AE=AF,∴BE=CF.∠ABF =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠DBC =∠DCB ,∴DB =DC .图中其他相等的线段有DE =DF ,BE =CF ,BF =CE . 5.解:(1)不成立;猜想:FN -MF =12BE .理由如下:如图4,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =FN -MF ,∴FN -MF =12BE .N MFEBCD A图4(2)发现的结论: MF -FN =12BE .证明:如图5,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =MF -FN ,∴MF -FN =12BE .。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。

2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。

4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。

二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。

2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。

3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。

4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。

1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。

2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。

所以二次函数的零点就是二次方程的根。

3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。

根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。

四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。

2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。

3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。

中考数学复习指导:勾股(逆)定理应用中的易错点

中考数学复习指导:勾股(逆)定理应用中的易错点

勾股(逆)定理应用中的易错点勾股定理的逆定理:若一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且∠C=90°,如果已知一个三角形的三条边长,则可以利用勾股定理的逆定理来判断这个三角形是不是直角三角形.由于勾股定理及其逆定理形式上都比较简单,因而在运用这两个定理时,同学们往往因不够重视而出现这样那样的错误.现将几种典型错解列举如下,并作简要的剖析,供同学们参考.一、忽视应用的前提例1 △ABC中,a,b,c是∠A,∠B,∠C的对边,a=3,b=4,c为质数,求c.错解由勾股定理得:c2=a2+b2=32+42=25,故c=5.分析不注意定理的成立条件,而盲目使用勾股定理,这样便出现了错解.其实,只有在直角三角形中,勾3股4弦5才是成立的,但本题条件中并没有说△ABC是直角三角形,故只能用一般三角形三边之间的关系来解.正解由三角形的三边关系知:b-a<c<b+a,即1<c<7,又c为质数,故c=2,或c=3,或c=5.例2 如图1,在△ABC中,AB=10,BC=16,BC边上的中线AD=6,试说明AB=AC.错解∵AD是BC边上的中线,∴CD=BC=8,又∵AD=6,∴在△ADC中,由勾股定理,得而AB=10,故AB=AC.分析由于受题目题设、结论及图形的影响,在没有进行推证说明的情况下,就先行认为△ADC是直角三角形,忽视了运用勾股定理的前提,导致解题过程错误.正解∵AD是BC边上的中线,∴BD=CD=BC=8.又∵AB=10,AD=6,且有62+82=102,即AD2+BD2=AB2,则△ADB是直角三角形,且AD⊥BC.∴在Rt△ADC中,由勾股定理得:∴AB=AC.友情提示:勾股定理揭示了直角三角形三边的关系,值得注意的是:只有在直角三角形中才有两边(较小的两边)的平方和等于第三边(最长的边)的平方,在非直角三角形中不具备这种关系,因此,在非直角三角形中或者是不知道三角形是否是直角三角形的情况下,不能盲目地使用勾股定理.二、忽视直角所对的边是斜边例3 在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=b,b=8,求c的长.错解∵△ABC为直角三角形.由勾股定理得:a2+b2=c2,且c==10.分析错解未抓住题目实质,受勾股定理的表达式:a2+b2=c2的影响而理所当然的认为c是斜边,其实,由∠B=90°,知道斜边应该是b(如图2).因此,我们在运用勾股定理时,首先要正确识别哪个角是直角,从而确定哪条边是斜边,然后准确写出勾股定理表达式进行解题.正解因为∠B=90°,则在Rt△ABC中,由勾股定理得:友情提示:在使用勾股定理时,要注意直角所对的边才是斜边,而并不一定是我们所习惯的c为斜边.三、忽视隐含情形例4 已知直角三角形的两边长分别为3,4,求第三边长,错解第三边长为:分析同学们都知道3.4.5是最小的勾股数,在我国古代就已有“勾三、股四、弦五”的说法,这意味着当两直角边分别为3和4时,斜边长为5,部分学生在解这道题时,由于思考不周全,忽略隐含情形,误认为一边是3,一边是4,第三边长也就是斜边长为5.实际上,题目中包含着两种情况:一种是已知的两边之长3,4都是直角边长,这时的第三边即斜边长为5;另一种是已知的两边中较长的边(长)4为斜边长,长为3的边为直角边,此时的第三边(另一条直角边)长为.正解(1)当两直角边为3和4时,第三边长为:;(2)当斜边为4,一直角边为3时,第三边长为:∴第三边的长为5或.友情提示:在给出直角三角形两条边长,并且没有确定它们都是直角边时,第三边既可能是斜边,也可能是直角边.四、忽视分类讨论例5 在△ABC中,AB=15,AC=13,BC边上的高AD=12.求BC的长.错解如图3,在Rt△ABD和Rt△ACD中,由勾股定理可得:分析由于题目并没有给出对应的图形,所以根据习惯画出了图3,认为三角形的高在三角形的内部,忽视了三角形的高也可能在三角形的外部(即图4所示),此时BC=BD-CD.错解忽视了分类讨论思想的运用.正解如图3,当△ABC的高AD在三角形内部时,在Rt△ABD和Rt△ACD中,由勾股定理可得:如图4,当△ABC的高AD在三角形外部时,在Rt△ABD和Rt△ACD中,由勾股定理可得:友情提示:在题目没有给出相应图形时,我们一定要周密思考,根据题意画出所有符合条件的图形进行解答.五、忽视区别应用勾股定理是直角三角形的性质定理,而其逆定理则是直角三角形的判定定理.在已知直角三角形中,需要用到三边的关系时用勾股定理;而已知三边想用直角三角形的性质定理进行有关计算或推理时,则需先用勾股定理的逆定理判断它是否是直角三角形.在使用时要特别注意区别对待,例6 △ABC的三边长分别为7,24,25,试判断△ABC的形状.错解∵72+242=252,∴由勾股定理可知△ABC是直角三角形.分析虽然最终判断的结果是对的,但是判断的根据是错误的.因为勾股定理是直角三形的性质定理,故只有在直角三角形中才能使用,而本题需对三角形形状作出判断,判断的依据是勾股定理的逆定理,错解的原因在于未能充分理解勾股定理及其逆定理的概念和区别,导致错误运用.正解∵72+242=252,∴由勾股定理的逆定理可知:△ABC是直角三角形.友情提示:勾股定理是直角三形的性质,可以用它来解决直角三角形的三边的等量关系.而勾股定理的逆定理是根据三边的一个等量关系来判断三角形的形状的.六.忽视定理实质例7 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则( )(A)∠A为直角(B)∠C为直角(C)∠B为直角(D)不是直角三角形错解选B.分析因为常见的直角三角形表示时,一般将直角标注为∠C,因而有同学就习惯性的认为∠C就一定表示直角,加之对本题所给条件的分析不缜密,导致错误,该题中的条件应转化为a2-b2=c2,即a2=b2+c2,应根据这一等式进行判断.正解∵a2-b2=c2,∴a2=b2+c2.故选A.例8 下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A)1.2.3 (B)32,42,52(C),,(D),,错解选B.分析对勾3股4弦5的形式根深蒂固,对概念的理解流于表面形式,判断一个三角形是不是直角三角形时,应将所给三边的长进行平方看是否满足a2+b2=c2的形式.正解因为,故选C.友情提示:在使用勾股定理及其逆定理时,既要看是否满足a2+b2=c2的形式,更要看这个定理中字母a,b,.c的实质.七、忽视最大边所对的角是直角例9 一个三角形的三边的长分别是a=,b=,c=2.问这个三角形是直角三角形吗?所以这个三角形不是直角三角形.分析以上解答是错误的,因为根据三角形的边角关系可知,最大的角所对的边最大,而直角三角形中直角是最大的角,直角所对的边才是它的最大边即斜边,直角三角形中最大的边所对的角是直角.所以要判断一个三角形是不是直角三角形,先得找到它的最大边,而错解中并没有判断哪条边是最大边,却受a2+b2=c2的影响,认为c为最大边.实际上本题中b才是最大边.所以应判断a2+c2与b2之间的关系.根据勾股定理逆定理可知由a,b,c为边组成的三角形为直角三角形.例10 已知△ABC的三边的长分别是BC=41,AC=40,AB=9.试说明△ABC是直角三角形.错解∵BC=41,AC=40,AB=9,∴BC2=AC2+AB2,∴∠C=90°.∴△ABC是直角三角形.分析以上解题思路是对的,但∠C=90°是不对的.直角三角形中哪个角是直角,应以最大边所对的角来确定,这里的最大边为BC,其所对的角为∠A,所以这里的∠A=90°.而不是∠C=90°.正解∵BC=41,AC=40,AB=9,∴BC2=AC2+AB2,∴∠A=90°.∴△ABC是直角三角形.友情提示:在判断所给的线段能否组成直角三角形时,要先确定最大边,然后再通过计算,判断最大边的平方是否等于其它两边的平方和,应用勾股逆定理时,一定要注意最长边对的角为直角.勾股定理及其逆定理是初中几何中的重要工具,因此熟练掌握它们的使用方法是十分重要的,我们要加深理解这两个定理的本质意义,把“忽视”变为“重视”,尽量减少错误的发生.。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。

为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。

《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。

它的图像是一个开口向上或向下的抛物线。

下面我们来逐个讲解常见易错点。

1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。

而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。

错误经常出在对值域的判断上,容易忽略函数的开口方向。

2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。

易错点在于判断抛物线的开口方向和对称轴的判断。

3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。

抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。

4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。

对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。

对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。

5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。

相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。

6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。

中考数学常考易错点:3-2《一次函数》

中考数学常考易错点:3-2《一次函数》

一次函数易错清单1.一次函数y=kx+b的图象的位置与k,b的符号之间的关系.【例1】(2014·湖南娄底)一次函数y=kx-k(k<0)的图象大致是().【解析】首先根据k的取值范围,进而确定-k>0,然后再确定图象所在象限即可.【答案】∵k<0,∴-k>0.∴一次函数y=kx-k的图象经过第一、二、四象限.故选A.【误区纠错】此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.2.讨论一次函数性质时漏解.【例2】(2014·四川自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.【解析】由于k的符号不能确定,故应分k>0和k<0两种进行解答.【误区纠错】本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.3.一次函数与不等式的关系.【例3】(2014·湖北孝感)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为().A. -1B. -5C. -4D. -3【解析】满足不等式-x+m>nx+4n>0就是直线y=-x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.【答案】∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,∴关于x的不等式-x+m>nx+4n>0的解集为-4<x<-2.∴关于x的不等式-x+m>nx+4n>0的整数解为-3.故选D.【误区纠错】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,错解误认为是关于x的不等式-x+m>nx+4n>0的解集为x>-2.4.一次函数的实际应用.【例4】(2014·山东德州)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 【解析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200-a)只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【答案】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,由题意,得25x+45(1200-x)=46000,解得x=400.∴购进乙型节能灯1200-400=800只.故购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200-a)只,商场的获利为y元,由题意,得y=(30-25)a+(60-45)(1200-a),y=-10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴-10a+18000≤[25a+45(1200-a)]×30%.∴a≥450.∵y=-10a+18000,∴k=-10<0.∴y随a的增大而减小.∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.【误区纠错】本题考查了单价×数量=总价的运用,列了一元一次方程解实际问题的运用,一次函数的解析式的运用,解答时求出求出一次函数的解析式是关键.名师点拨1.掌握一次函数的定义,能利用定义进行判断.2.正确画出一次函数的图象,并利用图象说出它的变化特点,能利用图象求函数的近似解.3.会求一次函数解析式.4.会用函数思想解决实际问题.提分策略1.一次函数图象的平移.直线y=kx+b(k≠0)在平移过程中k值不变.平移的规律是若上下平移,则直接在常数b后加上或减去平移的单位数;若向左(或向右)平移m个单位,则直线y=kx+b(k≠0)变为y=k(x+m)+b(或k(x-m)+b),其口诀是上加下减,左加右减.【例1】如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则kb= .【解析】∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2.∵y=kx+b的图象经过点A(1,-2),∴2+b=-2,解得b=-4.∴kb=2×(-4)=-8.【答案】-82.一次函数与一次方程(组),一元一次不等式(组)相结合问题.【例2】一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.【解析】∵一次函数y=kx+b过点(2,3),(0,1),∴一次函数的解析式为y=x+1.当y=0时,x+1=0,x=-1.∴一次函数y=x+1的图象与x轴交于点(-1,0).∴关于x的方程kx+b=0的解为x=-1.【答案】x=-13.一次函数图象与两坐标轴围成的三角形面积问题.这一类问题主要考查在给定一次函数解析式或一次函数图象的前提下,求图象与坐标轴围成的三角形的面积.在这类问题中,如果三角形的一边与一坐标轴重合,那么可直接应用三角形及坐标求面积,如果三角形的任何一边均不与坐标轴重合,那么一般来说,我们可以利用“割补法”化不规则的三角形为规则的三角形,从而求得三角形的面积.【例3】在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.【答案】(1)∵直线与x轴的交点坐标为(4,0),与y轴交点坐标为(0,3),4.用一次函数解决相关问题.(1)利用一次函数进行方案选择.一次函数的方案决策题,一般都是利用自变量的取值不同,得出不同方案,并根据自变量的取值范围确定出最佳方案.【例4】某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元;(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?【答案】(1)由题意,得y1=4x+400, y2=2x+820.(2)令4x+400=2x+820,解得x=210,所以当运输路程小于210 km时,y1<y2,选择邮车运输较好;当运输路程等于210 km时,y1=y2,选择两种方式一样;当运输路程大于210 km时,y1>y2,选择火车运输较好.(2)利用一次函数解决资源收费问题.此类问题多以分段函数的形式出现,正确理解分段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段函数的分段点;(2)针对每一段函数关系,求解相应的函数解析式;(3)利用条件求未知问题.【例5】为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(千瓦时)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:(2)小明家某月用电120千瓦时,需要交电费元;(3)求第二档每月电费y(元)与用电量x(千瓦时)之间的函数关系式;(4)在每月用电量超过230千瓦时时,每多用1千瓦时电要比第二档多付电费m元,小刚家某月用电290千瓦时,交电费153元,求m的值.【答案】(1)第二档140<x≤230,第三档x>230.(2)54(3)设第二档每月电费y(元)与用电量x(千瓦时)之间的函数关系式为y=ax+c.将(140,63),(230,108)代入,得则第二档每月电费y(元)与用电量x(千瓦时)之间的函数关系式为(4)根据图象,得用电230千瓦时,需要付费108元,用电140千瓦时,需要付费63元,故108-63=45(元),230-140=90(千瓦时),45÷90=0.5(元),则第二档电费为0.5元/千瓦时.∵小刚家某月用电290千瓦时,交电费153元,290-230=60(千瓦时),153-108=45(元),45÷60=0.9(元),m=0.9-0.5=0.4,故m的值为0.4.(3)利用一次函数解决其他生活实际问题.结合函数图象及性质,弄清图象上的一些特殊点的实际意义及作用,寻找解决问题的突破口,这是解决一次函数应用题常见的思路.“图形信息”题是近几年的中考热点考题,解此类问题应做到三个方面:(1)看图找点,(2)见形想式,(3)建模求解.【例6】周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.【答案】(1)小明骑车速度为,在甲地游玩的时间是1-0.5=0.5(h).(2)妈妈驾车速度为20×3=60(km/h),设直线BC解析式为y=20x+b1.专项训练一、选择题1. (2014·安徽安庆外国语学校模拟)已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为().A. 1或-2B. 2或-1C. 3D. 42.(2014·安徽淮北五校联考)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第二象限,则m的取值范围是().A. m>1B. m<-5C. -5<m<1D. m<13. (2014·安徽铜陵模拟)能表示图中一次函数图象的一组函数对应值列表的是().(第3题)ABCD4. (2013·上海静安二模)函数y=kx-k-1(常数k>0)的图象不经过的象限是().A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. (2013·重庆一中一模)如图反映的过程是:妈妈带小米从家去附近的动物园玩,他们先去鳄鱼馆看鳄鱼,又去熊猫馆看熊猫,然后回家.如果鳄鱼馆和熊猫馆的距离为m千米,小米在熊猫馆比在鳄鱼馆多用了n分钟,则m,n的值分别为().(第5题)A. 1,8B. 0.5,12C. 1,12D. 0.5,8二、填空题6. (2014·江苏苏州高新区一模)已知函数y1=x,y2=2x+3,y3=-x+4,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为.7.(2014·湖北宜昌一模)已知y是x的一次函数,下表列出了部分对应值,则m= .8. (2014·湖南吉首三模)如图,已知直线与x轴,y轴分别交于点A和点B,M 是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处,则直线AM的函数解析式是.(第8题)9.(2013·上海静安二模)如果点A(-1,2)在一个正比例函数y=f(x)的图象上,那么y随着x 的增大而(填“增大”或“减小”).10. (2013·江西饶鹰中考模拟)一次函数y=kx+b(kb<0)图象一定经过第象限.11. (2013·湖北武汉中考全真模拟)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图(1)表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图(2)分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象,则甲每小时完成件,乙提高工作效率后,再工作个小时与甲完成的工作量相等.(第11题)三、解答题12.(2014·湖北襄阳模拟)某市自来水公司为了鼓励市民节约用水,于2014年4月开始采用以用户为单位按月分段收费办法收取水费,新按月分段收费标准如下:标准一:每月用水不超过20吨(包括20吨)的水量,每吨收费2.45元;标准二:每月用水超过20吨但不超过30吨的水量,按每吨a元收费;标准三:超过30吨的部分,按每吨(a+1.62)元收费.(说明:a>2.45)(1)居民甲4月份用水25吨,交水费65.4元,求a的值;(2)若居民甲2014年4月以后,每月用水x(吨),应交水费y(元),求y与x之间的函数关系式,并注明自变量x的取值范围;(3)随着夏天的到来,各家的用水量在不但增加.为了节省开支,居民甲计划自家6月份的水费不能超过家庭月收入的2%(居民甲家的月收入为6540元),则居民甲家六月份最多能用水多少吨?13.(2014·广西南宁五模)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式;(2)求渔船和渔政船相遇时,两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?(第13题)14. (2014·广东模拟)甲和乙进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶,再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示甲在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(2)求出AB所在直线的函数关系式;(3)如果乙上坡平均速度是甲上坡平均速度的一半,那么两人出发后多长时间第一次相遇?(第14题)15. (2013·河北三模)两辆校车分别从甲、乙两站出发,匀速相向而行,相遇后继续前行,已知两车相遇时中巴比大巴多行驶40千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至中巴到达乙站这一过程中y与x之间的函数关系.根据图象提供的信息,解答下列问题:(1)请你说明点B,C的实际意义;(2)求线段AB所在直线的函数关系式和甲、乙两站的距离;(3)求两车速度及中巴从甲站到乙站所需的时间t;(4)若中巴到达乙站后立刻返回甲站,大巴到达甲站后停止行驶,请你在图中补全这一过程中y关于x的函数的大致图象.参考答案与解析1.A[解析]先求出直线y=kx-3与y=-1以及y=3的交点坐标,要注意这两个交点可能在一、四象限(k>0),也可能在二、三象限(k<0).再根据所围成的四边形是梯形,根据梯形的面积公式进行计算.根据第二象限内点具有x<0,y>0,确定m的取值范围是-5<m<1.3. D[解析]直接根据图象经过的点进行判断.显然该图象经过(-3,2),(0,-1)二点.4.B[解析]∵k>0,∴-k<0.∴-k-1<0.∴y=kx-k-1(常数k>0)的图象经过一、三、四象限.5. D[解析]根据图象,此函数大致可分以下几个阶段:①0~12分钟,从家走到鳄鱼馆;②12~27分钟,在鳄鱼馆看鳄鱼;③27~33分钟,从鳄鱼馆走到熊猫馆;④33~56分钟,在熊猫馆看熊猫;⑤56~74分钟,从熊猫馆回家;综合上面的分析,由③的过程知,m=1.5-1=0.5(千米);由②④的过程知n=(56-33)-(27-12)=8(分钟).6. 2[解析]-x+4=x,解得x=2,∴y=x=2.7. 1[解析]设一次函数的解析式是y=kx+b,将(1,3),(2,5)代入求出解析式即可.8[解析]由题,知点A和点B的坐标分别是A(6,0),B(0,8),所以AB=10,由题意,得点B'的坐标是(-4,0),再利用相似可求得OM=3,所以过A(6,0),M(0,3)的直线的解析式是.9.减小[解析]设正比例函数解析式为y=kx(k≠0),∵过点(-1,2),∴2=k×(-1),解得k=-2.故正比例函数解析式为y=-2x.∵k=-2<0,∴y随着x的增大而减小.10.一、四[解析]∵kb<0,∴k,b异号.①当k>0时,b<0,此时一次函数y=kx+b(kb<0)图象经过第一、三、四象限;②当k<0,b>0时,此时一次函数y=kx+b(kb<0)图象经过第一、二、四象限;综上所述,一次函数y=kx+b(kb<0)图象一定经过第一、四象限.则甲每小时完成30件.设乙提高工作效率后再工作m小时与甲完成的工作量相等,由题意,得2×20+(20+40)m=2×30+30m,12. (1)由题意,得20×2.45+5a=65.4,解得a=3.28.(2)由题意,得当0≤x≤20时,y=2.45x;当20<x≤30时,y=20×2.45+3.28(x-20)=3.28x-16.6;当x>30时,y=20×2.45+10×3.28+(x-30)×(3.28+1.62)=4.9x-65.2.(3)6540×2%=130.8.∵20×2.45=49,49+10×3.28=81.8,而49<81.8<130.8,∴居民甲家6月份用水超过30吨.设他家6月用水x吨,故4.9x-65.2≤130.8,解得x≤40.故居民甲家计划6月份最多用水40吨.13. (1)当0≤t≤5时,s=30t;当5<t≤8时,s=150;当8<t≤13时,s=-30t+390.(2)渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s=kt+b,解得k=45,b=-360.∴s=45t-360.解得t=10,s=90.渔船离黄岩岛距离为 150-90=60 (海里).(3)s渔=-30t+390,s渔政=45t-360.(2)甲上坡的平均速度为480÷2=240(m/min),则其下坡的平均速度为240×1.5=360(m/min),所以y=-360x+1200.(3)乙上坡的平均速度为240×0.5=120(m/min),甲的下坡平均速度为240×1.5=360(m/min),由图象得甲到坡顶时间为2分钟,此时乙还有480-2×120=240(m),没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).15.(1)点B的实际意义是两车2小时相遇;点C的纵坐标的实际意义是中巴到达乙站时两车的距离.(2)设直线AB的解析式为y=kx+b,由题意,知直线AB过(1.5,70)和(2,0),∴直线AB的解析式为y=-140x+280.当x=0时,y=280.∴甲、乙两站的距离为280千米.(3)设中巴和大巴的速度分别为V1千米/小时,V2千米/小时,∴中巴和大巴速度分别为80千米/小时,60千米/小时.t=280÷80=3.5(小时).(4)当小时时,大巴到达甲站,当t=7小时时,大巴回到甲站,故图象如下:(第15题)。

中考数学查补易混易错点《整式及其计算》原卷

中考数学查补易混易错点《整式及其计算》原卷

查补易混易错01 整式及其计算中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。

在整式的化简求值问题中,则多注意整式混合运算的法则应用。

中考五星高频考点,难度中等偏下,但在全国各地中考试卷中属于必考考点易错01:幂的各公式记背⎪⎩⎪⎨⎧•===••+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m nm n m b a ab a a a a a )()(易错02:乘法公式的记背与区别完全平方公式:()2222222)(2b ab a b a b ab a b a +-=-++=+;首先,需注意公式中ab 乘积项的符号与两数和或差的一致性;其次,公式也是等式,从右往左也可以应用,故应用时要注意两平方项符号的一致性,如:();2222y x y xy x --=-+-特别注意:当完全平方公式未知项为“中间项”时,答案一般会有两种情况,即正负皆可。

平方差公式:();22)(b a b a b a -=-+平方差公式从左往右应用,只要一项系数相同,一项系数互为相反数即可,不需要都和公式长的一模一样,而结果特征为符号相同项的平方-符号相反项的平方;如:();22)(x y y x y x -=---【中考真题练】1.(2022•德州)下列运算正确的是( ) A .a 2+2a 2=3a 4 B .(2a 2)3=8a 6C .a 3•a 2=a 6D .(a ﹣b )2=a 2﹣b 22.(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣9 3.(2022•德州)已知M=a2﹣a,N=a﹣2(a为任意实数),则M﹣N的值()A.小于0B.等于0C.大于0D.无法确定4.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b25.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.6.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.【中考模拟练】1.(2023•金牛区模拟)下列计算正确的是()A.a6÷a3=a2B.(4ab3)2=4a2b6C.(a+b)(a﹣b)=a2﹣b2D.(a﹣1)2=a2﹣12.(2023•福建模拟)化简结果为﹣8a6的单项式是()A.B.(﹣2a3)3C.(﹣2a2)3D.﹣(3a3)2 3.(2023•松北区一模)下列运算一定正确的是()A.2a2•3a2=6a6B.2a2+3a2=5a4C.(a3)2=a5D.a4•a2=a64.(2023•开州区模拟)有依次排列的2个整式:x,x+2,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x,2,x+2,这称为第一次操作;将第一次操作后的整式串按上述方式再做一次操作,可以得到第二次操作后的整式串;以此类推.通过实际操作,四个同学分别得出一个结论:小琴:第二次操作后整式串为:x,2﹣x,2,x,x+2;小棋:第二次操作后,当|x|<2时,所有整式的积为正数;小书:第三次操作后整式串中共有8个整式;小画:第2023次操作后,所有的整式的和为2x+4048;四个结论正确的有()个A.1B.2C.3D.4 5.(2022•武江区校级一模)已知:,则x=.6.(2023•金牛区模拟)已知x+y=1,xy=﹣3,则x2+y2=.7.(2022•丽水二模)如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.8.(2023•大庆一模)若关于x的多项式x2﹣ax+36=(x+b)2,则a+b的值是.9.(2023•陕西模拟)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”,如图揭示了(α+b)n(n为非负整数)展开式中各项系数的有关规律,第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数;……;请根据规律写出(α+b)4展开式中第3项的系数是.10.(2023•衡水模拟)下面是嘉淇对于一道整式化简题目的不完整的解题过程,其中P是关于a的多项式.a(P)﹣8 (a﹣1)=a2+4a﹣8a+8=……(1)求多项式P;(2)请将题目的化简过程补充完整,并判断该化简结果能为负数吗?说明理由.11.(2023•襄都区校级一模)将从1开始的连续自然数按如图的方式排列,其中第a行第b 个数字可以表示为(a,b),例如第三行第四个数字为8,用(3,4)的形式表示数字8.(1)图中(5,7)表示的数是,第9行共有个数,58可以表示为;(2)用含n的代数式表示第n行所有数字的和.。

中考数学易错题专题复习 数与式

中考数学易错题专题复习 数与式

数与式易错点1:有理数、无理数与实数的有关概念理解错误;对于相反数、倒数、绝对值的意义分不清.例:在实数2π,0.3&,,0,tan 60︒,227,,0.01001001……,0.010010001……(相邻两个1之间依次多一个0)中,无理数有……( )A.2个B. 3个C. 4个D.5个 错解:D 正解:B赏析:错误的主要原因是没有真正理解无理数的概念,只看形式,而没有化简后再判断,无理数的常见类型有:①根号型(开方开不尽),如,等;②定义型,如1.010010001……(相邻两个1之间依次多一个0)等;“π”型,如﹣π等;③三角函数型,如tan 60︒,sin45°等.易错点2:在实数的有关运算中,由于对运算顺序理解不清,不正确使用运算律或没有把握好符号的处理从而出现计算错误.例:计算:2tan 60︒221()2-.错解:原式=22+4=6-正解:原式=22+4=2.赏析:错误的主要原因是把绝对值化简后没有处理好前面的负号.正确的解法应是先化简:tan 60︒2=2,21()2-=211()2=4,再算乘法:2tan 60︒=,然后进行加减混合运算.其中关于负整数指数幂的计算也易出错,其计算公式是1p p a a -=(a ≠0,p 为正整数),如21()2-=211()2=4,易错误地计算为21()2-=14.易错点3:平方根、算术平方根、立方根的意义与区别.例:将7的平方根和立方根按从小到大的顺序排列为_____________________. 错解正解赏析:本题主要从“同一个正数(除1外)的平方比立方要小”而得出 “同一个正数的平方根也比立方根要小”的错误结论,应是“同一个正数(除1外)的平方根比立方根要大”.其方法是:2,2,又∵2,,易错点4:求分式的值时易忽略分母不为零的条件.例:分式22x x -+的值为零,则x 的值为………………………………………………( )A.2B.﹣2C.±2D.任意实数 错解:C 正解:A赏析:本题错解考虑到了分子x -2为零,而忽视了分式有意义的条件——分母x +2不为零.分式的值为零的条件应是分子为零且分母不为零,∴由x -2=0,解得x =±2,又由x +2≠0,得x ≠﹣2,∴x =2.还有分式无意义的条件是分母为零.易错点5:分式的运算:①运算法则和符号的变化;②分子或分母是多项式时要分解因式且要分解到不能分解为止;③结果应化为最简分式.例:先化简,再求值:(2241x x x -+-+2-x )÷2441x x x++-,其中x 满足x 2-4x +3=0.错解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+=2224321x x x x x -+--+-·21(2)x x -+ =(56)1x x ---·2(1)(2)x x --+ =256(2)x x -+.∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0, ∴x ≠1.∴当x =3时,原式=2536(32)⨯-+=925. 正解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+ =2224321x x x x x -+-+--·21(2)x x -+=21x x +-·2(1)(2)x x --+ =12x -+. ∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0,x 2+4x +4≠0, ∴x ≠1,x ≠﹣2. ∴当x =3时,原式=12x -+=﹣132+=15-. 赏析:本题一处错误是在去括号时,符号出现了错误,括号前面是“﹣”,去掉括号和它前面的“﹣”号,括号里面的每一项都要改变符号,二处错误是原式有意义的条件只考虑了分母不为零,即x -1≠0,而忽视了除数不能为零的条件,即x 2+4x +4≠0.易错点6:非负数的性质:几个非负数的和为零,则每个非负数都为零;整体代入;完全平方式.例:若(x 2+y 2)2+2(x 2+y 2)-8=0,则x 2+y 2=__________. 错解:2或﹣4 正解:2赏析:本题错误的主要原因是没有注意到题中隐含的条件x 2+y 2≥0,同时把x 2+y 2整体运用也很重要.本题可以用因式分解法来解:(x 2+y 2)2+2(x 2+y 2)-8=0,(x 2+y 2+4)( x 2+y 2-2)=0,∴x 2+y 2+4=0或x 2+y 2-2=0,∴x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.或者用换元法来解:设x 2+y 2=a ,则原方程化为a 2+2a -8=0,∴(a +4)(a -2)=0,∴(a +4)=0或(a -2)=0,∴a =﹣4,a =2,即x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.易错点7:五类计算:绝对值;零指数幂;负整数指数幂;二次根式的化简计算;锐角三角函数.sin 60︒错解1-2+4=2-1+2=1+2.正解22=12+2=2-12=32.赏析:分母有理化时,分母是+-1)=2-1=2,而不是1,错误地理解为分母有理化时分母就是1.同时,逆用二次根式性质3计算=2更简便.二次根式的计算通常先化简,不是最简二次根式化成最简二次根式,分母中有根号时要分母有理化,这一步中熟练掌握二次根式的四条性质和分母有理化的方法很重要,同时还要理解最简二次根式的概念,然后按运算顺序计算,遇有除法时通常先化为乘法再计算,能约分的尽量先约分,在加减计算中要掌握同类二次根式的概念,其合并方法与合并同类项的方法相似.还有,特殊角的三角函数值也易弄错,如sin30°与sin60°,应牢记30°,45°,60°角的三角函数值.特殊角的三角函数值如下表:易错练1.有意义,则x 的取值范围是………………………………………………( ) A.x ≥-1且x ≠2 B.x ≠2 C.x ≥2且x ≠-2 D.x ≥22.下列四个多项式中,能因式分解的是…………………………………………………( )A.a 2+b 2B.a 2-a +0.25C.x 2+4yD.x 2-4y3.已知点A 、B 、C 在同一条数轴上,点A 表示的数是﹣2,点B 表示的数是1,若AC =1,则BC =……………………………………………………………………………………( ) A .3或4 B.1或4 C.2或3 D.2或44.已知(a +b)2=1,(a -b)2=5,则ab 的值为…………………………………………( ) A.﹣4 B.4 C.﹣1 D.15.化简22ab ba a b--的结果为…………………………………………………………………( )A. a 2-b 2B.b 2-a 2C.abD.﹣ab6.据报载,2014年我国发展固定宽带接入新用户250000000户,其中250000000用科学记数法表示为______________________.7.若112x y-=,则分式2272x xy y y xy x --+-=____________.8.n 的最小值为_____________.9.-3--0()π-+2014.10.化简求值:(x +1)2+(x +1)(x -1)-3x (x -1),其中x 1.11.先化简,再求值:221()111a a a a a -÷+--,其中a -1.12.参考答案易错练1.A 解析:由题意,得x +1≥0且x -2≠0,解得x ≥-1且x ≠22.B 解析:a 2-a +0.25=a 2-2×a ×12+(12)2 =(a -12)23.D 解析:∵点A 表示的数是﹣2,AC =1,∴C 点表示的数是﹣1或﹣3,又∵点B 表示的数是1,∴BC =2或4.7. ﹣411解析:由112x y-=,得x-y=﹣2xy,∴原式=()2442()71111x y xy xyx y xy xy---==---+.8.6 解析:∵24n=46n⨯⨯且位整数,∴最小正整数n=6.9. 解:原式=5-3-1+2014=201510.解:原式=x2+2x+1+x2-1-3x2+3x=﹣x2+5x,当x=3-1时,原式=﹣(3-1)2+5(3-1)=23-4+53-5=73-9.11. 解:原式=﹣223(1)(1)3(1)(1)a aa a a aa a-•+-=-+-.当a=2-1时,原式=3(2-1)-(2-1)2=32-3-3+22=52-6.。

2024中考数学易错题专题易错07图形的变化(七大易错分析+举一反三+易错题通关)(原卷版)

2024中考数学易错题专题易错07图形的变化(七大易错分析+举一反三+易错题通关)(原卷版)

易错07图形的变化易错点一:弄错平移方向和距离平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等易错提醒:平移时弄错方向和距离,注意是对应点之间的距离为平移的距离例1.如图,在ABC V 中,5,7,60AB BC B ==Ð=°,将ABC V 沿射线BC 的方向平移2个单位后,得到A B C ¢¢¢V ,连接A C ¢,则线段A C ¢的长为( )A .2B .5C .3D .7例2.如图,将周长为16cm 的三角形ABC 沿BC 方向平移,得到三角形DEF ,若四边形ABFD 的周长为22cm ,则平移距离为 .变式1.如图,平面直角坐标系中,长为2的线段CD (点D 在点C 右侧)在x 轴上移动,()()0203A B ,,,,连接AC BD ,,则AC BD +的最小值为 .变式2.如图,点I 为ABC V 的内心,6AB =,4AC =,3BC =,将ACB Ð平移使其顶点与I 重合,则图中阴影部分的周长为 .变式3.如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,点A ,B ,B 的坐标分别为1140A B (,),(,),请解答下列问题:(1)直接写出点C 的坐标;(2)将ABC V 先向左平移2个单位长度,再向下平移1个单位长度得到DEF V ,(点A ,B ,C 的对应点分别为D ,E ,F ),画出DEF V ;(3)直接写出(2)中四边形DBCF 的面积为 .变式4.如图,三角形ABC 三个顶点的坐标分别为()30A -,;()12B -,,()12C -,.将三角形ABC 向右平移1个单位长度,再向上平移2个单位长度,得到三角形111A B C .(1)画出三角形111A B C ,顶点1A 的坐标为 ,顶点1C 的坐标为 ;(2)求三角形111A B C 的面积;(3)已知点P 在x 轴上,以11B C P ,,为顶点的三角形的面积为6,请直接写出点P 的坐标.1.如图,将边长为5的正方形ABCD 沿BC 的方向平移至正方形DCEF ,则图中阴影部分的面积是( )A .25B .30C .35D .502.如图,在平面直角坐标系中,点A 的坐标为()0,3,OAB V 沿x 轴向右平移后得到O A B ¢¢¢△,点A 的对应点A ¢在直线34y x =上,则点B 与其对应点B ¢间的距离为 .3.如图,将直角ABC V 沿边AC 的方向平移到DEF V 的位置,连结BE ,若3,7CD AF ==,则BE 的长为 .4.在平面直角坐标系中,点()A m n ,满足n =.(1)直接写出点A 的坐标;(2)如图1,将线段OA 沿y 轴向下平移a 个单位后得到线段BC (点O 与点B 对应),过点C 作CD y ^轴于点D ,若43OD BD =,求a 的值;(3)如图2,点()05E ,在y 轴上,连接AE ,将线段OA 沿y 轴向上平移3个单位后得到线段FG (点O 与点F 对应),FG 交AE 于点P ,y 轴上是否存在点Q ,使6APQ S =△,若存在,请求Q 点的坐标;若不存在,请说明理由.5.如图,图形在方格(小正方形的边长为1个单位)上沿着网格线平移,规定:若沿水平方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿竖直方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对(),a b 叫做这一平移的“平移量”.例如:点A 按“平移量”()1,3(向右平移1个单位,向上平移3个单位)可平移到点B ;点B 按“平移量”()1,3--可平移到点A .(1)填空:点B 按“平移量”(________,________)可平移到点C ;(2)若把图中三角形M 依次按“平移量”()()3,41,1--、平移得到三角形N .①请在图中画出三角形N (在答题卡上画图并标注N );②观察三角形N 的位置,其实三角形M 也可按“平移量”(________,_______)直接平移得到三角形N .6.在正方形网格中,每个小正方形的边长均为1个单位长度,ABC V 的三个顶点的位置如图所示.现将ABC V 沿着点A 到点D 的方向平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点.(1)画出ABC V 中AC 边上的高BH ;画出AB 边上的中线CM ;(2)请画出平移后的DEF V ;(3)若连接AD ,BE ,则这两条线段之间的关系是______.7.如图,ABC V 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出将ABC V 向左平移4个单位长度后得到的图形111A B C △;(2)请画出ABC V 关于原点O 成中心对称的图形222A B C △;(3)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标.易错点二:区分不了各种对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合的图形,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,易错提醒:轴对称和中心对称是两个图形之间的位置关系,轴对称图形和中心对称图形是一个图形的特征例3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.例4.下列每幅图形中的两个图案成轴对称的是()A.B.C.D.变式1.数学是一门美丽的学科,在平面直角坐标系内可以利用函数画出许多漂亮的曲线,下列曲线中,既是中心对称图形,也是轴对称图形的是()A.三叶玫瑰线B.四叶玫瑰线C.心形线D.笛卡尔叶形线变式2.甲骨文是汉字的早期形式,有时候也被认为是汉字的书体之一,最早出土于河南省安阳市殷墟.下列甲骨文中,可以看作中心对称图形的是()A.B.C.D.变式3.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是.变式4.下列图形中,左边的图形与右边的图形可看成中心对称的有.1.下列图形中,是轴对称图形,不是中心对称图形的是( )A .平行四边形B .矩形C .等边三角形D .正方形2.如图,直线l 是正方形的一条对称轴,l 与AB ,CD 分别交于点M ,N .AN ,BC 的延长线相交于点P ,连接BN .下列三角形中,与NCP V 成中心对称的是( )A .NCB △B .BMN VC .AMN VD .NDA△3.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.我们学习的文言文《木兰辞》中就有“对镜贴花黄”的诗句,这个花黄就是剪纸.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,在正方形网格中,与ABC V 成轴对称的三角形可以画出 个.5.一个英文图象平行对着镜子,在镜子里看到的是“”,则这个英文单词的中文意思是 .6.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC V 的顶点均在格点上.(1)画出ABC V 关于原点O 的中心对称图形111A B C △;(2)将DEF V 绕点E 顺时针旋转90°得到11D EF △,画出11D EF △;(3)若DEF V 由ABC V 绕着某点旋转得到的,则这点的坐标为 .7.如图,在76´的正方形网格中,点A ,B ,C ,D 都在格点上,请你按要求画出图形.(1)在图甲中作出111A B C △,使111A B C △和ABC V 关于点D 成中心对称;(2)在图乙中分别找两个格点2C 、2D ,使得以A 、B 、2C 、2D 为顶点的四边形为平行四边形,并且平行四边形的面积为ABC V 面积的4倍.易错点三:对位似的定义不理解,已识别错误位似:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ×¹,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心易错提醒:注意位似多边形对应顶点都会经过同一个点,切不可通过主观感觉进行判断例5.如图,在直角坐标系中,点P 的坐标是()1,0,点A 的坐标是()0,1,线段CD 是由线段AB 以点P 为位似中心放大3倍得到的,则点C 的坐标是( )A .()2,3-B .()2,4-C .()3,3-D .()3,4-例6.如图,在菱形ABCD 中,对角线AC BD ,相交于点O M N ,,分别是边AB AD ,的中点,连接OM ON MN ,,,则下列叙述不正确的是( )A .AMO V 与ABC V 位似B .AMN V 与BCD △位似C .ABO V 与CDO V 位似D .AMN V 与ABD △位似变式1.由12个有公共顶点O 的直角三角形拼成如图所示的图形,AOB BOC COD LOM Ð=Ð=Ð=×××=Ð30=°.若1AOB S =V ,则图中与BOA △位似的三角形的面积为( )A .343æöç÷èøB .743æöç÷èøC .643æöç÷èøD .634æöç÷èø变式2.如图,ABC V 和A B C ¢¢△是以点C 为位似中心的位似图形,且A B C ¢¢△和ABC V 的面积之比为1:4,点C 的坐标为()1,0,若点A 的对应点A ¢的横坐标为2-,则点A 的横坐标为 .变式3.在如图所示的平面直角坐标系中,每个小正方形的边长均为1,已知点()2,1A --,点()3,3B --,点()1,2C --.(1)画出ABC V ;(2)画出ABC V 关于x 轴对称的111A B C △;(3)请以原点O 为位似中心在第一象限内画出222A B C △,使它与ABC V 位似,且相似比是2:1,并写出222A B C △三个顶点的坐标.变式4.(1)如图,AD BE CF ∥∥,直线1l ,2l 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .若2,6, 1.5AB AC DE ===,求EF 的长.(2)如图,在平面直角坐标系中,ABC V 的三个顶点的坐标分别为(4,1)A ,()2,3B ,(1,2)C .①画出ABC V 绕原点O 逆时针旋转90°得到111A B C △;②以原点O 为位似中心,在第三象限内画一个222A B C △,使它与ABC V 的相似比为2:1,并写出点2B 的坐标.1.如图,在平面直角坐标系中,已知点()4,2A ,()3,0B ,以坐标原点O 为位似中心作一条线段,使该线段与线段AB 的相似比为1:2,正确的画法是( )A .B .C .D .2.如图,在ABC V 外任取一点O ,连接AO 、BO 、CO ,并取它们的中点D 、E 、F ,连接DE 、EF 、DF 得到DEF V ,则下列说法错误的是( )A .ABC V 与DEF V 是位似图形B .ABC V 与DEF V 是相似图形C .ABC V 与DEF V 的周长比是2:1D .ABC V 与DEF V 的面积比是1:43.下面四个图中,ABC V 均与A B C ¢¢¢V 相似,且对应点交于一点;则ABC V 与A B C ¢¢¢V 成位似图形有( )A .1个B .2个C .3个D .4个4.如图,在正方形网格中,以点O 为位似中心,ABC V 的位似图形是 (用图中字母表示),ABC V 与该三角形的位似比为 .5.如图,已知O 是坐标原点,B C ,两点的坐标分别为(3,1)(2,1)-,.(1)以O 点为位似中心在y 的左侧将OBC △放大到两倍(即新图与原图的相似比为2),画出图形;并分别写出B C ,的对应点B C ¢¢,的坐标;(2)若OBC △内部有一点(),M m n ,则其对应点M ¢的坐标是____________.6.如图所示,在边长为1个单位长度的小正方形组成的网格中,按要求画出111A B C △和222A B C △.(1)先作ABC V 关于直线l 成轴对称的图形,再向上平移1个单位,得到111A B C △;(2)以图中的点O 为位似中心,将111A B C △作位似变换且放大到原来的两倍,得到222A B C △.7.如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.易错点四:混淆平行投影和中心投影平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.易错提醒:根据不同点区分平行投影和中心投影:平行投影中,物体上的每个点与其影子上的对应点的连线互相平行(或在同一直线上);中心投影中,物体上的每个点与其影子上的对应点的连线所在的直线交于一点,且交点时光源所在的位置例7.在一间黑屋子里用一盏白炽灯照如图所示的球,球在地面上的影子是圆形,当把球竖直向上靠近白炽灯时,影子的大小会怎样变化( )A .越来越小B .越来越大C .大小不变D .不能确定例8.如图,小明家的客厅有一张高0.75米的圆桌,直径BC 为1米,在距地面2米的A 处有一盏灯,圆桌的影子最外侧两点分别为D ,E ,依据题意建立平面直角坐标系,其中点D 的坐标为(2,0),则点E 的坐标是( )A .(4,0)B .(3.6,0)C .()2.75,0D .(3,0)变式1.太阳光线与地面成60°的角,当太阳光线照射在地面上的一只皮球上时,皮球在地面上的投影长是20cm ,则皮球的直径为( )A .10cmB .12cmC .15cmD .变式2.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影可能是 (填序号).变式3.如图,一墙墩(用线段AB 表示)的影子是BC ,小明(用线段DE 表示)的影子是EF ,在M 处有一棵大树,它的影子是MN .(1)试判断图中的影子是路灯照射形成还是太阳光照射形成的,如果是路灯照射形成的,请确定路灯的位置(用点P 表示);如果是太阳光照射形成的,请画出太阳光线;(2)在图中画出表示大树高的线段;(3)若小明的身高是1.8m ,他的影长18m EF =..大树的高度为7.2m ,它的影长7.2m MN =.且大树与小明之间的距离16.2m ME =,求路灯的高度.变式4.如下图,路灯下,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试确定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段.1.如图,小明夜晚从路灯下的甲处走到乙处的过程中,他在地面上的影子()A.逐浙变长B.逐渐变短C.先变长后变短D.先变短后变长2.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.3.在同一直线上直立着三根高度相同的木杆,它们在同一路灯下的影子如图所示.若光源与三根木杆在同一平面上,则光源所在位置是()A.A的左侧B.A、B之间C.C的右侧D.B,C之间.4.甲、乙两人沿着如图所示的平行四边形空地边缘进行跑步比赛,二人同时从点B出发,沿着平行四边形边缘顺时针跑步,且甲的速度是乙的速度的2倍.当甲到达点E,乙到达点F时,甲、乙的影子(太阳光照射)刚好在同一条直线上,此时,点B处一根杆子的影子(太阳光照射)刚好在对角线BD上,则CE的长为()A.4m B.8m C.12m D.16m5.如图,文文应用所学的三角形相关知识测量河南广播电视塔的高度,她站在距离塔底A点120m处的D 点,测得自己的影长DE为0.4m,此时该塔的影子为AC,她测得点D与点C的距离为23m,已知文文的身高DF为1.6m,求河南广播电视塔AB的高.(图中各点都在同一平面内,点A,C,D,E在同一直线上)6.如图,正方形纸板ABCD 在投影面α上的正投影为1111D C B A ,其中边AB CD ,与投影面平行,AD BC ,与投影面不平行,若正方形ABCD 的边长为4厘米,145BCC Ð=°,求投影1111D C B A 的面积.7.树甲在阳光下的影子如图所示.(1)请在图中分别画出此时树乙和树丙的影子(用线段表示并说明);(2)如果想让此时树乙的影子落在树甲的影子里,那么树甲至少要多高?请画图表示并说明.易错点五:画视图时易出错几何体的三视图:画三视图时注意“长对正,宽相等,高平齐”,被其他部分遮挡而看不见的部分的轮廓线化成虚线.易错提醒:画物体的三视图时,一是要正对物体,而不能斜看向物体;二是看得见部分的轮廓线要画成实线,看不到部分的轮廓线要画成虚线;三是要把看得见的边缘、棱、顶点等等都要画出来,否则会产生错误视图,从而导致解题出错例9.如图是某几何体的三视图,该几何体是()A.五棱柱B.圆柱C.长方体D.五棱锥例10.如图是由一个圆柱体和一个正方体组成的立体图形,则它的主视图是()A.B.C.D.变式1.如图,是有一块马蹄形磁铁和一块条形磁铁构成的几何体,该几何体的左视图是()A.B.C.D.变式2.请画出如图所示的正三棱柱的三种视图.V),请解答下列问题:变式3.一个几何体的三视图如图(其俯视图是等边ABC(1)这个几何体的名称是 ;(2)根据图中标注的尺寸,求这个几何体的体积.变式4.(1)解方程:2(23)160x +-=;(2)已知一个几何体的三视图如图所示,求该几何体的体积.1.如图所示,左边立体图形的俯视图为( ).A .B .C .D .2.如图的几何体是一个工件的立体图,从上面看这个几何体,所看到的平面图形是( )A.B.C.D.3.一个如图所示的几何体,已知它的左视图,则其俯视图是下面的()A.B.C.D.4.在如图的方格图中画出如图所示(图中单位:cm)的几何体的主视图、左视图和俯视图,每个小方格的边长代表1cm.5.画出如图所示组合体的三视图6.如图是一个三棱柱的三视图,其俯视图为等边三角形,则其侧面积为.7.某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图(1)由三视图可知,密封纸盒的形状是___________.(2)请你根据图中的数据,计算这个密封纸盒的表面积.(结果保留根号)易错点六:立体感不强,数的过程易出错易错提醒:解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定几第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答例11.在一张桌子上摆放着一些形状、大小都相同的碟子,从3个方向看到的图形如图所示,则这个桌子上的碟子总个数是( )A.11B.12C.13D.14例12.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数是.变式1.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为.变式2.一个几何体由一些大小相同的小立方块搭成,从正面,左面,上面看到的这个几何体的形状图如图所示,则这个几何体一共有个小立方块.变式3.由m个相同的正方体组成一个立体图形,如图的图形分别是从正面和上面看它得到的平面图形,设m能取到的最大值是a,则多项式2--的值是a a252变式4.如图,在平整的地面上,将若干个边长均为1cm的小正方体堆成一个几何体,并放置在墙角.(1)请画出这个几何体的主视图和俯视图;(2)若将其露在外面的面涂上一层漆(不包括与墙和地面接触的部分),则其涂漆面积为2cm;(3)添加若干个上述小正方体后,所成几何体的左视图和俯视图不变,则有 种添加方式.1.一个几何体由几个大小相同的小立方块搭成,从正面看和从上面看得到的图形如图所示,则搭成这个几何体的小立方块最多有个.2.如图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是.3.一个几何体由若干大小相同的小立方块搭成,下图分别是从正面、上面看到的形状图,则搭成这个几何体的小立方块最多有个.4.已知由多个小立方体搭一个几何体,从正面看和从上面看到的图形如图所示,则要组成这样的几何体所需的小立方体的块数最少块.5.如图是由一些大小相同的小正方体组合成的简单几何体.(1)图中有______块小正方体;(2)该几何体从正面看到的形状图已画出,请在方格纸中分别画出从左面和从上面看到的该几何体的形状图.6.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,依次完成下列问题.(1)请画出从正面和左面看到的这个几何体的形状图;(2)继续添加相同的小立方块与原几何体搭成一个新的几何体,使新几何体从正面、左面看到的形状图与原几何体从正面、左面看到的形状图相同,则最多可以添加________个.7.如图,在平整的地面上,用若干个完全相同的棱长为10cm的小正方体堆成了一个几何体.(1)分别在方格纸中画出这个几何体的主视图和左视图;(2)若在原几何体上再添加一些小正方体,且得到的新几何体与原几何体的主视图和俯视图不变,则最多可以添加__________个小正方体;(3)若在原几何体上再添加一些小正方体,且得到的新几何体与原几何体的左视图和俯视图不变,则最多可以添加__________个小正方体.易错点七:把握不准图形变换前后的性质旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

中考数学常考易错点:2.1《整式方程》

中考数学常考易错点:2.1《整式方程》

中考数学 2.1整式方程易错清单1.根据题意列出正确的方程.【例1】(2014·山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是().A. x=5,y=-2B. x=3,y=-3C. x=-4,y=2D. x=-3,y=-9【解析】由题意,得2x-y=3,A. x=5时,y=7,故本选项错误;B. x=3时,y=3,故本选项错误;C. x=-4时,y=-11,故本选项错误;D. x=-3时,y=-9,故本选项正确.【答案】 D【误区纠错】读懂题意,列出正确的整式方程是解题的关键.2.方程中隐含条件的运用.【例2】(2014·山东济宁)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则= .【解析】∵x2=(ab>0),∴x=±.∴方程的两个根互为相反数.∴m+1+2m-4=0,解得m=1.∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2.∴=2.∴=4.【答案】 4【误区纠错】一个正数有两个平方根,这两个平方根互为相反数.根据这个隐含条件可求出m的值.【例3】(2014·广东广州)若关于的方程x2+2mx+m2+3m-2=0有两个实数根x1,x1,则x1(x2+x1)+的最小值为.【解析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:x1+x2=-2m,x1x2=m2+3m-2,而x1(x2+x1)+=(x1+x2)2-x1x2=3m2-3m+2.因为方程有实数根,所以Δ≥0,解得m≤.当m=时,3m2-3m+2的最小值为.【答案】【误区纠错】本题最大失误是不知道根据Δ≥0这个隐含条件求出m的取值范围.3.整体思想的运用.【例4】(2014·江苏泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于. 【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式===-3.【答案】-3【误区纠错】本题直接使用整体思想解题,将a2+b2视为一个整体未知数.名师点拨1.能区分等式各个性质的区别与联系.2.理解一元一次方程的有关概念,并解决一些简单问题.3.会利用代入法求一元一次方程的解.4.会利用定义判断一元二次方程,能利用配方法、公式法、因式分解法求一元二次方程的根.5.记住一元二次方程根的判别式,并能解决一些问题.6.理解一元二次方程根与系数的关系,并能解决一些问题.7.会根据等量关系列整式方程并求解.提分策略1.选择适当的方法求解一元二次方程.若方程中含有未知数的代数式是一个完全平方式,可选用直接开平方法;若不是,则把右边化为0且方程左边分解因式,则选用因式分解法;若不能分解因式或难以分解因式时,则选用公式法.配方法一般很少选用,但求根公式是由配方法推导的,且以后学习中还常用到,故必须掌握这种重要的数学方法.【例1】解方程:3x(x-2)=2(2-x).【解析】先移项,然后提取公因式(x-2),对等式的左边进行因式分解.【答案】由原方程,得(3x+2)(x-2)=0,所以3x+2=0或x-2=0.解得x1=-,x2=2.2.配方法在二次三项式中的应用.在二次三项式中运用配方法与一元二次方程的配方类似,但也有不同:(1)化二次项系数为1,当二次项系数不为1时,可提取二次项系数,但不能像解方程那样除以二次项系数(因为二次三项式配方是恒等变形,而配方法解一元二次方程是同解变形).(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此二次三项式的值不变,故在加的同时,还要减去一次项系数一半的平方.(3)配方后将原二次三项式化为a(x+m)2+n的形式.【例2】阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x-1)2+3,(x-2)2+2x,+x2是x2-2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2-4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.【答案】(1)x2-4x+2=(x-2)2-2;x2-4x+2=(x-)2+(2-4)x;x2-4x+2=(x-)2-x2.(2)a2+ab+b2=(a+b)2-ab=+b2.(3)a2+b2+c2-ab-3b-2c+4=+(b-2)2+(c-1)2=0.从而a-b=0,b-2=0,c-1=0,即a=1,b=2,c=1.所以a+b+c=4.3.利用一次方程解决生活中的实际问题.解决问题需要从问题中挖掘相关信息,包含隐含条件,找到相关的已知量,构建相应的数学模型,灵活运用所学知识解决实际问题.【例3】如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解析】设AB的长度为x,则BC的长度为(100-4x)米;然后根据矩形的面积公式列出方程.【答案】设AB的长度为x,则BC的长度为(100-4x)米.根据题意,得(100-4x)x=400,解得x1=20,x2=5.则100-4x=20或100-4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.故羊圈的边长AB,BC分别是20米、20米.专项训练一、选择题1. (2014·江苏泰州洋思中学)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是().A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法判断2. (2014·四川峨眉山二模)已知x1,x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则+的最大值是().A. 19B. 18C. 15D. 133. (2014·湖北襄阳模拟)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A. 当k=0时,方程无解B. 当k=-1时,方程有两个相等的实数解C. 当k=1时,方程有一个实数解D. 当k≠0时,方程总有两个不相等的实数解4. (2013·湖北荆州模拟)若方程(k-1)x2-x+=0有两个实数根,则k的取值范围是().A. k≥1B. k≤1C. k>1D. k<15.(2013·安徽芜湖一模)芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.若每隔5米栽1棵,则树苗缺21棵;若每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是().A. 5(x+21-1)=6(x-1)B. 5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x二、填空题6.(2014·北京顺义区模拟)如果关于x的方程x2-mx+2=0有两个相等的实数根,那么m的值为.7. (2014·江苏南京溧水区二模)方程(x-2)2-2(x-2)=0的解为.8. (2013·吉林镇赉县一模)若x=1是方程x2+x+n=0的一个解,则方程的另一个解是.9. (2013·湖北荆州模拟)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是.三、解答题10. (2014·安徽安庆二模)为了满足铁路交通的快速发展,安庆火车站从去年开始启动了扩建工程.其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍,求甲、乙两队单独完成这项工程各需几个月?11. (2014·北京顺义区模拟)已知关于x的一元二次方程mx2+4x+4-m=0.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值.12. (2013·河南沁阳第一次质量检测)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?参考答案与解析1. A[解析]由5k+20<0,得k<-4,则Δ=16+4k<0.2. B[解析]由题意,得(k-2)2-4(k2+3k+5)≥0,解得-4≤k≤-.因为x1+x2=k-2,x1x2=k2+3k+5,所以+=(x1+x2)2=(k-2)2-2(k2+3k+5)=-k2-10k-6=-(k+5)2+19.所以当k=-4时,+取得最大值为18.3. B[解析]Δ=(k+1)2,当k=0时,方程有解;当k=1时,方程有两个不等的实数解;当k≠0时,如果k=-1,那么方程有两个相等的实数解.4. D[解析]当k=1时,原方程不成立,故k≠1.∴方程(k-1)x2-x+=0为一元二次方程.又此方程有两个实数根,∴b2-4ac=(-)2-4×(k-1)×=1-k-(k-1)=2-2k≥0,解得k≤1.∵k≠1,∴k<1.综上,k的取值范围是k<1.5. A[解析]设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(x+21-1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(x-1),根据公路的长度不变列出方程即可.6.±2[解析]根据Δ=m2-8=0求解.7.x1=2,x2=4[解析]将(x-2)作为公因式提取.8.-2[解析]把x=1代人方程得n=-2,再解方程x2+x-2=0.9.k>且k≠2[解析]由题意,得(2k+1)2-4(k-2)2>0,且k-2≠0,求解即可.10.设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要(x-5)个月, 由题意,得x(x-5)=6(x+x-5),解得x1=2(舍去),x2=15.故甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.11. (1)∵Δ=42-4m(4-m)=4(m-2)2≥0,∴方程总有两个实数根.(2)∵x==,∴x1==,x2==-1.∵方程有两个互不相等的负整数根,∴<0.∴或∴0<m<4.∵m为整数,∴m=1或2或3.当m=1时,x1==-3≠x2,符合题意;当m=2时,x1==-1=x2,不符合题意;当m=3时,x1==-≠x2,但不是整数,不符合题意.∴m=1.12. (1)设每千克核桃应降价x元.由题意,得(60-x-40)=2 240.化简,得x2-10x+24=0,解得x1=4,x2=6.故每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为60-6=54(元),×100%=90%.故该店应按原售价的九折出售.。

数学中考易错题选择题解析

数学中考易错题选择题解析

数学中考易错题选择题解析1. 题目:一个等差数列的第一个数是2,公差是3,求这个数列的第10个数。

答案:192. 题目:一个长方体的长、宽、高分别为4cm、3cm、2cm,求这个长方体的对角线长度。

答案:5cm3. 题目:解方程:2x+5=13答案:x=34. 题目:已知一个三角形的两个内角分别是30°和60°,求第三个内角的度数。

答案:90°5. 题目:计算下列式子的值:5^2 - 3^2答案:166. 题目:解不等式:2x - 3 > 7答案:x > 47. 题目:一个圆的半径是5cm,求这个圆的周长和面积。

答案:周长:25πcm,面积:78.5cm²8. 题目:已知一个正方形的边长是6cm,求这个正方形的对角线长度。

答案:10cm9. 题目:解方程:3(x - 2) = 15答案:x = 710. 题目:计算下列式子的值:4(2 + 3) - 5(1 - 2)答案:1211. 题目:已知一个三角形的两个内角分别是45°和45°,求第三个内角的度数。

答案:90°12. 题目:解不等式:5x - 7 < 12答案:x < 313. 题目:一个等差数列的第一个数是1,公差是2,求这个数列的第5个数。

答案:714. 题目:已知一个圆的直径是10cm,求这个圆的半径和面积。

答案:半径:5cm,面积:78.5cm²15. 题目:解方程:4x + 7 = 13答案:x = 216. 题目:计算下列式子的值:3(x + 2) - 2(x - 3)答案:x - 117. 题目:已知一个三角形的两个内角分别是60°和45°,求第三个内角的度数。

答案:90°18. 题目:解不等式:3x + 5 ≥ 10答案:x ≥ -119. 题目:一个等差数列的第一个数是3,公差是4,求这个数列的第10个数。

中考数学易错题系列解析整数运算中的常见错误

中考数学易错题系列解析整数运算中的常见错误

中考数学易错题系列解析整数运算中的常见错误整数运算在数学中占据着重要地位,然而在中考数学中,很多考生在整数运算的题目中往往容易出现错误。

本文将针对整数运算中的常见错误进行解析,并给出相应的解决方法。

一、忽视整数运算中的正负号在整数运算中,正负号起着关键作用,忽视这一点往往会导致答案错误。

例如,在计算两个整数的差时,如果不注意正负号的运算,很容易计算错误。

解决这个问题的方法是在计算过程中要明确正负号的运算规则,注意运用正负数的加减法则。

例如,计算-5-(-3),一些考生容易忽视双负号的作用,错误地计算为-5+3,得出的答案是-2,但实际上应该是-5-(-3)=-5+3=-2。

二、忽视整数的乘除法则在整数的乘除运算中,同样容易出现错误。

忽视整数的乘除法则,往往会将乘除运算符号误用,进而导致结果错误。

解决这个问题的方法是记住整数乘除法则,即正数乘以正数为正数,正数乘以负数为负数,负数乘以负数为正数;正数除以正数为正数,正数除以负数为负数,负数除以负数为正数。

例如,计算-3×(-4),一些考生容易误用乘法的规则,错误地计算为-3×4,得出的答案是-12,但实际上应该是-3×(-4)=12。

三、误用符号规则在整数运算中,考生有时会误用符号规则,从而导致答案错误。

例如,在计算四则运算时,将“-”号错写成“+”号,就会导致最终结果错误。

为了避免这种错误,解决方法是在计算过程中认真审题,仔细判断运算符号。

例如,计算-5-3,有些考生可能会误把减号误写成加号,错误地计算为-5+3,得出的答案是-8,而实际上应该是-5-3=-8。

四、运算顺序错误在整数运算中,有些题目需要遵循运算顺序,忽视这一点会导致结果错误。

例如,在整数的加减乘除综合运算中,如果没有按照正确的运算顺序进行计算,就会出现错误。

解决这个问题的方法是在计算过程中要注意运算的优先级,按照加减乘除的次序进行计算。

例如,计算3×2-4÷2+1,如果没有按照正确的运算顺序,直接从左到右进行计算,得出的答案是3×2-4÷2+1=6-2+1=5,而实际上应该是3×2-4÷2+1=6-2+1=5+1=6。

2024中考数学易错题专题易错06 圆(六大易错分析+举一反三+易错题通关)(解析版)

2024中考数学易错题专题易错06 圆(六大易错分析+举一反三+易错题通关)(解析版)

易错06圆易错点一:忽略了两个圆周角易错提醒:在同一个圆中,一条弦对着两种圆周角,这两种圆周角互补。

例1.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是( )A.60o B.120oC.60o或120o D.30o或150o【答案】C【详解】作OD⊥AB,如图,∵点P 是弦AB 上的动点,且12OP ££, ∴OD =1,30OAB \Ð=o , 120AOB \Ð=o , 1602AEB AOB \Ð=Ð=o , 180E F Ð+Ð=o Q ,120.F \Ð=o即弦AB 所对的圆周角的度数为60o 或120.o故选C.点睛:圆内接四边形的对角互补.例2.在半径为1的O e 中,弦AB =,则弦AB 所对的圆周角的度数为( ).A .45°B .30°C .45°或135°D .60°或120°【答案】C【分析】本题考查了圆周角定理,勾股定理的逆定理,掌握一条弦所对的圆周角有两种情况是解答本题的关键.连结OA ,OB ,先根据勾股定理的逆定理得到90AOB Ð=°,再根据圆周角的顶点在优弧和劣弧上两种情况,分别求出弦AB 所对的圆周角的度数即可.【详解】如图,连结OA ,OB ,=1OA OB =Q ,AB ,222+OA OB AB \=,90AOB Ð=°∴,当圆周角的顶点在优弧上时,1452ADB AOB а=Ð=,当圆周角的顶点在劣弧上时, 90AB =°,36090270ADB \=°-°=°,135ADB \Ð=°综上所述,弦AB 所对的圆周角的度数为45°或135°.故选C .变式1.圆中一条弦所对的圆心角是30°,则这条弦所对的圆周角的度数是 .【答案】15°或165°【分析】本题考查圆周角定理,分弦所对的弧为优弧和劣弧两种情况进行讨论即可.解题时,要注意分类讨论.【详解】解:当弦所对的弧为劣弧时,∵该弦所对的圆心角是30°,∴这条弦所对的圆周角的度数是15°;当弦所对的弧为优弧时,则:这条弦所对的圆周角的度数是18015165°-°=°;故答案为:15°或165°.变式2.已知AB 为e O 的弦,沿AB 折叠e O ,圆心O 恰好落在e O 上,则弦AB 所对的圆周角的度数为 .【答案】60°或120°【分析】本题考查了折叠的性质,圆的基本概念,等边三角形的性质,解题关键是“数形结合”.由沿AB 折叠e O ,圆心O 恰好落在e O 上点O ¢,可得OBO ¢△是等边三角形,即可得AOB Ð,再由圆的基本概念即可求解.【详解】解:沿AB 折叠e O ,圆心O 恰好落在e O 上点O ¢,OO ¢交AB 于点C 如图:由折叠可得:,OB O B OA O A ¢¢==,OB O B OO ¢¢\==,OBO ¢\V 是等边三角形,60O OB ¢\Ð=°,120AOB \Ð=°,\弦AB 所对的圆周角的度数为:60°或120°故答案为:60°或120°变式3.如图,O e 的半径为1,AB 是O e 的一条弦,且=1AB ,则弦AB 所对的圆周角的度数为 .【答案】30°或150°【分析】连接OA ,OB ,判定AOB △是等边三角形,再根据圆周角定理可得1==302C AOB Ðа,根据圆内接四边形的性质,即可得到答案.【详解】解:如图:连接OA ,OB ,在优弧AB 上取一点C ,在劣弧AB 上取一点D ,1AB =Q ,O e 的半径为1,OA OB AB \==,AOB \V 是等边三角形,=60AOB \а,∴1==302C AOB Ðа,=180=150ADB C \Ð-а°,∴弦AB 所对的圆周角的度数为30°或150°.故答案为:30°或150°.【点睛】本题考查的是圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,掌握同弧所对的圆周角是圆心角的一半是解题的关键.变式4.线段AB 是圆内接正十边形的一条边,则AB 所对的圆周角的度数是 度.【答案】18或162/162或18【分析】作出图形,求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【详解】解:如下图,圆内接正十边形的边AB 所对的圆心角1=36010=36а¸°,则2=36036=324а-°°,根据圆周角等于同弧所对圆心角的一半,AB 所对的圆周角的度数是136=182°´°或1324=1622°´°.故答案为:18或162.【点睛】本题主要考查了正多边形的中心角、圆周角定理等知识,解题关键是熟练掌握圆周角和圆心角的关系,并要注意分两种情况讨论.1.已知弦AB 把O e 的周长分成1:3的两部分,则弦AB 所对的圆周角的度数为 .【答案】45°或135°【分析】此题考查了圆周角定理与圆的内接四边形的性质,以及圆心角与弧的关系.此题难度不大,解题的关键是注意数形结合思想的应用.先根据题意画出图形,然后由圆的一条弦AB 把圆周分成1:3两部分,求得AOB Ð的度数,又由圆周角定理,求得ACB Ð的度数,然后根据圆的内接四边形的对角互补,求得ADB Ð的度数,继而可求得答案.【详解】解:Q 弦AB 把O e 分成1:3两部分,1360904AOB \Ð=´°=°,1452ACB AOB \Ð=Ð=°,Q 四边形ADBC 是O e 的内接四边形,180135ADB ACB \Ð=°-Ð=°.\弦AB 所对的圆周角的度数为45°或135°,故答案为45°或135°.2.已知AB 是半径为6的圆的一条弦,若AB =AB 所对圆周角的度数是( )A .60°B .30°或150°C .60°或120°D .120°【答案】C【分析】根据垂径定理和正弦定义求得60AOC Ð=°,进而得到AOB Ð的度数,再根据圆周角定理和圆内接四边形的对角互补求解即可.【详解】解:如图,OC AB ^于C ,则12AC BC AB ===在Rt OAC V 中,OA =AC =∴sin AC AOC OA Ð==,∴60AOC Ð=°,∵OA OB =,OC AB ^,∴60BOC AOC Ð=Ð=°,∴2120AOB AOC Ð=Ð=°,∴1602ADB AOB Ð=Ð=°,∵四边形ADBE 是圆内接四边形,∴180120AEB ADB Ð=°-Ð=°,故AB 所对圆周角的度数是60°或120°,故选:C .【点睛】本题考查垂径定理、圆周角定理、等腰三角形的性质、解直角三角形以及圆内接四边形的性质,熟练掌握圆周角定理是解答的关键.3.在半径为5的O e 中,弦5AB =,则弦AB 所对的圆周角的度数为 .【答案】30°或150°【分析】本题考查了圆周角定理,圆内接四边形对角互补;弦所对的弧有优弧和劣弧,故弦所对的圆周角也有两个,它们的关系是互补关系;弦长等于半径时,弦所对的圆心角为60°.【详解】解:如图,弦AB 所对的圆周角为C Ð,D Ð,连接OA 、OB ,因为5AB OA OB ===,所以,60AOB Ð=°,根据圆周角定理知,1302C AOB Ð=Ð=°,根据圆内接四边形的性质可知,180150D C Ð=°-Ð=°,所以,弦AB 所对的圆周角的度数30°或150°.故答案为:30°或150°.4.在O e 中,84AOB Ð=°,则弦AB 所对的圆周角的度数为 .【答案】42°或138°【分析】画出图形,可知弦AB 所对的圆周角有两个,根据“同弧所对的圆周角等于圆心角的一半”,“圆的内接四边形对角互补”即可求解,本题考查圆周角定理和圆的内接四边形的性质,解题的关键是注意弦所对的圆周角有两个,且互补.【详解】解:如图,ACB Ð和ADB Ð都是弦AB 所对的圆周角,Q 弦AB 所对的圆心角84AOB Ð=°,\ACB Ð1422AOB =Ð=°,Q 四边形ADBC 是O e 的内接四边形,\180ADB ACB Ð+Ð=°,\180138ADB ACB Ð=°-Ð=°,故答案为:42°或138°.5.已知⊙O 半径为r ,弦AB =r ,则AB 所对圆周角的度数为 .【答案】30°或150°【分析】先计算出AOB Ð的度数,根据圆周角定理即可求出C Ð的度数,再根据圆的内接四边形定理,可得的ADB Ð度数 ,这两个角都是弦AB 所对的圆周角.【详解】解:如图,O e 中 OA OB AB ==,∴60AOB Ð=°, ∴1302C AOB ==°∠∠,∵四边形ACBD 是O e 的内接四边形,∴180C ADB Ð+Ð=°,∴ADB Ð=18030150°-°=°,∴弦AB 所对的圆周角的度数是30°或150°.故答案为:30°或150°.【点睛】本题考查了圆周角定理和圆内接四边形定理,熟练掌握这两个定理是解题的关键.注意:圆当中一条弦对了两条弧,也就对了两个圆周角,做题时防止漏掉一个解.6.如图,四边形ABCD 内接于O e ,4OC =,AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.【答案】(1)(2)∠B =45°,∠D =135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC =90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.【详解】(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =,∴22224432OA OC +=+=,232AC ==, ∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC Ð=° 又∵OH AC ^,∴AH CH =,∴OH =12AC =O 到AC 的距离为;(2)90,AOC Ð=°Q\ ∠B =12∠AOC =45°,∵四边形ABCD 内接于⊙O , ∴∠D =180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D =135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.7.如图,四边形ABCD 内接于4O OC AC ==,,e .(1)求点O 到AC 的距离;(2)直接写出弦AC 所对的圆周角的度数.【答案】(1)点O 到到AC 的距离为(2)弦AC 所对的圆周角的度数为45°或135°【分析】(1)过点O 作OE AC ^于点E ,利用勾股定理求解即可;(2)连接OA ,利用圆周角定理求出B Ð,再利用圆内接四边形的性质求出ADC Ð即可.【详解】(1)解:过点O 作OE AC ^于点E ,则12CE AC =,∵AC =∴CE =,在Rt OCE V 中,4OC =,∴OE ===∴点O 到到AC 的距离为;(2)解:连接OA ,由(1)知,在Rt OCE V 中,OE CE =,∴45OCE EOC Ð=Ð=°,∵OA OC =,∴45OAC OCA Ð==°,∴=90AOC а,∴45B Ð=°,∴180********ADC B Ð=°-Ð=°-°=°,∴弦AC 所对的圆周角的度数为45°或135°.【点睛】本题考查了垂径定理,勾股定理,灵活运用所学知识求解是解决本题的关键.易错点二:忽略两弦与圆心的位置易错提醒:求两条弦间的距离时要分类讨论两条弦与圆心的相对位置:两弦在圆心的同侧,两弦在圆心的异侧.例3.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .【答案】70或170/170或70【分析】过圆心作垂直于弦的线段,构造直角三角形,再分水位分别在圆心上方和下方的两种情况去讨论,垂径定理与勾股定理结合求解即可.【详解】解:如图所示:,OE CD OF AB ^^,由题意=100cm AB ,=240cm CD ,根据垂径定理,1120cm 2DE CD ==,150cm 2BF AB ==,直径为260cm ,半径130cm OD OB ==,\在Rt OED V 中,222221*********OE OD DE =-=-=,\50cmOE =\在Rt OFB △中,222221305014400OF OB BF =-=-=,\120cmOF =①当CD 在圆心下方时,1205070cmEF OF OE =-=-=②当CD 在圆心上方时,12050170cmEF OF OE =+=+=故答案为:70或170【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.例4.已知⊙O 的直径为20, AB , CD 分别是⊙O 的两条弦,且AB//CD ,AB=16,CD=10,则AB ,CD 之间的距离是 .【答案】6-或【分析】分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE CD ^,交CD 于点E ,交AB 于点F ,连接OA ,OC ,由AB //CD ,得到OF AB ^,利用垂径定理得到E 与F 分别为CD 与AB 的中点,在直角三角形AOF 中,利用勾股定理求出OF 的长,在三角形COE 中,利用勾股定理求出OE 的长,由OE OF -即可求出EF 的长;当两条弦位于圆心O 两侧时,如图2所示,同理由OE OF +求出EF 的长即可.【详解】解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE AB ^,交CD 于点E ,交AB 于点F ,连接OA ,OC ,AB //CD Q ,OE CD \^,∴F 、E 分别为AB 、CD 的中点,1AF BF AB 82\===,1CE DE CD 52===,在Rt COE V 中,OC 10=,CE 5=,根据勾股定理得:OE =,在Rt AOF V 中,OA 10=,8AF =,根据勾股定理得:OF =,则6EF OE OF =-=-;当两条弦位于圆心O 两侧时,如图2所示,同理可得6EF OE OF =+=,综上,弦AB 与CD 的距离为6或6,故答案为:6或6.【点睛】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.变式1.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =,则AB 和CD 之间的距离为 .【答案】【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.【详解】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,OE \==在Rt OCF V 中,4OC ==Q ,C FOF \==当圆心O 在AB 与CD 之间时,EF OF OE =+=当圆心O 不在AB 与CD 之间时,EF OF OE =-=即AB 和CD 之间的距离为故答案为:【点睛】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.变式2.在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米【答案】D 【分析】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【详解】解:连接OA .作OG ⊥AB 于G ,则在直角△OAG 中,AG =3分米,因为OA =5分米,根据勾股定理得到:OG =4分米,即弦AB 的弦心距是4分米,同理当油面宽AB 为8分米时,弦心距是3分米,当油面没超过圆心O 时,油上升了1分米;当油面超过圆心O 时,油上升了7分米.因而油上升了1分米或7分米.故选:D .【点睛】本题考查了垂径定理和勾股定理,灵活运用是本题解题关键,注意要分类讨论.变式3.⊙O 的半径是10,弦AB CD ∥,1612AB CD ==,,则弦AB 与CD 的距离是( )A .2B .14C .2或14D .7或1【答案】C【分析】本题考查了垂径定理的应用.作OE AB ^于E ,OF CD ^于F ,由垂径定理得118622AE AB CF CD ====,,由于AB CD ∥,易得E 、O 、F 三点共线,在Rt AOE △和Rt OCF V 中,利用勾股定理分别计算出OE 与OF ,然后讨论:当圆心O 在弦AB 与CD 之间时,AB 与CD 的距离OF OE =+;当圆心O 在弦AB 与CD 的外部时,AB 与CD 的距离OF OE =-.【详解】解:如图,作OE AB ^于E ,OF CD ^于F ,连10OA OC OA OC ==,,,则118622AE AB CF CD ====,,∵AB CD ∥,∴E 、O 、F 三点共线,在Rt AOE △中,6OE ===,在Rt OCF V 中,8OF ===,当圆心O 在弦AB 与CD 之间时,AB 与CD 的距离8614OF OE +=+=;当圆心O 在弦AB 与CD 的外部时,AB 与CD 的距离862OF OE -=-=.所以AB 与CD 的距离是14或2.故选:C .变式4.已知O e 的半径为13,弦AB 平行于CD ,1024CD AB ==,,求AB 和CD 之间的距离.【答案】AB 和CD 之间的距离为7或17【分析】本题主要考查了垂径定理,勾股定理,分当O e 的圆心O 位于AB 、CD 之间时,当O e 的圆心O 不在两平行弦AB 、CD 之间时,两种情况分别利用勾股定理和垂径定理求出点O 到AB 和CD 的距离,据此可得答案.【详解】解:如图,当O e 的圆心O 位于AB 、CD 之间时,作OE AB ^于点E ,并延长EO ,交CD 于F 点.分别连接AO 、CO .∵AB CD P ,∴EF CD ^,∵1024CD AB ==,,∴1112522AE AB CF CD ====,,在Rt AEO △中,由勾股定理得5OE ==,在Rt CFO △中,由勾股定理得12OE ==,∴51217EF OE OF =+=+=,∴AB 和CD 之间的距离为17;如图所示,当O e 的圆心O 不在两平行弦AB 、CD 之间(即弦AB 、CD 在圆心O 的同侧)时,同理可得:125OF OE ==,,∴7EF OF OE =-=,∴AB 和CD 之间的距离为7;综上所述,AB 和CD 之间的距离为7或17.1.在半径为4cm 的O e 中,弦CD 平行于弦AB ,AB =,90BOD Ð=°,则AB 与CD 之间的距离是 cm .【答案】2或2【分析】根据题意,分析两种AB 的位置情况进行求解即可;【详解】解:①如图,AB //CD ,过点O 作GH AB GH CD^^、在O e 中∵90BOD Ð=°,GH AB GH CD^^、∴90GOB DOH Ð+Ð=°∴GOB ODHÐ=Ð∵OGB DHOGOB ODHOB ODÐ=ÐìïÐ=Ðíï=î∴()ΔΔGOB DHO AAS @∴BG OH=∵OG AB^∴12OH BG AB ===∴2OG ===∴2GH OH OG =+=∵AB //CD∴AB 与CD 之间的距离即GH∴AB与CD 之间的距离为2+②如图,作OF AB PD AB ^^、,连接AD则有四边形PEFD 是矩形,∴EF =PD∵90BOD Ð=°∴45BAD Ð=°∵PD AB^∴AP PD =∵OF AB^∴12BE AB ==∴2OE===∵222OD OF FD =+∴()()22242PD PD=++∴2PD =故答案为:2或2-【点睛】本题主要圆的的性质、三角形的全等,勾股定理,掌握相关知识并正确做出辅助线是解题的关键.2.已知AB 、CD 是⊙O 的两条平行弦,⊙O 的半径为17cm ,30AB cm =,16CD cm =,则AB 、CD 间的距离为 .【答案】7或23【分析】过圆心作两条平行线的垂线,根据垂径定理分别在直角三角形中计算即可.【详解】如图,当两条弦在圆心两侧时:Q AB 、CD 是⊙O 的两条平行弦,\过圆心作MN 分别垂直于AB 、CD ,则根据垂径定理可得:15BN =,8DM =,在Rt DMO △中,15OM ===;同理在Rt BNO V 中,8ON ===;则15823MN =+=,同理可得:当两条弦位于圆心同侧时,1587MN =-=,故答案为:7或23.【点睛】本题考查了垂径定理及勾股定理解直角三角形,熟练掌握垂径定理并仔细计算是解题关键.3.如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8.AB =10,则CD 与AB 之间的距离是 .【答案】3【分析】过点O作OH⊥CD于H,连接OC,先利用垂径定理得到CH=4,然后在Rt△OCH中,利用勾股定理即可求解.【详解】解:过点O作OH⊥CD于H,CD=4,连接OC,如图,则CH=DH=12在Rt△OCH中,OH=3,所以CD与AB之间的距离是3.故答案为3.【点睛】此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键.4.若弦AB,CD是⊙O的两条平行弦,⊙O的半径为13,AB=10,CD=24,则AB,CD之间的距离为A.7B.17C.5或12D.7或17【答案】D【分析】过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,由题意可得:OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上,EF为AB、CD之间的距离,再分别解Rt △OEA、Rt△OFC,即可得OE、OF的长,然后分AB、CD在圆心的同侧和异侧两种情况求得AB与CD 的距离.【详解】解:①当AB、CD在圆心两侧时;过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,如图所示:∵半径r=13,弦AB∥CD,且AB=24,CD=10∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上∴EF为AB、CD之间的距离在Rt△OEA中,由勾股定理可得:OE2=OA2-AE2∴在Rt△OFC中,由勾股定理可得:OF2=OC2-CF2∴∴EF=OE+OF=17AB与CD的距离为17;②当AB、CD在圆心同侧时;同①可得:OE=5,OF=12;则AB与CD的距离为:OF-OE=7;故答案为:17或7.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论思想的运用.5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为( )A.1或7B.7C.1D.3或4【答案】A【分析】分两种情况:①当AB、CD在圆心两侧时;②当AB、CD在圆心同侧时;利用垂径定理及勾股定理求出答案.【详解】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OFA中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB 、CD 在圆心同侧时;同①可得:OE =3,OF =4;则AB 与CD 的距离为:OF ﹣OE =1;综上所述:AB 与CD 间的距离为1或7.故选:A.【点睛】此题考查圆的垂径定理、直角三角形的勾股定理,解题中注意运用分类讨论的思想避免漏解.6.已知O e 的半径长为5R =,弦AB 与弦CD 平行,6AB =,8CD =,求,AB CD 间的距离.【答案】1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB 、CD 在点O 的同侧时,AB 、CD 在点O 的两侧时两种情况分别计算求出EF 即可.【详解】如图,过点O 作OE ⊥CD 于E ,交AB 于点F ,∵//AB CD ,∴OE ⊥AB ,在Rt △AOF 中,OA=5,AF=12AB=3,∴OF=4,在Rt △COE 中,OC=5,CE=12CD=4,∴OE=3,当AB 、CD 在点O 的同侧时,AB 、CD 间的距离EF=OF-OE=4-3=1;当AB 、CD 在点O 的两侧时,AB 、CD 间的距离EF=OE+OF=3+4=7,故答案为:1或7.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.7.已知O e 的半径为5cm ,弦//AB CD ,6cm AB =,8cm CD =,求AB 与CD 间的距离.【答案】7cm 或1cm【分析】有两种情况,即AB ,CD 在圆心O 的同侧或两侧两种情况,需分类讨论.【详解】解:如图①,过O 作OF AB ^于F 交CD 于E ,连接OA ,OC ,//AB CD Q ,OE CD \^;由垂径定理得132AF FB AB ===,142CE DE CD ===,4OF \,3OE ==,1EF OF OE cm \=-=;如图②,过O 作OF AB ^于F ,OE CD ^于E ,连接AO ,CO ,同理可得4OF cm =,3OE cm =,当AB ,CD 在圆心O 的两侧时,7()EF OF OE cm =+=,AB \与CD 的距离为7cm 或1cm .【点睛】此题主要考查的是勾股定理及垂径定理的应用,需注意AB 、CD 的位置关系有两种,不要漏解.易错点三:理解不准确切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.切线性质定理及推论:①圆的切线垂直于过切点的半径;②经过圆心且垂直于切线的直线必经过切点;③经过切点且垂直于切线的直线必经过圆心易错提醒:运用判定和性质时,要严格根据方法及定理进行说明,不能凭主观进行判断.例5.如图,AB 是O e 的直径,弦CD AB ^,垂足为点E ,DF 为O e 的切线,AF 交CD 于点G ,若3AE =,43BE =,FD FG =,则AGGF =( )A .165B .3C .103D .247【答案】C【分析】本题考查圆的相关知识,三角形相似的判定及性质,等腰三角形的性质.连接OD ,由题意易证O e 的半径长,从而在Rt ODE △中,求得2ED ==.由DF 是O e 的切线,得到90ODE CDF Ð+Ð=°,又90EAG AGE Ð+Ð=°,CDF FGD AGE Ð=Ð=Ð,得到EAG EDO Ð=Ð,从而∴AEG DEO V V ∽,根据对应边成比例求得54EG =,进而34DG ED EG =-=,过点F 作FM CD ^于点M ,根据“三线合一”可得1328GM GD ==,因此由AEG FMG V V ∽即可解答.【详解】连接OD ,∵3AE =,43BE =,∴413333AB AE EB =+=+=,∴O e 的半径1113132236OD OA AB ===´=.∴135366OE AE AO =-=-=,∵CD AB ^,即90AED Ð=°∴在Rt ODE △中,2ED ===,∵DF 是O e 的切线,∴OD DF^∴90ODF Ð=°,即90ODE CDF Ð+Ð=°,∵90AEG Ð=°,∴90EAG AGE Ð+Ð=°,∵FD FG =,∴CDF FGD AGE Ð=Ð=Ð,∴EAG EDO Ð=Ð,∵90AEG DEO Ð=Ð=°,∴AEG DEO V V ∽,∴AE EG DE EO=,即3526EG=,∴54EG =,∴53244DG ED EG =-=-=.过点F 作FM CD ^于点M ,∵FD FG =,∴11332248GM GD ==´=,∵AGE FGM Ð=Ð,90AEG GMG Ð=Ð=°,∴AEG FMG V V ∽,∴5104338AG EG FG MG ===.故选:C例6.如图,AC 是O e 的切线,B 为切点,连接OA OC ,.若30A Ð=°,AB OC ==BC 的长度是( )A .3B .C .D .4【答案】B【分析】本题考查切线性质、正切定义、勾股定理,连接OB ,先根据切线性质得到90OBA Ð=°,再利用正切定义求得OB ,然后利用勾股定理求解即可.【详解】解:连接OB ,∵AC 是O e 的切线,∴90OBA OBC Ð=Ð=°,∵30A Ð=°,AB OC ==∴tan30OB AB =×°=∴BC ==故选:B .变式1.(1)如图①,ABC V 中,90,C AD Ð=°平分BAC Ð交BC 于点D ,点O 在边AB 上,且O e 经过A 、D 两点,分别交AB 、AC 于点E 、F .求证:BC 是O e 的切线:(2)如图②,ABC V 中,90C Ð=°,用直尺和圆规作P e ,使它满足以下条件:圆心P 在边AB 上,经过点A ,且与边BC 相切.(保留作图痕迹,不用写出作法)【答案】(1)证明见解析(2)作图见解析【分析】本题考查了圆的性质、圆的切线的判定、等边对等角、平行线的判定与性质,解题的关键是作出恰当的辅助线.连接OD ,由OA OD =得OAD ODA Ð=Ð,再由OAD CAD Ð=Ð得ODA CAD Ð=Ð,从而得OD AC ∥,结合90C Ð=°可证OD BC ^,因OD 为圆的半径,从而得证.【详解】(1)证明:连接OD ,如图.∵O e 经过A 、D 两点,∴OA OD =,∴OAD ODA Ð=Ð,∵AD 平分BACÐ∴OAD CAD Ð=Ð∴ODA CAD Ð=Ð∴OD AC ∥∵90C Ð=°,∴90ODB Ð=°,∴OD BC ^,又点D 在O e 上,∴BC 是O e 的切线.(2)根据(1)题的证明过程,所作P e 如下图.变式2.如图,BD 是O e 的直径,A 是BD 延长线上的一点,点E 在O e 上,BC AE ^,交AE 的延长线于点C ,BC 交O e 于点F ,且点E 是 DF的中点.(1)求证:AC 是O e 的切线;(2)若3,AD AE CE ===,求BC 的长.【答案】(1)证明见解析(2)2【分析】(1)由圆周角定理及等腰三角形的性质可得EBC DBE BEO Ð=Ð=Ð,经过角的转化即可证明90OEC Ð=°,再根据切线的判定定理可得答案;(2)设O e 的半径为r ,在Rt AOE △中,由勾股定理可得关于r 的方程,求出r 的值,再根据等角,利用三角函数即可求出BC 的值.【详解】(1)证明:如图,连接OE ,∵BD 为直径,∴90DBE BDE Ð+Ð=°,又AE BC ^,∴90EBC BEC Ð+Ð=°,又OB OE =,∴DBE BEO Ð=Ð,又E 为 DF中点,∴EBC DBE BEO Ð=Ð=Ð,∴90BEO BEC Ð+Ð=°,即90OEC Ð=°∴OE AC ^,则AC 为O e 的切线.(2)设O e 半径为r ,∵AC 为O e 的切线,∴90OEC Ð=°,即AOE △为直角三角形,∴222AE OE AO +=,而AE =,3AD =,∴()22183r r +=+,∴ 1.5r =,∴3BD =,15OD =.,∴在Rt AOE △中,1.51sin 4.53OE A AO Ð===,∴在Rt ABC △中,sin BCA ABÐ=,1sin 623BC A AB =д=´=,∴2BC =.【点睛】本题考查了圆的切线的判定、勾股定理及锐角的三角函数等知识点,熟练掌握相关性质及定理是解题的关键.变式3.如图,已知等腰ABC V ,AB AC =,以AB 为直径作O e 交BC 于点D ,过D 作DF AC ^于点E ,交BA 延长线于点F .(1)求证:DF 是O e 的切线;(2)若CE 2CD =,求O e 的半径.【答案】(1)证明【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用,掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD ,证明ODB C Ð=Ð,推出AC OD ∥,即可证明结论成立;(2)连接AD ,在Rt CED V 中,求得利用三角形函数的定义求得30C Ð=°,60AOD Ð=°,在Rt ADB V 中,利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD ,∵AB AC =,B C \Ð=Ð,又OB OD =Q ,B ODB \Ð=Ð,ODB C \Ð=Ð,AC OD \∥,DF AC ^Q ,OD DF \^,DF \是O e 的切线;(2)连接AD ,设O e 半径为r ,在Rt CED V 中,2CE CD ==Q ,222ED CD CE \=-222=-1=,又cos CE C CD Ð==Q 30C \Ð=°,30B \Ð=°,60AOD \=°∠,AB Q 是O e 的直径.90ADB \Ð=°,12AD AB r \==,∵AB AC =,∴2CD BD ==,又222AD BD AB +=Q ,2222(2)r r \+=,r \负值已舍).变式4.如图,AB 是O e 的直径,CD 是O e 的弦,AB CD ^,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD Ð=Ð.(1)求证:CF 是O e 的切线;(2)如果20AB =,12CD =,求AE 的长.【答案】(1)证明见解析(2)452【分析】(1)连接OC ,BC ,利用圆周角定理,垂径定理,同圆的半径线段,等腰三角形的性质和圆的切线的判定定理解答即可;(2)利用勾股定理在Rt OCH V 中求出8OH =,同理求出BC =,AC =,利用切线的性质及勾股定理建立等式解答即可.【详解】(1)证明:连接OC 、BC ,如图所示:AB Q 是O e 的直径,90ACB \Ð=°,AO OB =,AB CD ^Q ,AB \平分弦CD ,AB 平分 CD,CH HD \=, CBDB =,90CHA CHE Ð=°=Ð,BAD BAC DCB \Ð=Ð=Ð,2ECD BAD Ð=ÐQ ,22ECD BAD BCD \Ð=Ð=Ð,ECD ECB BCD Ð=Ð+ÐQ ,BCE BCD \Ð=Ð,BCE BAC \Ð=Ð,OC OA =Q ,BAC OCA \Ð=Ð,ECB OCA \Ð=Ð,90ACB OCA OCB Ð=°=Ð+ÐQ ,90ECB OCB \Ð+Ð=°,\半径CO FC ^,CF \是O e 的切线;(2)解:20AB =Q ,12CD =,在(1)的结论中有10AO OB ==,6CH HD ==,在Rt OCH V 中,8OH ===,则1082BH OB OH =-=-=,在Rt BCH △中,BC ==在Rt ACH V 中,81018HA OA OH =+=+=,则AC ==,Q HE BH BE =+,\在Rt ECH △中,222226(2)EC HC HE BE =+=++,CF Q 是O e 的切线,90OCB \Ð=°,在Rt ECO △中,2222222()10(10)10EC OE OC OB BE BE =-=+-=+-,()()2222101062BE BE \+-=++,解得52BE =,\5452022AE AB BE =+=+=.【点睛】本题主要考查了圆的切线的判定,圆周角定理,垂径定理,勾股定理,解题的关键是连接经过切点的半径是解决此类问题常添加的辅助线.1.一个边长为4cm 的等边三角形ABC 与O e 等高,如图放置,O e 与BC 相切于点C ,O e 与AC 相交于点 E ,则CE 的长为 cm【答案】3【分析】本题连接OC ,并过点O 作OF CE ^于F ,根据等边三角形的性质,等边三角形的高等于底边的4cm 的等边三角形 ABC 与O e 等高,说明O e 的半径为OC =60ACB Ð=°,故有30OCF Ð=°,在Rt OFC △中,利用锐角三角函数,可得出FC 的长,利用垂径定理即可得出CE 的长.【详解】解: 连接OC ,并过点O 作OF CE ^于F ,ABC V 为等边三角形,边长为4,故高为 OC =Q O e 与BC 相切于点C ,90OCB \Ð=°,又60ACB Ð=°,故有30OCF Ð=°,在Rt OFC △中,可得 3cos302FC OC =×°=,OF 过圆心,且OFCE ^,根据垂径定理易知23CE FC ==.故答案为:3.【点睛】本题考查了等边三角形的性质、切线的性质、锐角三角函数、垂径定理,熟练掌握相关性质并灵活运用,即可解题.2.如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将BCE V 沿着CE 折叠至FCE △,若CF 、CE 恰好与正方形ABCD 的中心为圆心的O e 相切,则折痕CE 的长为( )A .B .5CD .以上都不对【答案】C【分析】此题考查了翻折变换的知识.连接OC ,则根据正方形的性质可推出1303ECF BCE BCD Ð=Ð=Ð=°,在Rt BCE V 中,设BE x =,则2CE x =,利用勾股定理可得出x 的值,也即可得出CE 的长度.【详解】解:连接OC ,则DCO BCO Ð=Ð,FCO ECO Ð=Ð,DCO FCO BCO ECO \Ð-Ð=Ð-Ð,即DCF BCE Ð=Ð,又BCE QV 沿着CE 折叠至FCE △,BCE ECF \Ð=Ð,1303ECF BCE BCD \Ð=Ð=Ð=°,在Rt BCE V 中,设BE x =,则2CE x =,得222CE BE =,即22244x x =+,解得BE =,2CE x \=故选:C .3.如图,在ABC V 中,AB AC =,AD 平分BAC Ð,交BC 于点D ,以AD 为直径作O e ,交AB 于点E ,交AC 于点F ,连接EF 交AD 于点G ,连接OB 交EF 于点P ,连接DF .(1)求证:BC 是O e 的切线;(2)若3OG =,4EG =,求:①tan DFE Ð的值;②线段PG 的长.【答案】(1)见解析;(2)①12;②3.【分析】(1)根据三线合一得到AD BC ^,即可证明BC 是O e 的切线;(2)①如图所示,连接DE ,DF ,OE ,由角平分线的定义和圆周角定理得到∠∠E A D F A D =,即可利用三线合一得到AG EF ^,利用勾股定理求出5OE =,即可求出AD 的长,从而得出2DG =,由垂径定理得出GF ,最后根据正切的定义即可得出答案;②证明EF BC ∥,得到AEG ABD △∽△,利用相似三角形的性质求出5BD =,证得ODB △,OPG V 是等腰直角三角形即可求出PG 的长.【详解】(1)证明:∵AB AC =,AD 平分BAC Ð,∴AD BC ^,∵OD 是O e 的半径,∴BC 是O e 的切线;(2)解:①连接DE ,DF ,OE ,∵AD 为O e 的直径,∴90AED AFD Ð=Ð=°,∵AD 平分BAC Ð,∴∠∠E A D F A D =,∴ADE ADF Ð=Ð,∴ AE AF =,∴AG EF ^,∵3OG =,4EG =,∴5OE ==,∴8AG =,10AD =,∴2DG =,由垂径定理可得4GF EG ==,∴21tan 42DG DFE GF Ð===;②∵AG EF ^,AD BC ^,∴EF BC ∥,∴AEG ABD △∽△,∴AG EGAD BD =,∴8410BD=,∴5BD =,∴BD OD =,∴ODB △是等腰直角三角形,∴45OBD Ð=°,∵EF BC ∥,∴45OPG OBD Ð=Ð=°,∴OPG V 是等腰直角三角形,∴3PG OG ==.【点睛】本题主要考查了切线的判定,圆周角定理,三线合一定理,勾股定理,相似三角形的性质与判定等等,正确作出辅助线构造直角三角形是解题的关键.4.如图,在ABC V 中,AB AC =,AD BC ^于点D ,E 是AC 上一点,以BE 为直径的O e 交BC 于点F ,连接DE ,DO ,且90DOB Ð=°.(1)求证:AC 是O e 的切线;(2)若1DF =,3DC =,求BE 的长.【答案】(1)见解析(2)【分析】此题重点考查圆周角定理、切线的判定定理、勾股定理、三角形的中位线定理、等腰三角形的“三线合一”、线段的垂直平分线的性质等知识,正确地作出辅助线是解题的关键.(1)由AB AC =,AD BC ^于点D ,得BD DC =,而BO OE =,根据三角形的中位线定理得OD EC ∥,则90CEB DOB Ð=Ð=°,即可证明AC 是O e 的切线;(2)连接EF ,由3BD DC ==,1DF =得到314BF BD DF =+=+=,由DO 垂直平分BE ,得3BD DE ==,由 BE 是O e 的直径,得90BFE Ð=°,则EF ===BE ===【详解】(1)证明:∵AB AC =,AD BC ^,∴BD DC =,又∵BO OE =,∴OD EC ∥.。

2023年中考数学复习第一部分考点梳理第二章方程(组)与不等式(组)第4节易错点强化练

2023年中考数学复习第一部分考点梳理第二章方程(组)与不等式(组)第4节易错点强化练

系数化为1,得x= .

-4-
解方程(组)与不等式(组)易错点强化练
− =,
4.用代入消元法解方程组:ቊ
+ =.
− =, ①
解:ቐ
+ =, ②
由①得y=5x-6, ③
把③代入②,得3x+2(5x-6)=14,解得x=2,
把x=2代入③,得y=4,
∴x=-1是该不等式组的解,x= 不是该不等式组的解.
-17-
9.请用指定的方法解下列一元二次方程:
(1)(因式分解法)x2+12x+27=0;
解:因式分解,得(x+3)(x+9)=0.
∴x+3=0或x+9=0.
∴x1=-3,x2=-9.
-11-
解方程(组)与不等式(组)易错点强化练
(2)(配方法)x2-4x-1=0;
解:配方,得(x-2)2=5.
∴x-2=± .
解方程(组)与不等式(组)易错点强化练

+
8.解分式方程:

=0.

(−)
解:去分母,得3x-(x+2)=0.
去括号,3x-x-2=0.
移项、合并同类项,得2x=2.
系数化为1,得x=1.
检验:当x=1时,x(x-1)=0,
∴x=1是增根,原分式方程无解.
-10-
解方程(组)与不等式(组)易错点强化练
11.解不等式组:ቐ

<.

解:ቐ
( − ) ≤ + ,

<,



解不等式①,得x≤2.
解不等式②,得x>-1.
∴原不等式组的解集是-1<x≤2.

中考数学易错(必考)100题梳理汇总及答案解析

中考数学易错(必考)100题梳理汇总及答案解析

中考数学易错100题(必考)1、在实数123.0,330tan ,60cos ,722,2121121112.0,,14.3,64,3,80032---- π中,无理数有( )A 、3个B 、4个C 、5个D 、6个2、下列运算正确的是( )A 、x 2 x 3 =x 6B 、x 2+x 2=2x 4C 、(-2x)2=4x 2 D 、(-2x)2 (-3x )3=6x 53、算式可化为( )A 、B 、C 、D 、4、“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为( )A 、11.69×1410B 、1410169.1⨯C 、1310169.1⨯ D 、14101169.0⨯ 5、不等式2)2(2-≤-x x 的非负整数解的个数为( )A 、1B 、2C 、3D 、46、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是( )A 、-1B 、0C 、2D 、322222222+++4228821627、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( )A 、x – y =42.71326 B 、 y – x = 42.71326 C 、y x 13261326-= 7.42 D 、x y 13261326-= 7.428、一个自然数的算术平方根为a ,则与它相邻的下一个自然数的算术平方根为( )A 、1+aB 、 1+aC 、12+aD 、1+a9、设B A ,都是关于x 的5次多项式,则下列说法正确的是( )A 、B A +是关于x 的5次多项式 B 、B A -是关于x 的4次多项式C 、 AB 是关于x 的10次多项式D 、B A 是与x 无关的常数10、实数a,b 在数轴对应的点A 、B 表示如图,化简a a a b 244-++-||的结果为( )A 、22a b --B 、22+-b aC 、2-bD 、2+b11、某商品降价20%后出售,一段时间后恢复原价,则应在A B-1 a 0 1 b售价的基础上提高的百分数是 ( )A 、20%B 、25%C 、30%D 、35%12、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加,加收2.4元(不足1km 按1km 计),某人乘这种车从甲地到乙地共支付车费19元,那么,他行程的最大值是( )A 、11 kmB 、8 kmC 、7 kmD 、5km13、在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是( )A 、1.6秒B 、4.32秒C 、5.76秒D 、345.6秒14、如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( )A 、1<kB 、0≠kC 、1<k 且0≠kD 、1>k15、若a 2+ma +18在整数范围内可分解为两个一次因式的乘积,则整数m 不可能是( )A 、 ±9B 、±11C 、±12D 、±1916、在实数范围内把8422--x x 分解因式为( )A 、)1)(3(2+-x xB 、)51)(51(--+-x x C 、)51)(51(2--+-x x D 、)51)(51(2++-+x x 17、用换元法解方程x x x x +=++2221时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0D 、y 2+y -2=018、某商品经过两次降价,由每件100元降至81元,则平均每次降价的百分率为( )A 、8.5%B 、9%C 、9.5%D 、10%19、一列火车因事在途中耽误了5分钟,恢复行驶后速度增加5千米/时,这样行了30千米就将耽误的时间补了回来,若设原来的速度为x 千米/时,则所列方程为( )A 、30305560x x --= B 、30530560x x +-= C 、30305560x x -+= D 、303055x x -+= 20、已知关于x 的方程02=+-m mx x 的两根的平方和是3,则m的值是( )A 、1-B 、1C 、3D 、1-或321、如果关于x 的一元二次方程0)1(222=+--m x m x 的两个实数根为βα,,则βα+的取值范围是( )A 、1≥+βαB 、1≤+βαC 、21≥+βα D 、21≤+βα 22、已知数轴上的点A 到原点的距离为2,那么在数轴上到A点的距离是3的点所表示的数有( )A 、1个B 、 2个C 、 3个D 、4个23、已知)0(1,≥+==a a y a x ,则y 和x 的关系是( ) A 、x y = B 、1+=x y C 、2x y = D 、)0(12≥+=x x y24、点A (2 ,-1)关于y 轴的对称点B 在( )A 、一象限B 、二象限C 、三象限D 、第四象限25、点P(x+1,x -1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限26、已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加 1B 、减少 1C 、增加 2D 、减少227、在平面直角坐标系内,A、B、C三点的坐标为(0,0) 、(4,0)、(3,2),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限28、已知一元二次方程02=++c bx ax 有两个异号根,且负根的绝对值较大,则),(bc ab M 在( )A 、第一象限B 、第二象限C 、第三象限 D 、第四象限29、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梳理中考数学易错点
1. -3-2=_______;-32=________;(-3)2=________; 94849-÷
⨯=_________. 2. 分数237
不是无理数. 例: 把下列各数分别填入相应的集合里:
222,10,0.3,,sin 3072π
∙--
有理数集合:{ };
无理数集合:{ };
负实数集合:{ };
3. 注意“0”
① 0的绝对值和相反数都是它本身;0乘以任何数都得0;即00;00;
0x 0=-== ② 0是整数,不是正数、也不是负数,0是正数和负数的分界点,0是偶数
例:x ≤3的正整数解是_____________;
4. ,注意先取绝对值.a (a 0)a a (a 0)⎧≥==⎨-<⎩
例_______.==
5. 不等式性质3. 若ax>b (a<0) ,则b x a
<. 例:若-2x<5,则x__________. 6. 计算(化简)与因式分解是互为逆运算。

例:计算 (3a 2-2ab )-(a 2+2ab)=____________.(不要把结果再因式分解)
因式分解:2a 2-4ab=_________________.
7. 因式分解要分解彻底。

例:分解因式 2211x xy y 22
++=__________________;44n 16-=____________. 8. 解分式方程不忘验根.
9. 对分式计算的理解错误:把分式的运算误作解分式方程去分母.
例:221(2x 1)1x 1x 1
+≠++-- 10. 方程两边不能除以含有未知数的代数式,否则会失根.
例:解方程 2x x =
11. 去绝对值符号时别忘了“±”号. 例:x 3时,x ==______.
12. 计算题结果要按题目要求,不要随意取近似值.
例:半径为2的圆面积=4π(平方单位)是准确值,而4×3.14则是近似值.
13. 注意正数a 的平方根;注意非正与非负的区别.
例: 16的平方根是=________; =______
x =-,则x____0;a 1=-,则a_______.
14. 方程、不等式、函数式中字母系数的限制:
① ax+b=0中,a ≠0
② ax>b 中,a ≠0
③ ax 2
+bx+c=0中,a ≠0
④ 函数k y kx ;y ;y kx b x ===+中,k ≠0
l h i=1:2
α
b
a h ⑤ y=ax 2+bx+c 中,a ≠0
例:方程(a-2)x 2-(2a-1)x+a=0有两个实数根的条件是___________.
当k_________时,2k 2y (k 1)x -=-是反比例函数.
15. 注意x 轴和y 轴上的点的坐标特征及其区别:(a,0)是_____轴上的点,(0,b)是____轴上的点.
16. 求中位数时,别忘了先把已知数据从小到大按顺序排列,再进行数据处理。

17. 正确判定轴对称和中心对称图形.
例:①等腰三角形、②等边三角形、③平行四边形、④正方形、⑤线段、⑥角、⑦圆、⑧正七边形、⑨正八边形 轴对称图形的是__________________________; 中心对称图形的是________________________.
18. 构成等腰三角形的可能情况:
例:已知等腰三角形的一外角等于1000,则该三角形的顶角等于__________。

等腰三角形的两条边长为3和7,则该三角形的周长为__________。

19. 清晰理解坡角、坡度i=h l
=tg α、仰角、俯角、方位角等概念。

例:如图,若 i=
1:2, l=则h=________. 20. “SSA ”不能判定三角形全等. 21. 相似多边形面积比等于相似比的平方.
例:相似多边形的面积比为2:3,周长比=______;
相似多边形对应边的比为2:3,则面积比=______.
22. 区分三角形与菱形的面积. 三角形的底边为a,底边上的高为h,则三角形的面积为________;
菱形的两条对角线长分别为a 和b,则菱形的面积为_________.
23. 区分弧长计算公式和扇形面积公式.
弧长计算公式:l=_______;扇形面积公式S=________=_________.
24. 分清圆心角、圆周角的区别。

25. 三角形内心与外心的区别.
例:已知P 是△ABC 的内心,O 是△ABC 的外心,若∠BPC=125°则∠BOC=________.
26. 注意一条弧“所对”和“所含”的圆周角的区别。

27. 圆的两解问题。

圆的两解有以下四种情况:
(1)圆内两条平行弦,可能在圆心的同侧或异侧
(2)两圆相切可能是内切或外切
(3)两圆相离,也有两圆外离与内离两种情况;
(4)圆内的弦所对弧也有两种情况:优弧、劣弧。

28. 证明直线与圆相切,一般有两种方法:
(1)如果直线过圆上某一点,则连结该点与圆心,只要证明直线垂直半径即可;
(2)如果直线与圆没有确定是否有公共点,则过圆心作直线的重线,证明圆心到直线的距离等于半径即可;
29.二次函数中的配方也是常会出错的一个问题,有时由于配方错误,会使整题失分。

相关文档
最新文档