中考数学复习 第1轮 考点系统复习 第2章 方程(组)与不等式(组)第3节 分式方程及其应用课件

合集下载

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用
3
③若分式方程的解为正数,则 a 的取值范围为 aa>>--4 且4且a a≠≠11;
yy--33≠≠00,,
【 分 层 分 析 】 若 分 式 方 程 的 解 为 正 数 , 则 yy>>00 , 即
3533aaa+5++5513112a22-+->3130≠2≠00,,
, >0
解得 aa>>--4 且4且a a≠≠1.1
A.1 B.2 C.3 D.4
3.(2022·普宁月考)若分式方程2xx--1a-4=-x2+x+1 a的解为整数,则整
数 a 的值为
(D )
A.±2
B.±1 或±2
C.1 或 2
D.±1
4.(2022·富川县模拟)关于 x 的分式方程2m-+xx+x-3 2=1 有解,则实数
m 应满足的条件是 A.m=-1
1.(2022·鼓楼区期末)关于 x 的分式方程x+m 3=1,下列说法中正确的

( B)
A.方程的解是 x=m-3
B.当 m>3 时,方程的解是正数
C.当 m<3 时,方程的解为负数
D.当 m=3 时,方程无解
2.(2022·荷塘区模拟)分式方程2x+x-a 1=2 的解为 x=2,则 a 的值为 ( A)
④若分式方程有负分数解,则 a 的值可以为 --5(5答(答案不案唯不一唯) ;
【分层分析】若分式方程有负分数解,则 3a+一12)=--1,1,-2-,-2,3,--34,,
4-,6 -…,解得 6…
a=3-133,-134,-153,-136或-6…-,∴a
的值可以为
-55.
⑤若分式方程有非负整数解,则 a 的值可以为 --44(答(答案不案唯不唯一) . 【解分得层a=分3-析4】,若-分73式,方-程23,1有383非,负133整或数…解,则,3a∴+5a一1的2=)值00或可,,1以…,1为2,,--42,,454.4或,…5,

初中数学中考复习备考方案

初中数学中考复习备考方案

初中数学中考复习备考方案初中数学中考复习备考方案1数学中考复习,将围绕数学考纲要求,大致分三轮进行:第一轮复习:系统复习。

时间:3月至4月中旬。

复习内容:按代数、几何、统计与概率三个版块进行。

巩固基础知识,理顺知识点、考点,强化选择填空题的准确率。

系统复习期间,交叉进行系统测试,培养学生知识的系统性,构建初中数学的知识体系。

第二轮复习:专题复习。

时间4月中旬至5月底。

复习内容:根据黄石中考考点,按有理数计算、化简求值、解方程组、概率计算、圆的证明与计算、解直角三角形、函数应用题、直线型综合、二次函数综合九个专题进行,巩固提高学生解答题得分率。

专题复习期间,交叉进行系统知识测试,检测学生综合运用知识的能力,提高准确率。

第三轮复习;中考模拟训练。

时间:6月前三周。

复习内容:模拟测试为主,对学生掌握的知识查缺补漏。

训练学生考试的适应能力。

主要复习资料:1、系统复习教辅资料2、往年全国各地中考试卷3、自编专题练习、测试试卷初中数学中考复习备考方案2一、复习措施1.认真钻研教材、课标要求、吃透考试大纲,确定复习重点。

确定复习重点可从以下几方面考虑:⑴根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。

这是确定复习重点的依据和标准。

⑴熟识每一个知识点在初中数学教材中的地位、作用;⑴熟悉近年来试题型类型,以及考试改革的情况。

2.正确分析学生的知识状况、和近期的思想状况。

(1)是对平时教学中掌握的情况进行定性分析;(2)每天对学生的作业及时批改,复习过程侧重评讲(3)是对每周所复习的知识进行测试,及时发现问题和解决问题。

(4),将学生很好的分类,牢牢的抓在手中。

(5)备课组成员每人出好两套模拟试题,优化及共享资源。

3.根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。

二、切实抓好“双基”的训练。

初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

13.(2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅 力的茶文化.2020 年 5 月 21 日以“茶和世界 共品共享”为主题的第一届 国际茶日在中国召开.某茶店用 4 000 元购进了 A 种茶叶若干盒,用 8 400 元购进 B 种茶叶若干盒,所购 B 种茶叶比 A 种茶叶多 10 盒,且 B 种茶叶 每盒进价是 A 种茶叶每盒进价的 1.4 倍.
D.无解
( A)
3. (2021·巴中)关于 x 的分式方程2m-+xx-3=0 有解,则实数 m 应满足的
条件是
( B)
A.m=-2 B.m≠-2 C.m=2 D.m≠2
4. (2021·鄂尔多斯)2020 年疫情防控期间,鄂尔多斯市某电信公司为了
满足全体员工的需要,花 1 万元购买了一批口罩,随着 2021 年疫情的缓
D.10 x000-100=6x-00100
5.(2020·自贡)某工程队承接了 80 万平方米的荒山绿化任务,为了迎
接雨季的到来,实际工作时每天的工作效率比原计划提高了 35%,结果提
前 40 天完成了这一任务.设实际工作时每天绿化的面积为 x 万平方米,
则下面所列方程中正确的是
( A)
A.80(1+x 35%)-8x0=40
10.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单
已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)

7 200

3 200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高 50%. 王师傅:甲商品比乙商品的数量多 40 件. 请你求出乙商品的进价,并帮助他们补全进货单.

安徽省2023中考数学第一部分中考考点过关第二章方程组与不等式组课件1

安徽省2023中考数学第一部分中考考点过关第二章方程组与不等式组课件1

设出未知数,给1分.
根据题意列出二元一次 方程组,给4分.
大括号括起来; 3.列方程时,严格按照 “设、列、解、验、
答”的步骤书写答
解方程组,并作答,给3分.
案,避免漏写步骤;
4.结尾处,切勿忘作答 .
第二节 分式方程及其应用
PART 01
考点帮
考点1 分式方程的相关概念
考点2 解分式方程 考点3 分式方程的实际应用
方法帮 命题角度 2 一次方程(组)的实际应用
4.(数学建模)[2019湖北荆门]欣欣服装店某天用相同的价格a元(a>0)卖出了两
件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的
盈亏情况是
(B
) A解.盈析利:
B.亏损
C.不盈不亏
D.与售价a元有关
方法帮 命题角度 2 一次方程(组)的实际应用
考点帮
考点1 考点2 考点3
一元一次方程及其解法
3.解一元一次方程的一般步骤
去括号 去分母
移项
若方程含有括号,则先去小括号,再去中括号,最后去大括号. 若去括号时括号前是负号,去掉括号后,括号内的各项均要⑦ .变号 若未知数的系数有分母,则要去分母.注意要在方程的两边都 乘以各分母的最小公倍数. 把含有未知数的项移到等式的一边,其他项移到另一边.一般 把含⑧ 未知数 的项移到等式左边.移项要改变符号.
方法帮 规范性答题:一次方程(组)的应用
(8分)时下正是海南百香果丰收的季节,张阿姨到海南爱心扶贫网上选购百香
果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克 “红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各 是多少元.

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

命题点 2:分式方程解的运用(近 6 年考查 4 次)
5 . (2020 · 荆 门 第
11

3
分)已经关于
x





2x+3 x-2

(x-2)k(x+3)+2 的解满足-4<x<-1,且 k 为整数,则符合条件的
所有 k 值的乘积为
(A )
A.正数 B.负数
C.零 D.无法确定
6.★(2021·荆州第 15 题 3 分)若关于 x 的方程 2xx-+2m+x2--1x=3 的解是
【分层分析】设第二次购买材料 x t,由②得第二次购买的单价为x2211x0000
元,由③得第一次购买材料的吨数为 2x2 t,由①,③得第一次购买的
45210000 单价为x 2x
元,由④可列方程为x452x0x00-211000=0021
000 x
.
45 000 解:设第二次购买材料 x t,则第一次购买材料 2x t.根据题意得 2x

【考情分析】湖北近 3 年主要考查:1.分式方程的解法,应用分式方程 解决简单的实际问题.分式方程的解法考查形式有:直接解分式方程; 根据分式方程解的情况求字母的值或取值范围;2.分式方程的应用主要 以选择题的形式考查列方程,常在解答题中与不等式、函数的实际应用 结合考查,难度较大,分值一般 3-10 分.
4 是原来每天用水量的5,这样 120 t 水可多用 3 天.求现在每天用水量是 多少吨?
4 解:设原来每天的用水量为 x t,则现在每天的用水量为5x t,由题意可 列方程: 1542x0-1x20=3,解得 x=10, 经检验,x=10 是原方程的解.
44 而5x=5×10=8. 答:现在每天的用水量为 8 t.

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

确的是
( A)
800 600 A.x+50= x
800 600 800 600 B.x-50= x C. x =x+50
800 600 D. x =x-50
6.(2013·天水第 15 题 4 分)有两块面积相同的小麦试验田,分别收获
小麦 9 000 kg 和 15 000 kg,已知第一块试验田每公顷的产量比第二块
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
第三节 分式方程及其应 用
1.已知关于 x 的分式方程mx--31=1. (1)若此分式方程的解为 x=2,则 m 的值为 4 4; (2)若此分式方程有增根,则 m 的值是 3 3 ; (3)若此分式方程的解是正数,则 m 的取值范围是 m>m2>且2且m ≠3.
m≠3
2.(RJ 八上 P153 例 4 改编)甲、乙两地相距 1 000 km,如果乘高铁列车 从甲地到乙地比乘特快列车少用 3 h,已知高铁列车的平均速度是特快列 车的 1.6 倍.若设特快列车的平均速度为 x km/h,则根据题意,可列方 程为 -1 3x0=00-3=11.060x0 .
命题点 2:由分式方程解的情况求字母的取值范围(省卷近 5 年未考查,
兰州近 5 年考查 1 次)
2x+a 3.(2018·兰州第 10 题 4 分)关于 x 的分式方程 x+1 =1 的解为负数,
则 a 的取值范围为

中考数学一轮总复习讲解 第二章 方程与不等式

中考数学一轮总复习讲解 第二章 方程与不等式

中考数学一轮总复习讲解第二章方程与不等式第6讲一元一次方程与分式方程及其应用第7讲二元一次方程组及其应用第8讲一元二次方程及其应用第9讲方程(组)的应用第10讲不等式与不等式组第11讲一元一次不等式的应用第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法2.分式方程及解法3.列方程解应用题的一般步骤1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )2.(2017·宁波)分式方程2x +13-x =32的解是____________________. 3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x +1=1x -1.【问题】给出以下五个代数式:2x -4,x -2,x ,12,3. (1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一 等式性质和方程的解的含义例1 (1)(2017·杭州)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y (2)已知关于x 的方程2x +a -9=0的解是x =2,则a =________.(3)已知关于x 的方程3x +n 2x +1=2的解是负数,则n 的取值范围为______________.1.(1)已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +53(2)如果方程x +2=0与方程2x -a =0的解相同,那么a =____________________.(3)(2017·成都)已知x =3是分式方程kx x -1-2k -1x =2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x -12⎣⎡⎦⎤x -12(x -1)=23(x -1).类型三 分式方程的解法例3 (2015·营口)若关于x 的分式方程2x -3+x +m3-x =2有增根,则m 的值是() A .m =-1 B .m =0 C .m =3 D .m =0或m =3例4 (1)(2017·湖州)解方程:2x -1=1x -1+1;(2)(2017·陕西模拟)解方程:2-x x -3=13-x -2.3.解分式方程:(1)x x -3=x -63-x+3;(2)x x +1-4x 2-1=1.类型四 一元一次方程和分式方程的应用例5 (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x 2-4x x 2-1+1=2x x +1.第7讲二元一次方程组及其应用二元一次方程组及解法1.(2017·舟山)若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( ) A .1 B .3 C .-14D .742.(2016·温州)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =7x =2yB .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x3.(2016·金华)解方程组⎩⎪⎨⎪⎧x +2y =5,x +y =2.【问题】对于二元一次方程2x +y =10.(1)求其正整数解;(2)若x +y =7,求x ,y 的值;(3)对于(1)、(2)中的x ,y 值的求法,你有何体会?.类型一 二元一次方程(组)的有关概念例1 (1)(2016·永康模拟)已知⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程x -ay =3的一个解,则a 的值为( )A .1B .-1C .2D .-2(2)(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =________;(3)已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,则m =________,n =________.1.(1)(2016·毕节)已知关于x ,y 的方程x 2m-n -2+4y m+n +1=6是二元一次方程,则m ,n的值为( )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =43(2)已知x 、y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____________________.类型二 二元一次方程(组)的解法例2 解方程(组):(1)方程x +3y =9的正整数解是________;(2)(2015·成都)⎩⎪⎨⎪⎧x +2y =5,3x -2y =-1,(2)⎩⎪⎨⎪⎧2(x -y )3-x +y 4=-112,3(x +y )-2(2x -y )=3.2.解方程组:(1)(2015·聊城)⎩⎪⎨⎪⎧x -y =5,2x +y =4;(2)1-6x =3y -x 2=x +2y3.类型三 二元一次方程组的综合问题例3 已知方程组⎩⎪⎨⎪⎧2x -3y =3,ax +by =-1与⎩⎪⎨⎪⎧3x +2y =11,2ax +3by =3的解相同,求a ,b 的值.例4 (2016·枣庄)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =n (n -1)24·(n 2-an +b)(其中,a ,b 是常数,n ≥4)(1) 通过画图,可得四边形时,P 4= (填数字);五边形时,P 5= (填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.3.已知方程组⎩⎪⎨⎪⎧2x +3y =n ,3x +5y =n +2的解x ,y 的和为12,求n 的值.4.当m 取什么值时,方程x +2y =2,2x +y =7,mx -y =0有公共解.类型四 二元一次方程组的应用例5 (2015·佛山)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?5.八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知:A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际应用题】1.(2017·自贡)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组__________________.2.(2017·济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是____________.【二元一次方程的解,二元一次方程组的解理解不清】方程组⎩⎪⎨⎪⎧3x -7y =0,x -2y +1=0的解对方程2x -3y =-5而言( )A .是这个方程的唯一解B .是这个方程的一个解C .不是这个方程的解D .以上结论都不对第8讲一元二次方程及其应用1.一元二次方程的概念及解法2.一元二次方程根的判别式1.(2015·温州)若关于x的一元二次方程4x2-4x+c=0有两个相等实数根,则c的值是()A.-1 B.1 C.-4 D.42.(2017·舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=33.(2017·丽水)解方程:(x-3)(x-1)=3.【问题】给出以下方程①3x+1=0;②x2-2x=8;③1x-3-2x3-x=1.(1)是一元二次方程的是__________;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗?(3)通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?类型一 一元二次方程的有关概念例1 (1)关于x 的方程(a -6)x 2-8x +6=0有实数根,则整数a 的最大值是________. (2)若x =1是一元二次方程ax 2+bx -40=0的一个解,且a ≠b ,则a 2-b 22a -2b的值为________.(3)关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),则方程a(x +m +2)2+b =0的解是________.1.(1)(2016·南京模拟)关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )A .a ≠1B .a ≠-1C .a ≠±1D .为任意实数(2)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为____________________.类型二 一元二次方程的解法例2 解下列方程: (1)(3x -1)2=(x +1)2; (2)2x 2+x -12=0.2.解方程:(1)(2x-1)2=x(3x+2)-7;(2)x(x-2)+x-2=0.类型三一元二次方程根的判别式例3(1)(2017·潍坊)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是()A.b=-1 B.b=2 C.b=-2 D.b=04.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是____________________.5.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2的值.(a-2)2+b2-4类型四 与几何相关的综合问题例4在宽为20m ,长为32m 的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为135m 2,则道路的宽为________m .(2)(2016·张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a =1,则b =________.(3)(2015·广安)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是________.6.(1)(2016·台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A .12B .35C .2-3D .4-2 3(2)一个直角三角形的两条边长是方程x 2-7x +12=0的两个根,则此直角三角形的面积等于 .(3)有一块长32cm ,宽24cm 的长方形纸片,如图,在每个角上截去相同的正方形,再折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是____________________cm .类型五一元二次方程在生活中的应用例5(1)(2017·济宁市任城区模拟)某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为________.(2)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有________队.(3)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是________.(4)将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货________个.7.(1)(2016·宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为____________________人.(2)(2017·山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第____________________个图形有94个小圆.【探索研究题】1.(1)(2017·温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-3(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m+m2+12017+3的值是________.【忽视一元二次方程ax2+bx+c=0(a≠0)中“a≠0”】已知关于x的一元二次方程(m-1)x2+x+1=0有实数根,则m的取值范围是________.第9讲方程(组)的应用1.(2017·杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.82.(2017·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【问题】小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.(1)按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?(2)通过(1)解答,请你谈谈方程应用性问题,应注意哪些方面?解题的一般步骤怎样?类型一一元一次方程的应用例1(1)七年级(2)班有46人报名参加文学社或书画社.已知参加文学社的人数比参加书画社的人数多10人,两社都参加的有20人,则参加书画社的有________人.(2)有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是________小时.(3)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=________元.(4)自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水________吨.1.(1)(2016·聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51C.69 D.72(2)(2015·丽水模拟)诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:____________________.(3)如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要____________________个铁环.类型二二元一次方程组的应用例2(1)若买3支圆珠笔、1本日记本共需10元;买1支圆珠笔、3本日记本共需18元,则日记本的单价比圆珠笔的单价多________元.(2)如图,将图1的正方形剪掉一个小正方形,再沿虚线剪开,拼成如图2的长方形.已知长方形的宽为6,长为12,则图1正方形的边长为________.(3)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是________cm.2.(1)(2017·安徽模拟)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为____________________元.(2)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组是____________________.(3)为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如图表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意可列方程组____________________.类型三一元二次方程的应用例3(1)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.(2)某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.(3)美化环境,改善居住环境已成为城乡建设的一项重要内容,某区计划用两年时间使全区绿化面积增加21%,则这两年全区绿化面积的年平均增长率应是________.3.(1)(2017·宁海模拟)某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有____________________家商家参加了交易会.(2)平行四边形ABCD的边长如图所示,四边形ABCD的周长为____________________.(3)(2017·杭州模拟)两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程____________________.类型四分式方程的应用例4(1)(2017·慈溪模拟)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作________件.(2)(2017·瑞安模拟)在“校园文化”建设中,某校用8000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿色植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为________元.(3)(2017·宁波模拟)某感冒药用来计算儿童服药量y的公式为y=axx+12,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是________.4.(1)(2016·淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是____________________.(2)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为____________________.(3)(2017·绍兴模拟)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走____________________步.【实际应用题】(2017·衢州)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值;(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的年平均增长率.(精确到1%)【寻找等量关系欠仔细】要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x(x +1)=28B .12x(x -1)=28C .x(x +1)=28 D .x(x -1)=28第10讲不等式与不等式组1.不等式的概念及性质2.一元一次不等式(组)的解法及应用1.(2015·嘉兴)一元一次不等式2(x +1)≥4的解在数轴上表示为( )2.(2015·丽水)如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x>2C .x>-1D .-1<x ≤23.(2017·湖州)一元一次不等式组⎩⎪⎨⎪⎧2x>x -1,12x ≤1的解集是( )A .x >-1B .x ≤2C .-1<x ≤2D .x >-1或x ≤24.(2016·金华)不等式3x +1<-2的解集是____________________.5.(2017·衢州)解下列一元一次不等式组:⎩⎪⎨⎪⎧12x ≤2,3x +2>x.【问题】给出以下不等式:①2x +5<4(x +2),②x -1<23x ,③1x -1>0,④x -1≤8-4x.(1)上述不等式是一元一次不等式的是________;(2)上述不等式中,选取其中二个一元一次不等式,并求其公共解. (3)选取其中一个一元一次不等式,使其只有一个正整数解.(4)通过以上问题解答的体会,解一元一次不等式(组)要注意哪些问题?类型一 不等式的基本性质例1 (1)若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x 3>y3C .x +3>y +3D .-3x >-3y(2)若实数a ,b ,c 在数轴上对应位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a +c >b +cD .a +b >c +b(3)设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c1.(2016·大庆)当0<x<1时,x 2、x 、1x 的大小顺序是( )A .x 2<x<1xB .1x <x<x 2C .1x <x 2<xD .x<x 2<1x类型二 一元一次不等式的解法例2 解不等式:x +12+x -13≤1.2.(1)(2016·绍兴)不等式3x +134>x3+2的解是____________________.(2)(2015·南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型三 一元一次不等式组的解法例3 解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.3.解不等式组:(1)(2015·泰州)⎩⎪⎨⎪⎧x -1>2x ,12x +3<-1;(2)⎩⎪⎨⎪⎧3(x +2)>x +8,x 4≥x -13,并把它的解集在数轴上表示出来.类型四 不等式的解的应用例4 (1)(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2(2)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-234.(1)(2016·通州模拟)如果不等式(a -3)x>a -3的解集是x>1,那么a 的取值范围是( ) A .a<3 B .a>3 C .a<0 D .a>0(2)(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <5【阅读理解题】(2017·湖州)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b.例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.【求不等式组中字母系数范围出错】如果一元一次不等式组⎩⎪⎨⎪⎧x>3,x<a 关于x 的整数解为4,5,6,7,则a 的取值范围是( )A .7<a ≤8B .7≤a<8C .a ≤7D .a ≤8第11讲 一元一次不等式的应用1.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为____________________元/千克.2.(2016·衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).【问题】铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm ,长与宽的比为3∶2.(1)请你根据以上信息,求出该行李箱的长的最大值;(2)通过问题(1)的解决,请你从分析问题和解决问题角度谈谈看法.【归纳】通过开放式问题,归纳、疏理利用不等式(组)解决实际问题的分析方法和一般步骤,以及要注意的问题.类型一列不等式求字母的取值范围的应用例1 (1)(2017·江西)函数y =x -2中,自变量x 的取值范围是________. (2)(2015·临海模拟)点(a ,a +2)在第二象限,则a 的取值范围是________.(3)(2017·上海市杨浦区模拟)若一次函数y =(1-2k)x +k 的图象经过第一、二、三象限,则k 的取值范围是________.(4)对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若⎣⎡⎦⎤x +410=5,则x 的取值是________.1.(1)(2016·兰州)双曲线y =m -1x在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .(2)(2017·济宁模拟)已知二次函数y =kx 2-7x -7的图象与x 轴没有交点,则k 的取值范围为____________________.(3)(2015·武威)定义新运算:对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x<13的解集为____________________.类型二不等式的应用例2(1)(2017·南京模拟)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为________cm;(2)(2017·杭州模拟)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打________折;(3)(2017·株洲模拟)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,则孔明买球拍________个.2.(1)如图是某机器零件的设计图纸,在数轴上表示该零件长度(L)合格尺寸,正确的是()(2)(2017·绍兴模拟)小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元(3)(2017·杭州市江干区模拟)某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对____________________道题,成绩才能在80分以上.类型三不等式与方程(组)结合的应用例3(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档