2018年全国普通高等学校招生统一考试数学(浙江卷)(原卷版)

合集下载

【精校】2018年普通高等学校招生全国统一考试(浙江卷)数学

【精校】2018年普通高等学校招生全国统一考试(浙江卷)数学

2018年普通高等学校招生全国统一考试(浙江卷)数学一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U={1,2,3,4,5},A={1,3},则C U A=( )A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}解析:根据补集的定义,C U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.C U A={2,4,5}.答案:C2.双曲线2213xy-=的焦点坐标是( ),0),,0)B.(-2,0),(2,0)C.(0,),(0)D.(0,-2),(0,2)解析:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得,∴该双曲线的焦点坐标为(±2,0)答案:B3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8解析:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=()112222+⋅⋅=6. 答案:C 4.复数21i-(i 为虚数单位)的共轭复数是( ) A.1+i B.1-i C.-1+i D.-1-i解析:化简可得()()()2121111i z i i i i +===+--+,∴z 的共轭复数z =1-i. 答案:B5.函数y=2|x|sin2x 的图象可能是( )A.B.C.D.解析:根据函数的解析式y=2|x|sin2x ,得到:函数的图象为奇函数, 故排除A 和B.当x=2π时,函数的值也为0,故排除C. 答案:D6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析:∵m ⊄α,n ⊂α,∴当m ∥n 时,m ∥α成立,即充分性成立, 当m ∥α时,m ∥n 不一定成立,即必要性不成立, 则“m ∥n ”是“m ∥α”的充分不必要条件. 答案:A7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ) A.D(ξ)减小 B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小解析:设0<p <1,随机变量ξ的分布列是E(ξ)=1110122222p p p -⨯+⨯+⨯=+; 方差是D(ξ)=2222211111111012222222422p p p p p p p p ---⨯+--⨯+--⨯=-++=--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝, ∴p ∈(0,12)时,D(ξ)单调递增; p ∈(12,1)时,D(ξ)单调递减; ∴D(ξ)先增大后减小. 答案:D8.已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( )A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1解析:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心.过E 作EF ∥BC ,交CD 于F ,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N ,连接SN ,取CD 中点M ,连接SM ,OM ,OE ,则EN=OM , 则θ1=∠SEN ,θ2=∠SEO ,θ3=∠SMO. 显然,θ1,θ2,θ3均为锐角.∵13tan tan SN SN SONE OM OM θθ===,,SN ≥SO ,∴θ1≥θ3, 又32sin sin SO SOSM SEθθ==,,SE ≥SM ,∴θ3≥θ2. 答案:D9.已知a b e r r r ,,是平面向量,e r 是单位向量.若非零向量a r 与e r 的夹角为3π,向量b r 满足2430b e b -⋅+=r r r,则a b -r r 的最小值是( )解析:由2430b e b -⋅+=r r r,得()()3b e b e -⋅-r r r r =0,∴()()3b e b e -⊥-r r r r ,如图,不妨设e r =(1,0),则b r的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量a r 与e r 的夹角为3π,则a r 的终点在不含端点O 的两条射线y=x(x >0)上.不妨以为例,则a b -r r的最小值是(2,0)x=y=0的距离减1.1-.答案:A10.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 4解析:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D.当q=-1时,a 1+a 2+a 3+a 4=0,ln(a 1+a 2+a 3)>0,等式不成立,所以q ≠-1;当q <-1时,a 1+a 2+a 3+a 4<0,ln(a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)不成立, 当q ∈(-1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),能够成立, 答案:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

(完整版)2018年浙江省数学高考真题试卷(含答案解析)

(完整版)2018年浙江省数学高考真题试卷(含答案解析)

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则 ()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,12,S S 表示台体的高h 柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R 一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则C A=U A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+iB .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xA B C D6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·bπ3+3=0,则|a −b |的最小值是( )A B C .2D .10.已知成等比数列,且.若,则( )1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2018年全国高考数学试卷真题与答案(浙江卷)

2018年全国高考数学试卷真题与答案(浙江卷)

1 p 2
1 2
p 2
A.D( ξ)减小 C.D(ξ)先减小后增大
B.D(ξ)增大 D.D(ξ)先增大后减小
8.已知四棱锥 S−ABCD 的底面是正方形,侧棱长均相等,E 是线段 AB 上的点(不含端点),设 SE 与 BC 所成的角为 θ1,SE 与平面 ABCD 所成的角为 θ2,二面角 S−AB−C 的平面角为 θ3,则 A. θ1≤ θ2≤ θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤ θ3≤ θ1
2
B.{1, 3}
C.{2, 4, 5}
D.{1, 2,3, 4, 5}
2.双曲线
x y 2 =1 的焦点坐标是 3
B.(−2,0),(2, 0) D.(0,−2),(0, 2)
A.(− 2 ,0),( 2 ,0) C.(0, − 2 ),(0, 2 )
3.某几何体的三视图如图所示(单位: cm) ,则该几何体的体积(单位: cm3)是
2 1 1 正视图 2 侧视图
俯视图
A. 2 4.复数
B.4
C.6
D.8
2 (i 为虚数单位)的共轭复数是 1 i
B.1−i C.−1+i D.−1−i
A. 1+i
5.函数 y = 2| x| sin2x 的图象可能是
A.
B.
C.
D.
6.已知平面 α,直线 m,n 满足 m α,n α,则“m∥n”是“m∥α”的 A.充分不必要条件 C.充分必要条件 7.设 0<p<1,随机变量 ξ 的分布列是 ξ P 则当 p 在(0,1)内增大时, 0 1 2 B.必要不充分条件 D.既不充分也不必要条件
9. 已知 a, b, e 是平面向量, e 是单位向量. 若非零向量 a 与 e 的夹角为 则|a−b|的最小值是 A. 3 −1 B. 3 +1 C.2

2018高考浙江数学带答案

2018高考浙江数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1BC .2D .210.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年浙江高考试卷—含答案

2018年浙江高考试卷—含答案

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

学¥科网 1.已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(0),,0) B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+i B .1−i C .−1+i D .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是俯视图正视图222则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1BC .2D .210.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018高考浙江数学带答案

2018高考浙江数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(?2,0),(2,0)B .(?2,0),(2,0)C .(0,?2),(0,2)D .(0,?2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1?iC .?1+iD .?1?i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S ?ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ?AB ?C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C.θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2?4e ·b +3=0,则|a ?b |的最小值是ABC .2D .10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年普通高等学校招生全国统一考试数学(浙江卷)

2018年普通高等学校招生全国统一考试数学(浙江卷)

绝密★启用前2018年普通高等学校招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页;非选择题部分2至4页.满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答.在本试题卷上的作答一律无效.参考公式:若事件A,B互斥,则柱体的体积公式P(A+B)=P(A)+P(B) V=Sh若事件A,B相互独立,则其中S表示柱体的底面积,h表示柱体的高P(AB)=P(A)P(B) 锥体的体积公式若事件A在一次试验中发生的概率是p,则n次V=13Sh独立重复试验中事件A恰好发生k次的概率其中S表示锥体的底面积,h表示锥体的高P n(k)=C n k p k(1-p)n-k(k=0,1,2,…,n) 球的表面积公式台体的体积公式S=4πR2V=13(S1+√S1S2+S2)h球的体积公式其中S1,S2分别表示台体的上、下底面积, V=43πR3h表示台体的高其中R表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.双曲线x 23-y2=1的焦点坐标是()A.(-√2,0),(√2,0)B.(-2,0),(2,0)C.(0,-√2),(0,√2)D.(0,-2),(0,2)3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.84.复数2(i为虚数单位)的共轭复数是()1-iA.1+iB.1-iC.-1+iD.-1-i5.函数y=2|x|sin 2x的图象可能是()6.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则()A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b+3=0,则|a-b|的最小值是( ) A .√3-1 B .√3+1 C .2D .2-√3 10.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则{x +y +z =100,5x +3y +13z =100,则z=81时,x= ,y= . 12.若x ,y 满足约束条件{x -y ≥0,2x +y ≤6,x +y ≥2,则z=x+3y 的最小值是 ,最大值是 .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若a=√7,b=2,A=60°,则sin B= ,c= .14.二项式(√x 3+12x )8的展开式的常数项是.15.已知λ∈R ,函数f (x )={x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答)17.已知点P (0,1),椭圆x24+y 2=m (m>1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m= 时,点B 横坐标的绝对值最大.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知角α的顶点与原点O 重复,始边与x 轴的非负半轴重合,它的终边过点P (-35,-45). (1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.19.(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.20.(本题满分15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.21.(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴; (2)若P 是半椭圆x 2+y 24=1(x<0)上的动点,求△PAB 面积的取值范围.22.(本题满分15分)已知函数f (x )=√x -ln x.(1)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln 2;(2)若a ≤3-4ln 2,证明:对于任意k>0,直线y=kx+a 与曲线y=f (x )有唯一公共点.数学(浙江卷)1.C ∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C .2.B ∵a 2=3,b 2=1,∴c 2=a 2+b 2=3+1=4.∴c=2.又焦点在x 轴上,∴焦点坐标为(-2,0),(2,0). 3.C 由三视图可知该几何体为直四棱柱.∵S 底=12×(1+2)×2=3,h=2, ∴V=Sh=3×2=6.4.B ∵21-i=2(1+i )(1-i )(1+i )=2(1+i )2=1+i, ∴复数21-i 的共轭复数为1-i .5.D 因为在函数y=2|x|sin 2x 中,y 1=2|x|为偶函数,y 2=sin 2x 为奇函数, 所以y=2|x|sin 2x 为奇函数.所以排除选项A,B .当x=0,x=π2,x=π时,sin 2x=0,故函数y=2|x|sin 2x 在[0,π]上有三个零点,排除选项C,故选D .6.A 当m ⊄α,n ⊂α时,由线面平行的判定定理可知,m ∥n ⇒m ∥α;但反过来不成立,即m ∥α不一定有m ∥n ,m 与n 还可能异面.故选A .7.D 由题意可知,E (ξ)=0×(1-p 2)+1×12+2×p2=12+p ,D (ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2 =12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D (ξ)先增大后减小. 8.D当点E 不是线段AB 的中点时,如图,点G 是AB 的中点,SH ⊥底面ABCD ,过点H 作HF ∥AB ,过点E 作EF ∥BC ,连接SG ,GH ,EH ,SF.可知θ1=∠SEF ,θ2=∠SEH ,θ3=∠SGH. 由题意可知EF ⊥SF ,故tan θ1=SFEF =SFGH >SHGH =tan θ3.∴θ1>θ3.又tan θ3=SH GH>SHEH=tan θ2,∴θ3>θ2.∴θ1>θ3>θ2. 当点E 是线段AB 的中点时,即点E 与点G 重合,此时θ1=θ3=θ2. 综上可知,θ1≥θ3≥θ2.9.A ∵e 为单位向量,b 2-4e ·b+3=0,∴b 2-4e ·b+4e 2=1. ∴(b-2e )2=1.以e 的方向为x 轴正方向,建立平面直角坐标系,如图. OE ⃗⃗⃗⃗⃗ =2e ,OB ⃗⃗⃗⃗⃗ =b ,OA⃗⃗⃗⃗⃗ =a ,α=π3. 由(b -2e )2=1,可知点B 在以点E 为圆心,1为半径的圆上.由|a -b |=|OA⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |, 可知|a-b |的最小值即为|BA ⃗⃗⃗⃗⃗ |的最小值,即为圆上的点B 到直线OA 的距离. 又直线OA 为y=√3x ,点E 为(2,0),∴点E 到直线OA 的距离d=2√32=√3.∴|BA ⃗⃗⃗⃗⃗ |的最小值为√3-1,即|a -b |的最小值为√3-1. 10.B 设等比数列的公比为q ,则a 1+a 2+a 3+a 4=a 1(1-q 4)1-q ,a 1+a 2+a 3=a 1(1-q 3)1-q.∵a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3), ∴a 1+a 2+a 3=e a 1+a 2+a 3+a 4,即a 1(1+q+q 2)=e a 1(1+q+q 2+q 3).又a 1>1,∴q<0.假设1+q+q 2>1,即q+q 2>0,解得q<-1(q>0舍去). 由a 1>1,可知a 1(1+q+q 2)>1,∴a 1(1+q+q 2+q 3)>0,即1+q+q 2+q 3>0,即(1+q )+q 2(1+q )>0,即(1+q )(1+q 2)>0,这与q<-1相矛盾.∴1+q+q 2<1,即-1<q<0.∴a 1>a 3,a 2<a 4.11.8 11 由{x +y +z =100,5x +3y +13z =100,且z=81, 可得{x +y =19,5x +3y =73,解得{x =8,y =11.12.-2 8由约束条件{x -y ≥0,2x +y ≤6,x +y ≥2画出可行域,如图所示的阴影部分.由z=x+3y , 可知y=-13x+z 3.由题意可知,当目标函数的图象经过点B 时,z 取得最大值,当目标函数的图象经过点C 时,z 取得最小值.由{y =x ,2x +y =6,得{x =2,y =2,此时z 最大=2+3×2=8, 由{2x +y =6,x +y =2,得{x =4,y =-2,此时z 最小=4+3×(-2)=-2.13.√213 由正弦定理a =b, 可知sin B=bsinAa=7=2×√327=√217. ∵a=√7>b=2,∴B 为锐角. ∴cos B=√1-sin 2B =√47=2√77. ∴cos C=-cos(A+B )=sin A sin B-cos A cos B=√3×√21−2√7×1=3√7-2√7=√7.由余弦定理,得c 2=a 2+b 2-2ab cos C=7+4-2×2×√7×√7=7+4-2=9.∴c=3.14.7二项式(√x 3+12x )8的通项为T r+1=C 8r(x 13)8-r (12x -1)r =(12)r C 8r x 8-r 3-r =(12)r C 8r x 8-4r 3,当r=2时,8-4r3=0.故展开式的常数项为(12)2C 82=14×8×72=7.15.(1,4) (1,3]∪(4,+∞) 当λ=2时,f (x )={x -4,x ≥2,x 2-4x +3,x <2.当x ≥2时,f (x )=x-4<0,解得x<4,∴2≤x<4.当x<2时,f (x )=x 2-4x+3<0,解得1<x<3,∴1<x<2.综上可知,1<x<4,即f (x )≤0的解集为(1,4).分别画出y 1=x-4和y 2=x 2-4x+3的图象如图,由函数f (x )恰有2个零点,结合图象可知1<λ≤3或λ>4. 故λ的取值范围为(1,3]∪(4,+∞). 16.1 260 分两类: 第一类:从0,2,4,6中取到0,则没有重复数字的四位数有C 31C 52A 31A 33=540;第二类:从0,2,4,6中不取0,则没有重复数字的四位数有C 32C 52A 44=720.所以没有重复数字的四位数共有540+720=1 260种. 17.5 设A (x 1,y 1),B (x 2,y 2).∵P (0,1),∴AP ⃗⃗⃗⃗⃗ =(-x 1,1-y 1),PB ⃗⃗⃗⃗⃗ =(x 2,y 2-1). ∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,∴{-x 1=2x 2,1-y 1=2(y 2-1),即{x 1=-2x 2,y 1=3-2y 2.又x 124+y 12=m ,∴(-2x 2)24+(3-2y 2)2=m ,即4x 224+4y 22-12y 2+9=m.又x 224+y 22=m ,∴4m-12y 2+9=m ,即12y 2=3m+9,4y 2=m+3.∴x 224+(m+34)2=m ,即x 22+m 2+6m+94=4m , 即x 22=-m 24+52m-94.∴当m=5时,x 22的最大值为4,即点B 横坐标的绝对值最大.18.解 (1)由角α的终边过点P (-35,-45), 得sin α=-45,所以sin(α+π)=-sin α=45. (2)由角α的终边过点P (-35,-45),得cos α=-35, 由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.19.解法一 (1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BC 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5, 由AB=BC=2,∠ABC=120°,得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD. 由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1,得C 1D ⊥平面ABB 1, 所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√39.解法二(1)证明:如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1).因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3).由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1.由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).设平面ABB 1的法向量n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{x +√3y =0,2z =0,可取n =(-√3,1,0). 所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗·n ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|n |=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√39.20.解 (1)由a 4+2是a 3,a 5的等差中项,得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20,得8(q +1q )=20,解得q=2或q=12,因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }前n 项和为S n ,由c n ={S 1,n =1,S n -S n -1,n ≥2,解得c n =4n-1. 由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n -1. 故b n -b n-1=(4n-5)·(12)n -2,n ≥2,b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1)=(4n-5)·(12)n -2+(4n-9)·(12)n -3+…+7·12+3. 设T n =3+7·12+11·(12)2+…+(4n-5)·(12)n -2,n ≥2,12T n =3·12+7·(12)2+…+(4n-9)·(12)n -2+(4n-5)·(12)n -1, 所以12T n =3+4·12+4·(12)2+…+4·(12)n -2-(4n-5)·(12)n -1, 因此T n =14-(4n+3)·(12)n -2,n ≥2,又b 1=1,所以b n =15-(4n+3)·(12)n -2. 21.(1)证明 设P (x 0,y 0),A (14y 12,y 1),B (14y 22,y 2).因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程(y+y 02)2=4·14y 2+x 02, 即y 2-2y 0y+8x 0-y 02=0的两个不同的实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知{y 1+y 2=2y 0,y 1y 2=8x 0-y 02,所以|PM|=18(y 12+y 22)-x 0=34y 02-3x 0,|y 1-y 2|=2√2(y 02-4x 0).因此,△PAB 的面积S △PAB =12|PM|·|y 1-y 2|=3√24(y 02-4x 0)32. 因为x 02+y 024=1(x 0<0),所以y 02-4x 0=-4x 02-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是[6√2,15√104]. 22.证明 (1)函数f (x )的导函数f'(x )=2√x 1x , 由f'(x 1)=f'(x 2),得2x 1x 1=2x 1x 2, 因为x 1≠x 2,所以x x =12.由基本不等式,得12√x 1x 2=√x 1+√x 2≥2√x 1x 24, 因为x 1≠x 2,所以x 1x 2>256.由题意得f (x 1)+f (x 2)=√x 1-ln x 1+√x 2-ln x 2=12√x 1x 2-ln(x 1x 2). 设g (x )=12√x -ln x ,则g'(x )=14x (√x -4),所以所以g (x )在[256,+∞)上单调递增,故g (x 1x 2)>g (256)=8-8ln 2,即f (x 1)+f (x 2)>8-8ln 2.(2)令m=e -(|a|+k ),n=(|a |+1k )2+1,则f (m )-km-a>|a|+k-k-a ≥0, f (n )-kn-a<n (n a n -k)≤n (|a |+1n k)<0, 所以,存在x 0∈(m ,n ),使f (x 0)=kx 0+a.所以,对于任意的a ∈R 及k ∈(0,+∞),直线y=kx+a 与曲线y=f (x )有公共点. 由f (x )=kx+a ,得k=√x -lnx -a x . 设h (x )=√x -lnx -a x,则h'(x )=lnx -√x2-1+a x 2=-g (x )-1+a x 2. 其中g (x )=√x 2-ln x.由(1)可知g (x )≥g (16).又a ≤3-4ln 2,故-g (x )-1+a ≤-g (16)-1+a=-3+4ln 2+a ≤0,所以h'(x )≤0,即函数h (x )在(0,+∞)上单调递减.因此方程f (x )-kx-a=0至多1个实根.综上,当a ≤3-4ln 2时,对于任意k>0,直线y=kx+a 与曲线y=f (x )有唯一公共点.。

2018年浙江数学高考试题文档版(含答案)

2018年浙江数学高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1BC .2D .210.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年高考数学(浙江卷)完整版.doc

2018年高考数学(浙江卷)完整版.doc

2018年高考数学 (浙江卷)单选题(本大题共10小题,每小题____分,共____分。

)1.已知全集∪=∣1,2,3,4,5∣,A=∣1,3∣,则=A. ∅B. ∣1,3∣C. ∣2,4,5∣D. ∣1,2,3,4,5∣2.双曲线-y²=1的焦点坐标是A. (-,0),(B. (-2,0),(2,0)C. (0,-(0,D. (0,-2),(0,2)3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm ²)是A. 2B. 4C. 6D. 84.复数(i为虚数单位)的共轭复数是A. 1+iB. 1-iC. -1+iD. -1-i5.函数y=sin2x的图象可能是A.B.C.D.6.已知平面a,直线m,n满足m¢a,n a,则“m∥n”是“m∥a”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.设0<p<1,随机变量€的分布列是则当p在(0,1)内增大时,A. D(€)减小B. D(€)增大C. D(€)先减小后增大D. D(€)先增大后减小8、已知道四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为,SE与平面ABCD所成的角为,二面角S-AB-C的平面角为,则A. ≤≤B. ≤≤C. ≤≤D. ≤≤9.已知a,b,e是平面向量,e是单位向量,若非零向量a与e的夹角为,向量b满足b²-4e·b+3=0,则∣a-b∣的最小值是A. -1B.C. 2D. 2-10.已知a₁,a₂,a₃,a4成等比数列,且a₁+a₂+a₃+a4=ln(a₁+a₂+a₃),若a1﹥1,则A. a₁﹤a₂,a₃﹤a4B. a₁﹥a₃,a₂﹤a4C. a₁﹤a₃,a₂﹥a4D. a₁﹥a₃,a₂﹥a4简答题(综合题)(本大题共12小题,每小题____分,共____分。

2018年高考数学浙江卷(含答案与解析)

2018年高考数学浙江卷(含答案与解析)
9.【答案】A
【解析】由 可得 ,即 ,即 ,如图,由几何意义得,b的终点B在以F为圆心,半径为1的圆上运动,a的终点A在射线OP上,当点B为点F到OP的垂线与圆F的交点时, 最小,即
【考点】平面向量的运算及几何意义
10.【答案】B
【解析】由 结构,想到常用对数放缩公式 ,所以 ,即 .若 ,则 即 而 ,故 ,即与 矛盾,所以 ,所以选B
1.已知全集 , ,则 ()
A. B.
C. D.
2.双曲线 的焦点坐标是()
A. ,
B. ,
C. ,
D. ,
3.某几何体的三视图如图所示(单位: ),则该几何体的体积(单位: )是()
A.2B.4C.6D.8
4.复数 ( 为虚数单位)的共轭复数是()
A. B. C. D.
5.函数 的图象可能是()
AB
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.(本小题满分14分)
已知角 的顶点与原点 重合,始边与 轴的非负半轴重合,它的终边过点 .
(Ⅰ)求 的值;
(Ⅱ)若角 满足 ,求 的值.
19.(本小题满分15分)
如图,已知多面体 , , , 均垂直于平面 , , , , .
柱体的体积公式: ,其中 表示柱体的底面积, 表示柱体的高.
锥体的体积公式: ,其中 表示锥体的底面积, 表示锥体的高.
球的表面积公式: ,其中 表示球的半径.
球的体积公式: ,其中 表示球的半径.
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【考点】直线与椭圆的位置关系以及平面向量等知识

2018年高考数学真题试卷(浙江卷)

2018年高考数学真题试卷(浙江卷)

2018年高考数学真题试卷(浙江卷)一、选择题 (共10题;共20分)1.(2分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(2分)双曲线x22=1的焦点坐标是()3−yA.(− √2,0),( √2,0)B.(−2,0),(2,0)C.(0,− √2),(0,√2)D.(0,−2),(0,2)3.(2分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8(i为虚数单位)的共轭复数是()4.(2分)复数21−iA.1+i B.1−i C.−1+i D.−1−i5.(2分)函数y= 2|x|sin2x的图象可能是()A.B.C.D.6.(2分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(2分)设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(2分)已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(2分)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π3,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.√3−1B.√3+1C.2D.2− √310.(2分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1> 1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题 (共7题;共22分)11.(4分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2018年普通高等学校招生全国统一考试数学(浙江卷) (2)

2018年普通高等学校招生全国统一考试数学(浙江卷) (2)

绝密★启用前2018年普通高等学校招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页;非选择题部分2至4页.满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答.在本试题卷上的作答一律无效.参考公式:若事件A,B互斥,则柱体的体积公式P(A+B)=P(A)+P(B) V=Sh若事件A,B相互独立,则其中S表示柱体的底面积,h表示柱体的高P(AB)=P(A)P(B) 锥体的体积公式若事件A在一次试验中发生的概率是p,则n次V=13Sh独立重复试验中事件A恰好发生k次的概率其中S表示锥体的底面积,h表示锥体的高P n(k)=C n k p k(1-p)n-k(k=0,1,2,…,n) 球的表面积公式台体的体积公式S=4πR2V=13(S1+√S1S2+S2)h球的体积公式其中S1,S2分别表示台体的上、下底面积, V=43πR3h表示台体的高其中R表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.双曲线x 23-y2=1的焦点坐标是()A.(-√2,0),(√2,0)B.(-2,0),(2,0)C.(0,-√2),(0,√2)D.(0,-2),(0,2)3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.84.复数2(i为虚数单位)的共轭复数是()1-iA.1+iB.1-iC.-1+iD.-1-i5.函数y=2|x|sin 2x的图象可能是()6.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则()A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b+3=0,则|a-b|的最小值是( ) A .√3-1 B .√3+1 C .2D .2-√3 10.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则{x +y +z =100,5x +3y +13z =100,则z=81时,x= ,y= . 12.若x ,y 满足约束条件{x -y ≥0,2x +y ≤6,x +y ≥2,则z=x+3y 的最小值是 ,最大值是 .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若a=√7,b=2,A=60°,则sin B= ,c= .14.二项式(√x 3+12x )8的展开式的常数项是.15.已知λ∈R ,函数f (x )={x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答)17.已知点P (0,1),椭圆x24+y 2=m (m>1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m= 时,点B 横坐标的绝对值最大.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知角α的顶点与原点O 重复,始边与x 轴的非负半轴重合,它的终边过点P (-35,-45). (1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.19.(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.20.(本题满分15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.21.(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴; (2)若P 是半椭圆x 2+y 24=1(x<0)上的动点,求△PAB 面积的取值范围.22.(本题满分15分)已知函数f (x )=√x -ln x.(1)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln 2;(2)若a ≤3-4ln 2,证明:对于任意k>0,直线y=kx+a 与曲线y=f (x )有唯一公共点.数学(浙江卷)1.C ∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C .2.B ∵a 2=3,b 2=1,∴c 2=a 2+b 2=3+1=4.∴c=2.又焦点在x 轴上,∴焦点坐标为(-2,0),(2,0). 3.C 由三视图可知该几何体为直四棱柱.∵S 底=12×(1+2)×2=3,h=2, ∴V=Sh=3×2=6.4.B ∵21-i=2(1+i )(1-i )(1+i )=2(1+i )2=1+i, ∴复数21-i 的共轭复数为1-i .5.D 因为在函数y=2|x|sin 2x 中,y 1=2|x|为偶函数,y 2=sin 2x 为奇函数, 所以y=2|x|sin 2x 为奇函数.所以排除选项A,B .当x=0,x=π2,x=π时,sin 2x=0,故函数y=2|x|sin 2x 在[0,π]上有三个零点,排除选项C,故选D .6.A 当m ⊄α,n ⊂α时,由线面平行的判定定理可知,m ∥n ⇒m ∥α;但反过来不成立,即m ∥α不一定有m ∥n ,m 与n 还可能异面.故选A .7.D 由题意可知,E (ξ)=0×(1-p 2)+1×12+2×p2=12+p ,D (ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2 =12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D (ξ)先增大后减小. 8.D当点E 不是线段AB 的中点时,如图,点G 是AB 的中点,SH ⊥底面ABCD ,过点H 作HF ∥AB ,过点E 作EF ∥BC ,连接SG ,GH ,EH ,SF.可知θ1=∠SEF ,θ2=∠SEH ,θ3=∠SGH. 由题意可知EF ⊥SF ,故tan θ1=SFEF =SFGH >SHGH =tan θ3.∴θ1>θ3.又tan θ3=SH GH>SHEH=tan θ2,∴θ3>θ2.∴θ1>θ3>θ2. 当点E 是线段AB 的中点时,即点E 与点G 重合,此时θ1=θ3=θ2. 综上可知,θ1≥θ3≥θ2.9.A ∵e 为单位向量,b 2-4e ·b+3=0,∴b 2-4e ·b+4e 2=1. ∴(b-2e )2=1.以e 的方向为x 轴正方向,建立平面直角坐标系,如图. OE ⃗⃗⃗⃗⃗ =2e ,OB ⃗⃗⃗⃗⃗ =b ,OA⃗⃗⃗⃗⃗ =a ,α=π3. 由(b -2e )2=1,可知点B 在以点E 为圆心,1为半径的圆上.由|a -b |=|OA⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |, 可知|a-b |的最小值即为|BA ⃗⃗⃗⃗⃗ |的最小值,即为圆上的点B 到直线OA 的距离. 又直线OA 为y=√3x ,点E 为(2,0),∴点E 到直线OA 的距离d=2√32=√3.∴|BA ⃗⃗⃗⃗⃗ |的最小值为√3-1,即|a -b |的最小值为√3-1. 10.B 设等比数列的公比为q ,则a 1+a 2+a 3+a 4=a 1(1-q 4)1-q ,a 1+a 2+a 3=a 1(1-q 3)1-q.∵a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3), ∴a 1+a 2+a 3=e a 1+a 2+a 3+a 4,即a 1(1+q+q 2)=e a 1(1+q+q 2+q 3).又a 1>1,∴q<0.假设1+q+q 2>1,即q+q 2>0,解得q<-1(q>0舍去). 由a 1>1,可知a 1(1+q+q 2)>1,∴a 1(1+q+q 2+q 3)>0,即1+q+q 2+q 3>0,即(1+q )+q 2(1+q )>0,即(1+q )(1+q 2)>0,这与q<-1相矛盾.∴1+q+q 2<1,即-1<q<0.∴a 1>a 3,a 2<a 4.11.8 11 由{x +y +z =100,5x +3y +13z =100,且z=81, 可得{x +y =19,5x +3y =73,解得{x =8,y =11.12.-2 8由约束条件{x -y ≥0,2x +y ≤6,x +y ≥2画出可行域,如图所示的阴影部分.由z=x+3y , 可知y=-13x+z 3.由题意可知,当目标函数的图象经过点B 时,z 取得最大值,当目标函数的图象经过点C 时,z 取得最小值.由{y =x ,2x +y =6,得{x =2,y =2,此时z 最大=2+3×2=8, 由{2x +y =6,x +y =2,得{x =4,y =-2,此时z 最小=4+3×(-2)=-2.13.√217 3 由正弦定理a sinA =bsinB , 可知sin B=bsinAa=√7=2×√32√7=√217. ∵a=√7>b=2,∴B 为锐角. ∴cos B=√1-sin 2B =√47=2√77. ∴cos C=-cos(A+B )=sin A sin B-cos A cos B=√32×√217−2√77×12=3√7-2√714=√714.由余弦定理,得c 2=a 2+b 2-2ab cos C=7+4-2×2×√7×√714=7+4-2=9.∴c=3.14.7二项式(√x 3+12x )8的通项为T r+1=C 8r(x 13)8-r (12x -1)r =(12)r C 8r x 8-r 3-r =(12)r C 8r x 8-4r 3,当r=2时,8-4r3=0.故展开式的常数项为(12)2C 82=14×8×72=7.15.(1,4) (1,3]∪(4,+∞) 当λ=2时,f (x )={x -4,x ≥2,x 2-4x +3,x <2.当x ≥2时,f (x )=x-4<0,解得x<4,∴2≤x<4.当x<2时,f (x )=x 2-4x+3<0,解得1<x<3,∴1<x<2.综上可知,1<x<4,即f (x )≤0的解集为(1,4).分别画出y 1=x-4和y 2=x 2-4x+3的图象如图,由函数f (x )恰有2个零点,结合图象可知1<λ≤3或λ>4. 故λ的取值范围为(1,3]∪(4,+∞). 16.1 260 分两类: 第一类:从0,2,4,6中取到0,则没有重复数字的四位数有C 31C 52A 31A 33=540;第二类:从0,2,4,6中不取0,则没有重复数字的四位数有C 32C 52A 44=720.所以没有重复数字的四位数共有540+720=1 260种. 17.5 设A (x 1,y 1),B (x 2,y 2).∵P (0,1),∴AP ⃗⃗⃗⃗⃗ =(-x 1,1-y 1),PB ⃗⃗⃗⃗⃗ =(x 2,y 2-1). ∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,∴{-x 1=2x 2,1-y 1=2(y 2-1),即{x 1=-2x 2,y 1=3-2y 2.又x 124+y 12=m ,∴(-2x 2)24+(3-2y 2)2=m ,即4x 224+4y 22-12y 2+9=m.又x 224+y 22=m ,∴4m-12y 2+9=m ,即12y 2=3m+9,4y 2=m+3.∴x 224+(m+34)2=m ,即x 22+m 2+6m+94=4m , 即x 22=-m 24+52m-94.∴当m=5时,x 22的最大值为4,即点B 横坐标的绝对值最大.18.解 (1)由角α的终边过点P (-35,-45), 得sin α=-45,所以sin(α+π)=-sin α=45. (2)由角α的终边过点P (-35,-45),得cos α=-35, 由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.19.解法一 (1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BC 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5, 由AB=BC=2,∠ABC=120°,得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD. 由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1,得C 1D ⊥平面ABB 1, 所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.解法二(1)证明:如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1).因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3).由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1.由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).设平面ABB 1的法向量n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{x +√3y =0,2z =0,可取n =(-√3,1,0). 所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗·n ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|n |=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.20.解 (1)由a 4+2是a 3,a 5的等差中项,得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20,得8(q +1q )=20,解得q=2或q=12,因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }前n 项和为S n ,由c n ={S 1,n =1,S n -S n -1,n ≥2,解得c n =4n-1. 由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n -1. 故b n -b n-1=(4n-5)·(12)n -2,n ≥2,b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1)=(4n-5)·(12)n -2+(4n-9)·(12)n -3+…+7·12+3. 设T n =3+7·12+11·(12)2+…+(4n-5)·(12)n -2,n ≥2,12T n =3·12+7·(12)2+…+(4n-9)·(12)n -2+(4n-5)·(12)n -1, 所以12T n =3+4·12+4·(12)2+…+4·(12)n -2-(4n-5)·(12)n -1, 因此T n =14-(4n+3)·(12)n -2,n ≥2,又b 1=1,所以b n =15-(4n+3)·(12)n -2. 21.(1)证明 设P (x 0,y 0),A (14y 12,y 1),B (14y 22,y 2).因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程(y+y 02)2=4·14y 2+x 02, 即y 2-2y 0y+8x 0-y 02=0的两个不同的实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知{y 1+y 2=2y 0,y 1y 2=8x 0-y 02,所以|PM|=18(y 12+y 22)-x 0=34y 02-3x 0,|y 1-y 2|=2√2(y 02-4x 0).因此,△PAB 的面积S △PAB =12|PM|·|y 1-y 2|=3√24(y 02-4x 0)32. 因为x 02+y 024=1(x 0<0),所以y 02-4x 0=-4x 02-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是[6√2,15√104]. 22.证明 (1)函数f (x )的导函数f'(x )=2√x 1x , 由f'(x 1)=f'(x 2),得2√x 1x 1=2√x 1x 2, 因为x 1≠x 2,所以√x √x =12.由基本不等式,得12√x 1x 2=√x 1+√x 2≥2√x 1x 24, 因为x 1≠x 2,所以x 1x 2>256.由题意得f (x 1)+f (x 2)=√x 1-ln x 1+√x 2-ln x 2=12√x 1x 2-ln(x 1x 2). 设g (x )=12√x -ln x ,则g'(x )=14x (√x -4),所以所以g (x )在[256,+∞)上单调递增,故g (x 1x 2)>g (256)=8-8ln 2,即f (x 1)+f (x 2)>8-8ln 2.(2)令m=e -(|a|+k ),n=(|a |+1k )2+1,则f (m )-km-a>|a|+k-k-a ≥0, f (n )-kn-a<n (√n a n -k)≤n (|a |+1√n k)<0, 所以,存在x 0∈(m ,n ),使f (x 0)=kx 0+a.所以,对于任意的a ∈R 及k ∈(0,+∞),直线y=kx+a 与曲线y=f (x )有公共点. 由f (x )=kx+a ,得k=√x -lnx -a x . 设h (x )=√x -lnx -a x,则h'(x )=lnx -√x2-1+a x 2=-g (x )-1+a x 2. 其中g (x )=√x 2-ln x.由(1)可知g (x )≥g (16).又a ≤3-4ln 2,故-g (x )-1+a ≤-g (16)-1+a=-3+4ln 2+a ≤0,所以h'(x )≤0,即函数h (x )在(0,+∞)上单调递减.因此方程f (x )-kx-a=0至多1个实根.综上,当a ≤3-4ln 2时,对于任意k>0,直线y=kx+a 与曲线y=f (x )有唯一公共点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2018年普通高等学校招生全国统一考试(浙江卷)
数 学
本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:
互斥,则 相互独立,则
分别表示台体的上、下底面积,
台体的高
柱体的体积公式
其中表示柱体的底面积,表示柱体的高锥体的体积公式
其中表示锥体的底面积,表示锥体的高球的体积公式其中表示球的半径选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.【2018年浙江卷】已知全集U ={1,2,3,4,5},A ={1,3},则
A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 2.双曲线
的焦点坐标是
A. (−,0),(,0)
B. (−2,0),(2,0)
C. (0,−),(0,)
D. (0,−2),(0,2)
3.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是
学*科*网...学*科*网...
A. 2
B. 4
C. 6
D. 8
4.复数(i为虚数单位)的共轭复数是
A. 1+i
B. 1−i
C. −1+i
D. −1−i
5.函数y=sin2x的图象可能是
A. B.
C. D.
6.(2018年浙江卷)已知平面α,直线m,n满足,,则“m∥n”是“m∥α”的
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
7.设0<p<1,随机变量ξ的分布列如图,则当p在(0,1)内增大时,()
A. D(ξ)减小
B. D(ξ)增大
C. D(ξ)先减小后增大
D. D(ξ)先增大后减小
8.【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则
A. θ1≤θ2≤θ3
B. θ3≤θ2≤θ1
C. θ1≤θ3≤θ2
D. θ2≤θ3≤θ1
9.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()
A. B. C. 2 D.
10.已知成等比数列,且.若,则
A. B. C. D.
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则
当时,___________,___________.
12.若满足约束条件则的最小值是___________,最大值是___________.
13.在△ABC中,角A,B,C所对的边分别为a,b,c.若,b=2,A=60°,则sin
B=___________,c=___________.
14.二项式的展开式的常数项是___________.
15.已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.
16.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)
17.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.
三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.
19.【2018年浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
20.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列
{b n}满足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{b n}的通项公式.
21.【2018年浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.
22.已知函数.
(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;
(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

相关文档
最新文档