2018年浙江高职考数学考试
2018年浙江省高职考数学模拟试卷14
2018年浙江省高职考数学模拟试卷(十四)一、选择题1. 已知集合R U =,{}21>-=x x B ,则B C U 等于 ( ) A.φ B.)3,1(- C.),3()1,(+∞--∞ D.[]3,1-2. 已知c b a >>,且0=++c b a ,则下列不等式中正确的是 ( )A.222c b a >> B.bc ac > C.ac ab > D.b c b a >3. 若函数32)(2+-=x x x f ,[]2,2-∈x ,则)(x f 的值域为 ( ) A.[]11,2- B. []11,2 C. []3,2 D. []11,34. 命题甲“a ,G ,b 三个数成等比数列”是命题乙“ab G ±=”成立的 ( ) A.充分不必要条件 B.必要条件 C.充要条件 D.既不充分也不必要条件5. 下列函数在),0(+∞内是增函数的是 ( )A.x x f 3)(-=B.1)(2+-=x x fC.xx f ⎪⎭⎫ ⎝⎛=31)( D.x x f 3log )(= 6. 函数0)1(12)(-+-=x x f x 的定义域为 ( )A.[)+∞,0B.[)1,0C. [)()+∞,11,0D.()+∞,17. 若点P 在角32π的终边上,且4=OP ,则P 的坐标为 ( ) A.)22,2( B.)2,32(- C.)32,2(- D. )2,32(8. 已知数列{}n a 是等差数列,n S 是等差数列的前n 项和,若2432π=++a a a ,则5co s S 的值为 ( ) A.6π B.4π C.3π D.65π 9. 已知直线过两点)3,1(A ,)1,3(--B ,则该直线的倾斜角为 ( ) A.6π B.4π C.3π D.65π 10. 函数⎪⎭⎫ ⎝⎛-=32sin 3πx y 的图像只需将函数x y 2sin 3=的图像 ( ) A.向左平移3π个单位 B. 向右平移3π个单位C. 向左平移6π个单位D. 向右平移6π个单位 11. 若平面α与平面β相交,直线α//a ,β⊂b ,则 ( ) A.a 与b 异面 B. a 与b 相交 C. a 与b 平行 D.以上都有可能12. 已知ABC ∆内角A 、B 、C 的对边分别为a ,b ,c ,若︒=∠60A ,︒=∠45B ,22=b ,则a 为 ( )A.2B.62C.32D.83 13. 顶点在原点,准线方程为41=x 的抛物线方程是 ( ) A.x y =2 B. x y -=2 C. x y 212= D.y x =2 14. 已知点)3,1(-A ,)1,5(B ,则线段AB 的中点坐标是 ( )A.)2,2(B.)1,3(-C.)0,4(D.)4,0(15. 已知320220C C n =-,则n 是 ( )A.5B.15C.19D.5或1916. 若以双曲线的顶点1A 、2A 为直径两端点的圆恰好经过虚轴的两个端点,则双曲线的渐近线和离心率e 分别为 ( )A.x y ±=,2B. x y 2±=,2C. x y ±=,22 D. x y 2±=,22 17. 求值:154cos 1514cos 154sin 15sin ππππ+等于 ( ) A.21 B.23 C.21- D.23- 18. 正方形ABCD 的中心为)2,1(,AB 所在直线的方程为022=--y x ,则正方形的外接圆的标准方程为 ( )A.5)2()1(22=-+-y xB. 5)2()1(22=+++y xC. 10)2()1(22=-+-y xD. 10)2()1(22=+++y x二、填空题19. 若1>x ,则11-+x x 的最小值为 ; 20. 已知)4,2(-a ,),1(m b ,若b a //,则b 的模为 ;21. 已知数列{}n a 是等比数列,它的前n 项和a S n n +=2,则=a ;22. 已知31cos sin =+αα,则=α2sin ; 23. 对于函数)(x f ,若存在R x ∈0,使成立00)(x x f =,则称0x 为)(x f 的不动点,则函数42)(2--=x x x f 的不动点是 ;24. 小明和小红玩飞行棋,轮流抛掷一枚骰子,规定骰子只有投到6点,玩家的棋子才能起飞,并且投到6点后,还可以再投一次,小明的一枚棋子刚好走到小红的基地附近,此时小红没有可飞的棋子,接下去如果小红能抛出可以起飞的棋子,那么只要抛出不小于4点就可以把小明的棋子逐回他自己的基地,小红能驱逐成功的概率是 ;25. 已知点)0,4(-M ,)0,4(N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 ;26. 若正方体的棱长为1,则其外接球的表面积为 ;三、解答题27. 平面内,求过点)3,2(-A ,且垂直于直线012=-+y x 的直线方程;28. 在ABC ∆中,设内角A ,B ,C 对应的边分别是a ,b ,c ,若有bc c b a 3222++=,(1)求角A 的大小;(2)若3=b ,4=c ,求ABC ∆的面积;29. 某学校组织三个班级学生参加一项活动,其中一班5人,二班6人,三班7人,(1)选出其中1人为负责人,有多少种选法?(2)每班选一名组长,有多少种选法?(3)推选二人作中心发言,这二人必须来自不同的班级,有多少种选法? 30. 已知函数⎩⎨⎧-≥+--<+=1,31,2)(2x mx x x x x f ,求:(1))3(-f 的值;(2)[])2(-f f 的值;(3)若)(x f 在[]+∞,1上是增函数,求m 的取值范围;31. 已知三角函数m x m x x x f +-=2cos 2cos sin 2)(的最大值是2,(1)求m 的值;(2)将三角函数化为()ϕω+=x A x f sin )(的形式,其中⎪⎭⎫ ⎝⎛<>2,0πϕω,并求出其最小正周期;32. 已知等差数列{}n a 中82=a ,前8项和1248=S ,(1)求数列{}n a 的通项公式;(2)将数列{}n a 中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列{}n b ,求数列{}n a 的前n 项和n T ;33. 如图所示的平面图形由4个腰长为4的等腰三角形和一个边长为2的正方形组成,(1)请画出沿虚线折起拼接后的多面体图形,并写出它的名称;(2)求该多面体中侧面与底面所成的二面角的余弦值;(3)求该多面体的体积;34. 点M 到椭圆1316422=+y x 右焦点2F 的距离和它到经过左焦点1F 且与x 轴垂直的直线距离相等,(1)求点M 的轨迹方程;(2)若正方形ABCD 的顶点A 、B 在点M 的轨迹上,顶点C ,D 在直线4+=x y 上,求正方形的边长;。
2018年浙江省高职考试研究联合体第二次联合考试 数学-试卷
无分 ㊂
D. 4个
A. m >0
B. m =0
C. m <0
D. m 是任意实数
( (
) )
对任意 xɪR, 下列式子恒成立的是 4. A. x2 -2 x+1>0
充分不必要条件 A. 充分必要条件 C.
必要不充分条件 B. 既不充分也不必要条件 D.
x
1ö æ 1(2 ç ÷ +1>0 ) C. D. l o x +1 >0 g 2 è2 ø 已知某企业的产值连续三年增长 , 这 三 年 的 增 长 率 分 别 为 x, 则这三年的年平均增长 5. z, y, ( ) 率为 B. | x-1 |>0 ( y) 1+x) +( 1+ +( 1+ z) D. 3 已知 a, 则下列命题中正确的是 6. b, c 表示三条不同的直线 , γ 表示一个平面 , , , 若 aʊ 若 aʅ 则 aʅ A. b bʊ c 则 aʊ c B. b, bʅ c, c ) ( ) ( ) C. ( x+1 z+1 -1 y+1
1 2 æ aö ( 本题满分 8 分 ) 已知 f( 3 1. x) =ç 0. x- 2 ÷ 的常数项为 6 è x ø
( ) 求常数 a 的值 ; 1
( ) 如果第 3 求k 的值 . 2 k 项和第k+2 项的二项式系数相等 ,
数学试卷
第 3 页( 共 4 页)
( 本题满分 8 分 ) 已知等差数列 { 的前三项分别为 a-1, 其前 n 项和为Sn . 3 2. a 4, 2 a, n} ( ) 设 Sk =2 求 a 和k 的值 ; 1 5 5 0,
2018年浙江省高职考期末试卷B卷
浙江省中等职业学校高三第一学期期末数学试卷、单项选择题:(本大题共 20小题,1-12小题每小题2分,13-20小题每小题3分,c , X小x小C. x 34 D.— 3 — 32 3D.43x 2y 5 0同一侧的点是A.( 3,4)B.( 3, 2)C.( 3, 4)D. (0, 3)A.充分不必要条件B.必要不充分条件4.下列不等式(组) 的解集为 (,0)的是2x 2 0A. x 2x 3B. 2 3x 11.已知全集U 1,2,3,4,5,6,集合 A1,3,5,B1,4,则 A C u B命题:岑佳威A. 3,5B. 2,4,6C. 1,2,4,6D. 1,2,3,5,61 12.在—,2 , log 3 22这三个数中,最小的数是1A.— 21 B.22C. log 3 2 1D. 2至和 log 3 23条件p :,条件 q : sinsin,则条件p 是条件q 的共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
) C.冲要条件D.既不充分也不必要条件xA.1B.2C.3 旋转一弧度到点2B ,则点B 的坐标为A.( -3,1)B.( 3, 1)C.(1, 3)D.( 1, ■ 3)10.已知直线ax y 20与直线(a 2)x y1 0互相垂直,则a A. 2B. 1C.0D. 12A. y x 1B. y sinx(0,—)C.ylog 1 x2D. y 2x8.下列关于向量的说法中正确的是2—r—fc- —h- —fc-A.若a 与b 互为相反向量,则 a bB. AB AC BCC.若四边形ABCD 是平行四边形,则 AB CDD. MNPM --- h —h7•下列函数在其定义域内函数值 y 随自变量x 的值增大而减小的是A 的坐标为C 、3,1),现将点A 绕原点0逆时针15•已知函数f (X 2)22 x,则f (3)6•在平面直角坐标系 xOy 中,与原点位于直线 9.在直角坐标系中, 0是坐标原点,已知点11. 函数f(x) x24x 3 log3(10 x)的定义域是A. ( ,10)B. ,1 3,10C. ,3 10,D. (1,10)512. 已知抛物线C : y2 x的焦点为F,点A(X0,y°)是C上一点,|AF -x°,则沧4A.1B.2C.4D.813.已知等差数列a n 满足a3 7, a5 a7 26,则S8A.60B.70C.80D.9014.已知COS() 虫,且| |,则tan2 2A. ■. 3B. . 3 2 D.-3 32x3,x 015.已知函数f (x) ,则f(f( J)tan x,0 x — 42A. 2B. 1C.1D. 216•已知圆C: x2 y2 4x 0,则圆C与过点P(3,0)的直线l位置关系为A.相交B.相切C.相离D.以上都不正确17•已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.818•如图,四棱锥S ABCD的底面为正方形,SD丄底面ABCD ,则下列结论中不正确的是A. AC 丄SBB. AB // 平面SCDC. AB与SC所成的角等于DC与SA所成的角D. SA与平面SBD所成的角等于SC与平面SBD所成的角19. 已知函数f (x) . 3 sin( 2x) 2cos2 1,x R,则f()2A. 1B. 2C.3D. 420. 如图所示,已知点A( 3,0), B(3,0),设动点P的坐标为(x, y),已知PA 1,则P在平面直角坐标系内的运动轨迹为PB 2A.圆的一部分B.椭圆的一部分C.双曲线的一部分二、填空题(本大题共7小题,每小题4分,共28分)21. 已知平行四边形ABCD , O是对角线的交点,点A(3, 4) , C( 5,2),则点0的坐标为22. 已知a (1,2),b (x,4),若b 2a,则x ________________ .23•设0 x 3,则函数f(x) 4x(3 2x)的最大值为 _________________________.24.在数列a n中,a1 2, a n1 2a n, S n 126,则n __________________ .25.若函数f(x) 4sinx acosx的最大值为5,则常数a ____________________ .26•七人并排站成一行,如果江辰与陈小希两人必须不相邻,那么不同的排法种数是______________ 27. 已知圆锥的底面积为,体积为2 ,若球的直径和圆锥的高相等,则球的体积为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)19厅0 228. (本题满分6 分)(?2 ( 2018) C3 lg 25 lg 4 sin?1 329. (本题满分7分)在△ ABC中,tan A , tanB .4 5(1)求角C的大小;(2)若AB的边长为17,求BC边的长.30. (本题满分8分)在数列a n中,31 3,317 67,其通项公式可看做一次函数,求:(1) a n ;(2)2018是否为数列a n中的项,如果是,请求出是第几项.31.(本题满分8分)如图,在平行四边形ABCD中,AB 3, AD 2, AC 4 .求:(1) cos ABC ;(2) 平行四边形ABCD的面积.32.(本题满分9分)已知(3・.x)2的二项展开式中各项系数之和为64,求:(1)n的值;(2)展开式中的常数项33. (本题满分9分)已知双曲线x2 y2 a2与抛物线y2 16的准线交于代B两点,且AB 4J3 求:(1)双曲线的标准方程;(2)双曲线的实轴长与离心率34. (本题满分9分)如图,一边靠墙,另外三边用长为30米的篱笆围成一个苗圃园•已知墙长为18米,设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,求y与x之间的函数关系式.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?最大面积是多少?35(本题满分9分)如图所示:四棱锥P ABCD中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD是面积为2 . 3的菱形,ADC为菱形的锐角,M为PM的中点,CD ;AB D的度数;PDM的体积。
2018年浙江省高职考数学试卷(模拟)
浙江省2018年单独文化招生考试练手试卷一说明:练手试卷雷同于模拟试卷,练手为主,体验高职考试的感觉一、单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分)。
1.已知全集为R ,集合{}31|≤<-=x x A ,则=A C uA.{}31|<<-x xB.{}3|≥x xC.{}31|≥-<x x x 或D.{}31|>-≤x x x 或 2.已知函数14)2(-=x x f ,且3)(=a f ,则=aA.1B.2C.3D.4 3.若0,0,0><>+ay a y x ,则y x -的大小是A.小于零B.大于零C.等于零D.都不正确 4.下列各点中,位于直线012=+-y x 左侧的是A.)1,0(-B.)2018,1(- C.)2018,21( D.)0,21( 5.若α是第三象限角,则当α的终边绕原点旋转7.5圈后落在A.第一象限角B.第二象限角C.第三象限角D.第四象限角 6.若曲线方程R b R a by ax ∈∈=+,,122,则该曲线一定不会是A.直线B.椭圆C.双曲线D.抛物线7.条件b a p =:,条件0:22=-b a q ,则p 是q 的A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件 8.若向量)4,2(),2,1(-==,则下列说法中正确的是A.=B.2=C.与共线D.)2,3(=+ 9.若直线过平面内两点)32,4(),2,1(+,则直线的倾斜角为A.30 B.45 C.60 D.90 10.下列函数中,在区间),0(+∞上单调递减的是A.12+=x yB.x y 2log =C.1)21(-=xy D.xy 2-= 11.已知一个简易棋箱里有象棋和军棋各两盒,从中任取两盒,则“取不到象棋”的概率为 A.32 B.31 C.53 D.5212.不等式(组)的解集与其他选项不同的是 A.0)3)(1(>+-x x B.031>+-x x C.21>+x D.⎩⎨⎧>+<-0301x x 13.在等比数列{}n a 中,公比2=q ,且30303212=⋅⋅a a a a ,则=⋅⋅30963a a a a A.102 B.202 C.162 D.152 14.下列说法中正确的是A.直线a 垂直于平面α内的无数条直线,则α⊥aB.若平面α内的两条直线与平面β都平行,则α∥aC.两两相交的三条直线最多可确定三个平面D.若平面α与平面β有三个公共点,则α与β重合15.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,24,34,60===b a A ,则角=B A.45 B.135 C.45或135 D.60或12016.2017年12月29日全国上映的《前任三》红爆网络,已知某公司同事5人买了某场次的连续5个座位,若小刘不能坐在两边的座位,则不同的坐法有 A.48种 B.60种 C.72种 D.96种 17.若抛物线y x 42=上一点),(b a P 到焦点的距离为2,则=a A.2 B.4 C.2± D.4± 18.已知2,21)sin(παπα<=+,则=αtan A.33 B.3- C.3± D.33- 19.已知函数xx f x3log 122)(+-=的定义域为A.)0,(-∞B.)1,0(C.(]1,0D.),0(+∞20.已知圆O 的方程为08622=--+y x y x ,则点)3,2(到圆上的最大距离为 A.25+ B.21+ C.34+ D.31+二、填空题(本大题共7小题,每小题4分,共28分)22.在平行四边形ABCD 中,已知n AD m AB ==,,则=OA _________.24.顶点在原点,对称轴为坐标轴的抛物线经过点)3,2(-,则抛物线的标准方程为_________.26.在等差数列{}n a 中,12,1331==a a ,若2=n a ,则=n _________.27.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为_________.三、解答题(本大题共9小题,共74分) (解答题应写出文字说明及演算步骤)29.(本题满分7分)求1003)2(xx -的展开式中有多少项是有理项.30.(本题满分8分)如图,已知四边形ABCD 的内角A 与角C 互补,2,3,1====DA CD BC AB.求:(1)求角C 的大小与对角线BD 的长;(2)四边形ABCD 的面积.31.(本题满分8分)观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n(1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.32.(本题满分8分)如图,在底面是直角梯形的四棱锥ABCD S -中, 90=∠ABC ,⊥SA 面ABCD ,21,1====AD BC SB SA .求: (1)ABCD S V -;(2)面SCD 与面SAB 所成二面角的正切值.(1))3(f ; (2)使41)(<x f 成立的x 的取值集合.34.(本题满分9分)已知中心在原点的双曲线C 的右焦点为)0,2(,实轴长为32,过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于B A ,两点.求: (1)双曲线的标准方程; (2)AB 的长.35.(本题满分9分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.36.(本题满分9分)已知椭圆12222=+b y a x 焦点在x 轴上,长轴长为22,离心率为22,O 为坐标原点.求:(1)求椭圆的标准方程;(2)设过椭圆左焦点F 的直线交椭圆与B A ,两点,并且线段AB 的中点在直线0=+y x 上,求直线AB 的方程.参考答案 21.2 22.)(21+- 23.53- 24.292-=y 或y x 342= 25.22 26.23 27.π43 28.410129.30.31.32.33.34.解:(1)⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧+===2132322222c b a b a c c a 因为焦点在x 轴上,所以标准方程为1322=-y x(2)渐近线方程为x y 33±=,334,332=∴⎪⎩⎪⎨⎧±==AB y x 35.解析:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .36.(1)1222=+y x (2)。
2018年浙江省高职考期末试卷B卷
A.{}5,3B.{}6,4,2C.{}6,4,2,1 D.{}6,5,3,2,1 2.在2log ,2,21321这三个数中,最小的数是 A.21 B.212 C.2log3 D.212和2log 3 3.条件βα=:p ,条件βαsin sin :=q ,则条件p 是条件q 的A.充分不必要条件B.必要不充分条件C.冲要条件D.既不充分也不必要条件4.下列不等式(组)的解集为)0,(-∞的是A.322>-x x B.⎩⎨⎧<->-13202x x C.43<-x D.3332-<-x x 5.已知函数x x f x 12)2(2+=+-,则=)3(f A.1 B.2 C.3 D.46.在平面直角坐标系xOy 中,与原点位于直线0523=++y x 同一侧的点是A.)4,3(-B.)2,3(--C.)4,3(--D.)3,0(-7.下列函数在其定义域内函数值y 随自变量x 的值增大而减小的是A.12+=x yB.)2,0(sin πx y = C.x y 21log = D. x y 2= 8.下列关于向量的说法中正确的是A.若与互为相反向量,则0=+B.=-C.若四边形ABCD 是平行四边形,则=D.=++PM9.在直角坐标系中,O 是坐标原点,已知点A 的坐标为)1,3(,现将点A 绕原点O 逆时针旋转2π弧度到点B ,则点B 的坐标为 A.)1,3(- B.)1,3(-- C.)3,1(- D.)3,1(-10.已知直线02=--y ax 与直线01)2(=+-+y x a 互相垂直,则=aA.2-B.1C.0D.1-11.函数)10(log 34)(32x x x x f -++-=的定义域是 A.)10,(-∞ B.(][)10,31,Y ∞- C.(][)+∞∞-,103,Y D.)10,1(12.已知抛物线x y C =2:的焦点为F ,点),(00y x A 是C 上一点,045x AF =,则=0x A.1 B.2 C.4 D.813.已知等差数列{}n a 满足26,7753=+=a a a ,则=8SA.60B.70C.80D.9014.已知23)cos(-=+πα,且2πα<,则=αtan A.3 B.3± C.33 D.33± 15.已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f A.2- B.1- C.1 D.216.已知圆04:22=-+x y x C ,则圆C 与过点)0,3(P 的直线l 位置关系为A.相交B.相切C.相离D.以上都不正确17.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.8D.118.如图,四棱锥ABCD S -的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是A.AC ⊥SBB.AB ∥平面SCDC.AB 与SC 所成的角等于DC 与SA 所成的角D.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角19.已知函数R x x x f ∈+--=,1cos 2)2sin(3)(2π,则=)2(πf A.1 B.2 C.3 D.420.如图所示,已知点)0,3(),0,3(B A -,设动点P 的坐标为),(y x ,已知21=PB PA ,则P 在平面直角坐标系内的运动轨迹为 A.圆的一部分 B.椭圆的一部分 C.双曲线的一部分 D.抛物线的一部分二、填空题(本大题共7小题,每小题4分,共28分)21.已知平行四边形ABCD ,O 是对角线的交点,点)4,3(-A ,)2,5(-C ,则点O 的坐标为_____________.22.已知)4,(),2,1(x b a ==,若a b 2=,则=x _____________.23.设230<<x ,则函数)23(4)(x x x f -=的最大值为_____________. 24.在数列{}n a 中,126,2,211===+n n n S a a a ,则=n _____________.25.若函数x a x x f cos sin 4)(+=的最大值为5,则常数=a _____________.26.七人并排站成一行,如果江辰与陈小希两人必须不相邻,那么不同的排法种数是________.27.已知圆锥的底面积为π,体积为π2,若球的直径和圆锥的高相等,则球的体积为________.三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28.(本题满分6分)2sin 4lg 25lg )2018()49(23021π-++--+C 29.(本题满分7分)在△ABC 中,53tan ,41tan ==B A . (1)求角C 的大小;(2)若AB 的边长为17,求BC 边的长.30.(本题满分8分)在数列{}n a 中,67,3171==a a ,其通项公式可看做一次函数,求:(1)n a ;(2)2018是否为数列{}n a 中的项,如果是,请求出是第几项.31.(本题满分8分)如图,在平行四边形ABCD 中,4,2,3===AC AD AB .求:(1)ABC ∠cos ;(2)平行四边形ABCD 的面积.32.(本题满分9分)已知2)13(xx -的二项展开式中各项系数之和为64,求:(1)n 的值;(2)展开式中的常数项.33.(本题满分9分)已知双曲线222a y x =-与抛物线162=y 的准线交于B A ,两点,且34=AB 求:(1)双曲线的标准方程;(2)双曲线的实轴长与离心率.34.(本题满分9分)如图,一边靠墙,另外三边用长为30米的篱笆围成一个苗圃园.已知墙长为18米,设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,求y 与x 之间的函数关系式.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?最大面积是多少?35.(本题满分9分)如图所示:四棱锥ABCD P -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD 是面积为32的菱形,ADC ∠为菱形的锐角,M 为PM 的中点, (1)求证:CD PA ⊥;(2)求二面角D AB P --的度数; (3)求三棱锥PDM C -的体积。
2018年浙江省单独考试招生文化考试数学试卷
本试题卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效. 2.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上.3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上.4.在答题纸上作答,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分)1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有A .3个B .5个C .7个D .8个2.命题p :0≥x ,命题q :x x ≤2,则p 是q 的A.充分且必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.过点),2(a M -和)4,(a N 的直线的斜率等于1,则a 的值为A .1B .4C .1或3D .1或44.在区间(0,+∞)上不是增函数的函数是A .y =2x +1B .y =3x 2+1C .x y )21(= D .x y 21sin = 5.下列说法中正确的是A.02018sin >ο °属于象限角C.终边相同角的集合是闭区间D.16sin 3cos 22=+ππ6.函数0)1(21-+--=x x x y 的定义域是 A.{x|x ≥1} B.{x|x ≥1且x ≠2} C.{x|x>1} D.{x|x>1且x ≠2} 7.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是 A .-2<a < 2 B .a <-2或a > 2 C .-2<a <2 D .-1<a <18.平行四边形ABCD 中,下面各向量的关系是 A.=+ B.=- C.0=++ D.=9.数列{}n a 中,112,1n n a a a n +==++,则4a =C.33+nD.23+n10.与一元二次不等式0)1)(2(≤+-x x 同解的不等式(组)是A.012≤+-x xB.21≤-xC.x x 21)31(31-+<<D.⎩⎨⎧≤--≥-0221x x 11.点)4,2(),,3(B m A -的直线与直线12+=x y 平行,则m 的值为A. 1B. 1-C.1±D. 1-或012.与m n C 的值相等的数是A.11-+-m n mn C C B.1--m n n C C.mnP D.m P m n 13.抛物线的焦点在x 轴上,焦点到准线的距离是1,则抛物线的标准方程为A.x y 22=B.x y 42=C.x y 22=或x y 22-=D.x y 42=或x y 42-=14.已知α,{}12345β∈,,,,,那么使得sin cos 0αβ⋅<的数对()αβ,共有 A.9 B.11个 C.12个 D.13个15.在梯形ABCD 中,2π=∠ABC ,BC AD ∥,222===AB AD BC .将梯形绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为 A.23π B.43π C.53πD.2π16.直线04=-+y x 与圆044422=+--+y x y x 的位置关系是A.相交且过圆心B.相切C.相离D.相交不过圆心17.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为A.31B.32 C.51 D.5218.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b =19.在下列立体几何的有关结论中,说法不正确的是A.两个相交平面可将空间的分成四个部分B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C.一条直线和一个平面所成角的范围是⎥⎦⎤⎝⎛20π, D.和已知直线平行且距离等于定长的直线有无数条20.已知B A 、为坐标平面上的两个定点,且2=AB ,动点P 到B A 、两点的距离之和为2,则点P 的轨迹是A.椭圆B.双曲线C.抛物线D.线段二、填空题:(本大题共7小题,每小题4分,共28分)21.点A (2,1)和点B (-4,3)对称点的坐标为_________.22.在平面直角坐标系中,已知三点)2,0(),1,2(),2,1(---C B A ,则=+||BC AB _______.23.已知0 <x<10,则x(10-x)的最大值是_________.24.请写出一个同时经过点(0,1),(4,3)的圆的标准方程_________.25.已知(,0)2x π∈-,()54cos -=-πx ,则tan2x =_________.26.某商品定价100元,若连续两次涨价10%,则定价变为_________.27.已知{}n a 为等比数列,若4,2448==S a a ,则=8S _________. 三、解答题:(本大题共9小题,共74分)(解答应写出相应文字说明及验算步骤)28.(本题满分6分)计算:())(923sin 1.0lg )33(2303log 22219A -++++⋅+-π 29.(本题满分7分)已知等差数列{}n a 的公差1d =,前n 项和为n S .(1)若131,,a a 成等比数列,求1a ;(3分) (2)若519S a a >,求1a 的取值范围.(4分)30.(本题满分8分)如图,在ABC ∆中,ο90=∠ABC ,3=AB ,1=BC ,P 为ABC ∆内一点,ο90=∠BPC .(1)若21=PB ,求PA ;(4分) (2)若ο150=∠APB ,APC S ∆.(4分)31.(本题满分8分)已知13n x x ⎛⎫+ ⎪⎝⎭的展开式中各项系数的和为1024. (1)n 的值;(3分)(2)求展开式中的常数项.(5分)32.(本题满分9分)设函数)0)(2cos()(>+=ωπωx x f 图像上相邻的一个最高点和一个最低点之间距离为24π+.(1)求)(x f 的解析式;(4分)(2)()53=αf ,且),2(ππα∈,求)4tan(πα-.(5分) 33.(本题满分9分)如图,直三棱柱111C B A ABC -中,ο60,3,11=∠===ABC AA AC AB(1)求证C A AB 1⊥;(3分)(2)二面角B AC A --1的正切值;(3分)(3)111C B A ABC V -.(3分)34.(本题满分9分)已知倾斜角为4π的直线l 被双曲线60422=-y x 截得的弦长28=AB .(1)求直线l 的方程;(4分)(2)求以AB 为直径的圆的方程.(5分)35.(本题满分9分)2018年,许多大学毕业生逐渐不就业而转向创业。
2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h =+ 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}1.答案:C解答:由题意知U C A ={2,4,5}.2.双曲线221 3=x y -的焦点坐标是( )A .(,0),0) B .(−2,0),(2,0) C .(0,),(0D .(0,−2),(0,2)2.答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 3.答案:C解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. 4.复数21i- (i 为虚数单位)的共轭复数是( ) A .1+i B .1−i C .−1+i D .−1−i 4.答案:B 解答:22(1)11(1)(1)i z i i i i +===+--+,∴1z i =-.5.函数y =||2x sin2x 的图象可能是( )A .B .C .D .5.答案:D解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.7.设0<p <1,随机变量ξ的分布列是( )俯视图正视图222则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小7.答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+?22111()422p p p =-++=--+,所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1 8.答案:D 解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( ) A1 B C .2 D .29.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a bCD -=-=.(其中CD OA ⊥.)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>10.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
浙江高职考数学试卷精选文档
浙江高职考数学试卷精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 25. 过原点且与直线012=--y x 垂直的直线方程为 A. 2x+y=0 B. 2x-y=0 C. x+2y=0 D. x-2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为 A. (-1,-1) B. (1,-1) C. (-1,1) D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是A. 81B. 41C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 ++OEOC OA 13. 如图所示,点O 是正六边形ABCDEF 的中心,则A. B. C. D. 014. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分) 21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x xx f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。
2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解 精编版
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h = 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}1.答案:C解答:由题意知U C A ={2,4,5}.2.双曲线221 3=x y -的焦点坐标是( )A .(0),0) B .(−2,0),(2,0) C .(0,,(0D .(0,−2),(0,2)2.答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 3.答案:C解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. 4.复数21i- (i 为虚数单位)的共轭复数是( ) A .1+i B .1−i C .−1+i D .−1−i 4.答案:B 解答:22(1)11(1)(1)i z i i i i +===+--+,∴1z i =-.5.函数y =||2x sin2x 的图象可能是( )A .B .C .D .5.答案:D 解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.7.设0<p <1,随机变量ξ的分布列是( )俯视图正视图222则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小7.答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+?22111()422p p p =-++=--+,所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1 8.答案:D 解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( )A 1BC .2D .29.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a b CD -=-=.(其中CD OA ⊥.)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>10.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<. ∴13a a >,24a a <.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
2018浙江高职考数学模拟卷(宁波)
宁波市2018年高等职业技术教育招生考试模拟试卷《数学》本试卷共三大题。
全卷共4页。
满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上.3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上.4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、选择题(本大题共20小题, 1-12小题每小题2分, 13-20小题每小题3分,共48分)在每小题列出的四个备选答案中,只有一个是符合题目要求的. 错涂、多涂或未涂均无分.1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则B A =( ▲ )A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(2.已知b a >,则下列不等式正确的是( ▲ )A .22b a >B .ba 11< C .21->-b a D .||||b a > 3.已知4.04.0=a ,4.02.1=b ,4.0log 2=c ,则c b a ,,的大小关系为( ▲ )A .c a b <<B .c b a <<C .a b c <<D .a c b <<4.函数2)1lg()(--=x x x f 的定义域为( ▲ ) A .),1(+∞B .),2(+∞C .),2()2,1(+∞⋃D .)2,1( 5.已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]41([f f 的值为( ▲ ) A.9 B.91 C.9- D.91- 6.已知点)1,0(A ,)2,3(B ,向量)3,4(--=AC ,则向量=BC ( ▲ )A .)4,7(--B .)4,7(C .)4,1(-D .)4,1(7.直线233+-=x y 的倾斜角为( ▲ ) A . 30 B . 150 C . 60 D .1208.已知双曲线的标准方程为63222=-y x ,下列说法正确的是( ▲ )A .焦点是)5,0()50(-,, B .离心率是3C .渐近线方程是x y 36±= D .实轴长是3 9.抛物线y x 42-=上一点P 到焦点的距离为4,则它的纵坐标为( ▲ )A .-4B .-3C .-2D .-110.圆0422=-+++by ax y x 的圆心是)1,2(-,则该圆的半径是( ▲ )A .9B .5C .3D 11.在等比数列}{n a 中,n S 是该数列的前n 项和,若333a S =,则q =( ▲ )A .1B .21-C .1或21-D .21 12.不等式0121≤+-x x 的解集为( ▲ ) A .]1,21(- B .),1[)21,(+∞⋃--∞ C .]1,21[- D .),1[]21,(+∞⋃--∞ 13.在ABC ∆中,1=AB ,3=AC , 60=B ,则=C cos ( ▲ )A .65-B .65 C .633- D .63314cos )22ββ-=,则sin β的值为( ▲ ) A .33-B .31-C .92D .97- 15.已知直线l 过圆010122222=+-+y y x 的圆心,且与直线01=++y x 垂直,则l 的方程是( ▲ )A .02=-+y xB .02=+-y xC .03=-+y xD .03=+-y x 16.已知n m ,表示两条不同直线,α表示平面,下列说法正确的是( ▲ )A .若αm //,αn //,则n m //B .若αn αm ⊂⊥,,则nm ⊥ C .若n m αm ⊥⊥,,则αn //D .若αm //,n m ⊥,则αn ⊥17.已知二次函数()2f x ax bx c =++,若()()()067f f f =<,则()f x 在( ▲ ) A .(),0-∞上是增函数 B .()0,+∞上是增函数C .(),3-∞上是增函数D .()3,+∞上是增函数18.若数列}{n a 满足:⎩⎨⎧>-≤≤=1,110,2n n n n n a a a a a ,且761=a ,则=2018a ( ▲ ) A .73 B .75 C .76 D .710 19. 4位同学各自在周六、周日两天中任选一天参加公益活动 ,则周六、周日都有同学参加公益活动的概率是( ▲ )A .81B .83C .85D .8720.若双曲线)0,0(1:C 2222>>=-b a by a x 的一条渐近线被圆4)222=+-y x (截得的弦长为2,则双曲线的离心率为( ▲ )A .2B .3C .2D .332 二、填空题(本大题共7小题,每题4分,共28分)21.若1sin()7πα-=,α是第二象限角,则tan α= ▲ . 22.设数列}{n a 的前n 项和为n S ,已知21=a ,31=--n n a a ,若57=n S ,则=n ▲ .23.函数1)1(2)1(2-++-=x m x m y 的图象与x 轴只有一个交点,则m = ▲ .24.圆锥的轴截面是一边长为4cm 的正三角形,则圆锥的体积是 ▲ .25. 8822108)1()1()1(32-++-+-+=-x a x a x a a x )(,则=++++8210a a a a ▲ . 26. 椭圆1522=+my x 的离心率是510,则m 的值是 ▲ . 27.当)2,1(∈x 时,不等式042<++mx x 恒成立,则m 的取值范围是 ▲ .三、解答题(本大题共9小题,共74分)解答时应写出必要的文字说明、证明过程或演算步骤.28.(本题满分6分)计算:2ln 213435512log 2)063sin(!3P )064.0(--++-+-e . 29.(本题满分7分)三角形ABC 的面积为3316,6=a ,角B 、A 、C 成等差数列,求三角形ABC 的周长.30.(本题满分8分)已知n xx )12(-的展开式中二项式系数最大的项是第5项,问展开式中是否含有常数项.31.(本题满分8分)已知等差数列}{n a 的公差不为零,53=a ,且571,,a a a 成等比数列.(1)求数列}{n a 的通项公式;(2)求19531a a a a ++++ .32.(本题满分8分)43cos 3)3sin(cos )(2+-+=x πx x x f ,(1)求)(x f 的最小正周期; (2))(x f 在区间]2,0[π上的最大值与最小值.33.(本题满分8分)直线l 过点)1,1(-A 与已知直线062:1=-+y x l 相交于点B ,且5||=AB ,求直线l 的方程.34.(本题满分9分)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米,现以O 点为原点,OM 所在的直线为x 轴建立直角坐标系.(1)求出这条抛物线的函数解析式;(2)若要搭建一个矩形支撑架CB DC AD --,使C 、D 在抛物线上,A 、B 点在地面上,则这个支撑架总长的最大值是多少?35.(本题满分10分)如图(1),ABC ∆是等腰直角三角形,4==BC AC ,E 、F 分别为AC 、AB 的中点,将AEF ∆沿EF 折起,使'A 在平面BCEF 上的射影O 恰为EC 的中点,得到图(2).(1)求F A '与平面EC A '所成的角; (2)求三棱锥BC A F '-的体积.36.(本题满分10分)已知椭圆C :)0(12222>>=+b a by a x,斜率为1的直线与椭圆交于A 、B 两点,以AB 为底边作等腰三角形,顶点为)2,3(-P .(1)求椭圆的标准方程;(2)求PAB ∆的面积. O A'C B F E FE C B 第36题图y 第34题图。
(完整word)2018年浙江高职考数学试卷
2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 2 5. 过原点且与直线012=--y x 垂直的直线方程为A. 2x+y=0B. 2x -y=0C. x+2y=0D. x -2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是 A. 81 B. 41 C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 13. 如图所示,点O 是正六边形ABCDEF 的中心,则=++OE OC OA A. AE B. EA C. 0 D. 0 14. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分)21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x x x f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。
2018年浙江省高职考数学模拟试卷1
2018年浙江省高职考数学模拟试卷(一)一、选择题1. 若{}101≤≤=x x A ,{}10<=x x B ,则B A 等于 ( ) A.{}1≥x x B. {}10≤x x C.{}10,9,8,7,6,5,4,3,2,1 D. {}101<≤=x x A 2. 若2:=x p ,06:2=--x x q ,则p 是q 的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3. 函数44)(22---=x x x f 的定义域是 ( )A.]2,2[-B.)2,2(-C.),2()2,(+∞--∞D.{}2,2-4. 在区间),0(+∞上是减函数的是 ( )A.12+=x yB. 132+=x yC.x y 2=D.122++=x x y 5. 若53sin +-=m m θ,524cos +-=m m θ,其中θ为第二象限角,则m 的值是 ( ) A.8=m B.0=m C.0=m 或8=m D. 4=m 或8=m6. 直线0=+-m y x 与圆01222=--+x y x 有两个不同交点的充要条件是 ( )A.13<<-mB.24<<-mC.10<<mD.1<m 7. 方程112222=++n y n x 所表示的曲线是 ( ) A.圆 B.椭圆 C.双曲线 D.点8. 若l 是平面α的斜线,直线⊂m 平面α,在平面α上的射影与直线m 平行,则 ( )A.l m //B.l m ⊥C.m 与l 是相交直线D. m 与l 是异面直线9. 若21cos sin cos sin =-+αααα,则αt a n 等于 ( ) A.31 B. 31- C.3 D.3- 10. 设等比数列{}n a 的公比2=q ,且842=⋅a a ,则71a a ⋅等于 ( )A.8B.16C.32D.6411. 已知64251606)21(a x a x a x a x ++++=+ ,则0a 等于 ( )A.1B.64C.32D.012. 已知一条直线经过点)2,3(-与点)2,1(--,则这条直线的倾斜角为 ( )A.︒0B.︒45C.︒60D.︒9013. 已知二次函数c bx ax y ++=2(0≠a ),其中a ,b ,c 满足039=+-c b a ,则该二次函数图像恒过定点 ( )A.)0,3(B.)0,3(-C.)3,9(D.)3,9(-14. ︒+︒15cos log 15sin log 22的值是 ( )A.1B.1-C.2D.2-15. 在ABC ∆中,已知8=a ,︒=∠60B ,︒=∠75C ,则b 等于 ( ) A.24 B. 34 C. 64 D.323 16. 若b a >,d c >,则下列关系一定成立的是 ( )A.bd ac >B.bc ac >C.d b c a +>+D.d b c a ->-17. 已知抛物线的顶点在原点,对称轴为坐标轴,且以直线01553=-+y x 与y 轴的交点为焦点,则抛物线的准线方程是 ( )A.y x 122-=B. y x 122=C.3-=xD.3-=y18. 点),(y x P 在直线04=--y x 上,O 为原点,则OP 的最小值是 ( ) A.10 B.22 C.2 D.2二、填空题19. 不等式138≥-x 的解集是 ;20. 已知点⎪⎭⎫ ⎝⎛43cos ,43sin ππP 落在角θ的终边上,且[)πθ2,0∈,则θ的值为 ;21. 5=,且),4(n =,则n 的值是 ;22. 若)2,1(-A ,)1,4(-B ,)2,(m C 三点共线,则m 的值为 ;23. 从数字1,2,3,4,5中任取2个数字组成没有重复数字的两位数,则这个两位数大于40的概率为 ;24. 已知1F 、2F 是椭圆192522=+y x 的焦点,过1F 的直线与椭圆交于M ,N 两点,则2MNF ∆的周长为 ;25. 若圆柱的母线长为a ,轴截面是正方形,则圆柱的体积为 ;26. 已知0>x ,则函数x xx f 312)(+=图像中最低点的坐标为 ; 三、解答题27. 函数1)(2+-=ax x x f ,且3)2(<f ,求实数a 的取值范围;28. 现从男、女共9名学生干部中选出1名男同学和1名女同学参加夏令营活动,已知共有20种不同的方案,若男生多于女生,求:(1)男女同学的人数各是多少?(2)共3选人且男生女生都要有的选法有多少种?29. 已知直线032:=--y x l 与圆9)3()2(22=++-y x 相交于P 、Q 两点,求(1)弦PQ 的长;(2)三角形POQ 的面积(O 为坐标原点); 30. 设三个数a ,b ,c 成等差数列,其和为6,且a ,b ,c +1成等比数列,求成等比数列的三个数; 31. 已知点)0,1(A 是双曲线122=-ny m x 上的点,且双曲线的焦点在x 轴上,(1)若*N n ∈,双曲线的离心率3<e ,求双曲线的方程;(2)过(1)中双曲线的右焦点作直线l ,该直线与双曲线交于A 、B 两点,直线l 与x 轴上的夹角为α,若弦长4=AB ,求角α的值;32. 在ABC ∆中,A ∠,B ∠都为锐角,6=a ,5=b ,21sin =B ,(1)求A si n 和C cos 的值;(2)设)2sin()(A x x f +=,求)(πf 的值;33. 如图所示,正三棱柱111C B A ABC -的底面边长为cm 4,截面ABD 与底面ABC 所成的角为︒30,求:(1)CD 的长;(2)三棱锥ABC D -的体积;34. 如图所示,在一张矩形纸的边上找一点,过这点剪下两个正方形,它的边长分别是AE ,DE ,已知12=AB ,8=AD ,问:(1)设x DE =,两正方形面积和为y ,列出y 与x 之间的函数关系式;(2)要使剪下的两个正方形的面积和最小,两正方形边长应各为多少?(3)两正方形面积和的最小值为多少?。
2018年浙江省高职考数学模拟试卷8
2018年浙江省高职考数学模拟试卷(八)一、选择题1. 已知集合⎭⎬⎫⎩⎨⎧=--=021),(x y y x A ,以下不是集合A 中的元素是 ( ) A.)1,0( B.)1,1( C.)1,2( D.)1,3(2. 命题甲“使函数x x f =)(有意义”是命题乙“1>x ”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 函数)2lg(x y +=的定义域为 ( ) A.{}2->x x B.R C. {}0>x x D. {}2≥x x 4. 在等差数列{}n a 中,已知21=a ,11=-+n n a a ,则数列的通项公式n a 为 ( )A.n +1B.n -3C.21n +D.3-n5. 用十倍放大镜观察2点整的钟面,这是时针和分针形成的角的弧度数是 ( ) A.3π B. 6π C. 310π D. 35π 6. 下列不是半径为3且与直线2=x ,5=y 相切的圆的圆心 ( )A.)8,1(-B.)2,1(-C.)2,5(D.)2,5(-7. 若122=+ay x 表示焦点在y 轴上的椭圆,则a 可作为离心率的曲线是 ( )A.椭圆B.双曲线C.抛物线D.不确定8. 在下列四个命题中,为真命题的共有 ( ) ①若α⊂a ,α⊂b ,β//a ,β//b ,则βα//;②若对任一直线α⊂a ,均有β//a ,则βα//,③α⊂a ,A =βα ,则α与β不平行;④α⊂a ,l =βα ,则α与β不平行;A.1个B.2个C.3个D.4个 9. 已知0sin )cos(cos )sin(=+-+ββαββα,则αs i n 等于 ( )A.1B.1-C.0D.1±10. 在等比数列{}n a 中,若11=a ,2=q ,则n a a a a 2642++++ 等于 ( )A.)14(32-nB. )12(22-nC. )12(2-nD. )14(31-n 11. 甲、乙、丙3位同学选修课程,从4门课程中甲选修2门,乙、丙各选修3门,则不同的选修方案共有 ( )A.36种B.48种C.96种D.192种12. 若直线l 与直线0=+y x 垂直,则直线l 的倾斜角为 ( ) A.3π B. 4π C. 43π D. 32π 13. 已知二次函数4)(2-+=ax x x f ,11)3(=f ,则)(x f 的最小值为 ( )A.2B.4-C.5D.5-14. 已知54cos -=α,且⎪⎭⎫ ⎝⎛∈ππα,2,则⎪⎭⎫ ⎝⎛-4tan πα等于 ( ) A.7 B.7- C.71 D.71- 15. 在ABC ∆中,若三边之比3:1:1sin :sin :sin =C B A ,则c b a ::等于 ( )A.4:1:1B. 3:1:1C. 2:1:1D. 3:1:116. 已知80<<x ,则)8(x x -的最大值是 ( )A.7B.12C.15D.1617. 抛物线x x y 22-=关于y 轴对称的抛物线的顶点坐标为 ( )A.)1,1(B. )1,1(-C. )1,1(-D. )1,1(--18. 已知焦点在x 轴上,实轴长为4的双曲线其离心率2=e ,则双曲线的标准方程为 ( ) A.112422=-y x B. 141222=-y x C. 112422=-x y D. 141222=-x y 二、填空题19. 已知{}12<-=x x A ,{}11>-=x x B ,则=B A ;20. 若21cos sin =-αα,则=α2sin ; 21. 已知()ααsin ,cos =a ,()ββsin ,cos =b ,α和β的终边不在坐标轴上,且b a //,则α与β的关系为 ;22. 各项均为正数的等比数列{}n a 中,已知5321=a a a ,10987=a a a ,则=654a a a ;23. 在校运动会上,某班四名男生甲、乙、丙、丁参加1004⨯米,利用抽签决定接力的顺序,则“甲跑第一棒,丁跑第四棒”的概率=P ;24. 下列函数:①2x y =,②x y 2l o g =,③xy 1=,④x y 2=,⑤x y 2-=,其中在定义域上是增函数的是 ;25. 圆心在直线032=--y x 上,且与两轴相切的圆的标准方程为 ;26. 如图所示,在三棱锥ABC P -上,M 、N 分别是PB 和PC 上的点,过作平面平行于,画出这个平面与其他各面的交线并说明:;三、解答题27. 如果直线012=-+ay x 与直线01)13(=---ay x a 平行,求a 的值; 28. 设函数⎩⎨⎧-≤-≥+-=1,0,23)(2x x x x x x f ,(1)求函数)(x f y =的定义域;(2)若0)(<x f ,求x 的取值范围;29. 已知二项式n x x ⎪⎭⎫ ⎝⎛-1,(1)求该二项式展开式的通项公式;(2)当10=n 时,求二项式展开式的所有二项式系数和;(3)若该二项式展开式的第7项为常数项,求出该常数项;30. 我国西部某地区在2000年至2003年间,沙漠面积不断扩大,数据如下(面积单位:万(1) 请根据表格中的内容,填写表格未完成的部分;(2) 根据表格中提供的数据,观察沙漠面积每年比上一年增加量的规律,如果以后每年的面积仍按此规律扩大,那么到2020年底,该地区的沙漠面积将会达到多少公顷?(3) 植树造林是治理沙漠、控制沙漠扩展的有效措施,该地区2004年年初起开始在沙漠上植树造林,使沙漠变绿洲,已知第一年植树1万公顷,以后每年植树面积比上一年增加%1,同时从2004年其沙漠扩展的面积都控制在1.0万公顷,那么到2020年底,该地区的沙漠面积还剩多少公顷(结果精确到1.0万公顷)?以下数据供参考:()161.101.115≈ ()173.101.116≈ ()184.101.117≈ ()015.1001.115≈ ()016.1001.116≈ ()017.1001.117≈31. 已知x x b x a x f cos sin cos 2)(2+=,且2)0(=f ,23213+=⎪⎭⎫⎝⎛πf ,求:(1)a ,b 的值;(2))(x f 的最大值和最小值; 32. 在ABC ∆中,︒=∠45A ,22=a ,(1)若32=c ,求C ∠的大小;(2)若54c o s =B ,求c 的值;33. 如图所示,⊥PA 平面ABC ,ABC ∆为︒=∠90BAC 的等腰直角三角形,且2==AB PA ,求:(1)BC 与平面PAC 所成角的大小;(2)二面角A PC B --的平面角的正切值;(3)三棱锥PBC A -的体积;34. 已知直线l 的倾斜角α满足22cos =α,椭圆满足:焦点在x 轴上,长轴长为4,离心率为双曲线1322=-y x 的离心率的倒数,直线l 过椭圆右焦点2F ,求(1)椭圆的标准方程;(2)直线l 的方程;(3)直线l 与椭圆的相交弦长;。
2018年高职单招数学试题
18年单招题一、选择题:1、函数x y =的定义域上( )A 、{0≤x x }B 、{0 x x }C 、{0≥x x }D 、{0 x x }2、已知平面向量a =(1,3),b =(-1,1),则b a •=( )A 、(0,4)B 、(-1,3)C 、0D 、2 3、93log =( )A 、1B 、2C 、3D 、44、下列函数在其定义域内是增函数的是( )A 、x y =B 、x y sin =C 、2x y =D 、xy 1= 5、不等式)2)(1(--x x <0的解集为( )A 、(1,2)B 、[]2,1C 、),2()1,(+∞⋃-∞D 、][),21,(+∞⋃-∞6、直线13+=x y 的倾斜角为( ) A 、6π B 、4π C 、3π D 、43π 7、已知某高职院校共有10个高职单招文化考试考场,每名考生被安排到每个考场的可能性相同,两名考试一同前往该校参加高职单招文化考试,则他们在同一个考场考试的概率为( )A 、91B 、101C 、901D 、1001 8、过点A (-1,1)和B (1,3),且圆心在x 轴上的圆的方程是( )A 、2)2(22=-+y xB 、10)2(22=-+y xC 、22-22=+y x )( D 、102-22=+y x )( 9、某报告统计的2009-20XX 年我国高速铁路运营里程如下所示:根据上图,以下关于2010-20XX 年我国高速铁路运营里程的说法错误的是( )A 、高速铁路运营里程逐年增加B 、高速铁路运营里程年增长量最大的年份是20XX 年C 、与20XX 年相比,20XX 年高速铁路运营里程增加了1倍以上D 、与20XX 年相比,20XX 年高速铁路运营里程增加了1倍以上10、已知函数{x x x f 22)(-=00≤x x 若b a ,为实数,且ab <0,则)(b a f -=( )A 、)()(b f a f -B 、)()(b f a fC 、)()(b f a f D 、)()(a f b f 二、填空题: 11、已知集合A={1,2,3},B={1,a },B A ⋃={1,2,3,4},则a =______12、函数x x y cos sin =的最小正周期是___________13、已知灯塔B 在灯塔A 的北偏东30°,两个灯塔相距20海里,从轮船C 上看见灯塔A 在它的正南方向,灯塔B 在它的正东北方向,则轮船C 与灯塔B 的距离为_______海里。
2018年浙江省单独考试招生文化考试考试大纲-数学
浙江省单独考试招生文化考试数学考试大纲一、考试形式及试卷结构(一)考试方法和时间考试方法为闭卷、笔试。
试卷满分为150分,考试时间为120分钟。
(二)试卷内容比例代数约45%三角约20%立体几何约10%平面解析几何约25%(三)题型比例选择题(四选一型的单项选择题)约30%填空题约20%解答题(含简答题、计算题和应用题)约50%(四)试题难易比例容易题约60%中等题约30%较难题约10%二、考试内容和要求高等职业学校招生数学考试旨在测试中学数学基础知识、基本方法、基本技能、运算能力、逻辑思维能力、空间想像能力,以及运用所学数学知识和方法,分析问题和解决问题的能力。
本大纲对所列知识提出三个不同层次的要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求。
三个层次分别为:了解:对学过知识能进行复述和辨认,对所列知识的含义有感性和初步理性的认识,知道有关内容,并能进行直接运用。
理解:对所列知识的含义有理性的认识,能在了解知识基本内容的基础上作相应的解释、举例或变形、推断,并能运用知识解决简单的数学问题。
掌握:对所列知识在理解基础上能综合运用,并会解决一些数学问题和简单的实际问题。
【代数】(一)集合1.了解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及表示方法,了解符号、∉∈=⊆、、、的含义,并能运用这些符号表示集合与集合、元素与集合的关系,会求一个非空集合的子集,掌握集合的交、并、补运算。
2.理解充分条件、必要条件、充分必要条件的意义。
(二)不等式1.理解实数大小的基本性质,能运用性质比较两个实数或两个代数式的大小。
2.理解不等式的三条基本性质,理解均值定理,会用不等式的基本性质和基本不等式a 2≥0(a ∈R ),a 2+b 2≥2ab (a ,b ∈R ), ),(2+∈≥+R b a ab b a 解决一些简单的问题。
3.会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式,了解区间的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江高职考数学考试
————————————————————————————————作者:————————————————————————————————日期:
2018年浙江省单独考试招生文化考试
数学试题卷
本试题卷共三大题,共4页.满分150分,考试时间120分钟.
考生事项:
1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.
一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)
1. 已知集合{
}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4}
2. 函数()x x x f lg 1+-=的定义域为
A. ]1,(-∞
B. ]1,0(
C. ]1,0[
D.)1,0(
3. 下列函数在区间()∞+,
0上单调递减的是 A. x e y = B. 2x y = C. x
y 1= D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为
A. 6
B. 3
C. 1
D. 2
5. 过原点且与直线012=--y x 垂直的直线方程为
A. 2x+y=0
B. 2x-y=0
C. x+2y=0
D. x-2y=0
6. 双曲线19
162
2=-y x 的焦点坐标为
A. ()07,±
B. ()
70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝
⎛-=3sin 2πx y 的图像是
8. 点()1,1-P 关于原点的对称点的坐标为
A. (-1,-1)
B. (1,-1)
C. (-1,1)
D. (1,1)
9. 抛物线y x 212=
的焦点到其准线的距离是 A. 81 B. 41 C. 2
1 D. 1 10. 方程()()10332222=+-+++y x y x 所表示的曲线为
A. 圆
B. 椭圆
C. 双曲线
D. 抛物线 11. 不等式231≥-x 的解集是
A. ]31,(--∞
B. ),1[]31,(+∞--∞
C. ]1,3
1[- D. ),1[+∞ 12. 命题0:=αp 是命题0sin :=αq 的
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D.既不充分也不必要条件
13. 如图所示,点O 是正六边形ABCDEF 的中心,则=++OE OC OA
A. AE
B. EA
C. 0
D. 0
14. 用0,1,2,3四个数字可组成没有重复数字的三位数共有
A. 64个
B. 48个
C. 24个
D. 18个
15. 若m =︒2018cos ,则()=︒-38cos
A. 21m -
B. 21m --
C. m
D. -m
16. 函数x x x y 2cos 23cos sin +
=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π
17. 下列命题正确的是
A.垂直于同一平面的两个平面垂直
B.垂直于同一平面的两条直线垂直
C.垂直于同一平面的两个平面平行
D.垂直于同一平面的两条直线平行
18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为
A. 第二或第三象限
B. 第一或第四象限
C.第三或第四象限
D.第一或第二象限
19. 二项式()()*,21N n n x n
∈≥-展开式中含2x 项的系数为 A. 2n C B. 2n C - C. 1n C D. 1n C -
20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是
A. 143
B. 32
C. 283
D. 56
3 二、填空题(本大题共7小题,每小题4分,共28分)
21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为
22. 设函数()⎪⎩⎪⎨⎧≤+>=0
,120,sin x x x x x x f ,则()[]=πf f
23. 双曲线18
2
22=-y a x 的离心率3=e ,则实半轴长=a
24. 已知2572cos =α,⎪⎭
⎫ ⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a
26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为
27. 函数()x x x f --+⨯=31229的最小值为
三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)
28. 计算:()2
02
13122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ
29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求:
(1)三角形的面积ABC S ∆;
(2)判断ABC ∆是锐角、直角还是钝角三角形。
30. 已知圆02:22=-+y y x C ,过点()40,
P 的直线l 与圆C 相切,求: (1)圆C 的圆心坐标和半径
(2)直线l 的方程
31. 如图所示,点()34,
P 是角α终边上一点,令点P 与原点的距离保持不变,并绕原点顺时针旋转
︒45到P '的位置,求:
(1)ααcos ,sin ;
(2)点()y x P ''',的坐标
32. 如图所示,圆锥SO 的母线cm SC SA 13==底面半径为2cm ,OAC ∆为正三角形,求:
(1)圆锥SO 的侧面积与体积;
(2)二面角S-AC-O 的大小
33. 如图所示,某人在边长为为a 的正方形海域内,分321,,S S S 三个区域养殖三种不同的海产品,其中1S 是半径为()a x x <<0的四分之一圆形,2S 是直角三角形,假设321,,S S S 区域内单位面积产生的利润分别为5元,7元,9元,用y 表示正方形海域内产生的总利润。
(1)写出y 关于x 的函数关系式;
(2)当x 为何值时,正方形海域内产生的总利润最大,最大值是多少?
34. 如图所示,椭圆122
22=+b y a x 的两个焦点坐标为()()
020221,,,F F -,两个顶点和两个焦点构成
一个正方形。
(1)求椭圆的标准方程和离心率
(2)求以点A (a ,0)为顶点,且关于x 轴对称的内接等腰直角三角形的周
长
35. 如图所示,在边长为1的正三角形中,挖去一个由三边中点所构成的三角形,记挖去的三角形面积为1a ;在剩下的3个三角形中,再以同样的方法,挖去三个三角形,记挖去的3个三角形面积和为2a ,......,重复以上过程,记挖去的3n-1个三角形面积的和为n a ,得到数列{}n a 。
(1)写出1a ,2a ,3a 和n a
(2)证明数列{}n a 是等比数列,并求出前n 项和公式n S。