北京市丰台区2017年初三一模数学试卷(含答案)

合集下载

2017-2018学年北京市丰台区初三第一学期期末数学试卷(含答案)

2017-2018学年北京市丰台区初三第一学期期末数学试卷(含答案)

丰台区2017~2018学年度第一学期期末练习初三数学2018. 01考 生 须 知1. 本试卷共6页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷和答题卡一并交回。

一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.如果(),那么下列比例式中正确的是 A .B .C .D .2.将抛物线y = x 2向上平移2个单位后得到新的抛物线的表达式为 A . B . C .D .3.如图,在△中,∠C = 90°, = 5, = 3,则的值为 A .B .C .D .4.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐. 目前,照相机和手机自带的九宫格就是黄金分割的简化版. 要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置②①③④A.①B.②C.③D.④5.如图,点A为函数(x > 0)图象上的一点,过点A作x轴的平行线交轴于点B,连接,如果△的面积为2,那么k的值为A.1 B.2C.3 D.46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△相似的是A B C D7.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点. 如果∠140°,那么∠的度数为A.70°B.110°C.140°D.70°或110°8.已知抛物线上部分点的横坐标x与纵坐标y的对应值如下表:x…0123…y… 3 0 m 3 …有以下几个结论:①抛物线的开口向下; ②抛物线的对称轴为直线;③方程的根为0和2;④当y >0时,x 的取值范围是x <0或x >2. 其中正确的是 A .①④B .②④C .②③D .③④二、填空题(本题共16分,每小题2分) 9.如果α =,那么锐角α = . 10.半径为2的圆中,60°的圆心角所对的弧的弧长为 .11.如图1,物理课上学习过利用小孔成像说明光的直线传播.现将图1抽象为图2,其中线段为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰的高度为2,倒立的像A 'B '的高度为5,点O 到的距离为4,那么点O 到A 'B '的距离为 .12.如图,等边三角形的外接圆⊙O 的半径的长为2,则其内切圆半径的长为 .13.已知函数的图象经过点(2,1),且与x 轴没有交点,写出一个满足题意的函数的表达式 .图1图214.在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为 .15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m 的正方形,改建的绿地是矩形,其中点E 在上,点G 在的延长线上,且 = 2. 如果设的长为x (单位:m ),绿地的面积为y (单位:m 2),那么y 与x 的函数的表达式为 ;当 = m 时,绿地的面积最大.16.下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:已知:⊙O 和⊙O 外一点P . 求作:过点P 的⊙O 的切线. 作法:如图, (1)连接; (2)分别以点O 和点P 为圆心,大于 的长为 半径作弧,两弧相交于M ,N 两点; (3)作直线,交于点C ;(4)以点C 为圆心,的长为半径作圆, 交⊙O 于A ,B 两点;C NPO AM B(1)连接,,可证∠ =∠ = 90°,理由是 ; (2)直线,是⊙O 的切线,依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分) 17.计算:.18.如图,△中,∥,如果 = 2, = 3,= 4,求的长.19.已知二次函数y = x 2 - 4x + 3.(1)用配方法将y = x 2 - 4x + 3化成y = a (x - h )2 + k 的形式;(2)在平面直角坐标系中画出该函数的图象; 54441123321213xO y(3)当0≤x≤3时,y的取值范围是 .20.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,为⊙O的直径,弦⊥于点E,= 1寸,= 10寸,求直径的长.请你解答这个问题.21.在平面直角坐标系中,直线与双曲线的一个交点为P(m,2).(1)求k的值;(2)M(2,a),N(n,b)是双曲线上的两点,直接写出当a > b时,n的取值范围.22.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m 的测角仪测得人民英雄纪念碑顶部M的仰角为35°,然后在测量点B处用同样的测角仪测得人民英雄纪念碑顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接并延长交于点E. 请你利用他们的测量结果,计算人民英雄纪念碑的高度.(参考数据:35°≈0.6,35°≈0.8,35°≈0.7)23.如图,人工喷泉有一个竖直的喷水枪,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.24.如图,是⊙O的直径,点是的中点,连接并延长至点,使,点是上一点,且,的延长线交的延长线于点,交⊙O于点,连接.(1)求证:是⊙O的切线;(2)当时,求的长.25.如图,点E是矩形边上一动点(不与点B重合),过点E 作⊥交于点F,连接.已知= 4,= 2,设A,E两点间的距离为,△面积为2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是;(2)通过取点、画图、测量、分析,得到了x与y的几组值,如下表:00.51 1.52 2.53 3.5…2 4.0 3.7 3.9 3.8 3.3 2.0…(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△面积最大时,的长度为.26.在平面直角坐标系中,抛物线经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y轴的直线l与抛物线交于两点A(,),B(,),其中,,与y轴交于点C,求的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P平移后对应点为点Q,如果,直接写出点Q的坐标.27.如图,∠90°,,,一个以点C为顶点的45°角绕点C旋转,角的两边与,交于点M,N,与,的延长线交于点E,F,连接.(1)在∠旋转的过程中,当∠∠时,如图1,求证:;(2)在∠旋转的过程中,当∠≠∠时,如图2,如果∠30°,2,用等式表示线段,之间的数量关系,并证明.图1 图228.对于平面直角坐标系中的点P和⊙C,给出如下定义:如果⊙C的半径为r,⊙C外一点P到⊙C的切线长小于或等于2r,那么点P叫做⊙C的“离心点”.(1)当⊙O的半径为1时,①在点P1(,),P2(0,-2),P3(,0)中,⊙O 的“离心点”是;②点P(m,n)在直线上,且点P是⊙O的“离心点”,求点P横坐标m的取值范围;(2)⊙C的圆心C在y轴上,半径为2,直线与x轴、y轴分别交于点A,B. 如果线段上的所有点都是⊙C的“离心点”,请直接写出圆心C纵坐标的取值范围.丰台区2017—2018学年度第一学期期末练习初三数学参考答案一、选择题(本题共16分,每小题2分)题号12345678答案C A B BD A D D二、填空题(本题共16分,每小题2分)9. 30°;10. ;11. 10;12. 1;13. 或等,答案不唯一;14.(2,0);15.(可不化为一般式),2;16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17-24题每小题5分,第25题6分,第26,27题每小题7分,第28题8分)17. 解:=,……3分=……4分=. ……5分18. 解:∵∥,∴.……2分 即.∴=6.……4分∴= + =10. ……5分 其他证法相应给分.19.解:(1).……2分(2)如图: ….3分 (3) ….5分20.解:连接,∵为⊙O 的直径,弦⊥于点E ,且10,∴∠=90°,.……2分设,则,∴.在中,∵, ∴.∴. ...4分 ∴ = 2 26(寸). 答:直径的长26寸. (5)分21. 解:(1)一次函数的图象经过点,. ……… 1分 点P 的坐标为(1,2). ……… 2分∵反比例函数的图象经过点P (1,2),………3分(2)或 (5)分22.解:由题意得,四边形,为矩形, ∴1.5. 15. 在中,x =2y =x 2-4x +354411231213xO y∠=90°,∠=45°, ∴∠=∠=45°. ∴=. …2分 设==x ,则=15. 在中,∠=90°,∠=35°, ∵,∴ .∴.∴. (4)分 ∴. ∴人民英雄纪念碑.的高度约为36.5米.…5分23.解:建立平面直角坐标系,如图.于是抛物线的表达式可以设为根据题意,得出A ,P 两点的坐标分别为A (0,2),P (1,3.6). ……2分 ∵点P 为抛物线顶点,∴ .∵点A 在抛物线上, ∴,.…3分∴它的表达式为. ……4分当点C 的纵坐标0时,有.(舍去),.∴2.5. ∴水流的落地点C 到水枪底部B 的距离为2.5m. ……5分OyxPCA14 / 1624.(1)证明:连接,∵为⊙O 的直径,点是的中点,∴∠=90°. (1)分∵,,∴是的中位线. ∴∥. ∴∠=∠=90°. ……2分 ∴.∴是⊙O 的切线. ……3分 其他方法相应给分.(2)解:由(1)知∥,∴△∽△. ∴.∵ = 2,∴ = 2, = 4,∵,∴,∴3. (4)分在中,∠=90°,.∵ ,∴.即. ∴=..……5分其他方法相应给分.25.(1);.……1分(2)3.8,4.0; ……3分(3)如图 ……4分 (4)0或2. ……6分 26. 解:(1)……1分解得. ……2分∴. ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得, . …… 3分∴ 2 2. ……5分 其他方法相应给分. (3)点Q 的坐标为()或().……7分27.解:(1)证明:∵,,,∴△≌△. …1分∴∠∠45°,可证∠∠135°. ……2分又∵∠∠,xylBCA–3–2–11234–3–2–112345OOyx4321123415 / 16∴△≌△.∴. ……3分其他方法相应给分.(2)过点C 作⊥于点G ,求得.……4分∵∠∠135°,∴∠∠45°. 又∵∠∠45°,∴∠∠.∴△∽△. ……5分 ∴,即. ……6∴. ……7分28.解:(1)①,; ……2分②设P (m ,-m +3),则. …3分解得,. ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标的取值范围为:≤<或<≤. ……8分G EMN F AC。

北京市丰台区初三一模数学试题及答案

北京市丰台区初三一模数学试题及答案

丰台区初三毕业及统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-2的倒数是A .2B .-2C .21D . 21-2.第九届中国(北京)国际园林博览会将于的5月18日至11月18日在丰台区举办.据相关介绍,本届园博会在占地面积、建设规模、园区特色、标志建筑、绿色低碳等方面均超过以往任何一届,目前已有120多个国内外城市参展.业界专家预测,北京园博会接待游客将达20 000 000人次,堪称园林版的“奥运会”.将20 000 000用科学记数法表示为A .6102⨯ B .61020⨯C .7102⨯D .8100.2⨯3.如图,下列水平放置的几何体中,俯视图是长方形的是4.如果一个正多边形的每个外角为36°,那么这个正多边形的边数是A .12B .10C .9D .8 5.某中学周末有40人去体育场观看足球赛,40张票分别为A 区第2排1号到40号, 小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A .140 B . 139 C . 12 D . 146.如图,直线AB 、CD 相交于点O ,OE CD ⊥, 54BOE ∠=,则∠AOC 等于 A .54° B .46° C .36° D .26°7. 某中学书法兴趣小组12名成员的年龄情况如下:年龄(岁) 12 13 14 15 16 人数14322A . 15,16B .13,14C . 13,15D .14,148.如图,在ABC △中,1AB AC ==,20BAC ∠=.动点P 、Q 分别在直线BC 上A ODBECABCDAB CQ运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,则y 与x 的函数关系的图象大致可以表示为二、填空题(本题共16分,每小题4分)9.在函数y =2x -中,自变量x 的取值范围是___________. 10.分解因式:23x y y -= .11.某地铁站的手扶电梯的示意图如图所示.其中AB 、CD 分别表示电梯出入口处的水平线,∠ABC =135°,BC 的长是25m , 则乘电梯从点B 到点C 上升的高度h 是 m .12.我们把函数图象与x 轴交点的横坐标称为这个函数的零点.如函数12+=x y 的图象与x 轴交点的坐标为(21-,0),所以该函数的零点是21-. (1)函数542-+=x x y 的零点是 ;(2)如图,将边长为1的正方形ABCD 放置在平面直角坐标系xOy 中,且顶点A 在x 轴上.若正方形ABCD 沿x 轴正方向滚动,即先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.顶点D 的轨迹是一函数的图象,则该函数在其两个相邻零点间的图象与x 轴所围区域的面积为 .三、解答题(本题共30分,每小题5分)13101234sin 60(2013)π-+-︒+-.135°CDhA BO CxDy14.解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥15.已知:如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F . 求证:BE =CF .16.已知30x y -=,求代数式2224+4y 2y x xy x y÷--的值.17.如图,在平面直角坐标系xOy 中,直线+3y kx =的图象与反比例函数4(>0)y x x=的图象交于 点A (1,m),与x 轴交于点B ,过点A 作AC x ⊥轴于点C . (1)求一次函数的解析式; (2)若P 为x 轴上一点,且△ABP 的面积为10,直接写出点P18.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.EFDBCAy四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中,AB = AD ,∠BAD =90°,∠CBD =30°,∠BCD =45°,若AB =22.求四边形ABCD 的面积.20.已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连结DE . (1)求证:DE 与⊙O 相切;(2)连结OE ,若cos ∠BAD =35,BE =143,求OE 的长.21.某电器商场从生产厂家购进彩电、洗衣机、冰箱共480台,各种电器的进货比例如图1所示,商场经理安排6人销售彩电,2人销售洗衣机,4人销售洗冰箱.前5天这三种电器的销售情况如图2与表格所示.请你根据统计图表提供的信息,解答以下问题: (1)该电器商场购进彩电多少台? (2)把图2补充完整; (3)把表格补充完整;(4)若销售人员与销售速度不变,请通过计算说明哪种电器最先售完?电器彩电 洗衣机 冰箱 前5天的销售总量(台)15030CEO BA D图2图1ABCD冰箱 30%洗衣机15%冰箱洗衣机 每天每人销量(台)5 322.操作与探究:如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0).将线段0OM 绕原点O 沿逆时针方向旋转45,再将其延长到1M ,使得001OM M M ⊥,得到线段1OM ;又将线段1OM 绕原点O 沿逆时针方向旋转45,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM ,如此下去,得到线段3OM ,4OM ,…,n OM .(1)写出点M 5的坐标; (2)求56OM M △的周长;(3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()nny x ,称之为点n M的“绝对坐标”.根据图中点n M的分布规律,请写出点n M 的“绝对坐标”.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.二次函数2y x bx c =++的图象如图所示,其顶点坐标为M (1,-4).(1) 求二次函数的解析式;(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n =+与这个新图象有两个公共点时,求n 的取值范围.M 5M 4M 3M 2M 1O M 0-55 -55 yxA BxO· Cy24.在ABC △中,∠ACB =90°,AC >BC ,D 是AC 边上的动点,E 是BC 边上的动点,AD =BC ,CD =BE .(1) 如图1,若点E 与点C 重合,连结BD ,请写出∠BDE 的度数;(2)若点E 与点B 、C 不重合,连结AE 、BD 交于点F ,请在图2中补全图形,并求出∠BFE 的度数.25.如图,在平面直角坐标系xOy 中,⊙C 的圆心坐标为(-2,-2),半径为2.函数y =-x +2的图象与x 轴交于点A ,与y 轴交于点B ,点P 为直线AB 上一动点. (1)若△POA 是等腰三角形,且点P 不与点A 、B 重合,直接写出点P 的坐标; (2)当直线PO 与⊙C 相切时,求∠POA 的度数;(3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的函数关系式,并写出t 的取值范围.D BC (EA图1图2CAB丰台区初三毕业及统一练习数学参考答案及评分标准一、选择题(共8小题,每小题4分,满分 32分) 题号 12345 6 7 8 答案C D D BACAA二、填空题(共4小题,每小题4分,满分16分)9.2x ≥ 10.()()y x y x y +- 11.5 12.1-4π;111π22n n n S -+=-三、解答题(共6小题,每小题5分,满分30分) 13.解:原式=13234132+-⨯+ -------- 4分 =43. -------------- 5分 14.解:302(1)33.x x x +>⎧⎨-+⎩,≥由①得3x >-.………1分由②得x ≤1. ………3分∴ 原不等式组的解集是-3<x ≤1.……5分 15.证明:∵在△ABC 中,AD 是中线,∴BD =CD ,-------------- 1分 ∵CF ⊥AD ,BE ⊥AD ,∴∠CFD =∠BED =90° ,--------------- 2分 在△BED 与△CFD 中, ∠BED =∠CFD ,∠BDE =∠CDF ,-------------- 3分 BD =CD ,∴△BED ≌△CFD ,-------------- 4分 ∴BE =CF .-------------- 5分16.解:原式=2-2,2)y x y x y +( ------------ 2分=2(-2)yx y . ------------ 3分∵30x y -=,∴3x y =.∴原式=12(3y-2y)22y y y ==. ------------- 5分17.解:(1)由图象知反比例函数xmy =2的图象经过点B (4,3), ∴43m=. ∴m =12. ---------- 1分 ∴反比例函数解析式为212y x=. ---------- 2分 由图象知一次函数b kx y +=1的图象经过点A (-6,-2) , B (4,3),∴⎩⎨⎧=+-=+-.3426 ,b k b k 解得⎪⎩⎪⎨⎧==.,121b k --------- 3分∴一次函数解析式为1112y x =+. -------- 4分 (2)当0<x <4或x <-6时,21y y <.------ 5分18.解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. ------ 1分 由题意得, 60151.51515=-x x . 解得,.经检验,是原方程的解,并且都符合题意.答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时. 根据题意,得:150x +90(1000-x )=126000,------ 3 分 解方程得 x =600. ------ 4 分 ∴1000-600=400.答:当日这一售票点售出普通票600张,优惠票400张. ------- 5 分四、解答题(共4小题,每小题5分,满分20分) 19.解:过点C 作CE ∥DB ,交AB 的延长线于点E .∴∠ACE =∠COD =60°. -----------------1分又∵DC ∥AB , ∴四边形DCEB 为平行四边形.---------------- 2分 ∴BD =CE ,BE = DC =3,AE =AB +BE =8+3=11. ---------------- 3分 又∵DC ∥AB ,AD =BC , ∴DB =AC =CE .∴△ACE 为等边三角形.∴AC =AE =11, ∠CAB =60°. ----------------- 4分过点C 作CH ⊥AE 于点H .在Rt △ACH 中, CH =AC ·sin ∠CAB =11×23=1132.∴梯形ABCD 的高为1132. ----------------------- 5分20.(1)证明:如图1所示,连接OD ,BD∵AB 是⊙O 的直径,∴90=∠=∠BDC ADB ° . ……1分 在Rt △BDC 中∵E 是BC 的中点,∴DE =21BC; ∴DE =BE; ∴21∠=∠. ∵OD =OB , ∴43∠=∠;∵9042=∠+∠=∠ABC °∴9031=∠+∠=∠ODE ° 即OD ⊥DE ∴DE 是⊙O 的切线 ……2分(2)解: ∵ADB ABC ∠=∠,A A ∠=∠∴△ABC ∽ △ADB ……3分 ∴ADAB AB AC =∵3=AD ,4=AB ∴316=AC ……7分∵OE 是△ABC 的中位线∴3821==AC OE21. 解:(1)480×55%=264(件). ----------------- 1分(2)画图正确. -----------------2分 (3)如表格 60 . ----------------- 3分(4)上衣售完需264÷6÷5=8.8(天).----------------- 5分裤子售完需480×30%÷4÷3=12(天).鞋子售完需 480×15%÷2÷3=12 (天). ∴上衣先售完.22.解:(1)M 5(―4,―4)………………………………………4分 (2)由规律可知,245=OM ,2465=M M ,86=OM ……………6分 ∴56M OM △的周长是288+……………………………………8分(3)解法一:由题意知,0OM 旋转8次之后回到x 轴的正半轴,在这8次旋转中,点n M 分别落在坐标象限的分角线上或x 轴或y 轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,点n M 的“绝对坐标”可分三类情况: 令旋转次数为n① 当点M 在x 轴上时: M 0(0,)2(0),M 4(0,)2(4),M 8(0,)2(8),M 12(0,)2(12),…,即:点n M 的“绝对坐标”为(0,)2(n)。

丰台区2017-2018初三上期末数学试题及答案(整理A4版)

丰台区2017-2018初三上期末数学试题及答案(整理A4版)

丰台区2017~2018学年度第一学期期末练习初三数学2018. 01考生须知1. 本试卷共6页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷和答题卡一并交回。

一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的.1.如果32ab (0ab),那么下列比例式中正确的是A .32ab B .23b a C .23a b D .32a b 2.将抛物线y = x 2向上平移2个单位后得到新的抛物线的表达式为A .22y xB .22y x C .22yx D .22yx3.如图,在Rt △ABC 中,∠C = 90°,AB = 5,BC = 3,则tanA 的值为A .35B .34C .45D .434.“黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐. 目前,照相机和手机自带的九宫格就是黄金分割的简化版. 要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置A .①B .②C .③D .④5.如图,点A 为函数k y x(x > 0)图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为A .1B .2C .3D .46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是A B C DCBAABC②①③④ABxOyOAB7.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB=140°,那么∠ACB 的度数为A .70°B .110°C .140°D .70°或110°8.已知抛物线2y axbx c 上部分点的横坐标x 与纵坐标y 的对应值如下表:x ,10 12 3 ,y,31m3,有以下几个结论:①抛物线2y ax bx c 的开口向下;②抛物线2yaxbx c 的对称轴为直线1x ;③方程20ax bxc的根为0和2;④当y >0时,x 的取值范围是x <0或x >2.其中正确的是A .①④B .②④C .②③D .③④二、填空题(本题共16分,每小题2分)9.如果sin α=12,那么锐角α=.10.半径为2的圆中,60°的圆心角所对的弧的弧长为. 11.如图1,物理课上学习过利用小孔成像说明光的直线传播.现将图1抽象为图2,其中线段AB 为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰AB 的高度为2cm ,倒立的像A 'B '的高度为5cm ,点O 到AB 的距离为4cm ,那么点O 到A 'B '的距离为cm.12.如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为.13.已知函数的图象经过点(2,1),且与x 轴没有交点,写出一个满足题意的函数的表达式.14.在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为.15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形ABCD ,改建的绿地是矩形AEFG ,其中点E 在AB 上,点G在AD 的延长线上,且DG = 2BE. 如果设BE 的长为x (单位:m ),绿地AEFG 的面积为y (单位:m 2),那么y 与x 的函数的表达式为;当BE =m 时,绿地AEFG 的面积最大.图1图2E DGFHACBA B'A'BOOACB16.下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP = 90°,理由是;(2)直线P A ,PB 是⊙O 的切线,依据是.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分)17.计算:2cos30sin 45tan 60.18.如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4,求AC 的长.19.已知二次函数y = x 2- 4x + 3.(1)用配方法将y = x 2- 4x + 3化成y = a(x -h)2+ k 的形式;(2)在平面直角坐标系xOy 中画出该函数的图象;(3)当0≤x ≤3时,y 的取值范围是.20.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB于点E ,AE = 1寸,CD = 10寸,求直径AB 的长.请你解答这个问题.21.在平面直角坐标系xOy 中,直线1y x与双曲线kyx的一个交点为P(m ,2). (1)求k 的值;(2)M (2,a ),N (n ,b )是双曲线上的两点,直接写出当a >b 时,n 的取值范围.554444123123321213xOyD CBAE已知:⊙O 和⊙O 外一点P .求作:过点P 的⊙O 的切线.作法:如图,(1)连接OP ;(2)分别以点O 和点P 为圆心,大于12OP 的长为半径作弧,两弧相交于M ,N 两点;(3)作直线MN ,交OP 于点C ;(4)以点C 为圆心,CO 的长为半径作圆,交⊙O 于A ,B 两点;(5)作直线PA ,PB .直线PA ,PB 即为所求作⊙O 的切线.O EABCDOPCNPOAMB22.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A 处用高为 1.5m 的测角仪AC 测得人民英雄纪念碑MN 顶部M 的仰角为35°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点 E. 请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)23.如图,人工喷泉有一个竖直的喷水枪AB ,喷水口A 距地面2m ,喷出水流的运动路线是抛物线.如果水流的最高点P 到喷水枪AB 所在直线的距离为1m ,且到地面的距离为 3.6m ,求水流的落地点C 到水枪底部B 的距离.24.如图,AB 是⊙O 的直径,点C 是?AB 的中点,连接AC 并延长至点D ,使CDAC ,点E 是OB 上一点,且23OEEB,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当2OB时,求BH 的长.25.如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF ⊥DE 交BC 于点F ,连接DF .已知AB = 4cm ,AD = 2cm ,设A ,E 两点间的距离为xcm ,△DEF 面积为ycm 2.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.DC BAEF下面是小明的探究过程,请补充完整:(1)确定自变量x 的取值范围是;O ABCDHFE C D ABNME PCBA(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如下表:x/cm 0 0.5 11.5 22.5 33.5 …y/cm24.03.73.93.83.32.0…(说明:补全表格时相关数值保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 面积最大时,AE 的长度为cm .26.在平面直角坐标系xOy 中,抛物线2yxbx c 经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01x ,02x ,与y 轴交于点C ,求BCAC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP=OQ ,直接写出点Q 的坐标.27.如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC.(1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE=AF ;(2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”.(1)当⊙O 的半径为1时,EMNFBA DCEMN FBA DC图1图2①在点P 1(12,32),P 2(0,-2),P 3(5,0)中,⊙O 的“离心点”是;②点P (m ,n )在直线3y x上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121x y与x 轴、y 轴分别交于点A ,B. 如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.。

2017北京市丰台初三(一模)数 学

2017北京市丰台初三(一模)数    学

2017北京市丰台初三(一模)数 学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.随着“一带一路”的建设推进,北京丰台口岸进口货值业务量加速增长,2016年北京丰台口岸进口货值飙升至189 000 000美元,比上一年翻了三倍,创下历史新高.将189 000 000用科学记数法表示应为 A .610189⨯ B .610891⨯. C .710918⨯. D .810891⨯. 2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .b a >B .a b <C .a a <-D .a b <-3.北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是北京林业大学 北京体育大学 北京大学 中国人民大学A .B .C .D .4.如图,香港特别行政区标志紫荆花图案绕中心旋转n °后能与原来的图案互相重合,则n 的最小值为A .45B .60C .72D .1445.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是 A .义 B .仁 C .智 D .信 6. 如果0222=-+m m ,那么代数式2442+⋅⎪⎭⎫ ⎝⎛++m mm m m 的值是 A .-2B .-1C .2D .37.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8cm 时,则AB 的长为 A .7.2 cm B .5.4 cmC .3.6 cmD .0.6 cm8.如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 A .3万元 B .35万元 C .2.4万元 D .2万元9.如图,在正方形网格中,如果点A (1,1),B (2,0),◇仁 ◇义◇礼 ◇智◇信 ◇孝AB教育医疗食品交通娱乐其它120°55°100°35°30°0a b132-1-2-34那么点C 的坐标为 A .(-3,-2) B .(3,-2) C .(-2,-3)D .(2,-3)10.近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器.某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2016年下半年销售情况绘制了如下统计图,其中同比增长率%1001⨯⎪⎪⎭⎫⎝⎛-=去年同月销售量当月销售量,下面有四个推断: ①2016年下半年各月销售量均比2015年同月销售量增多 ②第四季度销售量占下半年销售量的七成以上 ③下半年月均销售量约为16万台④下半年月销售量的中位数不超过10万台 其中合理的是 A .①② B .①④C .②③D .③④二、填空题(本题共18分,每小题3分)11.如果二次根式4+x 有意义,那么x 的取值范围是__________.12.右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:_____________________.13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.班级 节次 1班 2班 3班 4班 第1节语文 数学 外语 化学 第2节 数学 政治 物理 语文 第3节 物理 化学 体育 数学 第4节外语语文政治体育14.如下图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在大量角器上对应的度数为40°,那么在小量角器上对应的度数为______________.(只考虑小于90°的角度)15.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为____________________.16.在数学课上,老师提出如下问题:已知:线段a ,b .a n m cb a小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:()3360cos 4120--︒+--π.18.解不等式组:()⎪⎩⎪⎨⎧-≤-->-.3951 106 2 x x x x ,19.如图,四边形ABCD 中,AB ∥DC ,∠B = 90º,F 为DC 上一点,且AB =FC ,E 为AD 上一点,EC 交AF于点G ,EA = EG . 求证:ED = EC .20.已知关于x 的一元二次方程0432=-+-k kx x .(1)判断方程根的情况;(2)若此方程有一个整数根,请选择一个合适的k 值,并求出此时方程的根.21.如图,在平面直角坐标系xOy 中,直线m x y +-=3与双曲线xky =相交于点 如图,(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN 交线段BC 于点D ; (3)在MN 上截取线段DA =b ,连接AB ,AC . 所以,△ABC 就是所求作的等腰三角形.GF ED CBA MNA B CDA (m ,2).(1)求双曲线xky =的表达式; (2)过动点P (n ,0)且垂直于x 轴的直线与直线m x y +-=3及双曲线xky =的交点分别为B 和C ,当点B 位于点C 下方时,求出n 的取值范围.22.课题学习:设计概率模拟实验.在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是21.”小海、小东、小英分别设计了下列三个模拟实验:小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.67854321图1 图2 图3 根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.23.如图,在四边形ABCD 中,∠ABC =90°,DE ⊥AC 于点E ,且AE = CE ,DE =5,EB =12. (1)求AD 的长;yx 2A O CD(2)若∠CAB =30°,求四边形ABCD 的周长.24.阅读下列材料:由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.据中国经济网2017年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)根据以上材料解答下列问题: (1)补全折线统计图;2008年和2016年新建商品住宅环线成交量占比折线统计图0%10%20%30%40%50%60%70%80%90%100%二环以内二、三环之间三、四环之间四、五环之间五环以外环线成交量占比2008年2016年(2)根据材料提供的信息,预估 2017年位于北京市五环之内新建商品住宅成交量占比约_________,你的预估理由是________________________________.25.如图,AB 是⊙O 的直径,C ,D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的延长线于点E ,且CE =CF .(1)求证:CE 是⊙O 的切线;(2)连接CD ,CB .若AD =CD =a ,写出求四边形ABCD 面积的思路.26.【问题情境】已知矩形的面积为a (a 为常数,0>a ),当该矩形的长为多少时,它的周长最小?最小值是多少? 【数学模型】设该矩形的长为x ,周长为y ,则y 与x 的函数表达式为⎪⎭⎫ ⎝⎛+=x a x y 2()0>x .【探索研究】小彬借鉴以前研究函数的经验,先探索函数xx y 1+=的图象性质. (1)结合问题情境,函数xx y 1+=的自变量x 的取值范围是0>x , 下表是y 与x 的几组对应值. x … 41 31 21 1 23m… y…414 313 212 2212 313 414 …①写出m 的值;②画出该函数图象,结合图象,得出当x =______时,y 有最小值,y 最小=________; 【解决问题】(2)直接写出“问题情境”中问题的结论.27.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点.(1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;O FE DCBAOyx12431243(3)抛物线的对称轴交直线AB 于点C , 如果直线AB 与y 轴交点的纵坐标为 1,且抛物线顶点D 到点C 的距离大于2,求m 的取值范围.28.在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与 点B ,C ,D 重合),且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)29.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形.图1 图2 O y x -1-2-4-3-5-1-2-4-5-31243512435(1)已知A (-2,3),B (5,0),C (t ,-2).①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.数学试题答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案DABCACBDBC二、填空题(本题共18分,每小题3分)11. 4-≥x ; 12. 答案不唯一,如:()()nc nb na mc mb ma c b a n m +++++=+++; 13.163; 14. 70°; 15.()20132028=+-x x ;16. 垂直平分线上的点到线段两个端点距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上; 有两条边相等的三角形是等腰三角形. 三、解答题(本题共30分,每小题5分) 17.解:原式=3321132+-+-…………………………………………………………4分 =2733-.……………………………………………………………………5分18.解:解不等式①,得2>x .……………………………………………………………2分解不等式②,得3≥x . ……………………………………………………………4分 ∴原不等式组的解集是3≥x . ……………………………………………………5分19.证明:∵AB ∥DC ,FC=AB ,∴四边形A B C F 是平行四边形.…………………………………………………1分∵∠B =90°,∴四边形A B C F 是矩形. (2)分∴∠AFC =90°,∴∠D =90°-∠D A F ,∠E C D =90°-∠C G F .………………………3分 ∵EA=EG ,∴∠EAG =∠EGA .………………………………………………………………4分 ∵∠EGA =∠CGF ,∴∠DAF =∠CGF . ∴∠D =∠ECD .∴E D =E C . (5)分20.解:(1)∵Δ=()()01264812412222>+-=+-=---k k k k k )(.…………2分 ∴方程有两个不等的实数根.…………………………………………………3分 (2)当k =4时,Δ=16,方程化为0432=-x x ,∴01=x ,342=x ;……………………………5分 或当k =8时,Δ=16,方程化为04832=+-x x ,∴21=x ,322=x .………………………5分 21.解:(1)∵点A (m ,2)在直线m x y +-=3上,∴m m +-=32,m = -1.……………………………………………………1分∴A (-1,2). ∵点A 在双曲线x ky =上, ∴12-=k ,k =-2.∴xy 2-=.………………………………………………………………………2分 (2)令x x 213-=--,得到11-=x ,322=x .………………………………3分根据图形,点B 位于点C 下方,即反比例函数大于一次函数时, ∴01<<-n 或32>n .………………………………………………………5分 22. 解:小英设计的模拟实验比较合理. ……………………………………………………2分小海选择的啤酒瓶盖质地不均匀;小东操作转盘时没有用力转动,而且实验次数 太少,没有进行大量重复实验. ……………………………………………………5分23. 解:(1)∵∠ABC =90°,AE = CE ,EB =12,∴EB =AE =CE =12. ∵DE ⊥AC ,DE =5, ∴在Rt △ADE 中, 由勾股定理得AD =22DE AE +=22512+=13.…………………2分(2)∵在Rt △ABC 中,∠CAB =30°,AC =AE +CE =24,∴BC =12,AB =AC ·cos30°=123.………………………………………3分 ∵DE ⊥AC ,AE =CE ,∴AD =DC =13. ………………………………………………………………4分∴四边形ABCD 的周长为AB +BC +CD +AD =38+123.…………………5分 24. 解:(1)正确画出折线. …………………………………………………………………3分2008年和2016年新建商品住宅环线成交量占比折线统计图0%10%20%30%40%50%60%70%80%90%100%二环以内二、三环之间三、四环之间四、五环之间五环以外环线成交量占比2008年2016年(2)预估理由须包含材料中提供的信息,且支撑预估的数据. ………………5分 25.(1)证明:连接OC ,AC .∵CF ⊥AB ,CE ⊥AD ,且CE =CF .∴∠CAE =∠CAB . ……………………………………………………………… 1分 ∵OC = OA , ∴∠CAB =∠OCA . ∴∠CAE =∠OCA . ∴OC ∥AE .∴∠OCE +∠AEC =180°, ∵∠AEC =90°,∴∠OCE =90°即OC ⊥CE ,∵OC 是⊙O 的半径,点C 为半径外端,∴CE 是⊙O 的切线.………………………………………………………………2分(2)求解思路如下:①由AD =CD =a ,得到∠DAC =∠DCA ,于是∠DCA =∠CAB ,可知DC ∥AB ; ②由OC ∥AE ,OC=OA ,可知四边形AOCD 是菱形;③由∠CAE =∠CAB ,得到CD=CB ,DC=BC=a ,可知△OBC 为等边三角形; ④由等边△OBC 可求高CF 的长,进而可求四边形ABCD 面积. ………………………5分 26. 解:(1)①m = 4;…………………………………………………………………………1分 ②图象如图. ……………………………………………………………………2分1;2. …………………………………………………………………………4分 (2)根据小彬的方法可知,当xax =时,y 有最小值,即a x =时,a y 4=最小.…………………5分 27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.………………………………………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称,∵A (﹣1,-2) ,∴B (5,-2).……………………………………………3分②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). …………………………………………………4分 ∵直线AB 与y 轴交点的纵坐标为-1,ABCDE FO y=x+1xOyx12431243⌒ ⌒∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2, ∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.………………………………………………………… 7分28. 解:(1)∵正方形ABCD 的边长为5, BE =2, ∴EC =3.∵四边形ABCD 是正方形, ∴∠B =∠C= 90°, ∴∠1+∠3=90°,∵AE ⊥EF ,∴∠2+∠3=90°, ∴∠1=∠2. ∴△ABE ∽△ECF ,∴FC CE BE AB =,即FC 325= ∴FC =56. ………………………………………………………………………2分(2)①依题意补全图形. ……………………………………………………………3分②法1:证明:在AB 上截取AG =EC ,连接EG . ∵AB = BC ,∴GB =EB .∵∠B =90°,∴∠BGE =45°,∴∠AGE =135°. ∵∠DCB =90°,CP 是正方形ABCD 外角平分线, ∴∠ECP =135°. ∴∠AGE =∠ECP .又∵∠1=∠2,∴△AGE ≌△ECP .∴AE =PE . ………………………………………………………………7分法2:证明:作点A 关于BC 的对称点H ,连接BH ,CH ,EH . ∴AB =BH=BC ,∠1=∠4,∠ABE =∠HBE =90°. ∴∠BHC =∠BCH =45°,∠4+∠5=45°.∵∠1=∠2, ∴∠2+∠5=45°.∵∠ECP =135°,∴∠HCP =180°,点H ,C ,P 在同一条直线上.∵∠6=∠2+∠P =45°, ∴∠5 =∠P .∴AE =PE . ………………………………………………………………7分法3:证明:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM . ∴MB =EB ,∴∠MEB =45°,∠MEC =135°.BCEDA F PG 1 2 M 112 H 4 5 6由法1∠ECP =135°,∴∠MEC =∠ECP . ∴ME ∥PC .又∵AB =BC ,∠ABC =∠MBC =90°. ∴△ABE ≌△CBF .∴∠1=∠BCM ,MC =AE .∴MC ∥EP .∴四边形MCPE 为平行四边形. ∴MC =PE .∴AE =PE . ………………………………………………………………7分29. 解:(1)①35;……………………………………………………………………………1分②∵点A ,B ,C 的最优覆盖矩形的面积为40,∴由定义可知,t =-3或6,即点C 坐标为(-3,-2)或(6,-2). 设AC 表达式为b kx y +=,∴⎩⎨⎧+-=-+-=.b k ,b k 3223或⎩⎨⎧+=-+-=.b k ,b k 6223∴⎩⎨⎧==.b ,k 135或⎪⎩⎪⎨⎧=-=.b ,k 4785 ∴135+=x y 或4785+-=x y .……………………………………………4分 (2)如图1,OD 所在的直线交双曲线于点E ,矩形OFEG 是点O ,D ,E 的一个面 积最小的最优覆盖矩形,∵点D (1,1),∴OD 所在的直线表达式为y =x ,∴点E 的坐标为(2,2),∴OE =22,∴⊙H 的半径r =2, 如图2,∵当点E 的纵坐标为1时,1=4x,解得x =4, ∴OE =2241+=17,∴⊙H 的半径r =217, ∴2172≤≤r .……………………………………………………8分图2图1 GFDEOyxDGFE Oyx。

2017年北京市度初三毕业一模数学试卷练习

2017年北京市度初三毕业一模数学试卷练习

2017年度初三毕业数学试卷练习一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则 图中表示绝对值最大的数对应的点是A .点MB .点NC .点PD .点Q2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为A .0.13×107B .1.3×107C .1.3×106D .13×105 3. 下面平面图形中能围成三棱柱的是4.如图,AB ∥CD ,AB 与EC 交于点F ,如果EA EF =,110C ∠=︒,那么E ∠等于A .30︒B .40︒C .70︒D .110︒ 5.函数y =x 的取值范围是A . 2x ≠B . 2x >C . 2x ≥D . 2x ≤6. 关于x 的一元二次方程2210mx x --=有两个实数根,那么字母m 的取值范围是A .1m ≥-B .1m >-C .10m m ≠≥-且D .10m m ≠>-且 7. 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A ...⎩⎨⎧=+=-y x y x 4738B ...⎩⎨⎧=-=+y x y x 4738C ...⎩⎨⎧=-=-4738x y x yD ...⎩⎨⎧=-=-4738y x y x8. 代数式245x x -+的最小值是A .-1B .1C .2D .5PMNQ9. 已知,在平面直角坐标系xOy 中,点A ( -4,0 ),点B 在直线y = x +2上.当A ,B 两点间的距离最小时,点B 的坐标是A .(2-2- , 2- ) B.(2-2-,2 ) C.( -3,-1 ) D.(-3, )10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为 .12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是 .13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为 .14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 北偏东75°方向20米处,点C 在点A 南偏东15°方向20米处,则点B 与点C 的距离为 米. 15.如图,在Rt △ABC 中,∠C =90°,∠BAC =30°,BC =1,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则这个图形的周长为 ; 16. .阅读下面材料:在数学课上,老师提出如下问题:老师说:“小云的作法正确.”请回答:小云的作图依据是 ____ __.三、解答题(本题共30分,每小题5分) 17.计算:()2132cos 4522oπ-⎛⎫--+- ⎪⎝⎭.18.已知a+b =﹣1,求代数式()()2122a b a b a -+++的值.19.求不等式组2151132523(2)≤x x x x -+⎧-⎪⎨⎪-<+⎩的正整数解20.如图,△ABC 中,AB =AC ,点D 是BC 上一点,DE ⊥AB 于E ,FD ⊥BC 于D ,G 是FC 的中点,连接GD .求证:GD ⊥DE .AF BCDE G21.列方程或方程组解应用题:某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,求经典著作的单价是多少元?22.如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数ky x=的图象的一个交点为A (2,m ). (1)求反比例函数的表达式;(2)过点A 作AC ⊥x 轴,垂足为点C ,如果点P 在反比例函数图象上,且△PBC 的面积等于6,请直接写出点P 的坐标.四、解答题(本题共20分,每小题5分)23.如图,在矩形纸片ABCD 中,AD=5,AB=3, 点E 为BC 上一点,沿着AE 剪下ABE △,将它平移至'DCE △的位置,拼成四边形'AEE D .(1)当点E 与点B 的距离是多少时,四边形'AEE D 是菱形?并说明理由; (2)在(1)的条件下,求菱形'AEE D 的两条对角线的长.E'E DCBAxy24.如图,已知直线AB 的函数表达式为210y x =+,与 x 轴交点为A ,与y 轴交点为B . (1) 求 A , B 两点的坐标;(2) 若点P 为线段AB 上的一个动点,作 PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF .是否存在点P ,使EF 的值最小?若存在,求出EF 的最小值;若不存在,请说明理由。

2017年丰台区初三一模数学试题及答案

2017年丰台区初三一模数学试题及答案

丰台区2017年初三毕业及统一练习数学试卷2017. 05考生须知 1. 本试卷共8页,共三道大题,29道小题,满分120分。

考试时间120分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.随着“一带一路”的建设推进,北京丰台口岸进口货值业务量加速增长,2016年北京丰台口岸进口货值飙升至189 000 000美元,比上一年翻了三倍,创下历史新高.将189 000 000用科学记数法表示应为 A .610189⨯ B .610891⨯. C .710918⨯. D .810891⨯. 2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A.b a >B .ab <C .a a <-D .a b <-3.北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是北京林业大学 北京体育大学 北京大学 中国人民大学A .B .C .D .4.如图,香港特别行政区标志紫荆花图案绕中心旋转n °后能与原来的图案互相重合,则n 的最小值为 A .45 B .60 C .72 D .1445.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是 A .义 B .仁 C .智 D .信 6. 如果0222=-+m m ,那么代数式2442+⋅⎪⎭⎫ ⎝⎛++m mm m m 的值是 A .-2 B .-1 C .2D .37.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开两◇仁 ◇义 ◇礼 ◇智 ◇信 ◇孝D C0a b132-1-2-34脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8cm 时,则AB 的长为 A .7.2 cm B .5.4 cmC .3.6 cmD .0.6 cm8.如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为A .3万元B .35万元C .2.4万元D .2万元9.如图,在正方形网格中,如果点A (1,1),B (2,0),那么点C 的坐标为 A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器.某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2016年下半年销售情况绘制了如下统计图,其中同比增长率%1001⨯⎪⎪⎭⎫⎝⎛-=去年同月销售量当月销售量,下面有四个推断:①2016年下半年各月销售量均比2015年同月销售量增多②第四季度销售量占下半年销售量的七成以上③下半年月均销售量约为16万台 ④下半年月销售量的中位数不超过10万台其中合理的是 A .①②B .①④C .②③D .③④二、填空题(本题共18分,每小题3分)11.如果二次根式4+x 有意义,那么x 的取值范围是__________.12.右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:_____________________.13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.班级 节次 1班 2班 3班 4班 第1节语文数学外语化学ABC教育医疗食品交通娱乐其它120°55°100°35°30°anm cb某品牌空气净化器下半年销售情况统计图10203040销售量/万台-10%0%10%20%30%40%同比增长率销售量同比增长率销售量89.39.813.419.736同比增长率-2.3%6.5%5.2%15.1%20.7%35.9%7月8月9月10月11月12月第2节 数学 政治 物理 语文 第3节 物理 化学 体育 数学 第4节 外语 语文 政治 体育14.如下图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在大量角器上对应的度数为40°,那么在小量角器上对应的度数为______________.(只考虑小于90°的角度)15.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为____________________.16.在数学课上,老师提出如下问题:小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:()3360cos 4120--︒+--π.18.解不等式组:()⎪⎩⎪⎨⎧-≤-->-.3951 106 2 x x x x ,19.如图,四边形ABCD 中,AB ∥DC ,∠B = 90º,F 为DC 上一点,且AB =FC ,E 为AD 上一点,EC 交AF 于点G ,EA = EG .如图, (1)作线段BC =a ;(2)作线段BC 的垂直平分线MN 交线段BC 于点D ; (3)在MN 上截取线段DA =b ,连接AB ,AC . 所以,△ABC 就是所求作的等腰三角形.已知:线段a ,b . 求作:等腰△ABC ,使AB =AC ,BC =a ,BC 边上的高为b . GEBA a b M N AB CD P求证:ED = EC .20.已知关于x 的一元二次方程0432=-+-k kx x .(1)判断方程根的情况;(2)若此方程有一个整数根,请选择一个合适的k 值,并求出此时方程的根.21.如图,在平面直角坐标系xOy 中,直线m x y +-=3与双曲线xky =相交于点 A (m ,2).(1)求双曲线xky =的表达式; (2)过动点P (n ,0)且垂直于x 轴的直线与直线m x y +-=3及双曲线xky =的交点分别为B 和C ,当点B 位于点C 下方时,求出n 的取值范围.22.课题学习:设计概率模拟实验.在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是21.”小海、小东、小英分别设计了下列三个模拟实验: 小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.67854321图1 图2 图3 根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.23.如图,在四边形ABCD 中,∠ABC =90°,DE ⊥AC 于点E ,且AE = CE ,DE =5,EB =12. (1)求AD 的长;(2)若∠CAB =30°,求四边形ABCD 的周长.yx2AOCDE24.阅读下列材料:由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.据中国经济网2017年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)根据以上材料解答下列问题: (1)补全折线统计图;2008年和2016年新建商品住宅环线成交量占比折线统计图0%10%20%30%40%50%60%70%80%90%100%二环以内二、三环之间三、四环之间四、五环之间五环以外环线成交量占比2008年2016年(2)根据材料提供的信息,预估 2017年位于北京市五环之内新建商品住宅成交量占比约_________,你的预估理由是________________________________.25.如图,AB 是⊙O 的直径,C ,D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的延长线于点E ,且CE =CF .(1)求证:CE 是⊙O 的切线;(2)连接CD ,CB .若AD =CD =a ,写出求四边形ABCD面积的思路.O FE DCBA26.【问题情境】已知矩形的面积为a (a 为常数,0>a ),当该矩形的长为多少时,它的周长最小?最小值是多少? 【数学模型】设该矩形的长为x ,周长为y ,则y 与x 的函数表达式为⎪⎭⎫⎝⎛+=x a x y 2()0>x . 【探索研究】小彬借鉴以前研究函数的经验,先探索函数xx y 1+=的图象性质. (1)结合问题情境,函数xx y 1+=的自变量x 的取值范围是0>x , 下表是y 与x 的几组对应值.x … 41 31 21 1 23m… y…414 313 212 2212 313 414 …①写出m 的值;②画出该函数图象,结合图象,得出当x =______时,y 有最小值,y 最小=________; 【解决问题】(2)直接写出“问题情境”中问题的结论.27.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标 为-1,且抛物线顶点D 到点C 的 距离大于2,求m 的取值范围.28.在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与Oyx12431243Oyx-1-2-4-3-5-1-2-4-5-31243512435点B ,C ,D 重合),且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)29.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.丰台区2017年初三毕业及统一练习数 学 参 考 答 案F A B C D E F A B C D E图1 图2 D 3B 3C 3A 2D 2D 1C 2B 1C 1B 2A 1A B C O yx -1-1-212435124365一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案DABCACBDBC二、填空题(本题共18分,每小题3分)11. 4-≥x ; 12. 答案不唯一,如:()()nc nb na mc mb ma c b a n m +++++=+++; 13.163; 14. 70°; 15.()20132028=+-x x ; 16. 垂直平分线上的点到线段两个端点距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上; 有两条边相等的三角形是等腰三角形. 三、解答题(本题共30分,每小题5分) 17.解:原式=3321132+-+-…………………………………………………………4分 =2733-.……………………………………………………………………5分18.解:解不等式①,得2>x .……………………………………………………………2分解不等式②,得3≥x . ……………………………………………………………4分 ∴原不等式组的解集是3≥x . ……………………………………………………5分19.证明:∵AB ∥DC ,FC=AB ,∴四边形A B C F 是平行四边形.…………………………………………………1分∵∠B =90°,∴四边形A B C F 是矩形.………………………………………………………2分∴∠AFC =90°,∴∠D =90°-∠D A F ,∠E C D =90°-∠C G F .………………………3分 ∵EA=EG ,∴∠EAG =∠EGA .………………………………………………………………4分 ∵∠EGA =∠CGF ,∴∠DAF =∠CGF . ∴∠D =∠ECD .∴E D =E C .……………………………………………………………………5分20.解:(1)∵Δ=()()01264812412222>+-=+-=---k k k k k )(.…………2分∴方程有两个不等的实数根.…………………………………………………3分 (2)当k =4时,Δ=16,方程化为0432=-x x ,∴01=x ,342=x ;……………………………5分 或当k =8时,Δ=16,方程化为04832=+-x x ,∴21=x ,322=x .………………………5分 21.解:(1)∵点A (m ,2)在直线m x y +-=3上,∴m m +-=32,m = -1.……………………………………………………1分 ∴A (-1,2). ∵点A 在双曲线xky =上, ∴12-=k,k =-2. ∴xy 2-=.………………………………………………………………………2分(2)令x x 213-=--,得到11-=x ,322=x .………………………………3分根据图形,点B 位于点C 下方,即反比例函数大于一次函数时, ∴01<<-n 或32>n .………………………………………………………5分 22. 解:小英设计的模拟实验比较合理. ……………………………………………………2分小海选择的啤酒瓶盖质地不均匀;小东操作转盘时没有用力转动,而且实验次数 太少,没有进行大量重复实验. ……………………………………………………5分23. 解:(1)∵∠ABC =90°,AE = CE ,EB =12,∴EB =AE =CE =12. ∵DE ⊥AC ,DE =5, ∴在Rt △ADE 中, 由勾股定理得AD =22DE AE +=22512+=13.…………………2分(2)∵在Rt △ABC 中,∠CAB =30°,AC =AE +CE =24,∴BC =12,AB =AC ·cos30°=123.………………………………………3分 ∵DE ⊥AC ,AE =CE ,∴AD =DC =13. ………………………………………………………………4分∴四边形ABCD 的周长为AB +BC +CD +AD =38+123.…………………5分 24. 解:(1)正确画出折线. …………………………………………………………………3分2008年和2016年新建商品住宅环线成交量占比折线统计图0%10%20%30%40%50%60%70%80%90%100%二环以内二、三环之间三、四环之间四、五环之间五环以外环线成交量占比2008年2016年(2)预估理由须包含材料中提供的信息,且支撑预估的数据. ………………5分 25.(1)证明:连接OC ,AC .∵CF ⊥AB ,CE ⊥AD ,且CE =CF .∴∠CAE =∠CAB . ……………………………………………………………… 1分 ∵OC = OA , ∴∠CAB =∠OCA . ∴∠CAE =∠OCA . ∴OC ∥AE .∴∠OCE +∠AEC =180°, ∵∠AEC =90°,∴∠OCE =90°即OC ⊥CE ,∵OC 是⊙O 的半径,点C 为半径外端,∴CE 是⊙O 的切线.………………………………………………………………2分(2)求解思路如下:①由AD =CD =a ,得到∠DAC =∠DCA ,于是∠DCA =∠CAB ,可知DC ∥AB ; ②由OC ∥AE ,OC=OA ,可知四边形AOCD 是菱形;③由∠CAE =∠CAB ,得到CD=CB ,DC=BC=a ,可知△OBC 为等边三角形; ④由等边△OBC 可求高CF 的长,进而可求四边形ABCD 面积. ………………………5分 26. 解:(1)①m = 4;…………………………………………………………………………1分ABCDE FO ⌒ ⌒②图象如图. ……………………………………………………………………2分1;2. …………………………………………………………………………4分 (2)根据小彬的方法可知,当xax =时,y 有最小值,即a x =时,a y 4=最小.…………………5分 27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.………………………………………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称,∵A (﹣1,-2) ,∴B (5,-2).……………………………………………3分②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). …………………………………………………4分 ∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2, ∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.………………………………………………………… 7分28. 解:(1)∵正方形ABCD 的边长为5, BE =2, ∴EC =3.∵四边形ABCD 是正方形, ∴∠B =∠C= 90°, ∴∠1+∠3=90°,∵AE ⊥EF ,∴∠2+∠3=90°, ∴∠1=∠2. ∴△ABE ∽△ECF ,∴FC CE BE AB =,即FC 325= ∴FC =56. ………………………………………………………………………2分(2)①依题意补全图形. ……………………………………………………………3分y=x+1xOyx12431243 F A DC BE132②法1:证明:在AB 上截取AG =EC ,连接EG . ∵AB = BC ,∴GB =EB .∵∠B =90°,∴∠BGE =45°,∴∠AGE =135°. ∵∠DCB =90°,CP 是正方形ABCD 外角平分线, ∴∠ECP =135°. ∴∠AGE =∠ECP .又∵∠1=∠2,∴△AGE ≌△ECP .∴AE =PE . ………………………………………………………………7分法2:证明:作点A 关于BC 的对称点H ,连接BH ,CH ,EH . ∴AB =BH=BC ,∠1=∠4,∠ABE =∠HBE =90°. ∴∠BHC =∠BCH =45°,∠4+∠5=45°.∵∠1=∠2,∴∠2+∠5=45°. ∵∠ECP =135°,∴∠HCP =180°,点H ,C ,P 在同一条直线上.∵∠6=∠2+∠P =45°,∴∠5 =∠P .∴AE =PE . ………………………………………………………………7分法3:证明:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM . ∴MB =EB ,∴∠MEB =45°,∠MEC =135°. 由法1∠ECP =135°,∴∠MEC =∠ECP . ∴ME ∥PC .又∵AB =BC ,∠ABC =∠MBC =90°. ∴△ABE ≌△CBF .∴∠1=∠BCM ,MC =AE .∴MC ∥EP .∴四边形MCPE 为平行四边形. ∴MC =PE .∴AE =PE . ………………………………………………………………7分BCE DA F PG 1 2B CE DA FPM112BCE DA F P H4 5 629. 解:(1)①35;……………………………………………………………………………1分②∵点A ,B ,C 的最优覆盖矩形的面积为40,∴由定义可知,t =-3或6,即点C 坐标为(-3,-2)或(6,-2). 设AC 表达式为b kx y +=,∴⎩⎨⎧+-=-+-=.b k ,b k 3223或⎩⎨⎧+=-+-=.b k ,b k 6223∴⎩⎨⎧==.b ,k 135或⎪⎩⎪⎨⎧=-=.b ,k 4785 ∴135+=x y 或4785+-=x y .……………………………………………4分(2)如图1,OD 所在的直线交双曲线于点E ,矩形OFEG 是点O ,D ,E 的一个面 积最小的最优覆盖矩形,∵点D (1,1),∴OD 所在的直线表达式为y =x , ∴点E 的坐标为(2,2), ∴OE =22, ∴⊙H 的半径r =2, 如图2,∵当点E 的纵坐标为1时,1=4x,解得x =4, ∴OE =2241+=17, ∴⊙H 的半径r =217, ∴2172≤≤r .……………………………………………………8分GFDEOyxDGFE Oyx。

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

2017年北京市丰台区九年级一模数学试卷答案

2017年北京市丰台区九年级一模数学试卷答案

丰台区2017年初三毕业及统一练习数 学 参 考 答 案二、填空题(本题共18分,每小题3分)11. 4-≥x ; 12. 答案不唯一,如:()()nc nb na mc mb ma c b a n m +++++=+++; 13.163; 14. 70°; 15.()20132028=+-x x ; 16. 垂直平分线上的点到线段两个端点距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上; 有两条边相等的三角形是等腰三角形.三、解答题(本题共30分,每小题5分) 17.解:原式=3321132+-+-…………………………………………………………4分 =2733-.……………………………………………………………………5分18.解:解不等式①,得2>x .……………………………………………………………2分解不等式②,得3≥x . ……………………………………………………………4分 ∴原不等式组的解集是3≥x . ……………………………………………………5分19.证明:∵AB ∥DC ,FC=AB ,∴四边形ABCF 是平行四边形.…………………………………………………1分∵∠B =90°,∴四边形ABCF 是矩形.………………………………………………………2分∴∠AFC =90°,∴∠D =90°-∠DAF ,∠ECD =90°-∠CGF .………………………3分 ∵EA=EG ,∴∠EAG =∠EGA .………………………………………………………………4分 ∵∠EGA =∠CGF ,∴∠DAF =∠CGF . ∴∠D =∠ECD .∴ED=EC .……………………………………………………………………5分20.解:(1)∵Δ=()()01264812412222>+-=+-=---k k k k k )(.…………2分∴方程有两个不等的实数根.…………………………………………………3分 (2)当k =4时,Δ=16,方程化为0432=-x x ,∴01=x ,342=x ;……………………………5分 或当k =8时,Δ=16,方程化为04832=+-x x ,∴21=x ,322=x .………………………5分 21.解:(1)∵点A (m ,2)在直线m x y +-=3上,∴m m +-=32,m = -1.……………………………………………………1分 ∴A (-1,2). ∵点A 在双曲线xky =上, ∴12-=k,k =-2. ∴xy 2-=.………………………………………………………………………2分(2)令x x 213-=--,得到11-=x ,322=x .………………………………3分根据图形,点B 位于点C 下方,即反比例函数大于一次函数时, ∴01<<-n 或32>n .………………………………………………………5分 22. 解:小英设计的模拟实验比较合理. ……………………………………………………2分小海选择的啤酒瓶盖质地不均匀;小东操作转盘时没有用力转动,而且实验次数 太少,没有进行大量重复实验. ……………………………………………………5分23. 解:(1)∵∠ABC =90°,AE = CE ,EB =12,∴EB =AE =CE =12. ∵DE ⊥AC ,DE =5, ∴在Rt △ADE 中, 由勾股定理得AD =22DE AE +=22512+=13.…………………2分(2)∵在Rt △ABC 中,∠CAB =30°,AC =AE +CE =24,∴BC =12,AB =AC ·cos30°=123.………………………………………3分 ∵DE ⊥AC ,AE =CE ,∴AD =DC =13. ………………………………………………………………4分∴四边形ABCD 的周长为AB +BC +CD +AD =38+123.…………………5分(2)预估理由须包含材料中提供的信息,且支撑预估的数据. ………………5分25.(1)证明:连接OC ,AC .∵CF ⊥AB ,CE ⊥AD ,且CE =CF .∴∠CAE =∠CAB . ……………………………………………………………… 1分 ∵OC = OA , ∴∠CAB =∠OCA . ∴∠CAE =∠OCA . ∴OC ∥AE .∴∠OCE +∠AEC =180°, ∵∠AEC =90°,∴∠OCE =90°即OC ⊥CE ,∵OC 是⊙O 的半径,点C 为半径外端,∴CE 是⊙O 的切线.………………………………………………………………2分(2)求解思路如下:①由AD =CD =a ,得到∠DAC =∠DCA ,于是∠DCA =∠CAB ,可知DC ∥AB ; ②由OC ∥AE ,OC=OA ,可知四边形AOCD 是菱形;③由∠CAE=∠CAB ,得到CD=CB ,DC=BC=a ,可知△OBC 为等边三角形;④由等边△OBC 可求高CF 的长,进而可求四边形ABCD 面积. ………………………5分⌒ ⌒②图象如图. ……………………………………………………………………2分1;2. …………………………………………………………………………4分 (2)根据小彬的方法可知,当xax =时,y 有最小值,即a x =时,a y 4=最小.…………………5分 27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x =2.………………………………………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称,∵A (﹣1,-2) ,∴B (5,-2). (3)分②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). (4)分∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2,∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.…………………………………………………………7分28. 解:(1)∵正方形ABCD 的边长为5, BE =2, ∴EC =3.∵四边形ABCD 是正方形, ∴∠B =∠C= 90°, ∴∠1+∠3=90°,∵AE ⊥EF ,∴∠2+∠3=90°, ∴∠1=∠2.1xFA DCBE132∴△ABE ∽△ECF ,∴FC CE BE AB =,即FC325= ∴FC =56. ………………………………………………………………………2分(2)①依题意补全图形. ……………………………………………………………3分②法1:证明:在AB 上截取AG =EC ,连接EG . ∵AB = BC ,∴GB =EB .∵∠B =90°,∴∠BGE =45°,∴∠AGE =135°. ∵∠DCB =90°,CP 是正方形ABCD 外角平分线, ∴∠ECP =135°. ∴∠AGE =∠ECP .又∵∠1=∠2,∴△AGE ≌△ECP .∴AE =PE . ………………………………………………………………7分法2:证明:作点A 关于BC 的对称点H ,连接BH ,CH ,EH . ∴AB =BH=BC ,∠1=∠4,∠ABE =∠HBE =90°. ∴∠BHC =∠BCH =45°,∠4+∠5=45°.∵∠1=∠2,∴∠2+∠5=45°. ∵∠ECP =135°,∴∠HCP =180°,点H ,C ,P 在同一条直线上.∵∠6=∠2+∠P =45°,∴∠5 =∠P .∴AE =PE . ………………………………………………………………7分法3:证明:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM . ∴MB =EB ,∴∠MEB =45°,∠MEC =135°. 由法1∠ECP =135°,∴∠MEC =∠ECP . ∴ME ∥PC .又∵AB =BC ,∠ABC =∠MBC =90°. ∴△ABE ≌△CBF .∴∠1=∠BCM ,MC =AE .BCEDA F P G 1 2B CE DA F P112BCE DA F P H4 5 6∴MC ∥EP .∴四边形MCPE 为平行四边形. ∴MC =PE .∴AE =PE . ………………………………………………………………7分29. 解:(1)①35;……………………………………………………………………………1分②∵点A ,B ,C 的最优覆盖矩形的面积为40,∴由定义可知,t =-3或6,即点C 坐标为(-3,-2)或(6,-2). 设AC 表达式为b kx y +=,∴⎩⎨⎧+-=-+-=.b k ,b k 3223或⎩⎨⎧+=-+-=.b k ,b k 6223∴⎩⎨⎧==.b ,k 135或⎪⎩⎪⎨⎧=-=.b ,k 4785 ∴135+=x y 或75+-=x y .……………………………………………4分。

2016-2017年丰台区初三第一学期期末数学试卷和答案2017.1

2016-2017年丰台区初三第一学期期末数学试卷和答案2017.1

丰台区2016-2017学年度第一学期期末练习及参考答案初 三 数 学2017.01一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如图,点D ,E 分别在△ABC 的AB ,AC 边上,且DE ∥BC , 如果AD ∶AB =2∶3,那么DE ∶BC 等于( ) A. 3∶2B. 2∶5C. 2∶3D. 3∶52. 如果⊙O 的半径为7cm ,圆心O 到直线l 的距离为d ,且d =5cm ,那么⊙O 和直线l 的位置关系是( ) A. 相交B. 相切C. 相离D. 不确定3. 如果两个相似多边形的面积比为4∶9,那么它们的周长比为( ) A. 4∶9B. 2∶3C.2∶3 D. 16∶814. 把二次函数422+-=x x y 化为()k h x a y +-=2的形式,下列变形正确的是( ) A. ()312++=x y B. ()322+-=x y C. ()512+-=x y D. ()312+-=x y5. 如果某个斜坡的坡度是1:3,那么这个斜坡的坡角为( ) A. 30°B. 45°C. 60°D. 90°6. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,如果∠C =40°,那么∠ABD 的度数为( ) A. 40° B. 50°C. 70°D. 80°6题图 8题图 7. 如果A (2,1y ),B (3,2y )两点都在反比例函数xy 1=的图象上,那么1y 与2y 的大小关系是( ) A. 21y y <B. 21y y >C. 21y y =D. 21y y ≥8. 如图,AB 为半圆O 的直径,弦AD ,BC 相交于点P ,如果CD = 3,AB = 4,那么S △PDC ∶S △PBA 等于( ) A. 16∶9B. 3∶4C. 4∶3D. 9∶16BADEC9. 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,则旗杆的高度为( ) A. 105米 B.(105+1.5)米 C. 11.5米 D. 10米9题图 10题图10. 如图,在菱形ABCD 中,AB =3,∠BAD =120°,点E 从点B 出发,沿BC 和CD 边移动,作EF ⊥直线AB 于点F ,设点E 移动的路程为x ,△DEF 的面积为y ,则y 关于x 的函数图象为( )A. B. C. D.二、填空题(本题共18分,每小题3分)11. 二次函数()5122--=x y 的最小值是__________.12. 已知34=y x ,则=-y yx __________.13. 已知一扇形的面积是24π,圆心角是60°,则这个扇形的半径是 . 14. 请写出一个符合以下两个条件的反比例函数的表达式: .①图象位于第二、四象限;②如果过图象上任意一点A 作AB ⊥x 轴于点B ,作AC ⊥y 轴于点C ,那么得到的矩形ABOC 的面积小于6.15. 如图,将半径为3cm 的圆形纸片折叠后,劣弧中点C 恰好与圆心O 距离1cm ,则折痕AB 的长为 cm .GFABC DE16. 太阳能光伏发电是一种清洁、安全、便利、高效的新兴能源,因而逐渐被推广使用.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,支撑角钢EF 长为33290cm ,AB 的倾斜角为30°,BE =CA =50 cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,FE ⊥AB 于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为 30 cm ,点A 到地面的垂直距离为50 cm ,则支撑角钢CD 的长度是 cm ,AB 的长度是 cm .三、解答题(本题共35分,每小题5分) 17. 计算:6tan 30°+cos 245°-sin 60°.18. 如图,在Rt △ABC 中,∠C =90°,43=A tan ,BC =12, 求AB 的长.19. 已知二次函数c x x y ++-=2的图象与x 轴只有一个交点.(1)求这个二次函数的表达式及顶点坐标; (2)当x 取何值时,y 随x 的增大而减小.ABC20. 如图,已知AE 平分∠BAC ,ACADAE AB =. (1)求证:∠E =∠C ;(2)若AB =9,AD =5,DC =3,求BE 的长.21. 如图,在平面直角坐标系xOy 中,反比例函数xky =的图象与一次函数1+-=x y 的图象的一个交点为A (-1,m ).(1)求这个反比例函数的表达式;(2)如果一次函数1+-=x y 的图象与x 轴交于点B (n ,0),请确定当x <n 时,对应的反比例函数xky =的值的范围.22. 如图,已知AB 为⊙O 的直径,P A ,PC 是⊙O 的切线,A ,C 为切点,∠BAC =30°.(1)求∠P 的度数; (2)若AB =6,求P A 的长.23. 已知:△ABC .(1)求作:△ABC 的外接圆,请保留作图痕迹; (2)至少写出两条作图的依据. ABCDEBABC四、解答题(本题共22分,第24至25题,每小题5分,第26至27题,每小题6分)24. 青青书店购进了一批单价为20元的中华传统文化丛书.在销售的过程中发现,这种图书每天的销售数量y (本)与销售单价x (元)满足一次函数关系:1083+-=x y ()3620<<x .如果销售这种图书每天的利润为p (元),那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?25. 如图,将一个Rt △BPE 与正方形ABCD 叠放在一起,并使其直角顶点P 落在线段CD 上(不与C ,D 两点重合),斜边的一部分与线段AB 重合.(1)图中与Rt △BCP 相似的三角形共有________个,分别是______________; (2)请选择第(1)问答案中的任意一个三角形,完成该三角形与△BCP 相似的证明.26. 有这样一个问题:探究函数xx y 2+=的图象与性质.小美根据学习函数的经验,对函数xx y 2+=的图象与性质进行了探究.下面是小美的探究过程,请补充完整: (1)函数xx y 2+=的自变量x 的取值范围是___________; (2)下表是y 与x 的几组对应值.求m 的值; D EFACB P(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)结合函数的图象,写出该函数的一条性质:.27. 如图,以△ABC 的边AB 为直径作⊙O ,与BC 交于点D ,点E 是BD 的中点,连接AE 交BC 于点F ,2ACB BAE ∠=∠.(1)求证:AC 是⊙O 的切线;(2)若32=B sin ,BD=5,求BF 的长.五、解答题(本题共15分,第28题7分,第29题8分)28. 已知抛物线G 1:()22+-=h x a y 的对称轴为x = -1,且经过原点. (1)求抛物线G 1的表达式;(2)将抛物线G 1先沿x 轴翻折,再向左平移1个单位后,与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,求A 点的坐标;(3)记抛物线在点A ,C 之间的部分为图象G 2(包含A ,C 两点),如果直线m :2-=kx y 与图象G 2只有一个公共点,请结合函数图象,求直线m 与抛物线G 2的对称轴交点的纵坐标t 的值或范围.⌒29. 如图,对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:如果线段AB 上存在两个点M ,N ,使得∠MPN =30°,那么称点P 为线段AB 的伴随点.(1)已知点A (-1,0),B (1,0)及D (1,-1),E ⎪⎭⎫ ⎝⎛-325 , ,F (0,32+), ①在点D ,E ,F 中,线段AB 的伴随点是_________;②作直线AF ,若直线AF 上的点P (m ,n )是线段AB 的伴随点,求m 的取值范围; (2)平面内有一个腰长为1的等腰直角三角形,若该三角形边上的任意一点都是某条线段a 的伴随点,请直接写出这条线段a 的长度的范围.丰台区2016-2017学年度第一学期期末练习初 三 数 学 参 考 答 案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11. -5; 12.31; 13. 12; 14. 答案不唯一,如:xy 5-=; 15.52; 16. 45,300. 三、解答题(本题共35分,每小题5分)17.解:原式=23223362-⎪⎪⎭⎫ ⎝⎛+⨯-----3分 =232132-+=2133+ -----5分18.解: ∵∠C =90°,BC =12,43==AC BC A tan ,∴AC =16. -----3分 ∵AB 2= AC 2 +BC 2,∴AB 2= 162 +122=400, AB =20. -----5分 19.解:(1)由题意得△=1+4c =0,∴41-=c . ∴412-+-=x x y . -----2分 ∵当212=-=a b x 时,0=y ,∴顶点坐标为⎪⎭⎫⎝⎛0,21. -----3分(2)∵01<-=a ,开口向下, ∴当21>x 时,y 随x 的增大而减小. -----5分 20.(1)证明:∵AE 平分∠BAC , ∴∠BAE =∠EAC . -----1分又∵AC AD AE AB =, 得到ACAEAD AB = ∴△ABE ∽△ADC . -----2分 ∴∠E =∠C . -----3分(2)解:∵△ABE ∽△ADC , ∴BEAB =. -----4分设BE =x , ∵359x =, ∴527=x ,即BE =527. -----5分21.解:(1)∵点A 在一次函数1+-=x y 的图象上,∴m =2. ∴A (-1,2).∵点A 在反比例函数xky =的图象上,∴k = -2.∴xy 2-=. (2) 令y = -x +1=0,x =1,∴B (1,0). ∴当x = 1时,xy 2-== -2. 由图象可知,当x <1时,y >0或y <-2. -----5分22. 解:(1)∵P A 、PC 是⊙O 的切线,∴P A =PC ,∠P AB =90°. -----2分∵∠BAC =30°, ∴∠P AC =60°.∴△ACP 为等边三角形. ∴∠P =60°. -----3分 (2)连接BC ,∵AB 为⊙O 的直径,∴∠ACB =90°. -----4分∵∠BAC =30°, AB =6,23==∠AB AC CAB cos . ∴AC =33.∴P A = AC =33. -----5分23.解:作图正确 -----3分 作图依据:(1(2)两点确定一条直线;(3)垂直平分线上一点到线段的两个端点距离相等;(4)在平面内,圆是到定点的距离等于定长的点的集合四、解答题(本题共22分,第24至25题,每小题5分, 第26至27题,每小题6分)24. 解:p =(x -20)(-3x +108)= -3x 2+168x -2160 -----2分 ∵20<x <36,且a =-3<0,∴当x = 28时, y 最大= 192. -----4分25. 解:(1)3;Rt △EPB ,Rt △PDF ,Rt △EAF . -----2分 (2)答案不唯一,如:∵四边形ABCD 是正方形,∴∠ABP +∠PBC =∠C =90°. ∵∠PBC +∠BPC =90°, ∴∠ABP =∠BPC .又∵∠BPE =∠C = 90°,∴Rt △BCP ∽Rt △EPB . -----5分 26. 解:(1)x ≥-2且x ≠0. -----2分 (2)当x =2时,122=+=m . -----3分 (3-----5分 (4)当-2≤x <0或x -----6分 27.(1)证明:连接AD .∵ E 是弧BD 的中点,∴弧BE = 弧ED ,∴∠BAD =2∠BAE .∵2ACB BAE ∠=∠,∴∠ACB=∠BAD . -----1分∵AB 为⊙O 直径, ∴∠ADB =90°,∴∠DAC +∠ACB =90°. ∴∠BAC =∠DAC +∠BAD =90°. -----2分 ∴AC 是⊙O 的切线. -----3分 (2)解:过点F 作FG ⊥AB 于点G .∵∠BAE =∠DAE ,∠ADB =90°,∴GF =DF . -----4分 在Rt △BGF 中,∠BGF =90°,32==BF GF sinB , 设BF =x ,则GF =5-x ,∴325=x x -,x =3,即BF =3. -----6分 五、解答题(本题共15分,第28题7分,第29题8分) 28. 解:(1)∵抛物线G 1:()22+-=h x a y 的对称轴为x = -1,∴y =a (x +1)2+2.∵抛物线y =a (x +1)2+2经过原点, ∴a (0+1)2+2=0.解得 a =-2.∴抛物线G 1的表达式为y = -2(x +1)2+2= -2x 2-4x . -----2分(2)由题意得,抛物线G 2的表达式为y =2(x +1+1)2﹣2=2x 2+8x +6.∴当y =0时,x = -1或-3.∴A (﹣3,0) -----4分 (3)由题意得,直线m :2-=kx y 交y 轴于点D (0,-2). 由抛物线G 2的解析式y =2x 2+8x +6,得到顶点E (-2,-2).当直线2-=kx y 过E (-2,-2)时与图象G 2只有一个公共点,此时t = -2. 当直线2-=kx y 过A (-3,0)时,把x = -3代入2-=kx y , k =32-,∴232--=x y .把x = -2代入232--=x y ,∴y =32-,即t =32-.∴结合图象可知2-=t 或32->t . -----729. 解:(1)○1D 、F ; -----2分 ○2以AB 为一边,在x 轴上方、下方分别构造等边△ABO 1和等边△ABO 2, 分别以点O 1,点O 2为圆心,线段AB ∵线段AB 关于y 轴对称,∴点O 1,点O 2都在y 轴上. ∵AB =AO 1=2,AO =1,∴OO 1∴O 1(0. 同理O 2(0,.∵F (20)+,∴O 1F =22AB +==. ∴点F 在⊙1O 上.设直线AF 交⊙2O 于点C ,∴线段FC 上除点A 以外的点都是线段AB 的“伴随点”, ∴点P (m ,n )是线段FC 上除点A 以外的任意一点. 连接O 2C ,作CG ⊥y 轴于点G ,∵等边△O 1AB 和等边△O 2AB ,且y 轴垂直AB ,∴∠AO 1B =∠AO 2B =∠O 1AB =∠O 2AB = 60°, ∠AO 1O =∠AO 2O =30°.∵O 1A =O 1F ,∴∠AFO 1=∠F AO 1=15°.∴∠CAO 2=∠AFO 2+∠AO 2F =15°+30°=45°. ∵O 2A =O 2C ,∴∠CAO 2=∠ACO 2=45°. ∴∠O 2CG =180°-∠CFG -∠FGC -∠ACO 2=30°.∴CG =O 2C ·cos30°=3232=⨯.0m ≤≤ 且1m ≠-. -----6分(2)22≥a . -----8分。

18-17年北京市丰台区中考一模数学试卷及答案

18-17年北京市丰台区中考一模数学试卷及答案

1c 0211c 0211c 021w W w .x K b 1.c o M丰台区2018年初三毕业及统一练习数 学 试 卷2018. 05考生须知1. 本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图所示,△ABC 中AB 边上的高线是(A )线段AG (B )线段BD (C )线段BE (D )线段CF 2x 的取值范围是(A )x ≥0 (B )x ≠4 (C )x ≥4 (D )x >43.右图是某个几何体的三视图,该几何体是(A )正三棱柱 (B )正三棱锥(C )圆柱 (D )圆锥4.实数a ,b 在数轴上的对应点的位置如图所示,如果ab = c,那么实数c 在数轴上的对应点的位置可能是(A ) (B (C ) (D 5.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点A ,点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1 = 34°,那么∠2的度数为(A )34° (B )56°(C )66° (D )146°6.如图,在平面直角坐标系xOy 如果将线段OA 绕点O 对应点的坐标为(A )(-1,2) ((C )(1,-2) (D )(2,-1)7.太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是(A )截至2017年底,我国光伏发电累计装机容量为13 078万千瓦(B )2013-2017年,我国光伏发电新增装机容量逐年增加(C )2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦(D )2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%8.如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm 的A ,B 两点同时开始沿线段AB 运动,运动过程中甲光斑与点A 的距离S 1(cm)与时间t (s)的函数关系图象如图2,乙光斑与点B 的距离S 2(cm)与时间t (s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s ,且两图象中△P 1O 1Q 1≌△P 2Q 2O 2.下列叙述正确的是(A )甲光斑从点A 到点B (B )乙光斑从点A 到B 的运动速度小于1.5cm/s (C )甲乙两光斑全程的平均速度一样(D )甲乙两光斑在运动过程中共相遇3次二、填空题(本题共16分,每小题2分)9.在某一时刻,测得身高为1.8m 的小明的影长为3m ,同时测得一建筑物的影长为10m ,那么这个建筑物的高度为 m .ABCDE FG a bc AB C 12图1B乙b1a 02110.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为 .11.在数学家吴文俊主编的《“九章算术”与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用“出入相补”原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到“筝形的面积等于其对角线乘积之半”.(说明:一条对角线垂直平分另一条对角线的四边形是筝形)请根据右图完成这个数学问题的证明过程.证明:S 筝形ABCD = S △AOB + S △AOD + S △COB + S △COD .易知,S △AOD = S △BEA ,S △COD = S △BFC .由等量代换可得:S 筝形ABCD = S △AOB + + S △COB += S 矩形EFCA= A E ·AC = · .1212.如果代数式,那么的值为 .221m m +=22442m m m m m+++÷13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .如果∠A = 15°,弦CD = 4,那么AB 的长是 .14.营养学家在初中学生中做了一项实验研究:甲组同学每天正常进餐,乙组同学每天除正常进餐外,每人还增加600ml 牛奶.一年后营养学家统计发现:乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01cm ,甲组同学平均身高的增长值比乙组同学平均身高的增长值的75%少0.34cm .设甲、乙两组同学平均身高的增长值分别为x cm 、y cm ,依题意,可列方程组为 .15.“明天的降水概率为80%”的含义有以下四种不同的解释:① 明天80%的地区会下雨;② 80%的人认为明天会下雨;③ 明天下雨的可能性比较大;④ 在100次类似于明天的天气条件下,历史纪录告诉我们,大约有80天会下雨.你认为其中合理的解释是 .(写出序号即可)16.下面是“作一个角等于已知角”的尺规作图过程.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分)17.02cos 45(3π)|1-︒+-+-18.解不等式组:341,512.2x x x x ≥-⎧⎪⎨->-⎪⎩19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE = DF .20.已知:关于x 的一元二次方程x 2 - 4x + 2m = 0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.F DECB ADOE ABCF ABA BCEDF22.在平面直角坐标系中,反比例函数的图象与一次函数的图象的交点xOy 2y x=y kx b =+分别为P (m ,2),Q (-2,n ). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.23.如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB 交弦BC 于点E ,过点D 作⊙O 的切线交BC 的延长线于点F .(1)求证:EF ED ;=(2)如果半径为5,cos ∠ABC =,求DF 的长.3524.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲 30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 6060乙 80 90 40 60 80 80 90 40 805080 70 70 70 70 60 80 50 8080【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x ≤100,良好成绩为50<x ≤80,合格成绩为30≤x ≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲676060乙7075a其中a =__________.【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)25.如图,Rt △ABC 中,∠ACB = 90°,点D 为AB 边上的动点(点D 不与点A ,点B 重合),过点D 作ED ⊥CD 交直线AC 于点E .已知∠A = 30°,AB = 4cm ,在点D 由点A 到点B 运动的过程中,设AD = x cm ,AE = y cm.小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:x /cm (12)132252372…y /cm…0.40.81.01.04.0…(说明:补全表格时相关数值保留一位小数)(2)在下面的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,xOy 画出该函数的图象;C ED(3)结合画出的函数图象,解决问题:当AE =AD 时,AD 的长度约为 cm .1226.在平面直角坐标系xOy 中,抛物线的最高点的纵坐标是2.243y ax ax a =-+(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.27.如图,Rt △ABC 中,∠ACB,且∠BCE = ,点B 关于CE 分别α交射线CE 于点M ,N .(1)依题意补全图形;(2)当= 30°时,直接写出∠CMA 的度数;α(3)当0°<< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.α28.对于平面直角坐标系xOy 中的点M 和图形,给出如下定义:点P 为图形上一1W 2W 1W 点,点Q 为图形上一点,当点M 是线段PQ 的中点时,称点M 是图形,的2W 1W 2W “中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为.⎪⎭⎫⎝⎛++2,22121y y x x 已知,点A (-3,0),B (0,4),C (4,0).(1)连接BC ,在点D (,0),E (0,1),F (0,)中,可以成为点A 和线段BC 的1212“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标y 的取值范围.ABCE丰台区2018年初三毕业及统一练习初三数学参考答案一、选择题(本题共16分,每小题2分)题号12345678答案DCABBABC二、填空题(本题共16分,每小题2分)9.6; 10.等,答案不唯一; 11.S △BEA ,S △BFC ,AC •BD ; 12.1;1y x=13.8;14.15.③,④;2.01,75%0.34;y x x y =+⎧⎨=-⎩16.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应的其余各组量都分别相等.或:同圆半径相等,三条边对应相等的两个三角形全等,全等三角形的对应角相等.三、解答题(本题共68分,第17--24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分)17.02cos 45(3π)|1-︒+-+-=……………………4分211-++-=. ……………………5分18.解:解不等式①,得, ……………………2分1x ≤∴原不等式组的解集是.………5分11x -<≤19.证明:连接AD .∵AB =BC ,D 是BC 边上的中点,∴∠BAD =∠CAD . ………………………3分∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF . ………………………5分(其他证法相应给分)20.解:(1)∵方程有两个不相等的实数根,∴Δ>0.∴Δ=. 24421680m m --⋅=->()∴. ………………………2分2m <(2)∵,且m 为非负整数,2m <∴. ………………………3分=0m 或1当m =0时,方程为,解得方程的根为,,符合题意;240x x -=01=x 24x =当m =1时,方程为,它的根不是整数,不合题意,舍去.2420x x -+=综上所述,m =0. ………………………5分21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分∵四边形ABCD 为菱形,∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形.………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE EB ,AB 2AG ,ED 2EG . ………………………4分===∵矩形ABCD 中,EB AB ,AB=4, =∴AG 2,AE 4.==∴Rt △AEG 中,EG=. ∴ED=………………………5分(其他证法相应给分)22.(1)解: ∵反比例函数的图象经过点,Q (-2,n ),2y x=(,2)P m ∴,.1m =1n =-∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分∵一次函数的图象经过点P (1,2),Q (-2,-1),y kx b =+ABCE DF∴ 解得 2,2 1.k b k b +=⎧⎨-+=-⎩1,1.k b =⎧⎨=⎩∴一次函数的表达式为..…….…….…….……3分1y x =+(2)点M 的坐标为(-2,-)或(-2,-1-)……………5分23.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3.∵BC 是⊙O 的切线,∴∠BDF =90°. ∴∠1+∠F =90°,∠3+∠EDF =90°.∴∠F =∠EDF .∴EF DE .…….…….……………2分=(2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°. ∵DE ∥AB ,∴∠DEF =∠ABC .∵cos ∠ABC =,∴在Rt △ECD 中,cos ∠DEC ==.35CE DE 35设CE =3x ,则DE =5x .由(1)可知,BE = EF =5x .∴BF =10x ,CF =2x .在Rt △CFD 中,由勾股定理得DF =.∵半径为5,∴BD 10.=∵BF ×DC = FD ×BD ,∴,解得10410x x = x =∴DF ==5. …….…….……………5分 (其他证法或解法相应给分.)24.解:a =80; ………………………1分(1)甲; ………………………2分(2); ………………………3分110(3)答案不唯一,理由需支持推断结论.中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多. ………………………5分.解:(1)1.2; ………………………2分(2)如右图; ………………………4分(3)2.4或3.3 ………………………6分.解:(1)∵抛物线,()22432y ax ax a a x a =-+=--∴对称轴为x = 2.………………………………………1分∵抛物线最高点的纵坐标是2,∴a = -2.………………………………………2分∴抛物线的表达式为. ……………3分2286y x x =-+-(2)由图象可知, 或-6≤b <0. ………………6分2b =由图象的对称性可得:x 1+x 2=2. ……………… 7分.解:(1)如图;…………………1分(2)45°; …………………2分(3)结论:AM CN . …………………3分证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称,∴CE 是BD 的垂直平分线.∴CB =CD .∴∠1=∠2=.α∵CA =CB ,∴CA =CD .∴∠3=∠CAD .∵∠4=90°,∴∠3=12(180°-∠ACD )=12(180°-90°--)=45°-α.αα∴∠5=∠2+∠3=+45°-α=45°.…………………5分α∵∠4=90°,CE 是BD 的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7. ∵AG ⊥EC ,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM AG.∴AM CN.…………………7分(其他证法相应给分.)28.解:(1)点A和线段BC的“中立点”的是点D,点F;………2分(2)点A和⊙G的“中立点”在以点O为圆心、半径为1的圆上运动.因为点K在直线y=- x+1上,设点K的坐标为(x,- x+1),则x2+(- x+1)2=12,解得x1=0,x2=1.所以点K的坐标为(0,1)或(1,0). ………5分(3)(说明:点N与⊙C的“中立点”在以线段NC的中点P为圆心、半径为1的圆上运动.圆P与y轴相切时,符合题意.)所以点N的横坐标的取值范围为-6≤x N≤-2. ………8分y。

2017年北京中考一模数学考试各区汇总-第29题(新定义代几综合题型) (11区)

2017年北京中考一模数学考试各区汇总-第29题(新定义代几综合题型) (11区)

2017年北京中考一模数学考试各区汇总-第29题(新定义代几综合题型) (11区) 1.(8分)在平面直角坐标系xOy 中,点A 的坐标为(0,m ),且m ≠0,点B 的坐标为(n ,0),将线段AB 绕点B 旋转90°,分别得到线段BP 1,BP 2,称点P 1,P 2为点A 关于点B 的“伴随点”,图1为点A 关于点B 的“伴随点”的示意图.(1)已知点A (0,4),①当点B 的坐标分别为(1,0),(-2,0)时,点A 关于点B 的“伴随点”的坐标分别为;②点(x ,y )是点A 关于点B 的“伴随点”,直接写出y 与x 之间的关系式; (2)如图2,点C 的坐标为(-3,0),以C为半径作圆,若在⊙C上存在点A 关于点B 的“伴随点”,直接写出点A 的纵坐标m 的取值范围.图1备用图图22.(8分)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.3.(8分)在平面直角坐标系xOy 中,对于双曲线(0)m y m x =>和双曲线(0)ny n x=>,如果2m n =,则称双曲线(0)m y m x =>和双曲线(0)ny n x=>为“倍半双曲线”,双曲线(0)m y m x =>是双曲线(0)n y n x =>的“倍双曲线”,双曲线(0)ny n x =>是双曲线(0)my m x=>的“半双曲线”.(1)请你写出双曲线3y x =的“倍双曲线”是 ;双曲线8y x=的“半双曲线”是 ;(2)如图1,在平面直角坐标系xOy 中,已知点A 是双曲线4y x=在第一象限内任意一点,过点A 与y 轴平行的直线交双曲线4y x=的“半双曲线”于点B ,求△AOB 的面积;(3)如图2,已知点M 是双曲线2(0)ky k x=>在第一象限内任意一点,过点M 与y 轴平行的直线交双曲线2ky x=的“半双曲线”于点N ,过点M 与x 轴平行的直线交双曲线2ky x=的“半双曲线”于点P ,若△MNP 的面积记为MNP S ∆,且12MNP S ∆≤≤,求k 的取值范围.4.(8分)在平面直角坐标系xOy 中,对“隔离直线”给出如下定义:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足m kx b +≤且n kx b +≥,则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“隔离直线”. 如图1,直线:4l y x =--是函数6(0)y x x=<的图象与正方形OABC 的一条“隔离直线”.(1)在直线12y x =-,231y x =+,33y x =-+中,是图1函数6(0)y x x=<的图象与正方形OABC的“隔离直线”的为;请你再写出一条符合题意的不同的“隔离直线” 的表达式:;(2)如图2,第一象限的等腰直角三角形EDF 的两腰分别与坐标轴平行,直角顶点D的坐标是,⊙O 的半径为2.是否存在EDF △与⊙O 的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形1111A B C D 的一边在y 轴上,其它三边都在y 轴的右侧,点(1,)M t 是此正方形的中心.若存在直线2y x b =+是函数22304y x x x =--(≤≤)的图象与正方形1111A B C D 的“隔离直线”,请直接写出t 的取值范围.图2备用图-4图15.(8分)在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时我们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB ,则称∠AOB 为矩形ABCD 的视角.(1)如图1,矩形ABCD ,A (﹣3,1),B (3,1),C (3,3),D (﹣3,3),直接写出视角∠AOB 的度数;(2)在(1)的条件下,在射线CB 上有一点Q ,使得矩形ABCD 的视角∠AQB =60°,求点Q 的坐标;(3)如图2,⊙P 的半径为1,点P (1,3),点Q 在x 轴上,且⊙P 的视角∠EQF 的度数大于60°,若Q (a ,0),求a 的取值范围.图1图2 备用图6.(8分)我们给出如下定义:两个图形G1和G2,在G1上的任意一点P引出两条垂直的射线与G2相交于点M、N,如果PM=PN,我们就称M、N为点P的垂等点,PM、PN为点P的垂等线段,点P为垂等射点.(1)如图1,在平面直角坐标系xOy中,点P(1,0)为x轴上的垂等射点,过A(0,3)作x轴的平行线l,则直线l上的B(-2,3), C(-1,3),D(3,3),E(4,3)为点P的垂等点的是________________________;(2)如果一次函数图象过M(0,3),点M为垂等射点P(1,0)的一个垂等点且另一个垂等点N也在此一次函数图象上,在图2中画出示意图并写出一次函数表达式;(3)如图3,以点O为圆心,1为半径作⊙O,垂等射点P在⊙O上,垂等点在经过(3,0),(0,3)的直线上,如果关于点P的垂等线段始终存在,求垂等线段PM长的取值范围(画出图形直接写出答案即可).7.(8分)在平面直角坐标系xOy 中,若P ,Q 为某个菱形相邻的...两个顶点,且该菱形的两条对角线分别与x 轴,y 轴平行,则称该菱形为点P ,Q 的“相关菱形”.图1为点P ,Q 的“相关菱形”的一个示意图.图1已知点A 的坐标为(1,4),点B 的坐标为(b ,0),(1)若b =3,则R (1 ,0),S (5,4),T (6,4)中能够成为点A ,B 的“相关菱形”顶点的是;(2)若点A ,B 的“相关菱形”为正方形,求b 的值;(3)B点C 的坐标为(2,4).若B 上存在点M ,在线段AC 上存在点N ,使点M ,N 的“相关菱形”为正方形,请直接写出b 的取值范围.8.(8分)在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.备用图9.(8分)在平面直角坐标系xOy 中,对于点P (x ,y ),如果点Q (x ,'y )的纵坐标满足()()⎩⎨⎧<-≥-=时当时当y x xy y x y x y ',那么称点Q 为点P 的“关联点”. (1)请直接写出点(3,5)的“关联点”的坐标;(2)如果点P 在函数2-=x y 的图象上,其“关联点”Q 与点P 重合,求点P 的坐标; (3)如果点M (m ,n )的“关联点”N 在函数y=2x 2的图象上,当0≤m ≤2 时,求线段MN 的最大值.10.(8分)设平面内一点到等边三角形中心的距离为d ,等边三角形的内切圆半径为r ,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足r ≤d ≤R 的点叫做等边三角形的中心关联点.在平面直角坐标系xOy 中,等边△ABC 的三个顶点的坐标分别为A (0,2),B (﹣3,﹣1),C (3,﹣1). (1)已知点D (2,2),E (3,1),F (21-,﹣1). 在D ,E ,F 中,是等边△ABC 的中心关联点的是;(2)如图1,过点A 作直线交x 轴正半轴于M ,使∠AMO =30°.①若线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围;②将直线AM 向下平移得到直线y =kx +b ,当b 满足什么条件时,直线y =kx +b 上总存..在.等边△ABC 的中心关联点;(直接写出答案,不需过程) (3)如图2,点Q 为直线y =﹣1上一动点,⊙Q 的半径为21. 当Q 从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t 秒.是否存在某一时刻t ,使得⊙Q 上所有点都是等边△ABC 的中心关联点?如果存在,请直接写出所有符合题意的t 的值;如果不存在,请说明理由.图1 图211.(8分)在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点.(1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1:x =2的二次对称点,则点B 的坐标为;②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为; ③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为; (2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4:x =b 的二次对称点,且点M '在射线上,b 的取值范围是; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:的二次对称点,且点N '在y 轴上,求t 的取值范围.(0)y x x =≥1y =+图1图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2017年初三毕业及统一练习数学试卷2017. 05一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.随着“一带一路”的建设推进,北京丰台口岸进口货值业务量加速增长,2016年北京丰台口岸进口货值飙升至189 000 000美元,比上一年翻了三倍,创下历史新高.将189 000 000用科学记数法表示应为 A .610189⨯ B .610891⨯. C .710918⨯. D .810891⨯. 2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A.b a >B.a b <C .a a <-D .a b <-3.北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是北京林业大学 北京体育大学 北京大学 中国人民大学A .B .C .D .4.如图,香港特别行政区标志紫荆花图案绕中心旋转n °后能与原来的图案互相重合,则n 的最小值为 A .45 B .60 C .72 D .144 5.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是 A .义 B .仁C .智D .信6. 如果0222=-+m m ,那么代数式2442+⋅⎪⎭⎫ ⎝⎛++m m m m m 的值是 A .-2B .-1C .2D .37.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8cm 时,则AB 的长为 A .7.2 cm B .5.4 cmC .3.6 cmD .0.6 cm8.如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为A .3万元B .35万元 C .2.4万元 D .2万元9.如图,在正方形网格中,如果点A (1,1),B (2,0),那么点C 的坐标为 A .(-3,-2)B .(3,-2) C .(-2,-3) D .(2,-3)10化,关注程度不断提高,器.家为进一步了解市场,生产计划,根据2016统计图,其中同比增长率%1001⨯⎪⎪⎭⎫⎝⎛-=去年同月销售量当月销售量,下面有四个推断: ①2016年下半年各月销售量均比2015年同月销售量增多 ②第四季度销售量占下半年销售量的七成以上 ③下半年月均销售量约为16万台④下半年月销售量的中位数不超过10万台教育医疗食品交通娱乐其它120°55°100°35°30°aA BD Ca b其中合理的是 A .①②B .①④C .②③D .③④二、填空题(本题共18分,每小题3分)11.如果二次根式4+x 有意义,那么x 的取值范围是__________.12.右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:_____________________. 13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.14.如下图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在大量角器上对应的度数为40°,那么在小量角器上对应的度数为______________.(只考虑小于90°的角度)15.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为____________________.16.在数学课上,老师提出如下问题:小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:()3360cos 4120--︒+--π.18.解不等式组:()⎪⎩⎪⎨⎧-≤-->-.3951 106 2 x x x x ,19.如图,四边形ABCD 中,AB ∥DC ,∠B = 90º,F 为DC 上一点,且AB =FC ,E 为AD 上一点,EC 交AF 于点G ,EA = EG . 求证:ED = EC .20.已知关于x 的一元二次方程0432=-+-k kx x .(1)判断方程根的情况;(2)若此方程有一个整数根,请选择一个合适的k 值,并求出此时方程的根. 21.如图,在平面直角坐标系xOy 中,直线m x y +-=3与双曲线xky =相交于点 A (m ,2).(1)求双曲线xky =的表达式; (2)过动点P (n ,0)且垂直于x 轴的直线与直线m x y +-=3及双曲线xky =的交点分别为B 和GF EDCBA PC ,当点B 位于点C 下方时,求出n 的取值范围.22.课题学习:设计概率模拟实验.在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是21.”小海、小东、小英分别设计了下列三个模拟实验: 小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.67854321图1 图2 图3 根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.23.如图,在四边形ABCD 中,∠ABC =90°,DE ⊥AC 于点 E ,且AE = CE ,DE =5,EB =12. (1)求AD 的长;(2)若∠CAB =30°,求四边形ABCD 的周长.24.阅读下列材料:由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.据中国经济网2017年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)根据以上材料解答下列问题: (1)补全折线统计图;(2量占比约_________,你的预估理由是________________________________.25.如图,AB 是⊙O 的直径,C ,D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD的延长线于点E ,且CE =CF . (1)求证:CE 是⊙O 的切线;(2)连接CD ,CB .若AD =CD =a ,写出求四边形ABCD面积的思路.CD E.在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与 点B ,C ,D 重合),且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法: 想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可).在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形.F A B C D E F A B C D E图1 图2到线段两个端点距离相等的点在这条线段的垂直平分线上; 有两条边相等的三角形是等腰三角形. 三、解答题(本题共30分,每小题5分) 17.解:原式=3321132+-+-…………………………………………………………4分 =2733-.……………………………………………………………………5分18.解:解不等式①,得2>x .……………………………………………………………2分解不等式②,得3≥x . ……………………………………………………………4分 ∴原不等式组的解集是3≥x . ……………………………………………………5分19.证明:∵AB ∥DC ,FC=AB ,∴四边形ABCF 是平行四边形.…………………………………………………1分∵∠B =90°,∴四边形A B C F 是矩形.………………………………………………………2分∴∠AFC =90°,∴∠D =90°-∠D A F ,∠E C D =90°-∠C G F .………………………3分 ∵EA=EG ,∴∠EAG =∠EGA .………………………………………………………………4分 ∵∠EGA =∠CGF ,∴∠DAF =∠CGF . ∴∠D =∠ECD .∴E D =E C .……………………………………………………………………5分20.解:(1)∵Δ=()()01264812412222>+-=+-=---k k k k k )(.…………2分∴方程有两个不等的实数根.…………………………………………………3分 (2)当k =4时,Δ=16,方程化为0432=-x x ,∴01=x ,342=x ;……………………………5分 或当k =8时,Δ=16,方程化为04832=+-x x ,∴21=x ,322=x .………………………5分21.解:(1)∵点A (m ,2)在直线m x y +-=3上,∴m m +-=32,m = -1.……………………………………………………1分 ∴A (-1,2). ∵点A 在双曲线xky =上, ∴12-=k,k =-2.∴xy 2-=.………………………………………………………………………2分(2)令x x 213-=--,得到11-=x ,322=x .………………………………3分根据图形,点B 位于点C 下方,即反比例函数大于一次函数时,∴01<<-n 或32>n .………………………………………………………5分22. 解:小英设计的模拟实验比较合理. ……………………………………………………2分小海选择的啤酒瓶盖质地不均匀;小东操作转盘时没有用力转动,而且实验次数太少,没有进行大量重复实验. ……………………………………………………5分23. 解:(1)∵∠ABC =90°,AE = CE ,EB =12,∴EB =AE =CE =12. ∵DE ⊥AC ,DE =5, ∴在Rt △ADE 中, 由勾股定理得AD =22DE AE +=22512+=13.……………2分(2)∵在Rt △ABC 中,∠CAB =30°,AC =AE +CE =24,∴BC =12,AB =AC ·cos30°=123.…………………………………3分 ∵DE ⊥AC ,AE =CE ,∴AD =DC =13. …………………………………………………………4分∴四边形ABCD 的周长为AB +BC +CD +AD =38+123.……………5分 24. 解:(1)正确画出折线. …………………………………………………………………3分(2)预估理由须包含材料中提供的信息,且支撑预估的数据. ………………5分 25.(1)证明:连接OC ,AC .∵CF ⊥AB ,CE ⊥AD ,且CE =CF .∴∠CAE =∠CAB . ………………………………………………………… 1分 ∵OC = OA ,∴∠CAB =∠OCA . ∴∠CAE =∠OCA . ∴OC ∥AE .∴∠OCE +∠AEC =180°, ∵∠AEC =90°,∴∠OCE =90°即OC ⊥CE ,∵OC 是⊙O 的半径,点C 为半径外端,∴CE 是⊙O 的切线.…………………………………………………………2分(2)求解思路如下:①由AD =CD =a ,得到∠DAC =∠DCA ,于是∠DCA =∠CAB ,可知DC ∥AB ;②由OC ∥AE ,OC=OA ,可知四边形AOCD 是菱形;③由∠CAE =∠CAB ,得到CD=CB ,DC=BC=a ,可知△OBC 为等边三角形;④由等边△OBC 可求高CF 的长,进而可求四边形ABCD 面积. …………………5分 26. 解:(1)①m = 4;……………………………………………………………………1分 ②图象如图. ………………………………………………………………2分1;2. ……………………………………………………………………4分 (2)根据小彬的方法可知,当xax =时,y 有最小值,即a x =时,a y 4=最小.……………5分 27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.…………………………………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称,∵A (﹣1,-2) ,∴B (5,-2).………………………………………3分②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). ……………………………………………4分 ∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2, ∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.…………………………………………………… 7分28. 解:(1)∵正方形ABCD 的边长为5, BE =2, ∴EC =3.∵四边形ABCD 是正方形, ∴∠B =∠C= 90°,∴∠1+∠3=90°,∵AE ⊥EF ,∴∠2+∠3=90°, ∴∠1=∠2. ∴△ABE ∽△ECF ,∴FC CE BE AB =,即FC 325= ∴FC =56. ………………………………………………………………………2分(2)①依题意补全图形. ……………………………………………………………3分②法1:证明:在AB 上截取AG =EC ,连接EG .∵AB = BC ,∴GB =EB .∵∠B =90°,∴∠BGE =45°,∴∠AGE =135°. ∵∠DCB =90°,CP 是正方形ABCD 外角平分线, ∴∠ECP =135°. ∴∠AGE =∠ECP .又∵∠1=∠2,∴△AGE ≌△ECP .∴AE =PE . ………………………………………………………………7分法2:证明:作点A 关于BC 的对称点H ,连接BH ,CH ,EH . ∴AB =BH=BC ,∠1=∠4,∠ABE =∠HBE =90°. ∴∠BHC =∠BCH =45°,∠4+∠5=45°.∵∠1=∠2,∴∠2+∠5=45°. ∵∠ECP =135°,∴∠HCP =180°,点H ,C ,P 在同一条直线上.∵∠6=∠2+∠P =45°,∴∠5 =∠P .∴AE =PE . ………………………………………………………………7分法3:BC E DA FP G 1 21x12 BC EDA F P 4 5 6 ⌒ ⌒A D1证明:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM . ∴MB =EB ,∴∠MEB =45°,∠MEC =135°. 由法1∠ECP =135°,∴∠MEC =∠ECP . ∴ME ∥PC .又∵AB =BC ,∠ABC =∠MBC =90°. ∴△ABE ≌△CBF .∴∠1=∠BCM ,MC =AE .∴MC ∥EP .∴四边形MCPE 为平行四边形. ∴MC =PE .∴AE =PE . ………………………………………………………………7分29. 解:(1)①35;……………………………………………………………………………1分②∵点A ,B ,C 的最优覆盖矩形的面积为40,∴由定义可知,t =-3或6,即点C 坐标为(-3,-2)或(6,-2). 设AC 表达式为b kx y +=,∴⎩⎨⎧+-=-+-=.b k ,b k 3223或⎩⎨⎧+=-+-=.b k ,b k 6223∴⎩⎨⎧==.b ,k 135或⎪⎩⎪⎨⎧=-=.b ,k 4785 ∴135+=x y 或75+-=x y .……………………………………………4分图2图1B CEDA FP 1。

相关文档
最新文档