高中数学大专题【等比数列】
高中数学《等比数列》逐字稿
高中数学《等比数列》逐字稿数列是数学中非常基础的概念之一,而等比数列是数列中的一种特殊类型,它具有非常重要的意义。
本文将带您逐字学习高中数学《等比数列》的知识。
一、定义等比数列是指从第二项开始,每一项与它的前一项的比相等的数列。
简单来说,就是一个数列中每一个数都是它前面那个数乘以相同的常数。
例如:2,4,8,16,32 就是一个等比数列,公比为 2。
二、公式等比数列的通项公式为:an=a1*q^(n-1) ,其中 a1 为首项,q 为公比,n 为项数。
三、性质1. 如果公比 q 大于 1,那么随着项数的增加,等比数列中的项会越来越大(指绝对值),并且不存在极限;如果公比 q 在0和1之间,那么随着项数的增加,等比数列中的项会越来越小(指绝对值),并趋于 0;如果公比 q 小于 0,而且 n 为奇数,那么等比数列中的各项都是负数。
2. 在等比数列中,任意三项的比值恒等于相邻两项的比值。
这是因为:a3/a2=q,a2/a1=q,两式相除即得 a3/a1=q^2。
3. 求等比数列的前 n 项和的公式为:S_n = a1(1-q^n)/(1-q) 。
如果公比 q 大于 1,那么 S_n 会趋向无限大;如果公比在 0 到 1 之间,那么 S_n 会趋于一个有限数;如果公比小于 0,而且 n 为奇数,那么 S_n 为负数。
四、应用等比数列是数学中非常重要的一种数列,它在实际应用中有很广泛的用途,例如在金融领域中,等比数列被广泛用于计算复利;在物理学中,等比数列也被用于计算电路中电容和电感的阻抗;在生物学中,等比数列则可以用来计算生物种群的增长等。
五、总结通过本文的学习,我们了解到了等比数列的定义、公式、性质和应用。
掌握这些知识对于高中数学的学习非常重要,也为今后进一步深入学习数学打下了坚实的基础。
高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)
4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。
高中数学——等比数列及其性质复习
名称
通项 公式
等差数列
an a1 (n 1)d
法2:累加法
n 2 , a2 a1 d
a3 a2 d
推导 过程
a4 a3 d
……
an an1 d
把这n-1个式子相加,得:
an a1 (n 1)d
当n=1时,上式成立
an a1 (n 1)d , n N*
等比数列
an a1qn1
知道其中的任意三个量,就可以求 出另一个量,即知三求一 .
我们称之为基本量法!
例2:在等比数列{an}中:
已知 a3 2 , a6 16 ,求an
解:an a1qn1
a
6
a3
a1q5 a1q2
16 2
a1
1 2
q 2
an
1 2n1 2
2n2
解后反思:利用通项公式由已知的基本量转化为解
可得
an am (n m)d
等比数列
an amqnm n, m N *
已知等比数列{an}中,公 比为q,则an与am(n,m ∈ N*) 有何关系?
an=a1qn-1
am=a1qm-1
an qnm am
可得
an amqnm n,m N*
例2:在等比数列{an}中:
已知 a3 2 , a6 16 ,求an
方程组。所谓函数与方程的思想。
二、等比数列通项公式的引申
名称
等差数列
an am (n m)d n,m N*
已知等差数列{an}中,公 差为d,则an与am(n,m ∈ N*) 有何关系?
通项 an a1 (n 1)d
公式
引申 am a1 (m 1)d
an am (n m)d
高中数学必修五--等比数列
这些数列 有什么共同点
概念形成
一、等比数列的定义
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等
比数列.这个常数叫做等比数列的公比,公比通常用字母 q 表示 q 0 ,即 an q (q 0) . an1
概念形成
二、等比数列的通项公式
概念形成
四、等比数列的性质
(1)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项,
即 an2 an1 an1 (n 2) .
(2)在有穷等比数列中,与首末两项等距离的两项之积等于首末两项之积,即
a1 an a2 an1 a3 an2 L .
(3)在等比数列中,若 m n p q ,则 am an ap aq .
(4)若 {an } , {bn } 均为等比数列,则 {an
bn} ,{k
an}
(k
0)
,{ 1 an
} 仍为等比数列,公比分别为
q1
q2
,
q1 ,
1 q1
.Байду номын сангаас
(5)等比数列依次每 n 项的和仍为等比数列,公比为 qn
n
(6) a1 a2 L an (a1 an )2 . (正项数列中)
课堂小结
四、等比数列的性质
一个思想 类比思想
两个方法 不完全归纳法
叠乘法
三个公式
谢谢大家
人教版高中数学必修五
不完全归纳法
叠乘法
概念形成
二、等比数列的通项公式
【问题3】怎样用函数观点来分析等比数列的通项公式呢?
类比思想
概念形成
高中数学等比数列求和
高中数学等比数列求和等比数列是数学中常见的一种数列,它的特点是每一项与前一项的比值都相等。
在高中数学中,我们经常需要计算等比数列的和,这对于我们掌握数列的性质和运算规律非常重要。
我们来回顾一下等比数列的定义和性质。
等比数列可以用以下公式来表示:a,ar,ar²,ar³,...,其中a是首项,r是公比。
公比r不等于0,否则数列将变成等差数列。
在求等比数列的和时,我们可以通过以下方法来计算:1. 等比数列求和公式等比数列求和的公式是一个重要的工具,它可以用来计算任意项数的等比数列的和。
公式如下:Sn = a * (1 - r^n) / (1 - r)其中,Sn表示前n项的和,a是首项,r是公比。
2. 等比数列求和的步骤求等比数列的和一般可以分为以下几个步骤:(1)确定首项a和公比r;(2)确定要求和的项数n;(3)代入公式Sn = a * (1 - r^n) / (1 - r)计算结果。
需要注意的是,在使用等比数列求和公式时,我们需要确保公比r 不等于1,否则公式中的分母为0,无法计算。
此外,当公比r的绝对值小于1时,等比数列的和会趋于一个有限值;当公比r的绝对值大于1时,等比数列的和会趋于无穷大。
3. 实例分析为了更好地理解等比数列求和的过程,我们来看一个实例。
例题:求等比数列1,3,9,27,...的前10项和。
解:根据题目,我们可以确定首项a=1,公比r=3,要求和的项数n=10。
将这些值代入公式Sn = a * (1 - r^n) / (1 - r),我们可以得到:S10 = 1 * (1 - 3^10) / (1 - 3)计算得到S10 = -29524/2 = -14762。
所以,等比数列1,3,9,27,...的前10项和为-14762。
通过这个例子,我们可以看到等比数列求和的具体步骤和计算过程。
当然,在实际应用中,我们也可以利用等比数列的性质,通过递推关系来求解等比数列的和。
高中数学等比数列知识点总结
《高中数学等比数列知识点总结》在高中数学的学习中,等比数列是一个重要的知识点。
它不仅在数学学科中有着广泛的应用,还为其他学科的学习提供了重要的数学工具。
本文将对高中数学等比数列的知识点进行全面总结。
一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。
例如:数列 2,4,8,16,32……就是一个等比数列,公比 q= 2。
二、等比数列的通项公式等比数列的通项公式为\(a_n = a_1q^{n - 1}\),其中\(a_n\)表示数列的第 n 项,\(a_1\)表示数列的首项,q 表示公比。
1. 推导过程- 设等比数列\(\{ a_{n}\}\)的首项为\(a_1\),公比为 q。
- 则\(a_{2}=a_{1}q\),\(a_{3}=a_{2}q = a_{1}q^{2}\),\(a_{4}=a_{3}q = a_{1}q^{3}\)……- 由此可归纳出等比数列的通项公式\(a_n = a_1q^{n -1}\)。
2. 通项公式的应用- 已知等比数列的首项和公比,可以求出数列的任意一项。
- 已知等比数列的任意两项,可以求出公比和其他项。
三、等比中项如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项。
1. 等比中项的性质- \(G^{2}=ab\)。
- 若\(a\),\(b\)同号,则等比中项有两个,且互为相反数。
2. 应用举例- 已知两个数的积和其中一个数,可以求出另一个数的等比中项。
四、等比数列的前 n 项和公式等比数列的前 n 项和公式为\(S_{n}=\begin{cases}na_{1},(q = 1)\\\frac{a_{1}(1 - q^{n})}{1 - q}=\frac{a_{1}-a_{n}q}{1- q},(q\neq1)\end{cases}\)。
高中数学讲义:等比数列性质(含等差等比数列综合题)
等⽐数列性质一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ¹,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,L 只是等差数列2、等比数列通项公式:11n n a a q-=×,也可以为:n mn m a a q-=×3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项(1)若b 为,a c 的等比中项,则有2a bb ac b c=Þ=(2)若{}n a 为等比数列,则n N *"Î,1n a +均为2,n n a a +的等比中项(3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+Û=4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na =当1q ¹时,则()111n n a q S q-=-可变形为:()1111111n n n a q a a S q qq q -==----,设11ak q =-,可得:n n S k q k=×-5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列(2)已知等比数列{}{},n n a b ,则有①数列{}n ka (k 为常数)为等比数列②数列{}na l (l 为常数)为等比数列,特别的,当1l =-时,即1n a ìüíýîþ为等比数列③数列{}n n a b 为等比数列④数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关:设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++L L ,则有:()()212212k m n mm m m k mkn n n k nn a q q q S a a a a q T a a a a a q q q -++++++++++++====++++++L L L L 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=-L L 2122332,k k k k k a a a S S +++++=-L L ,则232,,,k k k k k S S S S S --L 成等比数列7、等比数列的判定:(假设{}n a 不是常数列)(1)定义法(递推公式):()1n na q n N a *+=Î(2)通项公式:n n a k q =×(指数类函数)(3)前n 项和公式:n n S kq k=-注:若()n n S kq m m k =-¹,则{}n a 是从第二项开始成等比关系(4)等比中项:对于n N *"Î,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ìüíýîþ前n 项和n T 的关系()111n n a q S q-=-,因为1n a ìüíýîþ是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n n n n q a q q q T q a q q a q q-éùæö--êúç÷èøêú-ëû===---×()()1112111111n n n n n n a q a q q S a q T qq ----=×=--例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q ==答案:16例2:已知{}n a 为等比数列,且374,16a a =-=-,则5a =()A.64 B.64- C.8 D.8-思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==-×=-思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =-答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。
高中数学等比数列知识点总结
高中数学等比数列知识点总结
等比数列的知识点在高中数学,很多同学学不好,我们来看下面等比数列的知识点总结。
等比数列的定义是指从第二项起,每一项与它前一项的比等于同一个常数,这样的数列叫做等比数列。
在等比数列中,相邻两项的比值相等,称为等比数列的基本性质。
我们常见的等比数列有等差数列、等比数列等。
要注意等比数列都是等差数列与等比数列的推广,它是在等差数列的基础上,经过几何级数的运算得到的。
(1)求和公式:等比数列的求和公式为:
2。
例:等比数列通项公式为:在等比数列中,若其通项公式中出现两个或者两个以上的“比”字,则此“比”字不能省略,否则将会得出错误的结果。
第一种方法可以证明:
3。
一般地,首先需要给出数列,然后根据题目要求,选择相应的方法进行求解即可。
①如果已知等比数列的前n项和为a,则可以用判别式法进行求解,即利用等比数列的基本性质;②如果已知等比数列的前n项和为b,则可以用通项公式进行求解,即利用等比数列的基本性质。
第三种方法可以直接证明:
4。
例1已知:等比数列{a+(a+2)+…+a+n-
1}=a1+(a1+2)+…+(a1+n-1)n=a。
则有:①由等比数列的通项公式得: a=(a1+n)/(n-1)=a1=2a+1=a1。
②令a=2a+1=a1,则可求得
n=a-1,且a=n。
于是, n=a1-1,由①可得n-1=2a-1=2a+1,即n=2a-2,由此可求得通项公式。
高中数学总结归纳 等比数列的性质及应用
等比数列的性质及应用与等差数列一样,等比数列也有根据其概念或通项得出的一些重要性质,运用其性质可以使解题更为简便.一、若项数为3n 的等比数列(1)q ≠-前n 项和与前n 项积分别为nS '与n T ',次n 项和与次n 项积分别为2n S '与2n T ',最后n 项和与最后n 项积分别为3n S '与3n T ',则n S ',2n S ',3n S '成等比数列,n T ',2n T ',3n T '亦成等比数列.例1 已知一个等比数列的前n 项和为12,前2n 项和为48,求其前3n 项和.解:由题设,可知12n S '=,2481236n S '=-=, 22233610812n n n S S S ''∴==='. 故该数列前3n 项的和为10848156+=.例2 设等比数列{}n a 的前n 项和为n S ,若10301070S S ==,,求40S . 解:Q {}n a 成等比数列,10201030204030S S S S S S S ∴---,,,也成等比数列,即22010103020()()S S S S S -=-,解得2030S =或2020S =-(不合题意,舍去).2302040302010()150S S S S S S +∴=+=-. 二、一般地,如果t k p m n r ,,,…,,,,…皆为自然数,且t k p m n r +++=+++……(两边的自然数个数相等),那么当{}n a 为等比数列时,有t kp m n r a a a a a a =···…···…. 例3 在等比数列{}n a 中,若99123992a a a a =···…·,求50a . 解:19929849515050a a a a a a a a ====Q ··…··, 999912399502a a a a a ∴==···…·,502a ∴=.三、公比为q 的等比数列,从中取出等距离的项组成一个新数列,此数列仍是等比数列,其公比为mq (m 为等距离的项数之差). 例4 在等比数列{}n a 中,若12341a a a a =···,131415168a a a a =···,求41424344a a a a ···. 解:由性质可知,依次4项的积为等比数列,设公比为q .设112341T a a a a ==···,4131415168T a a a a ==···, 34182T T q q ∴==⇒=.10101141424344121024T a a a a T q ∴====····.。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。
3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。
三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。
2. 教学难点:等比数列通项公式的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。
3. 通过小组讨论、合作交流,培养学生的团队协作能力。
4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。
五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。
2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。
3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。
六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。
2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。
3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。
4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。
高中数学专题 等比数列,等比数列前n项和公式
一. 专题内容:等比数列,等比数列前n项和公式二. 知识点:1. 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫{a n}叫做等比数列。
3. 等比中项的定义:如果a、G、b成等比数列,那么G叫做a与b的等比中项。
(3)若{a n}为等比数列,公比为q(q≠-1),则{a2n-1+a2n}也是等比数列,公比为q2.(4)若{a n}、{b n}是等比数列,则{a n b n}也是等比数列。
二. 例题选讲例1. 已知数列{a n}为等比数列,解:小结:首项a1和公比q是确定等比数列{a n}最基本的量,而已知条件可转为关于a1与q 的方程。
例2. 已知数列{a n}满足:lga n=3n+5,试用定义证明{a n}是等比数列。
证明:小结:若{a n}是等差数列,b n=a n可以证明数列{b n}为等比数列,反之若{a n}为等比数列且a n>0,则可证明{lga n}为等差数列。
例3. 若a、b、c成等比数列,试证:a2+b2,ac+bc,b2+c2也成等比数列。
证明:由a、b、c成等比数列,则小结:证明数列成等比数列,可利用等比数列的定义,而证明三个数a,b,c成等比,可证明b2=ac,要注意说明a、b、c全不为零。
例4. 已知四个数前3个成等差,后三个成等比,中间两数之积为16,前后两数之积为-128,求这四个数。
解:因此所求的四个数为-4,2,8,32或4,-2,-8,-32。
小结:根据四个数前3个成等差,后三个成等比,列方程可利用a 、q 表示四个数,时解方程也较为方便。
例 5.求n 及公比q 。
解:。
或,公比的值为综上所述,2126 q n小结:等比数列中五个基本量a 1、q 、a n 、n 、S n ,知三可求二,列方程组是求解的常用方法。
解本题的关键是利用a 1·a n =a 2·a n-1,进而求出a 1、a n ,要注意a 1、a n 是两组解。
高中数学《等比数列的概念及通项公式》知识点讲解及重点练习
§4.3等比数列4.3.1等比数列的概念第1课时等比数列的概念及通项公式学习目标 1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形.知识点一等比数列的概念1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.递推公式形式的定义:a na n-1=q(n∈N *且n>1)⎝⎛⎭⎫或a n+1a n=q,n∈N*.思考为什么等比数列的各项和公比q均不能为0?答案由于等比数列的每一项都可能作分母,故每一项均不能为0,因此q也不能为0.知识点二等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时,G2=ab.思考当G2=ab时,G一定是a,b的等比中项吗?答案不一定,如数列0,0,5就不是等比数列.知识点三等比数列的通项公式若等比数列{a n}的首项为a1,公比为q,则a n=a1q n-1(n∈N*).知识点四等比数列通项公式的推广和变形等比数列{a n}的公比为q,则a n=a1q n-1①=a m q n-m②=a1 q·qn.③其中当②中m=1时,即化为①.当③中q>0且q≠1时,y=a1q·qx为指数型函数.1.数列1,-1,1,-1,…是等比数列.( √ )2.若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列.( × )3.等比数列的首项不能为零,但公比可以为零.( × )4.常数列一定为等比数列.( × )一、等比数列中的基本运算例1 在等比数列{a n }中:(1)a 1=1,a 4=8,求a n ;(2)a n =625,n =4,q =5,求a 1;(3)a 2+a 5=18,a 3+a 6=9,a n =1,求n .解 (1)因为a 4=a 1q 3,所以8=q 3,所以q =2,所以a n =a 1q n -1=2n -1.(2)a 1=a n q n -1=62554-1=5, 故a 1=5.(3) 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①,得q =12,从而a 1=32. 又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,故n =6.反思感悟 等比数列的通项公式涉及4个量a 1,a n ,n ,q ,只要知道其中任意三个就能求出另外一个,在这四个量中,a 1和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.跟踪训练1 在等比数列{a n }中:(1)若它的前三项分别为5,-15,45,求a 5;(2)若a 4=2,a 7=8,求a n .解 (1)因为a 5=a 1q 4,而a 1=5,q =a 2a 1=-3, 所以a 5=405.(2)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6, 所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4, 从而q =34,而a 1q 3=2,于是a 1=2q 3=12, 所以a n =a 1q n -1=2532n -.二、等比中项的应用例2 如果-1,a ,b ,c ,-9成等比数列,那么b =__________,ac =___________. 答案 -3 9解析 因为b 是-1,-9的等比中项,所以b 2=9,b =±3.又等比数列奇数项符号相同,得b <0,故b =-3,而b 又是a ,c 的等比中项,故b 2=ac ,即ac =9.反思感悟 (1)由等比中项的定义可知G a =b G⇒G 2=ab ⇒G =±ab ,所以只有a ,b 同号时,a ,b 的等比中项有两个,异号时,没有等比中项.(2)在一个等比数列中,从第二项起,每一项(有穷数列的末项除外)都是它的前一项和后一项的等比中项.(3)a ,G ,b 成等比数列等价于G 2=ab (ab >0).跟踪训练2 在等比数列{a n }中,a 1=-16,a 4=8,则a 7等于( )A .-4B .±4C .-2D .±2答案 A解析 因为a 4是a 1与a 7的等比中项,所以a 24=a 1a 7,即64=-16a 7,故a 7=-4.三、等比数列通项公式的推广及应用例3 在等比数列{a n }中.(1)已知a 3=4,a 7=16,且q >0,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n .解 (1)∵a 7a 3=q 7-3=q 4=4, ∴q 2=2,又q >0,∴q =2,∴a n =a 3·q n -3=4·(2)n -3=122n +(n ∈N *).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5,又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n ,∵a n ≠0,∴2(1+q 2)=5q ,解得q =12或q =2. ∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2. ∴a n =2·2n -1=2n (n ∈N *).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1.(2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练3 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( )A .21B .42C .63D .84答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.四、灵活设元求解等比数列问题例4 (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.答案 45解析 (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧ 2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6, 解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们的和为12,求这四个数.解 方法一 设前三个数分别为a q,a ,aq , 则a q·a ·aq =216, 所以a 3=216.所以a =6.因此前三个数为6q,6,6q . 由题意知第4个数为12q -6.所以6+6q +12q -6=12,解得q =23. 故所求的四个数为9,6,4,2.方法二 设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2, 由题意知14(4-d )2×(4-d )×4=216, 解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.反思感悟 几个数成等比数列的设法(1)三个数成等比数列设为a q,a ,aq . 推广到一般:奇数个数成等比数列设为…,a q 2,a q,a ,aq ,aq 2,… (2)四个符号相同的数成等比数列设为a q 3,a q,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为…,a q 5,a q 3,a q,aq ,aq 3,aq 5,… (3)四个数成等比数列,不能确定它们的符号是否相同时,可设为a ,aq ,aq 2,aq 3.跟踪训练4 在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D.352答案 B解析 设插入的第一个数为a ,则插入的另一个数为a 22. 由a ,a 22,20成等差数列得2×a 22=a +20. ∴a 2-a -20=0,解得a =-4或a =5.当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为( )A .±12B .±2 C.12D .-2 答案 D解析 因为a 5a 2=q 3=-8,故q =-2. 2.(多选)已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .-12D .12答案 AB解析 ∵a =1+22=32,b 2=(-1)×(-16)=16,b =±4, ∴ab =±6.3.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32答案 C解析 由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.4.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( )A .(-2)n -1B .-(-2n -1) C .(-2)nD .-(-2)n 答案 A解析 设公比为q ,则a 1q 4=-8a 1q ,又a 1≠0,q ≠0,所以q 3=-8,q =-2,又a 5>a 2,所以a 2<0,a 5>0,从而a 1>0,即a 1=1,故a n =(-2)n -1.5.在等比数列{a n }中,a 1=-2,a 3=-8,则数列{a n }的公比为________,通项公式为a n =______________.答案 ±2 (-2)n 或-2n解析 ∵a 3a 1=q 2, ∴q 2=-8-2=4,即q =±2. 当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ;当q =2时,a n =a 1q n -1=-2×2n -1=-2n .1.知识清单:(1)等比数列的概念.(2)等比数列的通项公式.(3)等比中项的概念.(4)等比数列的通项公式推广.2.方法归纳:方程(组)思想、构造法、等比数列的设法.3.常见误区:(1)x ,G ,y 成等比数列⇒G 2=xy ,但G 2=xy ⇏x ,G ,y 成等比数列.(2)四个数成等比数列时设成a q 3,a q,aq ,aq 3,未考虑公比为负的情况. (3)忽视了等比数列中所有奇数项符号相同,所有偶数项符号相同而出错.1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( )A .108B .54C .36D .18答案 B解析 因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54.2.(多选)在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .-4 B .4 C .-14 D.14答案 AB解析 由题意得a 26=a 4a 8,因为a 1=18,q =2, 所以a 4与a 8的等比中项为±a 6=±4.3.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 ∵a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27.4.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2 D.12答案 C解析 因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设数列{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2. 5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式a n 等于( )A .22n -1B .2nC .22n +1D .22n -3答案 A解析 由a 2n +1-3a n +1a n -4a 2n =0, 得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4. 由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.6.若{a n }为等比数列,且a 3+a 4=4,a 2=2,则公比q =________.答案 1或-2解析 根据题意,⎩⎪⎨⎪⎧a 1q 2+a 1q 3=4,a 1q =2, 解得⎩⎪⎨⎪⎧ a 1=2,q =1或⎩⎪⎨⎪⎧ a 1=-1,q =-2.7.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,且a 1=________,d =________.答案 23-1 解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.①又∵2a 1+a 2=1,∴3a 1+d =1.②由①②解得a 1=23,d =-1. 8.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.答案 4×⎝⎛⎭⎫32n -1解析 由已知可得(a +1)2=(a -1)(a +4),解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32, 所以a n =4×⎝⎛⎭⎫32n -1.9.在等比数列{a n }中,a 3=32,a 5=8.(1)求数列{a n }的通项公式a n ;(2)若a n =12,求n . 解 (1)因为a 5=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 3q n -3=32×⎝⎛⎭⎫12n -3=28-n ;当q =-12时,a n =a 3q n -3=32×⎝⎛⎭⎫-12n -3.所以a n =28-n 或a n =32×⎝⎛⎭⎫-12n -3.(2)当a n =12时,即28-n =12或32×⎝⎛⎭⎫-12n -3=12,解得n =9.10.在等比数列{a n }中:(1)已知a 3=2,a 5=8,求a 7;(2)已知a 3+a 1=5,a 5-a 1=15,求通项公式a n .解 (1)因为a 5a 3=q 2=82,所以q 2=4,所以a 7=a 5q 2=8×4=32.(2)a 3+a 1=a 1(q 2+1)=5,a 5-a 1=a 1(q 4-1)=15,所以q 2-1=3,所以q 2=4,所以a 1=1,q =±2,所以a n =a 1q n -1=(±2)n -1.11.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于()A .3B .2C .1D .-2答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18答案 C解析 方法一 ∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12.方法二 ∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.(多选)已知等差数列a ,b ,c 三项之和为12,且a ,b ,c +2成等比数列,则a 等于() A .-2 B .2 C .-8 D. 8答案 BD解析 由已知得⎩⎪⎨⎪⎧ a +c =2b ,a +b +c =12,a (c +2)=b 2,解得⎩⎪⎨⎪⎧a =2,b =4,c =6或⎩⎪⎨⎪⎧a =8,b =4,c =0.故a =2或a =8.14.若数列{a n}的前n项和为S n,且a n=2S n-3,则{a n}的通项公式是________.答案a n=3·(-1)n-1解析由a n=2S n-3得a n-1=2S n-1-3(n≥2),两式相减得a n-a n-1=2a n(n≥2),∴a n=-a n-1(n≥2),又a1=3,故{a n}是首项为3,公比为-1的等比数列,∴a n=3·(-1)n-1.15.已知在等差数列{a n}中,a2+a4=16,a1+1,a2+1,a4+1成等比数列,把各项按如图所示排列.则从上到下第10行,从左到右的第11个数值为________.答案275或8解析设公差为d,由a2+a4=16,得a1+2d=8,①由a1+1,a2+1,a4+1成等比数列,得(a2+1)2=(a1+1)(a4+1),化简得a1-d=-1或d=0,②当d=3时,a n=3n-1.由题图可得第10行第11个数为数列{a n}中的第92项,a92=3×92-1=275.当d=0时,a n=8,a92=8.16.设数列{a n}是公比小于1的正项等比数列,已知a1=8,且a1+13,4a2,a3+9成等差数列.(1)求数列{a n}的通项公式;(2)若b n=a n(n+2-λ),且数列{b n}是单调递减数列,求实数λ的取值范围.解(1)设数列{a n}的公比为q.由题意,可得a n=8q n-1,且0<q<1.由a1+13,4a2,a3+9成等差数列,知8a2=30+a3,所以64q=30+8q2,解得q=12或152(舍去),所以a n=8×⎝⎛⎭⎫12n-1=24-n,n∈N*.(2)b n=a n(n+2-λ)=(n+2-λ)·24-n,由b n>b n+1,得(n+2-λ)·24-n>(n+3-λ)·23-n,即λ<n+1,所以λ<(n+1)min=2,故实数λ的取值范围为(-∞,2).。
高中数学讲义等比数列的性质
等比数列的性质【知识要点】1. 等比数列的性质(1){}n a 成等比数列,若q p n m +=+,则q p n m a a a a ⋅=⋅(其中*∈N q p n m ,,,). (2)若*∈N n m ,,则n m n m q a a -⋅=;(3)若{}n a ,{}n b 成等比数列,则{}{}⎭⎬⎫⎩⎨⎧⋅n n n n n b a b a ka ,,也成等比数列.(4)若公比为q ,则⎭⎬⎫⎩⎨⎧n a 1是以q 1为公比的等比数列;(5)有n 3项的等比数列,前n 项和、中间n 项和、后n 项和也构成等比数列.(6)在等比数列中,当10,1a q >>或10,01<<<q a 时,等比数列是递增的;当10,01<<>q a 或1,01><q a 时,等比数列是递减的.(7)有穷等比数列中,与首末两项等距离的两项积相等,并且等于首末两项之积,特别地,若项数为奇数,还等于中间项的平方,即12131n n n a a a a a a a --⋅=⋅=⋅==2中. (8)若k p n m k p n m a a a a a a a a k p n m N k p n m ,,,,,,,,,其中则且⋅=⋅+=+∈*是数列中的项,特别地,当p n m 2=+时,有2m n p a a a ⋅=.类似于等差数列,在使用该性质时,不仅应注意等式两边下标和相等,也应要求等式两边作积的项数应是一样多的.(9)在等比数列中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等比数列.一个等比数列的奇数项,仍组成一个等比数列,新公比是原公比的二次幂,一个等比数列的偶数项,也组成一个等比数列,新公比是原公比的二次幂.(10)等比数列{}n a n 前项和(均不为零)构成等比数列,即 ,,,232n n n n n S S S S S --构成等比数列且公比为n q .(11)前n 项和公式,一定要分11≠=q q 与两种情况.【典例分析】例1.设{}n a 是公比为q 的等比数列,n S 使它的前n 项和,若{}n S 是等差数列,则q = .例2.已知{}n a 为等差数列,{}n b 为等比数列,其公比为1≠q ,且(),,,3,2,10n i b i =>若111111,b a b a ==,则( )(A )66b a = (B )66b a > (C )66b a < (D )6666b a b a <>或例3.在等比数列{}n a 中,若,30,341551=-=+a a a a 若则3a 等于 ( ) A.8 B.-8 C.8± D.16例4.在等比数列{}n a 中,设前n 项的和为n S ,则()n n n n n S S S y S S x 32222,+=+=的大小关系是( )A.y x >B. y x =C. y x < D .不确定例5.数列{}n a 的前n 项的和为n S ,且对任意自然数n 总有()1n n S p a =-().1,0≠≠p p p 为常数,且(1) 求数列{}n a 的通项公式;(2) 数列{}n b 中,()p b a b a q q n b n 求,且有是常数,,22211<=+=的取值范围.例6.n a a a ,,,21 为各项都大于零的等比数列,公比为1≠q ,则 ( ) A.5481a a a a +>+ B.5481a a a a +<+C.5481a a a a +=+D. 的大小不确定与5481a a a a ++ 例7.在等比数列{}n a 中,已知5127=a a ,则=111098a a a a .例8.在等比数列{}n a 中,已知3000,4,31>==n s q a 则使的最小自然数=n . 例9.设{}n a 为等比数列,(),21121n n n a a a n na T +++-+=- 已知4,121==T T . (1)求数列{}n a 的首项和公比; (2)求数列{}n T 的通项公式.例10.已知数列{}n a ,[()]nn n a 12---=求10S ,若求99S 呢?【经典练习】1.若数列n a 是等比数列,下列命题正确的个数为 ( )n n a a 22,是等比数列;ln n a 成等差数列;n na a ,1成等比数列; ()0,≠±k k a ca n n 成等比数列A.5B.4C.3D.22.若{}n a 是等比数列,且252,0645342=⋅+⋅+->a a a a a a a n ,那么53a a +的值等于 ( ) A.1 B.5 C.10 D.153.已知{}n a 为等差数列,{}n b 为等比数列,其公比为1≠q ,且()111111,,3,2,10b a b a n i b i ===>若 ,则( ) A. 66b a = B. 66b a > C. 66b a < D. 66b a >或66b a <4.已知某数列前n 项和为3n ,且前n 个偶数项的和为()342+n n ,则前n 个奇数项的和为( )A .()132+-n nB .()342-n nC .23n - D.321n5.在各项均为正数的等比数列{}n a 中,若5631323109,log log a a a log a a ⋅=+++=则( )A.12B.10C.8D.5log 23+6.已知正项等比数列{}n a 的项数为偶数,它的所有项之和等于它的偶数项之和的4倍,第二项与第四项之积是第三项与第四项之和的9倍,求使数列{}n a lg 的前n 项和最大的n 的值.7.数列{}n a 的前n 项和记为n S ,已知() ,3,2,12,111=+==+n S nn a a n n ,证明: (Ⅰ)数列⎭⎬⎫⎩⎨⎧n S n 是等比数列(Ⅱ)n n a S 41=+8.在等比数列{}n a 中,()*+∈<==+N n a a a a a a n n 14361,32,33且. (1)求数列{}n a 的通项公式;(2)若n n a a a T lg lg lg 21+++= ,求n T 的最大值及此时n 的值.9.若公比为c 的等比数列{}n a 的首项,11=a 且满足() ,4,3221=+=--n a a a n n n . (Ⅰ)求c 的值;(Ⅱ)求数列{}n na 的前n 项和n S .10.已知{}n a 是公比为q 的等比数列,且231,,a a a 成等差数列. (Ⅰ)求q 的值;(Ⅱ)设{}n b 是以2为首项,q 为公差的等差数列,其前n 项和为n s .当2≥n 时,比较n S 与n b 的大小,并说明理由.11.已知一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数.。
数学高中 等比数列的定义(一)
等比数列的定义(一)一.知识梳理1.等比数列的定义(1)一般地,如果一个数列从第二项起,每一项都与它的前一项的_____都等于________.那么这个数列就叫做等比数列,这个_______叫做等差数列的_______,公比用字母_____表示.(2)等比数列的符号语言:在等比数列{}n a 中,如果_______________(*∈N n )(或者q a a n n =-1,*∈≥N n n ,2) 2.等比数列的通项公式如果等比数列{}n a 的首项1a ,公比为q ,那么它的通项公式是________________.3.等比中项(1) 如果三个数b G a ,,成等比数列,那么_____叫做a 与b 的等比中项.且=G _________.(2)若11,,+-n n n a a a 成等比数列,则=⋅+-11n n a a _________.4.等比数列的性质:若数列{}{}n n b a ,分别是以21,q q 为公比的等比数列:(1)数列{}n a c ⋅是以公比为______的等比数列..(2)数列{}n a 2是以公比为______的等比数列.(3)数列{}n n b a ⋅是以公比为______的等比数列.二.预习自测1.下面四个数列:(1);64,32,16,8,4,2,1,1 (2)在数列{}n a 中,已知;2,22312==a a a a (3)常数列;,,,,,⋅⋅⋅⋅⋅⋅a a a a (4)在数列{}n a 中,)0(1≠=+q q a a nn 其中一定是等比数列的是________.2.等比数列{}n a 满足0852=+a a ,则公比=q _________. A.2 B.2- C.2± D.33.已知等比数列{}n a 的公比为0>n a 2且,若16113=⋅a a ,则=5a _________.A.1B.2C.8D.44.在等比数列⋅⋅⋅++,66,33,x x x 的第四项为__________.A.24-B.0C.12D.245.已知等差数列{}n a 的公差为2,若842,,a a a 成等比数列,则数列{}n a 的前n 项和=n S ____.A.)1(+n nB.)1(-n nC.2)1(+n nD.2)1(-n n 6.82是等比数列⋅⋅⋅,22,4,24的第_____项 A.10 B.11 C.12 D.137.在等比数列{}n a 中,.8,3253==a a(1)求n a ; (2)若,21=n a 求n .三.典例解析例一:在等差数列{}n a 中,公差0≠d ,且931,,a a a 成等比数列,求1042931a a a a a a ++++的值.例二:若数列{}n a 为等比数列:(1)求证:),(*-∈=N m n q a a m n m n ; (2),1,9,186352==+=+n a a a a a 求.n例三:有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数和第四个数的和为16,第二个数和第三个数和为12,求这四个数.例四:已知数列{}n a 的前n 项和为).1(31,-=n n n a S S 求证:数列{}n a 是等比数列并求.n a例五:已知数列{}n a 中,).2(12,111≥+==-n a a a n n(1)证明:数列{}1+n a 是等比数列; (2)求.n a。
等比数列知识点及题型归纳
等比数列知识点及题型归纳一、等比数列简介等比数列是数学中常见的一种数列。
如果一个数列中,从第二项开始,每一项与前一项的比都相等,则这个数列被称为等比数列。
等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比,n表示项数。
二、等比数列的性质:1. 常比:等比数列中,公比r始终是一个常数。
2. 正比和负比:如果公比r>1,则称等比数列为正比数列;如果0<r<1,则称等比数列为负比数列。
3. 倒数和倒数的倒数:对于等比数列,如果公比r不等于1,则相邻两项的倒数也是一个等比数列,并且它们的公比是1/r。
4. 等比中项:对于等比数列,存在一个项x,称为等比中项,它满足x²=a1*a(n+1),其中a1表示第一项,an表示最后一项。
5. 等比数列的和:等比数列的前n项和可以表示为Sn = a1 * (1-r^n) / (1-r),其中a1表示第一项,r表示公比。
三、等比数列的常见题型:1. 求第n项:已知等比数列的首项和公比,求第n项的值。
2. 求前n项和:已知等比数列的首项和公比,求前n项和的值。
3. 求公比:已知等比数列的首项和第n项,求公比的值。
4. 求等比中项:已知等比数列的首项和最后一项,求等比中项的值。
5. 求满足条件的项数:已知等比数列的首项和公比,求满足条件的项数。
6. 判断数列性质:已知数列的前几项,判断数列是等比数列还是等差数列。
7. 求等差数列对应项:已知等差数列和等比数列的相同位置上的项相等,求该等差数列的对应项。
四、等比数列的应用:等比数列在实际生活和工作中有着广泛的应用。
以下是一些等比数列的典型应用场景:1. 财务计算:等比数列可以用来计算贷款或投资的复利。
2. 科学研究:等比数列的合理运用可以帮助科学家研究自然界中的各种现象。
3. 经济分析:等比数列可以用来分析经济增长和衰退的趋势。
4. 工程计划:等比数列可以用来计算任务的进度和耗时。
高三数学等比数列知识点
高三数学等比数列知识点数学在高中阶段是一个重要的学科,其中等比数列也是其中的一个重要知识点。
等比数列是数学中常见的数列类型之一,它的每一项与前一项的比值都相等。
在高三数学中,学生需要掌握等比数列的基本概念、性质和应用。
本文将分为以下几个部分介绍高三数学等比数列的相关知识。
一、等比数列的基本概念等比数列是指一个数列中的每一项与其前一项的比值相等。
具体而言,对于一个等比数列a₁, a₂, a₃, ...,相邻的两项之间满足如下关系:a₂ / a₁ = a₃ / a₂ = a₄ / a₃ = ...这个比值称为等比数列的公比,通常用字母q表示。
此外,等比数列的第一项a₁和公比q也是等比数列的两个重要要素。
二、等比数列的性质1. 等比数列的通项公式等比数列的通项公式可以通过观察数列的规律得到。
对于一个等比数列a₁, a₂, a₃, ...,其中a₁为首项,q为公比,数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。
这个公式可以方便地计算数列中任意一项的值。
2. 等比数列的前n项和等比数列的前n项和是指数列中前n项的和值。
对于一个等比数列a₁, a₂, a₃, ...,其前n项和Sₙ的计算公式为:Sₙ = a₁ * (1 - q^n) / (1 - q)这个公式是通过数列的首项、公比和项数来计算前n项和的值。
3. 等比数列的性质等比数列具有一些重要的性质,包括:(1)等比数列中,任意两项的比值都是相等的。
(2)等比数列当公比q大于1时,数列会呈现出递增的规律;当公比q小于1且大于0时,数列会呈现出递减的规律。
(3)等比数列中,如果首项a₁大于0且公比q大于1,数列会趋向无穷大;如果首项a₁大于0且公比q小于1且大于0,数列会趋向0。
(4)等比数列中,相邻两项之间的比值等于公比的平方。
三、等比数列的应用1. 等比数列在实际生活中的应用等比数列在现实生活中有许多应用。
例如,财务领域中的利息计算、人口增长的模型、物理领域的衰减和增长模型等都可以用等比数列来进行建模和计算。
高一数学《等比数列的性质及应用》教案设计【8篇】
高一数学《等比数列的性质及应用》教案设计【8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!高一数学《等比数列的性质及应用》教案设计【8篇】等比数列的性质是什么呢?是什么意思?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
高中数学解等比数列问题的技巧
高中数学解等比数列问题的技巧数列是高中数学中常见的一个概念,而等比数列是数列中的一种重要类型。
解决等比数列问题需要一定的技巧和方法,本文将为大家介绍一些解等比数列问题的技巧,帮助高中学生和家长更好地理解和应用这一知识点。
首先,我们来回顾一下等比数列的定义:等比数列是指一个数列中,从第二项开始,每一项与前一项的比值都相等。
比值常用字母q表示,称为等比数列的公比。
数列的第一项用a₁表示,第n项用aₙ表示。
在解等比数列问题时,我们常常需要求出数列的通项公式,即能够通过已知项的位置n来求出对应项的值aₙ的公式。
这样,我们就可以通过通项公式来求解一系列与等比数列相关的问题。
那么,如何确定等比数列的通项公式呢?一个常用的方法是通过已知项的值来找出数列中的规律,并进一步推导出通项公式。
下面,我们通过具体的例子来说明这一过程。
例题1:已知等比数列的第1项为2,公比为3,求第5项的值。
解析:根据已知条件,我们可以列出等比数列的前几项:2,6,18,54,...通过观察数列的前几项,我们可以发现每一项都是前一项乘以公比3得到的。
因此,我们可以得出等比数列的通项公式为aₙ = a₁ * q^(n-1)。
代入已知条件,我们可以求得第5项的值:a₅ = 2 * 3^(5-1) = 162。
因此,等比数列的第5项的值为162。
通过这个例子,我们可以看出,通过观察数列的前几项,找出数列中的规律,进而推导出通项公式,是解决等比数列问题的关键。
除了求解等比数列的通项公式外,我们还可以利用等比数列的性质来解决一些与等比数列相关的问题。
下面,我们来看一个例子。
例题2:已知等比数列的第1项为2,公比为3,求前5项的和。
解析:根据已知条件,我们可以列出等比数列的前几项:2,6,18,54,...要求前5项的和,我们可以使用等比数列的求和公式:Sₙ = a₁ * (1 - q^n) / (1- q)。
代入已知条件,我们可以求得前5项的和:S₅ = 2 * (1 - 3^5) / (1 - 3) = 242。
高中数学--等比数列的前n项和
(2)已知a1= 1,ak= 243 ,q=3 ,求Sk
364
归纳小结:
一个中心: 等比数列{an}的前项和Sn的推导及运用。
两个基本点:
(1)在a1、q、n、Sn、 an 中知“三”求“二”
(2)重要方法:错位相减法。
数 列 等差数列
前n 项和 公式
Sn
na1
2
an
nn 1
na1 2 d
一天,已在读博士的张明遇到了王勇,寒暄后王勇流露 出对张明清苦的不屑。表示要资助张明,张明说:“好 吧,你只要在一个月30天内,第一天给我1分钱,第二 天给我2分钱,第三天给我4分钱,第四天给我8分钱, 依此类推,每天给我的钱都是前一天的2倍,直到第30 天。”王勇听了,立刻答应下来心想:这太简单了。没 想到不到30天,王勇就后悔不迭,不该夸下海口。同学 们,你们知道王勇一共应送给张明多少钱吗?
S30 230 1 1073741823 分
≈1073.74万元
等比数列前n项求和公式
试求:
等比数列 {an}, a1=1,公比为q的前n项和Sn
等比数列前n项求和公式
推导公式
a a q 已知: 等比数列 { n}, 1, ,n
求:Sn
解:Sn=a1+a2 + a3 +a4 + …+an
=a1+a1q +a1q2 +a1q3 +… +a1qn-1
旧知回顾:
1、等比数列的定义
an1 an
q(常数)( q
0, n N)
2、等比数列的通项公式
an a1q n1
☆:已知三个量,可以求出第四个量。 (说“三”道“四”)
高中数学等比数列
高中数学等比数列高中数学中,等比数列是一个非常重要的概念。
它是由一个初始项和一个公比组成的数列,其中每一项都是前一项乘以公比得到的。
等比数列在实际生活中有很多应用,比如金融领域中的复利计算、人口增长模型等等。
我们来看一个简单的例子。
假设有一个等比数列的初始项是2,公比是3,我们要求这个数列的前5项。
我们可以得到第一项是2。
然后,我们可以利用等比数列的性质,将第一项乘以公比3,得到第二项是6。
同样地,我们将第二项乘以公比3,得到第三项是18。
继续这个过程,我们可以得到第四项是54,第五项是162。
通过这个例子,我们可以看到等比数列的特点:每一项都是前一项乘以公比得到的。
这个规律可以用公式来表示,即第n项是初始项乘以公比的n-1次方。
在这个例子中,第五项就是2乘以3的4次方,即162。
除了求等比数列的特定项,我们还可以求等比数列的和。
对于有限项的等比数列,我们可以使用等比数列求和公式来求解。
该公式是由初中时学过的等差数列求和公式推导而来的。
等比数列求和公式是这样的:S = a(1 - r^n) / (1 - r),其中S表示等比数列的和,a表示初始项,r表示公比,n表示项数。
例如,我们要求等比数列2、6、18、54、162的和。
首先,我们可以得到初始项a是2,公比r是3,项数n是5。
将这些值代入公式,我们可以得到S = 2(1 - 3^5) / (1 - 3) = 242。
通过这个例子,我们可以看到等比数列求和公式的应用。
这个公式可以帮助我们快速计算等比数列的和,而不需要逐个相加每一项。
除了这些基本的概念和公式,等比数列还有一些其他的性质和应用。
比如,等比数列的前n项和与后m项和之比是前n项和除以前m 项和。
这个性质可以在一些实际问题中得到应用,比如金融领域中的复利计算。
等比数列还有一个重要的应用是人口增长模型。
在人口增长模型中,等比数列可以帮助我们预测未来的人口数量。
假设初始人口是1000,每年增长10%,我们可以用等比数列来表示每年的人口数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。