高中数学等比数列教案(完整版).doc
高中数学必修5《等比数列》教案
高中数学必修5《等比数列》教案答案:1458或128。
例2、正项等比数列{an}中,a6 a15+a9 a12=30,则log15a1a2a3 a20 =_ 10 ____.例3、已知一个等差数列:2,4,6,8,10,12,14,16,,2n,,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,,2n,,则ck=2k=2 2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。
关键是对通项公式的理解)1、小结:今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比猜想证明的科学思维的过程。
2、作业:P129:1,2,3思考题:在等差数列:2,4,6,8,10,12,14,16,,2n,,中取出一些项:6,12,24,48,,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?教学设计说明:1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比猜想证明的科学研究方法是有利的。
这也就成了本节课的重点。
2、教学设计过程:本节课主要从以下几个方面展开:1) 通过复习等差数列的定义,类比得出等比数列的定义;2) 等比数列的通项公式的推导;3) 等比数列的性质;有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。
2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。
2. 教学难点:等比数列通项公式的推导和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。
3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。
4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。
五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。
2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。
3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。
4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。
5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。
6. 课堂练习:布置适量习题,巩固所学知识。
7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。
8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。
9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。
10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。
2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。
高三数学《等比数列》教学设计[推荐五篇]
高三数学《等比数列》教学设计[推荐五篇]第一篇:高三数学《等比数列》教学设计作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?下面是小编为大家收集的高三数学《等比数列》教学设计,仅供参考,希望能够帮助到大家。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:一.复习准备1.等差数列的通项公式。
2.等差数列的前n项和公式。
3.等差数列的性质。
二.讲授新课引入:1“一尺之棰,日取其半,万世不竭。
”2细胞分裂模型3计算机病毒的传播由学生通过类比,归纳,猜想,发现等比数列的特点进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。
2当首项等于0时,数列都是0。
当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?4以及等比数列和指数函数的`关系5是后一项比前一项。
列:1,2,(略)小结:等比数列的通项公式三.巩固练习:1.教材P59练习1,2,3,题2.作业:P60习题1,4。
第二课时5.2.4等比数列(二)教学重点:等比数列的性质教学难点:等比数列的通项公式的应用一.复习准备:提问:等差数列的通项公式等比数列的通项公式等差数列的性质二.讲授新课:1.讨论:如果是等差列的三项满足那么如果是等比数列又会有什么性质呢?由学生给出如果是等比数列满足2练习:如果等比数列=4,=16,=?(学生口答)如果等比数列=4,=16,=?(学生口答)3等比中项:如果等比数列.那么,则叫做等比数列的等比中项(教师给出)4思考:是否成立呢?成立吗?成立吗?又学生找到其间的规律,并对比记忆如果等差列,5思考:如果是两个等比数列,那么是等比数列吗?如果是为什么?是等比数列吗?引导学生证明。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。
2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。
3. 等比数列的求和公式:介绍等比数列前n项和的公式。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。
2. 教学难点:等比数列通项公式的推导和证明。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。
2. 运用类比法,让学生理解等比数列与等差数列的异同。
3. 利用多媒体辅助教学,展示等比数列的动态变化过程。
4. 开展小组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。
2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。
3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。
4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。
5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。
6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。
8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。
2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。
等比数列教案设计
一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。
2. 教学难点:等比数列求和公式的推导和应用。
三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
2. 学具准备:笔记本、笔。
四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。
2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。
3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。
4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。
5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。
6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。
7. 课后作业:布置课后作业,巩固本节课所学内容。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。
六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。
2. 教学难点:判断一个数列是否为等比数列的方法。
八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
等比数列详细教案
课 题等比数列学习内容与过程复习引入:1.等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)2.等差数列的两个通项公式:d n a a n )1(1-+= (=n a d m n a m )(-+或n a =pn+q (p 、q 是常数))3.几种计算公差d 的方法:d=n a -1-n a =11--n a a n =m n a a mn --4.等差中项:,,2b a ba A ⇔+=成等差数列 5.数列的前n 项和n S :2)(1n n a a n S +=,2)1(1dn n na S n -+= 知识点1,2,4,8,16,…,263; ① 5,25,125,625,…; ②1,-81,41,21-,…; ③对于数列①,n a =12-n ;1-n n a a =2(n ≥2) 对于数列②,n a =n5 ; 1-n n a a =5(n ≥2) 对于数列③,n a =1)1(+-n ·121-n ;211-=-n n a a (n ≥2) 共同特点:从第二项起,第一项与前一项的比都等于同一个常数1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n n a a =q (q ≠0){n a }成等比数列⇔n n a a 1+=q (+∈N n ,q ≠01︒“从第二项起”与“前一项”之比为常数(q ,q ≠0)2︒ 隐含:任一项00≠≠q a n 且 3︒ q= 1时,{a n }为常数例1 下面四个数列:(1)1,1,2,4,8,16,32,64;(2)在数列{}n a 中,12a a =2,23a a =2;(3)常数列a,a,a,...;(4)在数列{}n a 中,1-n na a =q ;其中是等比数列的有 答案:(4)由等比数列的定义,有:q a a 12=;21123)(q a q q a q a a ===;312134)(q a q q a q a a ===;… … … … … … …)0(1111≠⋅⋅==--q a q a q a a n n n(1))0(111≠⋅⋅=-q a q a a n n ——已知等比数列的首项和公比就可以得出任何一项;(2)mn m n q a a -⋅=——通项公式的推广式,则已知等比数列的任意两项就可以求出其他的任意一项推广:m n mn m n mn a aq a a q--==;——求公比q 的方法 (3)既是等差又是等比数列的数列:非零常数列. (4)等比定理:q=12a a =23a a =34a a =...=1-n n a a =1321432......-+++++++n n a a a a a a a a (5)等比数列基本量的求法:1a 和q 是等比数列的基本量,只要求出这两个基本量,其他量便可求出。
等比数列教学案
等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。
授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。
教学难点:等比数列通项公式的探求。
教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。
等比数列的教学教案
等比数列的教学教案第一篇:等比数列的教学教案等比数列及其求和(教学步骤)老师:同学们,上节课我们是对等差数列的相关知识点进行了复习,那么现在我们来复习一下高中数列的学习中另一类重要的数列,是什么数列呢?学生:等比数列老师:下面我们这节课来复习等比数列(板书),这一章我是重点讲过的,现在大家思考下列几个问题:(看看你们下去是否看过书)1,等比数列的定义(一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列)2,等比数列的通项公式,前n项和公式3,等比中项的概念(与等差中项的概念类似,如果在a和b中间插入一个数G,使a、G、b成等比数列,那么G叫做a和b的等比中项)4,等比数列最基本性质(现在我们来讨论一下等比数列中所具备的最基本的性质)学生A:回答问题1,如果一个数列从第二项起每一项与它前一项的“商”是同一个常数,那么这个数列就叫做等比数列,这个常数叫做这个等比数列的公比,记为q.(也就是等比数列的公比)老师:还有没有学生:1、数列是从第二项起2、“商”不能为0,也就是数列的每一项都不能为0(“商表示什么?老师提问,这里是让学生把“商”和公比联系起来)3、同一个常数(什么意思,请B同学讲解一下A同学同一个常数是什么意思)(后一项比上前一项是一个常数,我们可以用式子表示为a4/a3=a6/a5)老师:常数是等比数列吗?学生A:不对,非零常数数列才能等比数列,也可以是等差数列。
而零数列只能算是等差数列。
对学生B:回答问题2,等比数列的通项公式为?等比数列的求和公式Sn= 老师:看一下等比数列的求和公式有什么需要注意的。
(我看你眼神里面有想法B同学说一下)在应用等比数列前n项和公式时一定要注意公比得1与不得1两种情况.老师:我们请C同学回答问题3 学生C:若a,b,c成等比数列,则b为a,c 的等比中项,老师:好,这里我们就要注意了,等比中项他是可能存在两个的,为什么?b2=ac 这与等差数列的等差中项是不同的。
等比数列教案
等比数列教案等比数列教案篇一一、概述教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式二、教学目标分析1、知识目标掌握等比数列的定义理解等比数列的通项公式及其推导2.能力目标(1)学会通过实例归纳概念(2)通过学习等比数列的通项公式及其推导学会归纳假设(3)提高数学建模的能力3、情感目标:(1)充分感受数列是反映现实生活的模型(2)体会数学是来源于现实生活并应用于现实生活(3)数学是丰富多彩的而不是枯燥无味的三、教学对象及学习需要分析1、教学对象分析:(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。
并掌握了函数及个别特殊函数的性质及图像,如指数函数。
之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学2、学习需要分析:四。
教学策略选择与设计1、课前复习(1)复习等差数列的概念及通向公式(2)复习指数函数及其图像和性质2.情景导入等比数列教案篇二【教学目标】知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】等比数列定义的归纳及运用。
【教学难点】正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列【教学手段】多媒体辅助教学【教学方法】启发式和讨论式相结合,类比教学。
【课前准备】制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】复习回顾:等差数列的定义。
高中数学等比数列教案
高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。
二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。
三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。
四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。
五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。
2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。
3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。
4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。
5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。
六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。
2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。
七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。
八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。
2. 展望下一节课内容,引导学生进行自主学习和提前预习。
高中数学等比数列教案
高中数学等比数列教案教案标题:高中数学等比数列教案教案目标:1. 学生能够理解等比数列的定义和性质。
2. 学生能够找出等比数列的公比和通项公式。
3. 学生能够应用等比数列解决实际问题。
教学重点:1. 理解等比数列的定义和性质。
2. 掌握等比数列的公比和通项公式的推导方法。
3. 能够应用等比数列解决实际问题。
教学难点:1. 掌握等比数列的公比和通项公式的推导方法。
2. 能够应用等比数列解决实际问题。
教学准备:1. 教师准备:a. 等比数列的定义和性质的讲解材料。
b. 等比数列的公比和通项公式的推导过程演示材料。
c. 实际问题的例题和解题思路。
2. 学生准备:a. 学生预先复习等比数列的定义和性质。
b. 学生准备笔记本和笔。
教学步骤:步骤1:导入(5分钟)a. 引入等比数列的概念,回顾等差数列的特点和公式。
b. 提问:你们对等比数列有什么了解?它和等差数列有什么区别?步骤2:概念讲解(10分钟)a. 讲解等比数列的定义和性质,包括公比的概念和数列的通项公式。
b. 通过示例解释等比数列的概念和性质。
步骤3:公比和通项公式的推导(15分钟)a. 引导学生思考等比数列的公比和通项公式的推导方法。
b. 演示公比和通项公式的推导过程,让学生理解推导的思路和方法。
c. 学生进行课堂练习,巩固公比和通项公式的推导方法。
步骤4:实例分析(15分钟)a. 提供实际问题的例题,让学生尝试应用等比数列解决问题。
b. 引导学生分析问题,找出问题中的等比数列,并应用公式解决问题。
c. 学生进行课堂练习,巩固应用等比数列解决实际问题的能力。
步骤5:总结和拓展(5分钟)a. 总结等比数列的定义、性质、公比和通项公式。
b. 引导学生思考等比数列在实际生活中的应用,并提供相关拓展材料。
步骤6:作业布置(5分钟)a. 布置相关练习题,要求学生巩固等比数列的概念、公式和应用能力。
b. 强调作业的重要性,并鼓励学生独立思考和解决问题。
教学延伸:1. 鼓励学生自主学习,提供相关参考书籍和网站资源。
等比数列教案
等比数列教案一、教学目标:1. 了解等比数列的定义、性质和运算规律;2. 能够根据等比数列的首项和公比求出任意一项的值;3. 能够判断一个数列是否为等比数列,并求出它的首项和公比;4. 能够应用等比数列解决实际问题。
二、教学重点:1. 理解等比数列的定义和性质;2. 掌握等比数列的运算规律;3. 判断一个数列是否为等比数列,并求出它的首项和公比。
三、教学难点:1. 应用等比数列解决实际问题;2. 掌握等比数列的运算规律。
四、教学准备:1. 教师准备教学课件;2. 学生准备课本、笔记本等教学工具。
五、教学过程:1. 导入新知:提问学生是否了解数列的概念,并询问有哪些种类的数列。
引入等比数列的概念,并与等差数列进行对比,让学生体会两者的区别。
2. 等比数列的定义和性质:a. 引导学生独立思考,定义等比数列:若一个数列从第二项开始,每一项与它前一项的比值都相等,则称这个数列为等比数列。
b. 探究等比数列的性质:等比数列中,任意一项与它前一项的比值都相等,这个比值称为公比。
公比只与首项和公共比率有关,与项数无关。
c. 给出等比数列的通项公式:第n项的值可表示为$a_n = a_1\\cdot q^{n-1}$,其中$a_1$为首项,$q$为公比。
3. 等比数列的运算规律:a. 计算等比数列中任意一项的值:通过已知的首项和公比,使用通项公式计算任意一项的值。
b. 求等比数列的前n项和:将等比数列的前n项进行求和,得到等比数列前n项和的公式为$S_n = a_1 \\cdot \\frac{1-q^n}{1-q}$。
4. 判断一个数列是否为等比数列:a. 检查相邻两项的比值是否相等,若相等则为等比数列;若不等,则不是等比数列。
b. 若为等比数列,计算出它的首项和公比。
5. 应用等比数列解决实际问题:a. 引导学生思考并解决一些实际问题,如利用等比数列计算存款利息、人口增长等问题。
b. 分组讨论,互相交流解决问题的方法和答案。
等比数列的概念(教案)
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
等比数列的教案
等比数列的教案教案主题:等比数列的教学教学目标:1. 知道等比数列的定义,并且能够辨别等比数列与非等比数列;2. 能够求等比数列的公比和首项;3. 掌握等比数列的通项公式;4. 能够解决与等比数列相关的实际问题。
教学准备:1. 教学课件、教学PPT等;2. 黑板、白板和相应的文具;3. 适当的练习题。
教学过程:引入(5分钟):1. 引出等比数列的概念,通过举例子的方式向学生介绍等比数列;2. 分享等比数列的应用领域,如财务、工程等。
知识讲解(15分钟):1. 讲解等比数列的定义和等比数列与等差数列的区别;2. 讲解公比的概念和如何求公比;3. 讲解首项的概念和如何求首项;4. 讲解等比数列的通项公式的推导过程。
示例演练(20分钟):1. 给学生提供一些等比数列的例题,要求学生求出公比和首项;2. 给学生提供一些等比数列的例题,要求学生求出指定项的值。
合作探究(20分钟):1. 学生分小组,完成一些实际问题的解答,如金融投资、人口增长等问题;2. 学生之间可以互相讨论、合作解题。
展示总结(15分钟):1. 学生展示他们的解题方法和答案;2. 教师对学生的解题结果进行点评和总结;3. 总结等比数列的主要知识点和解题方法。
拓展延伸(10分钟):1. 学生可以选择一些拓展练习题,进一步巩固所学的知识;2. 学生可以尝试探索更高级的等比数列问题,如公比为负数的情况。
作业布置:1. 布置一些练习题,要求学生练习求等比数列的公比和首项;2. 布置一个实际问题,要求学生应用等比数列的知识解答问题。
教学反思:1. 教师要耐心引导学生理解等比数列的定义和概念,帮助他们正确掌握求解公比和首项的方法;2. 教师要设计一些拓展问题,鼓励学生去发现更多有关等比数列的性质和规律;3. 教师要在课堂上多与学生互动,鼓励学生积极思考和表达自己的观点。
等比数列教案
等比数列教案
教学目标:
1. 理解等比数列的概念,掌握等比数列的通项公式和求和公式;
2. 能够根据已知条件求等比数列的其他项;
3. 能够利用等比数列解决实际问题。
教学过程:
步骤一:引入
1. 教师可以通过展示一张有规律的图片或者给出一组有规律的数字,引导学生思考其中的规律,并引入等比数列的概念。
2. 教师提问:什么是等比数列?学生可以在讨论的过程中得出等比数列的定义。
步骤二:探究
1. 教师给出一个等比数列的例子,让学生进行观察并总结规律。
2. 学生可以利用观察到的规律,猜测等比数列的通项公式,并进行验证。
步骤三:归纳
1. 学生通过对多个等比数列的观察和总结,归纳出等比数列的通项公式。
2. 教师提问:如何求等比数列的前n项和?学生可以在讨论的过程中得出等比数列的求和公式。
步骤四:练习与巩固
1. 学生完成一些基础练习,如求等比数列的第n项、求等比数列的前n项和等。
2. 学生解决一些实际问题,如利用等比数列解决物理问题、经济问题等。
步骤五:拓展与应用
1. 学生可以自己发现并总结等比数列在生活中的应用场景,如利润增长、人口增长等方面的问题。
2. 学生可以尝试寻找更复杂的等比数列,并对其进行分析与研究。
步骤六:总结与反思
1. 学生进行本节课的总结,并回答教师的提问:你理解了等比数列的概念吗?掌握了等比数列的通项公式和求和公式吗?
2. 学生思考:如何将等比数列的知识应用到实际问题中?如何更好地理解和掌握等比数列的概念和公式?
这样的教案可以避免标题重复的问题。
高中数学必修5教案等比数列第2课时
高中数学必修5教案等比数列第2课时第一篇:高中数学必修5教案等比数列第2课时等比数列第2课时授课类型:新授课●教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
●教学重点等比中项的理解与应用●教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠an0),即:=q(q≠0)an-12.等比数列的通项公式:an=a1⋅q3.{an}成等比数列⇔列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列Ⅱ.讲授新课1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则n-1(a1⋅q≠0),an=am⋅qn-m(am⋅q≠0)an+1+=q(n∈N,q≠0)“an≠0”是数列{an}成等比数anGb=⇒G2=ab⇒G=±ab,aG反之,若G=ab,则≠0)[范例讲解] 课本P58例4 证明:设数列{an}的首项是a1,公比为q1;{bn}的首项为b1,公比为q2,那么数列{an⋅bn}的第n项与第n+1项分别为:2Gb2=,即a,G,b成等比数列。
∴a,G,b成等比数列⇔G=ab(a·baGa1⋅q1n-1⋅b1⋅q2与a1⋅q1⋅b1⋅q2即为a1b1(q1q2)n-1与a1b1(q1q2)nn-1nnan+1⋅bn+1a1b1(q1q2)nΘ==q1q2.n-1an⋅bna1 b1(q1q2)它是一个与n无关的常数,所以{an⋅bn}是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{an}与{bn},数列{an}也一定是等比数列吗? bnana,则cn+1=n+1 bnbn+1探究:设数列{an}与{bn}的公比分别为q1和q2,令cn=∴cn+1bn+1abqa==(n+1)γ(n+1)=1,所以,数列{n}也一定是等比数列。
高一数学《等比数列的性质及应用》教案设计【8篇】
高一数学《等比数列的性质及应用》教案设计【8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!高一数学《等比数列的性质及应用》教案设计【8篇】等比数列的性质是什么呢?是什么意思?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津职业技术师范大学
人教A版数学必修5第48-52页
2.4等比数列
理学院数学0801 刘瑞平
等比数列教案
一、 课题:等比数列 二、 课型:新授课 三、 教材分析
等比数列的学习在本章中占很大的比重。
在日常生活中,人们经常遇到的像存款利息等问题,都需要用有关等比数列的知识来解决。
本节内容可以类比等差数列进行教学。
四、 学情分析
学生已经已经有了必要的数学知识储备和一定的数学思维能力,在学完等差数列的基础上,也已经具有了必要的与数列相关的知识。
因此,可以通过生活中的例子引入等比数列的概念;然后,再类比等差通项的迭加思想引导学生用迭乘的思想推导等比数列的通项公式。
这样,学生既学习了知识又培养了能力。
五、 教学目标:
1) 知识目标:使学生理解等比数列的概念;学会利用等比数列的定义判断一个
数列是否为等比数列;利用通向公式求项。
2) 能力目标:让学生感知数学与生活的普遍联系,培养学生类比的思想方法,
掌握迭乘的思想,调动学生积极观察思考。
3) 情感目标:使学生体验数学活动充满着探索,感受数学思维的严谨性,提高
学生数学思维的情趣。
4) 教学重点与教学难点 教学重点:等比数列的概念
教学难点:等比数列通项的推导,有关等比数列的证明。
六、 教学方法:讲授法,讨论法 七、 教学过程:
1、导入,设问激疑
设问激疑 引出课题 巩固定义 严谨思维 类比等差 推导通项 证明等比 揭示内涵 设问思考 积极探索 反思小结 培养能力
师:上课之前,先问大家一个问题:一张报纸(厚度大约为0.1mm ),将它对折50次会有多厚?如果拿它做云梯能到哪?
(师生互动,一起来分析这道题目)报纸厚度为 初始 0.1mm
折叠1次 0.1⨯2 = 0.1⨯21 折叠2次 0.1⨯2⨯2 = 0.1⨯22 折叠3次 0.1⨯2⨯2⨯2 = 0.1⨯23
折叠4次 0.1⨯2⨯2⨯2⨯2 = 0.1⨯24 ……
可以猜想得出 ,折叠50次之后,报纸厚度为 0.1⨯250 。
lg 250 ≈15.05 ,也就是说250
是一个15位整数,2
50
⨯0.1mm=1000
10001
.0250⨯⨯km ,这个数字我们不
知道他确切的值是多少,但可以知道它是一个八位数。
而地球到月球的距离仅有
385400km (六位数)。
(让学生感受事实与想象之间的差距)
2、新课引入
回过头来,再次分析报纸的折叠问题。
将报纸每次折叠后的厚度,看成是一个数列。
初始 0.1mm
折叠1次 0.1⨯2 = 0.1⨯21
折叠2次 0.1⨯2⨯2 = 0.1⨯22
折叠3次 0.1⨯2⨯2⨯2 = 0.1⨯23
折叠4次 0.1⨯2⨯2⨯2⨯2 = 0.1⨯24
……
按等差数列来看,它是等差数列吗?
显然不是等差数列,同学们观察一下,这个数列的前项与后项有什么关系? 我们会发现一些特点:从第二项开始,每一项与前一项的比都等于2。
以后,我们就把具有这种特点或特征的数列称为等比数列。
今天我们就一起来认识这种新的数列——等比数列。
(板书课题)
(ppt 定义)一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一常数,那么这个数列叫等比数列,这个常数叫做等比数列的公比,公比常用字母q 来表示(q ≠0)。
师:等比数列的定义还可以用怎样的式子刻画呢? 生:
q a a n
n =+1
(常数)
(n=1,2,3……) 师:以上我们学习了等比数列的定义,接下来我们就利用定义一起来判断以下一个数列是否为等比数列。
例1、判断以下数列是否为等比数列?
1) , (16)
1
,81,41,21,1
2) 1,2,4,8,16,20……. 3) .......,,,,a a a a a 生:1)是等比数列,因为
2
1
1=+n n a a ,
(n=1,2,3……) 2)不是等比数列,因为
,4
5
,25612==a a a a 不等于同一个常数。
3)是等比数列,因为11==+a
a a a n n 师:有不同意见吗?
生:当时不是。
时是等比数列,当00=≠a a
师:由此可以联想到等比数列的项和公比有何限制? 生:.0,0≠≠q a n
2、设首项为 1a ,公比为q ,它的通项怎么写? 下面,我们类比等差数列,一起来推导等比数列的通项: 在等差数列{}n a 中,
d n a a d a a d a a d a a d a a n n n )1(.,.....,,11342312-+==-=-=-=--迭加得到等差通项为
类比推导:
我们用迭乘的方法证明了猜想的正确性,迭乘的方法在这里体现了极大的优越性,当然迭乘不是求数列通项公式的唯一方法,等我们学完数学归纳法之后,我们还可以给出另一种关于数列通项的推导。
我们把这个结果称为等比数列的通项公式。
(+∈≠≠N n q a n .0,0) (与刚学过的知识进行类比)
例2、(已知某些项,求a 和q )已知一个等比数列的第3项和第4项分别是12和18,求它的第1项和第二项。
解:设这个等比数列的第1项是1a ,公比是q ,那么 ,1221=⋅q a
.1831=⋅q a
1
11
3
42
3
1
2
......--⋅=⇒====n n n n
q a a q a a q
a a q a a q a a
得:2
3=
q .3
161=
a 因此 q a a ⋅=12 82
3316=⨯=
答:这个数列的第1项和第2项分别是
3
16
与8 例3、已知数列{}n a 和{}n b 是项数相同的等比数列,求证数列{}n n b a ⋅也是等比数列。
(板书证明)
证明:设数列{}n a 的公比为p,{}n b 的公比为q,{}n a 那么数列{}n n b a ⋅的第n 项和第n+1项分别为 : ()()。
与,即与n
n n n n n pq b a pq b a q b p a q b p a 111
11111111---⋅⋅⋅⋅⋅⋅
()()
,1
111111pq pq b a pq b a b a b a n n
n n n n ==⋅⋅-++因为它是一个与n 无关的常数,所以数列{}n n b a ⋅是一个以pq 为公比的等比数列。
(师生一起总结证明思路)
例4、(已知项,求项)已知{n a }是一个等比数列,在下表中填入适当的数。
1a
3a
5a
7a
q
2
8 3
2 2
3
(学生完成教师预先发下的表格,思考)
(课后探索题)已知{}n a 是一个无穷等比数列,公比为q 。
思考:
1)取出数列{}n a 中的奇数项,组成一个新的数列,这个新数列是等比数列吗?如果是,请给出证明,并求出它的首项和公比。
2)在数列{}n a 中,每隔10项取出一项,组成一个新的数列,这个新数列有什么特点呢?证明你的猜想。
八、 本课小结
这节课,我们一起认识学习了一种新的数列——等比数列。
通过学习,我们知道,这种数列的特点是:从第二项开始,每一项与前一项的比都是同一个定值,称之为q.
通过与等差数列的类比学习,可以知道等比数列的通项是:11-⋅=n n q a a 九、 板书设计
等比数列
等差:d n a )1(1-+ 等比:11-⋅=n n q a a
通项推导:
迭 乘 思 想
(类比等差数列的迭加思想,体会迭乘的思想)
十、印发表格(课前发给学生)
1
11
34
23
1
2......--⋅=⇒====n n n n
q a a q a a q a a q a a q a a 证明:设数列{}n a 的公比为p,{}n b 的公比为q,{}n a 那么数列{}n n b a ⋅的第n 项和第n+1
项分别为 : ()()。
与即,
与
n
n n n n n pq b a pq b a q b p a q b p a 111
11111111---⋅⋅⋅⋅⋅⋅
()(),1111111pq pq b a pq b a b a b a n n
n n n n ==⋅⋅-++因为它是一个与n 无关的常数,所以数列{}n n b a ⋅是一个以
pq 为公比的等比数列。
完成下列表格
已知{n a }是一个等比数列,在下表中填入适当的数。
1a
3a
5a
7a
q
2
8
2
2
1
课后探索:已知{}n a 是一个无穷等比数列,公比为q 。
思考:
1)取出数列{}n a 中的奇数项,组成一个新的数列,这个新数列是等比数列吗?如果是,请给出证明,并求出它的首项和公比。
2)在数列{}n a 中,每隔10项取出一项,组成一个新的数列,这个新数列有什么特点呢?证明你的猜想。