【走向高考】(全国通用)2016高考数学二轮复习 第一部分 微专题强化练 专题18 算法框图与复数课件

合集下载

新教材2024届高考英语二轮专项分层特训卷第一部分专题强化练专题六读后续写强化训练四十七救人脱困 肢

新教材2024届高考英语二轮专项分层特训卷第一部分专题强化练专题六读后续写强化训练四十七救人脱困 肢

强化训练四十七救人脱困+肢体动作篇(1) Ⅰ.翻译句子1.他羞愧地低下了头。

________________________________________________________________________ 2.我用手捂住电话,低声告诉她发生了什么事。

I________________________________________________,whispering what had happened to her.3.他按下电梯,进了电梯,双臂交叉,静静地站着。

He ______________ the elevator,got in and stood silently________________________________________________________________________.4.爷爷拍拍我的肩膀,轻轻地握着我的手,告诉我不要担心。

Grandpa ________________________________, ________________________, and told me not to worry.5.我妈妈搂着我,小声安慰我。

Mymother__________________________________________________ andwhispered to comfort me.6.他把手伸进口袋,找了一会,掏出几个硬币。

He __________________________________________,searched for a while and _____________several coins.Ⅱ.读后续写阅读下面材料,根据其内容和所给段落开头语续写两段,使之构成一篇完整的短文。

That summer I turned 18. I was wild with excitement because I just took my driving license and my parents bought me a new perfect car. I was reminded repeatedly by my parents to drive cautiously. Along with this new privilege (特权) came new responsibilities. I would practice the same routine-call my parents and tell them where I was going, whom I was with, and when I would be home. It became a typical cycle.I had been working all day in the hot sun. I was exhausted and ready for a nap. But my stomach told me something different. So I called my friend Mike and made ourway into town. After our meal, we never knew our day would soon change for the worse.It takes only a moment to turn your life upside down. I recalled later that I was driving fast. Actually too fast. I reached the conclusion two years later that the mistake would be with me for the rest of my life.Mike and I were driving down a dusty gravel (沙砾) road. I was driving a shiny black Saturn, which was the car I had admired for long. I was overflowing with excitement and pride to be driving it. It was perfect in my eyes. I could see the rolling hills in the distance. Tall pine trees traveled on both sides of the road. The music playing loudly, we both were in high spirits. Somehow, without realizing it, I sped up.Enjoying ourselves in my car, we came across a loose spot of gravel. My tires were stuck in it and desperate to escape. My car started fishtailing (摆尾行驶). Terrified, I pressed hard on the brakes and all of a sudden the car lost control.I froze, my body was stiff, great panic holding me entirely in its power. Looking into the right, I took a glimpse of Mike, whose body had leaned towards me. His face went pale but he was trying to balance himself. The car was rushing left to right, coasting (惯性滑行) along the gravel as if it were ice. It was only seconds later that my car crashed head­on into a big pine tree.注意:1.续写词数应为150左右;2.请按如下格式在以下位置作答。

2016年高考理科数学全国卷2(含详细答案)

2016年高考理科数学全国卷2(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。

新教材2024届高考英语二轮专项分层特训卷第一部分专题强化练专题六读后续写强化训练四十二追梦 难过篇

新教材2024届高考英语二轮专项分层特训卷第一部分专题强化练专题六读后续写强化训练四十二追梦 难过篇

强化训练四十二追梦+难过篇Ⅰ.翻译句子1.她双手捂着脸悲伤地抽泣着。

________________________________________________________________________________________________________________________________________________2.孤独和悲伤不断涌上心头。

泪水模糊了她的眼睛。

________________________________________________________________________.Tears half blinded her.3.听到这个消息,他绝望地借酒浇愁。

Hearing the news, so desperate was he that___________________________________.4.她伤心地低下头,努力忍住眼泪。

She hung her head in sadness, and__________________________________________.5.她非常沮丧。

她的手颤抖着,满眼忧伤。

________________________________________________________________________________________________________________________________________________Ⅱ.读后续写阅读下面材料,根据其内容和所给段落开头语续写两段,使之构成一篇完整的短文。

Monty Roberts owns a horse ranch(牧场).He has let me use his house to put on fund­raising events. The last time I was there he told me a story. It all goes back to a story about a young man who was the son of an itinerant horse trainer (巡回驯马师) who would go from stable to stable (马厩), race track to race track, farm to farm and ranch to ranch, training horses. As a result, the boy's high school career was continually interrupted. When he was a senior, he wrote a paper about what he wanted to be and do when he grew up.He wrote a seven­page paper describing his goal of someday owning a horse ranch. He wrote about his dream in great detail and he even drew a diagram of a 200­acre ranch, showing the location of all the buildings, the stables and the track. Then he drew a detailed floor plan for a 4,000­square­foot house that would sit on a 200­acre dream ranch.He put a great deal of his heart into the project and the next day he handed it in to his teacher. Two days later he received his paper back. On the front page was a large red F with a note that read, “See me after class.”Confused and disappointed, the boy with the dream went to see the teacher after class and asked, “Why did I receive an F?” The teacher said, “This is a n unrealistic dream for a young boy like you. You have no money. You come from a poor family. You have no resources. Owning a horse ranch requires a lot of money. You have to buy the land. You have to pay for the original breeding stock and later you'll ha ve to pay large stud fees. There's no way you could ever do it.” Then the teacher added, “If you rewrite this paper with a more realistic goal, I will reconsider your grade.”注意:1.续写词数应为150左右;2.请按如下格式在以下位置作答。

高三二轮复习选填满分“8+4+4”小题强化训练第5练(原卷及答案)(新高考专用)

高三二轮复习选填满分“8+4+4”小题强化训练第5练(原卷及答案)(新高考专用)

高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.RM N ⋂=B.M N⊆C.N M⊆D.RM N ⋃=2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.37.三棱锥P ABC-的所有顶点都在球O 的球面上.棱锥P ABC-的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====,则球O 的表面积为()A.28πB.29πC.30πD.31π8.已知0.40.7e ,eln1.4,0.98ab c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c>>C.b c a>>D.c a b>>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为12B.未出现“日落云里走”时,后半夜下雨的概率约为59C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n 层有n a 个球,从上往下n 层球的总数为n S ,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-=⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤ ⎥⎝⎦12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.R M N ⋂=B.M N⊆C.N M ⊆D.RM N ⋃=【答案】B【解析】根据题意,作出如下图韦恩图:满足∅=⋂N C M U ,即M N ⊆.故选:B.2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<【答案】C【解析】A .若a b >,当0c =时,22ac bc =,所以选项A 不成立;B .若a bc c>,当0c <时,则a b <,所以选项B 不成立;C .因为0ab <,将a b >两边同除以ab ,则11a b>,所以选项C 成立;D .如果2,1,a b ==-满足22a b >,但是11a b>,所以选项D 不成立.故选:C.3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.【答案】C【解析】22()()log ()log ()xx x x f x ee x e e xf x ---=+-=+=,()f x 为偶函数,排除AD ,又01x <<时,()0f x <,排除B .故选:C .4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为i e cos isin x x x =+,所以i e cos isin a a a =+,因为i a e 为纯虚数,所以cos 0a =,sin 0a ≠,故sin 22sin cos 0a a a ==,所以()()sin2111i 1i 11i 1i 1i 1i 1i 222a +--====-+++-,则复数sin211i a ++在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,则其在第四象限,故选:D.5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年【答案】B【解析】 碳14的半衰期为5730年,∴1573057305730111(1)(1)222x k k p p y k ⎛⎫⎛⎫=-⇒-=⇒= ⎪⎪⎝⎭⎝⎭,当55.2%y k =时,5730155.2%2x k k ⎛⎫= ⎪⎝⎭,1222log 0.552log 0.552,5730log 0.55249125730xx ∴==-=-≈, 2010年之前的4912年是公元前2902年,∴以此推断此水坝大概的建成年代是公元前2903年.故选:B.6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.3【答案】A【解析】设椭圆1C 、双曲线2C 的共同半焦距为c ,由椭圆、双曲线对称性不妨令点M 在第一象限,由椭圆、双曲线定义知:1212||||MF MF a +=,且212||||2MF MF a -=,则有112||MF a a =+,212||MF a a =-,在12F MF △中,由余弦定理得:22212121212||||||2||||cos F F MF MF MF MF F MF =+-∠,即222121212124()()2()()cos3c a a a a a a a a π=++--+-,整理得:2221243c a a =+,于是得2212222212123134a a c c e e e e =+=+≥=,当且仅当221213e e =,即21e =时取“=”,从而有12≥e e ,所以12e e.故选:A7.三棱锥P ABC -的所有顶点都在球O 的球面上.棱锥P ABC -的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====O 的表面积为()A.28πB.29πC.30πD.31π【答案】B【解析】由题意知:222PB PC BC +=,222PA PC AC +=,222PA PB AB +=,∴,,PA PB PC 两两垂直,即P ABC -为直三棱锥,∴若Rt PBC △的外接圆半径为r ,则522BC r ==,又PA ⊥面PBC ,∴外接球心O 到PA 的距离为52r =,故外接球半径2R ==,∴外接球表面积2429S R ππ==.故选:B.8.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c >>C.b c a>>D.c a b>>【答案】A【解析】构造()1=ln e f x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x '>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当2x =时,等号成立,当0.7x =时,220.98ln1.4(0.7)eln1.40.98e e<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为1 2B.未出现“日落云里走”时,后半夜下雨的概率约为5 9C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨【答案】AC【解析】对A,把频率看作概率,可得后半夜下雨的概率约为5011002=,故A判断正确:对B,未出现“日落云里走”时,后半夜下雨的概率约为255254514=+,故B判断错误;对C,由219.05 6.635χ≈>,知有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关,故C判断正确;易知D判断错误.故选:AC10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有n a个球,从上往下n层球的总数为n S,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 【答案】ACD【解析】因为11a =,212a a -=,323a a -=,……,1n n a a n --=,以上n 个式子累加可得:(1)1232n n n a n +=++++=,所以512345136101535S a a a a a =++++=++++=,故选项A 正确;由递推关系可知:11n n a a n +-=+,故选项B 不正确;当2n ≥,1(1)2n n n n n S S a -+-==,故选项C 正确;因为12112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12100111111112122223100101a a a ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭120021101101⎛⎫=-= ⎪⎝⎭,故选项D 正确;故选:ACD.11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦【答案】ABD【解析】A,∵7375,124126ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭,∴()f x 在73,124ππ⎛⎫⎪⎝⎭上单调,又73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,73212423πππ+=,∴203f π⎛⎫=⎪⎝⎭,故A 正确;B,区间75,126ππ⎛⎫⎪⎝⎭右端点56x π=关于23x π=的对称点为2x π=,∵203f π⎛⎫= ⎪⎝⎭,f (x )在75,126ππ⎛⎫ ⎪⎝⎭上单调,∴根据正弦函数图像特征可知()f x 在5,26ππ⎛⎫⎪⎝⎭上单调,∴512(62322T T ππππω-==⋅ 为()f x 的最小正周期),即ω 3,又0ω>,∴03ω< .若()56f x f x π⎛⎫-= ⎪⎝⎭,则()f x 的图象关于直线512x π=对称,结合203f π⎛⎫=⎪⎝⎭,得()252121312442k k T k ππππω++-===⋅∈Z ,即()42k k ω=+∈Z ,故k =0,2,T ωπ==,故B 正确.C,由03ω< ,得23T π,∴()f x 在区间[)0,2π上最多有3个完整的周期,而()1f x =在1个完整周期内只有1个解,故关于x 的方程()1f x =在区间[)0,2π上最多有3个不相等的实数解,故C 错误.D,由203f π⎛⎫=⎪⎝⎭知,23π是函数()f x 在区间23π⎡⎢⎣,136π⎫⎪⎭上的第1个零点,而()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则13252632T T ππ<- ,结合2T πω=,得81033ω< ,又03ω< ,∴ω的取值范围为8,33⎛⎤⎥⎝⎦,故D 正确.故选:ABD.12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半【答案】AD【解析】如图,以D 为原点分别以DA 、DC 、1DD 为x 轴、y 轴、z 轴建立空间直角坐标系:则()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()12,0,2A ,()12,2,2B ,()10,2,2C ,()10,0,2D ,由于动点F 在正方形11CDD C 内,可设()0,,F m n ,其中02m <<,02n <<,选项A:若1C F ⊥平面1A CF ,则11C F A C ⊥ ,1C F CF ⊥.由于()10,2,2C F m n =-- ,()12,2,2A C =-- ,()0,2,CF m n =-,则()()()()222220220m n m n n ⎧⨯---=⎪⎨-+-=⎪⎩,解得:11m n =⎧⎨=⎩或22m n =⎧⎨=⎩(舍去),此时()0,1,1F ,即点F 的位置唯一,故选项A 正确;选项B:()10,2,2A B =- ,()2,2,0BD =--,设平面1A BD 的一个法向量为(),,n x y z =r.则220220y z x y -=⎧⎨--=⎩,令1y =,得1x =-,1z =,故()1,1,1n =-,而()12,2,2B F m n =--- ,若1B F ∥平面1A BD ,则10B F n ⋅=,则2220m n +-+-=,即2m n +=,所以()0,,2F m m -,此时()12,2,B F m m =---,而()10,2,2CD =- ,所以()112022244B F CD m m m ⋅=-⨯-⨯--⨯=-+,当1m =时,440m -+=,此时110B F CD ⋅= ,则11B F CD ⊥.故选项B 不正确;选项C:由于()112BF BC BD =+,则F 为1CD 的中点,此时()0,1,1F ,设三棱锥的11-F B CC 的外接球的球心为(),,O x y z ,则11OC OB OC OF OC OC⎧=⎪=⎨⎪=⎩,即()()()()()()()()()()2222222222222222222222211222x y z x y z x y z x y z x y z x y z ⎧+-+=-+-+-⎪⎪+-+=+-+-⎨⎪+-+=+-+-⎪⎩,解得:121x y z =⎧⎪=⎨⎪=⎩,所以()1,2,1O ,则三棱锥的11-F B CC的外接球的半径为R OC ==,所以三棱锥的11-F B CC 的外接球表面积为22448R πππ=⨯=,故选项C 不正确;选项D:点E 为BC 中点,由正方体可知BC ⊥平面11A ABB ,则11111111111222132323A AB E E AA B V V AA A B BE --==⨯⋅⋅=⨯⨯⨯=111111111422232323A FAB F AA B V V AA A B BC --⋅==⨯⨯⋅=⨯⨯⨯⨯=则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半.故选项D 正确.故选:AD三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.【答案】3(答案不唯一)【解析】因为随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,所以()*1N 3E X n =∈,所以一个符合条件的3n =,故答案为:3(答案不唯一)14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).【答案】576【解析】分步完成:第一步调换四条升腾之龙的相对位置,第二步调换四条沉降之龙的相对位置,方法数为4444576A A =.故答案为:576.15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.【答案】()2,+∞【解析】令()()f xg x x=,因为对()120,x x ∀∈+∞、,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,不妨设120x x <<,则120x x -<,故()()21120x f x x f x -<,则()()1212f x f x x x <,即()()12g x g x <,所以()g x 在()0,∞+上单调递增,又因为()24f =,所以()()2222f g ==,故()2f x x>可化为()()2g x g >,所以由()g x 的单调性可得2x >,即不等式()2f x x>的解集为()2,+∞.故答案为:()2,+∞16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.【答案】6【解析】如图,连接122,,AF DF EF ,因为C 的离心率为12,所以12c a =,即2a c =,所以22223b a c c =-=,因为12122AF AF a c F F ====,所以12AF F △为等边三角形,又2DE AF ⊥,所以直线DE 为线段2AF 的垂直平分线,所以2AD DF =,2AE EF =,则ADE V 的周长为22||||||||AD AE DE DF EF DE ++=++2211DF EF DF EF =+++134134a a ==⇒=,138c ∴=,而1230EF F ︒∠=,所以直线DE 的方程为3)3y x c =+,代入椭圆C 的方程2222143x y c c +=,得22138320x cx c +-=,设()11,D x y ,()22,E x y ,则21212832,1313c c x x x x +=-=-,所以48613cDE==,故答案为:6.。

2016年高考理科数学全国卷2(含详细答案)

2016年高考理科数学全国卷2(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。

高三数学二轮复习讲练测第1讲 集合及集合思想应用(讲+练)(原卷及答案)(新高考专用)(学生专用)

高三数学二轮复习讲练测第1讲 集合及集合思想应用(讲+练)(原卷及答案)(新高考专用)(学生专用)

高三二轮复习讲练测第1讲集合及集合思想应用目录讲高考 (2)题型全归纳 (2)【题型一】集合中元素表示 (2)【题型二】集合元素个数 (3)【题型三】知识点交汇处的集合元素个数 (3)【题型四】由元素个数求参 (4)【题型五】子集关系求参 (5)【题型六】集合运算1:交集运算求参 (5)【题型七】集合运算2:并集运算求参 (6)【题型八】集合运算3:补集运算求参 (7)【题型九】应用韦恩图求解 (8)【题型十】集合中的新定义 (15)专题训练 (10)讲高考1.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}- 2.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤3.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<4.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,45.(2007·全国·高考真题(文))已知集合{}cos sin ,02E θθθθπ=<≤≤∣,{}tan sin F θθθ=<∣,那么E F 为区间( )A .,2ππ⎛⎫ ⎪⎝⎭B .3,44ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫ ⎪⎝⎭7.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( )A .34π B .π C .2π D .3π题型全归纳【题型一】集合中元素表示【讲题型】例题1:已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( )(1){}∅(2){}{}∅(3)∅(4){}{},∅∅A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)例题2、设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M NB .M NC .M N ⊆D .M N1.以下四个写法中:① {}00,1,2∈;②{}1,2∅⊆;③{}{}0,1,2,3=2,3,0,1;④A A ⋂∅=,正确的个数有( )A .1个B .2个C .3个D .4个2.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤3.若{}21,3,a a ∈,则a 的可能取值有( ) A .0B .0,1C .0,3D .0,1,3【题型二】集合元素个数【讲题型】例题1.已知集合11|3381x A x Z -⎧⎫=∈<≤⎨⎬⎩⎭,2|03x B x N x +⎧⎫=∈<⎨⎬-⎩⎭,则集合{}|,,z z xy x A y B =∈∈的元素个数为( )A .6B .7C .8D .9例题2.,若n A 表示集合n A 中元素的个数,则5A =_______,则12310...A A A A ++++=_______.【练题型】1.若集合{}2N log 3A x x =∈<,{B x y ==,则A B 的元素个数为( )A .3B .4C .5D .62.已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为 A .3B .4C .6D .93.集合{}2*|70,A x x x x =-<∈N ,则*6|,B y y A y N ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为 A .1个B .2个C .3个D .4个【题型三】知识点交汇处的集合元素个数【讲题型】例题1.1.已知全集{(,)|,}U x y x R y R =∈∈,集合S U ⊆,若S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =均对称,且(2,3)S ∈,则S 中的元素个数至少有A .4个B .6个C .8个D .10个例题2.若正方体12341234A A A A B B B B -的棱长为1,则集合{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为( )A .1B .2C .3D .41.设集合{2,1,0,1,2}A =--,{1,0,1}B =-,22(,)1,,43x y C x y x A y B ⎧⎫⎪⎪=+≤∈∈⎨⎬⎪⎪⎩⎭,则集合C 中元素的个数为( )A .11B .9C .6D .42.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .303.若集合(){},,,|04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,|04,04,,,t u v w t u v w t u v w 且=≤<≤≤<≤∈N ,用()card X 表示集合X 中的元素个数,则()()card card F E +=A .50B .100C .150D .200【题型四】由元素个数求参【讲题型】例题1.若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( )A .4B .2C .0D .0或4例题2.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则A .8k >B .8k ≥C .16k >D .16k ≥1.已知集合{}2220A x x ax a =++≤,若A 中只有一个元素,则实数a 的值为( )A .0B .0或2-C .0或2D .2 2..已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( )A .77n =B .49n ≤C .64n =D .81n ≥3.如果集合{}2210A x ax x =++=中只有一个元素,则a 的值是( ) A .0B .0或1C .1D .不能确定【题型五】子集关系求参【讲题型】例题1.已知集合{}(){}1,0A B x x x a ==-<,若A B ⊆,则a 的取值范围是( ) A .(),1-∞ B .()1,+∞ C .(),2-∞ D .()2,+∞ 例题2.已知集合{}2230A x x x =--<,非空集合{}21B x a x a =-<<+,B A ⊆,则实数a 的取值范围为( ).A .(],2-∞B .1,22⎛⎤ ⎥⎝⎦C .(),2-∞D .1,22⎛⎫ ⎪⎝⎭1.若集合{}|2135A x a x a =+≤≤-,{}|516B x x =≤≤,则能使A B ⊆成立的所有a 组成的集合为( )A .{}|27a a ≤≤B .{}|67a a ≤≤C .{}7|a a ≤D .∅2. {}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<3.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,【题型六】集合运算1:交集运算求参【讲题型】例题1.已知集合(){},0A x y x ay a =+-=,()(){},2310B x y ax a y =++-=.若A B =∅,则实数=a ( )A .3B .1-C .3或1-D .3-或1例题2.已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( )A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--1.已知集合{}12A x x =<<,集合{B x y =,若A B A =,则m 的取值范围是( )A .(]0,1B .(]1,4C .[)1,+∞D .[)4,+∞2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .43.已知集合(){}22240,(1)2101x A x B x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( )A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞D .[)2,+∞ 【题型七】集合运算2:并集运算求参【讲题型】例题1..已知{|A x y =,{}2|220B x x ax a =-++≤,若A B A ⋃=,那么实数a的取值范围是( )A .(12)-,B .182,7⎡⎤⎢⎥⎣⎦C .181,7⎛⎫- ⎪⎝⎭D .181,7⎛⎤- ⎥⎝⎦例题2.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x ≥a ﹣1},若A ∪B=R ,则a 的取值范围为( )A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)【练题型】1.设集合{}2|(3)30A x x a x a =-++=,{}2|540B x x x =-+=,集合A B 中所有元素之和为8,则实数a 的取值集合为( ) A .{0} B .{03},C .{013,4},, D .{13,4},2.非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( ) A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦3.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( ) A .-2 B .-1C .0D .1【题型八】集合运算3:补集运算求参【讲题型】例题1.已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________.例题2..已知集合1121A x R x ⎧⎫=∈≤⎨⎬+⎩⎭,()(){}2210B x R x a x a =∈---<,若()R A B =∅,则实数a 的取值范围是 A .[)1,+∞ B .[)0,+∞C .()0,∞+D .()1,+∞【讲技巧】补集运算:1.符号语言:∁U A ={x |x ∈U ,且x ∉A }.2.图形语言:【练题型】1.设全集{}1,2,3,4,5U =,集合{}21,1,4A a =-,{}2,3UA a =+,则a 的值为( )A .2±B .C .2-D .22.已知全集{}22,4,U a =,集合{}4,3A a =+,{}1UA =,则a 的所有可能值形成的集合为( ) A .{}1- B .{}1 C .{}1,1-D .∅3.已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________湖北省荆州市沙市中学2022-2023学年高一上学期第一次月考数学试题【题型九】应用韦恩图求解【讲题型】例题1.全集U =R ,集合04xA xx ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞例题2.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1【练题型】1.若全集U =R ,集合(){}|lg 6A x y x ==-,{}|21xB x =>,则图中阴影部分表示的集合是( )A .()2,3B .(]1,0-C .[)0,6D .(],0-∞2.已知全集U R =,集合{}2313100M x x x =--<和{}2,N x x k k Z ==∈的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有交集运算韦恩图符号语言 Venn 图表示A ∩B ={x |x ∈A ,且x ∈B }补集运算韦恩图图形语言:A .1个B .2个C .3个D .无穷个3.已知集合{|{||1|2}M x y N x x ==+≤,且 M 、M 都是全集 I 的子集,则右图韦恩图中阴影部分表示的集合为A .{|1}x x ≤≤B .{|31}z z -≤≤C .{|3z z -≤<D .{|1x x <≤【题型十】集合中的新定义【讲题型】例题1定义运算.()(),()()()(),()()C A C B C A C B A B C B C A C A C B -⎧*=⎨-<⎩若{}()(){}221,2,20A B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =_______.例题2..对于集合M ,定义函数()1,1,M x Mf x x M -∈⎧=⎨∉⎩,对于两个集合,A B ,定义集合()(){}|1A B A B x f x f x *=⋅=-. 已知集合{}A x x =>,()(){}|330B x x x x =-+>,则A B *=__________.【练题型】1.设A 、B 、C 是集合,称(,,)A B C 为有序三元组,如果集合A 、B 、C 满足||A B =||||1B C C A ==,且A B C =∅,则称有序三元组(,,)A B C 为最小相交(其中||S 表示集合S 中的元素个数),如集合{1,2}A =,{2,3}B =,{3,1}C =就是最小相交有序三元组,则由集合{1,2,3,4,5,6}的子集构成的最小相交有序三元组的个数是________2..集合{}6666,11135,2333,10,99111,1,198,1000,0,M π=---有10个元素,设M 的所有非空子集为()1,2,,1023i M i =⋅⋅⋅,每一个i M 中所有元素乘积为()1,2,,1023i m i =⋅⋅⋅,则1231023m m m m +++⋅⋅⋅+=_____.3.设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,则在下列集合中:①{}0x x ∈≠Z ;②{},0x x x ∈≠R ;③1,x x n n *⎧⎫=∈⎨⎬⎩⎭N ;④,1n x x n n *⎧⎫=∈⎨⎬+⎩⎭N 以0为聚点的集合有______.专题训练一、单选题1.已知集合{}N 23A x x =∈-<<,则集合A 的所有非空真子集的个数是( ) A .6 B .7C .14D .152.设全集{0,1,2,3,4,5}U =,集合{0,1,2,3},{2,3,4,5}A B ==,则()UA B =( )A .{0}B .{0,1}C .{0,1,2,3}D .{0,1,2,3,4,5}3.如图,设U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合为( )A .()M P SB .()U M P S ⋂⋂C .()M P SD .()U M P S ⋂⋃4.设集合P ,Q 都是实数集R 的子集,且()RP Q =∅,则P Q =( )A .∅B .RC .QD .P5.设集合{}2,,0A a a =-,{}2,4B =,若{}4A B ⋂=,则实数a 的值为( )A .2±B .2或-4C .2D .-46.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .113a a ⎧⎫-≤<⎨⎬⎩⎭B .113a a ⎧⎫-≤≤⎨⎬⎩⎭C .{}10a a a <-≥或D .10013a a a ⎧⎫-≤<<<⎨⎬⎩⎭或7.用()C A 表非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩,若{}(){}21,20A B x x x ax ==++=∣,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .4 B .3 C .2 D .98.已知集合{}12A x x =->,集合{}10B x mx =+<,若A B A ⋃=,则m 的取值范围是( ) A .1,03⎡⎤-⎢⎥⎣⎦B .1,13⎡⎤-⎢⎥⎣⎦C .[0,1]D .1,0(0,1]3⎡⎫-⎪⎢⎣⎭二、填空题9.若集合{}3|1A x x =-≤<,{}|B x x a =≤,且{|1}A B x x ⋃=<,则实数a 的取值范围为_________.10.已知A ={a 1,a 2,a 3,a 4},B ={}222124a a a ,,且a 1<a 2<a 3<a 4,其中ai ∈Z (i =1,2,3,4),若A ∩B ={a 2,a 3},a 1+a 3=0,且A ∪B 的所有元素之和为56,求a 3+a 4=_____.11.已知集合B 和C ,使得{}1,2,3,4,5,6,7,8,9,10B C ⋃=,B C =∅,并且C 的元素乘积等于B 的元素和,写出所有满足条件的集合C =___________.12.已知集合M ={x ∈N |1≤x ≤21},集合A 1,A 2,A 3满足①每个集合都恰有7个元素; ②A 1∪A 2∪A 3=M .集合Ai 中元素的最大值与最小值之和称为集合Ai 的特征数,记为Xi (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为___.答案讲高考1.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()UA B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D.2.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤ C .{}|01x x ≤< D .{}|02x x ≤≤【答案】B【分析】结合题意利用并集的定义计算即可.【详解】由题意可得:{}|12A B x x =-<≤.故选:B.3.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >- B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12A B x x =≤<.故选:D.4.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A【分析】首先进行并集运算,然后进行补集运算即可. 【详解】由题意可得:{}1,2,3,4MN =,则(){}5UM N =.故选:A.5.(2007·全国·高考真题(文))已知集合{}cos sin ,02E θθθθπ=<≤≤∣,{}tan sin F θθθ=<∣,那么EF 为区间( )A .,2ππ⎛⎫ ⎪⎝⎭B .3,44ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .35,44ππ⎛⎫⎪⎝⎭【答案】A【解析】先分别利用正弦函数、余弦函数和正切函数的图象化简集合E ,F ,再利用交集的运算求解.【详解】∵5{cos sin ,02}44E πθθθθπθθπ⎧⎫=<≤≤=<<⎨⎬⎩⎭∣∣, {}tan sin ,2F k k k πθθθθπθππ⎧⎫=<=+<<+∈⎨⎬⎩⎭Z ∣∣,∴2EF πθθπ⎧⎫=<<⎨⎬⎩⎭∣.故选:A.6.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( )A .34πB .πC .2πD .3π【答案】B【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后可求区域的面积. 【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23633BO =⨯=361226PO -=因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O ,半径为2364136=>⨯,故S 的轨迹圆在三角形ABC 内部,故其面积为π故选:B题型全归纳【题型一】集合中元素表示【讲题型】例题1:已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( ) (1){}∅(2){}{}∅(3)∅(4){}{},∅∅ A .(1)(2) B .(1)(3) C .(2)(3) D .(2)(4) 【答案】B【分析】根据元素与集合的关系判断. 集合A 有两个元素:{}∅和∅, 故选:B 例题2、设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M N B .M N C .M N ⊆ D .M N【答案】B【分析】对于集合N ,令2()k m m =∈Z 和21()k m m Z =-∈,即得解. 【详解】{|24k M x x ππ==+,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,对于集合N ,当2()k m m =∈Z 时,22m x ππ=+,m Z ∈;当21()k m m Z =-∈时,24m x ππ=+,m Z ∈.M N∴,故选:B .1.以下四个写法中:① {}00,1,2∈;②{}1,2∅⊆;③{}{}0,1,2,3=2,3,0,1;④A A ⋂∅=,正确的个数有( ) A .1个 B .2个C .3个D .4个【答案】C对于①,{}00,1,2∈正确;对于②,因为空集是任何集合的子集,所以{}1,2∅⊆正确;对于③,根据集合的互异性可知{}{}0,1,2,3=2,3,0,1正确;对于④, A ∅=∅,所以A A⋂∅=不正确;四个写法中正确的个数有3个,故选C.2.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤【答案】A【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. ①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.3.若{}21,3,a a ∈,则a 的可能取值有( )A .0B .0,1C .0,3D .0,1,3【答案】C【分析】根据元素与集合的关系及集合中元素的性质,即可判断a 的可能取值.0a =,则{}1,3,0a ∈,符合题设;1a =时,显然不满足集合中元素的互异性,不合题设;3a =时,则{}1,3,9a ∈,符合题设;∴0a =或3a =均可以.故选:C【题型二】集合元素个数【讲题型】例题1.已知集合11|3381x A x Z -⎧⎫=∈<≤⎨⎬⎩⎭,2|03x B x N x +⎧⎫=∈<⎨⎬-⎩⎭,则集合{}|,,z z xy x A y B =∈∈的元素个数为( )A .6B .7C .8D .9【答案】B 【分析】解指数不等式求得集合A ,解分式不等式求得集合B ,由此求得集合{}|,,z z xy x A y B =∈∈的元素个数. 【详解】 由113381x -<≤得411333x --<≤,411x -<-≤,解得32x -<≤,所以{}2,1,0,1,2A =--.由203x x +<-解得23x -<<,所以{}1,0,1,2B =-.所以{}|,,z z xy x A y B =∈∈{}2,0,2,4,1,1,4=---,共有7个元素.故选:B. 例题2.,若n A 表示集合n A 中元素的个数,则5A =_______,则12310...A A A A ++++=_______. 【答案】11; 682. 【详解】 试题分析:当时,,,即,,由于不能整除3,从到,,3的倍数,共有682个,【练题型】1.若集合{}2N log 3A x x =∈<,{B x y ==,则A B 的元素个数为( )A .3B .4C .5D .6【答案】C【分析】分别求出集合,A B ,然后,由交集定义求得交集后可得元素个数.由题意得,{}{}081,2,3,4,5,6,7A x x =∈<<=N ,{}3B x x =≥,故{}3,4,5,6,7A B =,有5个元素. 故选:C2.已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为A .3B .4C .6D .9【答案】B【分析】根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数. 因为x A ∈,y A ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.故选:B.3.集合{}2*|70,A x x x x =-<∈N ,则*6|,B y y A y N ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为A .1个B .2个C .3个D .4个【答案】D{}{}{}2**|70,|07,1,2,3,4,5,6A x x x x x x x =-<∈=<<∈=N N ,{}*6|,1,2,3,6B y y A y ⎧⎫=∈∈=⎨⎬⎩⎭N ,则B 中的元素个数为4个.本题选择D 选项.【题型三】知识点交汇处的集合元素个数【讲题型】例题1.1.已知全集{(,)|,}U x y x R y R =∈∈,集合S U ⊆,若S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =均对称,且(2,3)S ∈,则S 中的元素个数至少有 A .4个 B .6个 C .8个 D .10个【答案】C求出点(2,3)关于原点、坐标轴、直线y x =的对称点,其中关于直线y x =对称点,再求它关于原点、坐标轴、直线y x =的对称点,开始重复了.从而可得点数的最小值. 因为(2,3)S ∈,S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =对称,所以(2,3),(2,3),(2,3),(3,2),(32),S S S S S --∈-∈-∈∈--∈,(32),S ∈,-(32),S -∈,所以S 中的元素个数至少有8个, 故选:C.例题2.若正方体12341234A A A A B B B B -的棱长为1,则集合{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为( )A .1B .2C .3D .4【答案】A【分析】将1111=()i j i j AB A A A B B B ++代入11i j A B A B ⋅,结合111j A B A A ⊥和111j A B B B ⊥({}2,3,4j ∈)化简即可得出集合中元素的个数.①当11i j A B A B ≠时 正方体12341234A A A A B B B B -∴111j A B A A ⊥ 故:1110j A B A A ⋅=({}2,3,4j ∈)∴111j A B B B ⊥ 故:1110j A B B B ⋅= ({}2,3,4j ∈)1111()i j i j A B A A A B B B =++∴ 11111111()i j i j A B A B A B A A A B B B ⋅=⋅++2111111111j j A B A A A B A B B B =⋅++⋅={}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.②11=i j A B A B 时.2111111111i j x A B A B A B A B A B =⋅=⋅==此时{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.综上所述, {}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.故选:A.【讲技巧】集合知识点交汇处,多涉及到集合与函数,集合与向量,集合与数列,集合与立体几何,集合与圆锥曲线等等相关知识的综合应用。

16年高考数学真题高考题(8套)

16年高考数学真题高考题(8套)

2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为错误!未找到引用源。

,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=错误!未找到引用源。

,c=2,cos A=错误!未找到引用源。

,则b等于( D )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。

,解得b=3(b=-错误!未找到引用源。

舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!未找到引用源。

,则该椭圆的离心率为( B )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

高考历史二轮专题复习 第1部分 步骤一 通史复习 第1讲 中国古代文明的奠基与初步发展:先秦、秦汉

高考历史二轮专题复习 第1部分 步骤一 通史复习 第1讲 中国古代文明的奠基与初步发展:先秦、秦汉

第一讲中国古代文明的奠基与初步发展:先秦、秦汉通史概览·一目了然——时序贯通构建时空观念【阶段特征】先秦是我国由原始社会进入文明社会的重要历史阶段,是国家产生和完善的重要时期,是中华民族形成和发展的重要时期,是中华文明的奠基时期。

秦汉是我国统一多民族国家的形成和初步发展时期。

【时空定位】【整体感知】1.政治上:从分封制、宗法制到专制主义中央集权制度的确立,中央对地方的控制逐渐加强,官僚政治逐渐取代贵族政治;权力高度集中的政治体制奠定了中国古代政治制度的基础。

2.经济上:经历了由原始农业到小农经济的演变,农耕经济是中国古代经济的主体。

小农经济形成并成为中国古代经济的基本形态;土地制度由井田制向土地私有制转化。

在农业发展的基础上,手工业、商业也得到了很大发展。

3.思想文化上:从“百家争鸣”到儒学独尊,儒学官方化得以确立,中国传统文化奠基和发展起来;文学体裁多样;实用科学兴起。

考点整合·一一突破——知识纵横把握通史体系[主干知识重构——理线索]整合一先秦时期(公元前221年以前)一、夏、商、西周时期1.政治(1)王位世袭制:第一个国家政权是夏朝;商朝是个弥漫着神权色彩的王朝。

(2)分封制与宗法制:(3)早期政治制度的特点:神权与王权相结合;以血缘关系为纽带;最高执政集团尚未实现权力的高度集中。

2.经济(1)农业:以石器为主。

出现青铜农具,但较少使用。

土地制度:井田制。

(2)手工业:完全官营;商周青铜铸造水平高超;商代出现原始瓷器。

(3)商业:商朝职业商人产生;周朝商业由官府统一管理。

3.文化(1)商朝甲骨文是比较成熟的文字,也有一些是刻在器物上的铭文。

(2)夏商产生了宫廷舞蹈,周朝制定出包括舞蹈在内的礼乐制度。

二、春秋战国时期1.政治动荡与变革:争霸与兼并战争,宗法制与分封制遭到破坏;秦灭六国。

2.经济(1)封建土地所有制形成,包括国家、地主和农民土地所有制等几种形式。

(2)以家庭为单位、“男耕女织”、自给自足的小农经济成为我国古代最基本的经济形态,直到鸦片战争后才逐步瓦解。

高三数学第二轮复习教案

高三数学第二轮复习教案

高三数学第二轮复习教案第5讲 解析几何问题的题型与方法(二)七、强化训练1、已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF 21tan 21=∠F PF ,则椭圆的离心率为 ( )(A )21 (B )32 (C )31 (D )352、已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线的方程为6x +10y -59=0,∠B 的平分线所在直线的方程为:x -4y +10=0,求边BC 所在直线的方程。

3、求直线l 2:7x -y +4=0到l 1:x +y -2=0的角平分线的方程。

4、已知三种食物P 、Q 、R 的维生素含量与成本如下表所示。

现在将xk g 的食物P 和yk g 的食物Q 及zk g 的食物R 混合,制成100k g 的混合物.如果这100k g 的混合物中至少含维生素A44 000单位与维生素B48 000单位,那么x ,y ,z 为何值时,混合物的成本最小?5、某人有楼房一幢,室内面积共180 m 2,拟分隔成两类房间作为旅游客房.大房间每间面积为18m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15 m 2,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?6、已知△ABC 三边所在直线方程AB :x -6=0,BC :x -2y -8=0,CA :x +2y =0,求此三角形外接圆的方程。

7、已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,求点A 的坐标。

8、已知椭圆12222=+by a x (a >b >0)上两点A 、B ,直线k x y l +=:上有两点C 、D ,且ABCD 是正方形。

高考数学大二轮复习刷题首选卷第二部分刷题型解答题(六)课件理

高考数学大二轮复习刷题首选卷第二部分刷题型解答题(六)课件理

-x0=4,
x0=-4,
∴p2-y0=0, 即y0=p2,
代入 x2=2py(p>0)中得 16=p2,解得 p=4.
∴抛物线 C 的方程为 x2=8y.
(2)由题意知直线 AB 的斜率存在,故设其方程为 y=kx+b.
由yx=2=k8xy+,b, 整理得 x2-8kx-8b=0,则
x1+x2=8k,x1x2=-8b, ∴y1+y2=k(x1+x2)+2b=8k2+2b, 设 AB 的中点为 Q,则点 Q 的坐标为(4k,4k2+b).
解 (1)∵C1 的极坐标方程是 ρ=4cosθ2+43sinθ, ∴4ρcosθ+3ρsinθ=24,整理得 4x+3y-24=0, ∴C1 的直角坐标方程为 4x+3y-24=0. 曲线 C2:xy= =csionsθθ,, ∴x2+y2=1, 故 C2 的普通方程为 x2+y2=1.
(2)将曲线 C2 经过伸缩变换yx′′==22y 2x, 后得到曲线 C3 的方程为x′8 2+
E(2a,1,0),A(0,2,0),所以B→1C1=(2a,0,-2),D→E=(2a,-1,-1).因为异
面直线 DE 与 B1C1 所成的角为 30°,
所以
cos〈D→E,B→1C1〉=
→→ DE·B1C1 →→
|DE||B1C1|
= 4a2+4a42·+24a2+2= 23,
解得 a=1,于是 C1(2,0,0). 设平面 AB1C1 的法向量为 n=(x,y,z), 因为A→C1=(2,-2,0),B→1C1=(2,0,-2),
(1)求抛物线 C 的方程; (2)直线 AB 与抛物线 C 交于不同两点 A(x1,y1),B(x2,y2),|x2-x1|=3, 直线 AB 与切线 l 平行,设切点为 N 点,试问△ABN 的面积是否是定值?若 是,求出这个定值;若不是,请说明理由.

2016年高考数学试卷附详细解析

2016年高考数学试卷附详细解析

2016年高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A . 1+B . 2+C . 1+2D . 28.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( )A . ||=1B . ⊥C . •=1D . (4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <010.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f (2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.解答:解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.32考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1D.(4+)⊥考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意,知道,,根据已知三角形为等边三角形解之.解答:解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0考点:函数的图象. 专题:函数的性质及应用. 分析:分别根据函数的定义域,函数零点以及f (0)的取值进行判断即可. 解答:解:函数在P 处无意义,即﹣c >0,则c <0, f (0)=,∴b >0,由f (x )=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a <0,综上a <0,b >0,c <0,故选:C点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f (0)的符号是解决本题的关键.10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f (2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)考点:三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析: 依题意可求ω=2,又当x=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=Asin (2x+),利用正弦函数的图象和性质及诱导公式即可比较大小. 解答:解:依题意得,函数f (x )的周期为π, ∵ω>0,∴ω==2.(3分)又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分)∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0f(0)=Asin=Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.点评:本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.解答:解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.考点:等比数列的性质;等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.解答:解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.点评:本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.解答:解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.解答:解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为=所以T n综上所述,可得对任意的n∈N+,均有点评:本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.考点:二面角的平面角及求法;直线与平面平行的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD 的一个法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵A1D⊥平面A1B1CD,∴=(0,1,1)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos(,)==,∴二面角E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.解答:解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.点评:本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx,t∈[﹣1,1],求得|f(t)﹣f0(t)|,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,讨论g(1),g(﹣1)取得最大值;(Ⅲ)由(Ⅱ)讨论ab≥0时,ab≤0时,D的取值,求得点(a,b)所在区域,求得s=b﹣的最大值.解答:解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)设t=sinx,t∈[﹣1,1],|f(t)﹣f0(t)|=|﹣t(a﹣a0)+(b﹣b0)|,易知t=±1时,取得最大值,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,而g(1)=|﹣(a﹣a0)+(b﹣b0)|,g(﹣1)=|(a﹣a0)+(b﹣b0)|,则当(a﹣a0)(b﹣b0)≥0时,D=g(t)max=g(﹣1)=|(a﹣a0)+(b﹣b0)|;当(a﹣a0)(b﹣b0)≤0时,D=g(t)max=g(1)=|﹣(a﹣a0)+(b﹣b0)|.(Ⅲ)由(Ⅱ)得ab≥0时,D=|a+b|,当ab≤0时,D=|a﹣b|.即有或,点(a,b)在如图所示的区域内,则有s=b﹣,当b取最大值1时,取最小值0时,s max=1.点评:本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2015年6月13日。

高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题

高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题

2016年高考数学(理科)模拟试卷(一)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .(0,1) C .(0,1] D .[0,1) 2.复数(3+2i)i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i 3.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .“∀x ∈R ,|x |+x 2<0” B .“∀x ∈R ,|x |+x 2≤0” C .“∃x 0∈R ,|x 0|+x 20<0” D .“∃x 0∈R ,|x 0|+x 20≥0”4.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是( ) A .f (x )=-x |x | B .f (x )=x +1xC .f (x )=tan xD .f (x )=ln x x5.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .76.曲线y =x 3-2x +4在点(1,3)处切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π27.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A.12B.45C .2D .9 8.某几何体的三视图如图M1­1,则它的体积为( )图M1­1A .72πB .48π C.30π D .24π9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象是( ) A .关于直线x =π8对称 B .关于点⎝ ⎛⎭⎪⎫π4,0对称C .关于直线x =π4对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称 10.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .211.在同一个平面直角坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0,且a ≠1,则下列所给图象中可能正确的是( )A BC D12.已知定义在区间⎣⎢⎡⎦⎥⎤0,3π2上的函数y =f (x )的图象关于直线x =3π4对称,当x ≥3π4时,f (x )=cos x .若关于x 的方程f (x )=a 有解,记所有解的和为S ,则S 不可能为( )A.54πB.32πC.94π D.3π 第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须做答.第22~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 15.如图M1­2,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,AP =3,则AP →·AC →=________.图M1­216.阅读如图M1­3所示的程序框图,运行相应的程序,输出S 的值为________.图M1­3三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c =2,cos C =34.(1)求sin A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.19.(本小题满分12分)如图M1­4,在四棱锥P ­ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D ­AE ­C 为60°,AP =1,AD =3,求三棱锥E ­ACD 的体积.图M1­420.(本小题满分12分)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,问:m 在什么X 围取值时,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值?(3)求证:ln22×ln33×ln44×…×ln n n <1n(n ≥2,n ∈N *).21.(本小题满分12分)已知直线l :y =kx +2(k 为常数)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆O :x 2+y 2=4截得的弦AB 的中点为M .(1)若|AB |=4 55,某某数k 的值;(2)如图M1­5,顶点为O ,对称轴为y 轴的抛物线E 过线段BF 的中点T ,且与椭圆C 在第一象限的交点为S ,抛物线E 在点S 处的切线m 被圆O 截得的弦PQ 的中点为N ,问:是否存在实数k ,使得O ,M ,N 三点共线?若存在,请求出k 的值;若不存在,请说明理由.图M1­5 图M1­6请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目上.如果多做,则按所做的第一个题目计分,做答量请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10)选修4­1:几何证明选讲如图M1­6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .23.(本小题满分10)选修4­4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.24.(本小题满分10)选修4­5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.2016年高考数学(理科)模拟试卷(一)1.D 解析:由M ={x |x ≥0,x ∈R }=[0,+∞),N ={x |x 2<1,x ∈R }=(-1,1),得M ∩N =[0,1).2.B 解析:(3+2i)i =3i +2i·i=-2+3i.故选B.3.C 解析:对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.故选C.4.A5.A 解析:∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5.又∵a 1a 2a 3=105,∴a 1a 3=21.由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10及{a n }递减可求得a 1=7,d =-2.∴a n=9-2n .由a n ≥0,得n ≤4.故选A.6.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.7.C 解析:∵f (0)=20+1=2,f [f (0)]=f (2)=4a ,∴22+2a =4a .∴a =2. 8.C 解析:几何体是由半球与圆锥叠加而成,它的体积为V =12×43π×33+13×π×32×52-32=30π.9.A 解析:依题意,得T =2πω=π,ω=2,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1≠0,f ⎝ ⎛⎭⎪⎫π4=sin ⎝⎛⎭⎪⎫2×π4+π4=sin 3π4=22≠0,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎪⎫π4,0和点⎝ ⎛⎭⎪⎫π8,0对称,也不关于直线x =π4对称.故选A.10.A 解析:如图D129,将点(5,3)代入z =y -2x ,得最小值为-7.图D12911.D 解析:正弦函数y =sin ax 的最小正周期为T =2πa.对于A ,T >2π,故a <1,而y =a x的图象是增函数,故A 错误; 对于B ,T <2π,故a >1,而函数y =a x是减函数,故B 错误; 对于C ,T =2π,故a =1,∴y =a x=1,故C 错误; 对于D ,T >2π,故a <1,∴y =a x是减函数.故选D.12.A 解析:作函数y =f (x )的草图(如图D130),对称轴为x =3π4,当直线y =a 与函数有两个交点(即方程有两个根)时,x 1+x 2=2×3π4=3π2;当直线y =a 与函数有三个交点(即方程有三个根)时,x 1+x 2+x 3=2×3π4+3π4=9π4;当直线y =a 与函数有四个交点(即方程有四个根)时,x 1+x 2+x 3+x 4=4×3π4=3π.故选A.图D13013.12 解析:从10件产品中任取4件,共有C 410种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有C 13C 37种,因此所求概率为C 13C 37C 410=12.14.10 解析:展开式的通项为T k +1=C k 5x5-k y k,则T 4=C 35x 2y 3=10x 2y 3,故答案为10.15.18 解析:设AC ∩BD =O ,则AC →=2(AB →+BO →),AP →·AC →=AP →·2(AB →+BO →)=2AP →·AB →+2AP →·BO →=2AP →·AB →=2AP →·(AP →+PB →)=2|AP →|2=18.16.-4 解析:由题意,得第一次循环:S =0+(-2)3=-8,n =2; 第二次循环:S =-8+(-2)2=-4,n =1,结束循环,输出S 的值为-4. 17.解:(1)∵cos C =34,∴sin C =74.∵asin A =c sin C ,∴1sin A =274,∴sin A =148. (2)∵c 2=a 2+b 2-2ab cos C ,∴2=1+b 2-32b ,∴2b 2-3b -2=0.∴b =2.∴S △ABC =12ab sin C =12×1×2×74=74.18.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设可获利润为X 万元,则X 的可能取值为0,100,120,220. 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=25.故所求的分布列为:数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.19.(1)证明:如图D131,连接BD 交AC 于点O ,连接EO .因为底面ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)解:因为PA ⊥平面ABCD ,平面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图D131,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.图D131设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0.可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设易知,|cos 〈n 1,n 2〉|=12,即33+4m 2=12.解得m =32(m =-32,舍去). 因为E 为PD 的中点,所以三棱锥E ­ACD 的高为12.故三棱锥E ­ACD 的体积V =13×12×3×32×12=38.20.解:f ′(x )=ax-a (x >0). (1)当a =1时,f ′(x )=1x -1=1-xx,令f ′(x )>0时,解得0<x <1,∴f (x )在(0,1)上单调递增; 令f ′(x )<0时,解得x >1,∴f (x )在(1,+∞)上单调递减. (2)∵函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°, ∴f ′(2)=a2-a =1.∴a =-2,f ′(x )=-2x+2.∴g (x )=x 3+x 2⎝ ⎛⎭⎪⎫m 2+2-2x =x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,g ′(x )=3x 2+(4+m )x -2.∵对任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值,且g ′(0)=-2,∴只需⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题知,对任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0.解得-373<m <-9.(3)证明:令a =-1,f (x )=-ln x +x -3,∴f (1)=-2. 由(1)知,f (x )=-ln x +x -3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时,f (x )>f (1),即-ln x +x -1>0. ∴ln x <x -1对一切x ∈(1,+∞)成立. ∵n ≥2,n ∈N *,则有0<ln n <n -1.∴0<ln n n <n -1n .∴ln22×ln33×ln44×…×ln n n <12×23×34×…×n -1n =1n (n ≥2,n ∈N *).21.解:(1)圆O 的圆心为O (0,0),半径为r =2. ∵OM ⊥AB ,|AB |=4 55,∴|OM |=r 2-⎝ ⎛⎭⎪⎫|AB |22=4 55. ∴2k 2+1=4 55.∴k 2=14.图D132又k =k FB >0,∴k =12. (2)如图D132,∵F ⎝ ⎛⎭⎪⎫-2k ,0,B (0,2),T 为BF 中点, ∴T ⎝ ⎛⎭⎪⎫-1k ,1. 设抛物线E 的方程为y =tx 2(t >0),∵抛物线E 过点T ,∴1=t ·1k2,即t =k 2. ∴抛物线E 的方程为y =k 2x 2.∴y ′=2k 2x .设S (x 0,y 0),则k m =y ′0|x x ==2k 2x 0.假设O ,M ,N 三点共线,∵OM ⊥l ,ON ⊥m ,∴l ∥m .又k l =k >0,∴k l =k m .∴k =2k 2x 0.∴x 0=12k ,y 0=k 2x 20=k 2·14k 2=14. ∵S 在椭圆C 上,∴x 20a 2+y 20b2=1. 结合b =2,c =2k ,a 2=b 2+c 2=4+4k2. 得14k 24+4k2+1164=1.∴k 2=-5963. ∴k 无实数解,矛盾.∴假设不成立.故不存在实数k ,使得O ,M ,N 三点共线.22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .又AF ⊥EP ,所以∠PFA =90°,所以∠BDA =90°,故AB 为圆的直径.图D133(2)如图D133,连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为圆的直径,又由(1)知AB 为圆的直径,所以ED =AB .23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|, 则|PA |=d sin30°=2 55|5sin(θ+α)-6|, 其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|PA |取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA |取得最小值,最小值为2 55. 24.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.。

2023高考数学二轮专题复习与测试第一部分专题五微专题1直线与圆课件

2023高考数学二轮专题复习与测试第一部分专题五微专题1直线与圆课件
(a-3)2+(1-2a-0)2= (a-0)2+(1-2a-1)2, 求得 a=1,可得半径为 5,圆心 M(1,-1), 故⊙M 的方程为(x-1)2+(y+1)2=5. 答案:(x-1)2+(y+1)2=5
专题五 解析几何
2.(2022·全国乙卷)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一 个圆的方程为________. 解析:设过点(0,0),(4,0),(-1,1)的圆的方程为 x2+y2+Dx+Ey+F=0,
专题五 解析几何
过点(4,0),(-1,1),(4,2)圆的方程为 x2+y2-156x-2y-156=0. 故答案为 x2+y2-4x-6y=0(或 x2+y2-4x-2y=0 或 x2+y2-83x-134y=0 或 x2+y2-156x-2y-156=0). 答案:x2+y2-4x-6y=0(或 x2+y2-4x-2y=0 或 x2+y2-83x-134y=0 或 x2+y2-156x-2y-156=0).
专题五 解析几何
3.(2022·新高考卷Ⅱ)设点 A(-2,3),B(0,a),若直线 AB 关于 y=a 对
称的直线与圆(x+3)2+(y+2)2=1 有公共点,则 a 的取值范围是 _______.
解析:点 A(-2,3),B(0,a),kAB=a-2 3,所以直以对称直线方程为
F=0, 即16+4D+F=0, 解得 F=0,D=-4,E=-6,
2-D+E+F=0, 所以过点(0,0),(4,0),(-1,1)圆的方程为 x2+y2-4x-6y=0. 同理可得,过点(0,0),(4,0),(4,2)圆的方程为 x2+y2-4x-2y=0. 过点(0,0),(-1,1),(4,2)圆的方程为 x2+y2-83x-134y=0.

2016年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2016年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( )A .3(3,)2--B .3(3,)2- C .3(1,)2 D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y += ( )A .1BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( )A .13B .12C .23D .345.已知方程222213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(1,3)- B.(- C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------ABC D 8. 若0a b >>,01c <<,则( )A .c ca b <B .c cab ba >C .alog log b a c b c <D .log log a b c c <9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点,已知||AB =,||DE =C 的焦点到准线的距离为( ) A .2 B .4 C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.2C.D .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = .14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC △的面积为,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲ABCDE已知函数()|1||23| f x x x=+--.(Ⅰ)在图中画出()y f x=的图象;(Ⅱ)求不等式|()|1f x>的解集.2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】{}{}2A x x4x30x1x3=-+<=<<,{}3B x2x30x x2⎧⎫=->=>⎨⎬⎩⎭,故3A B x x32⎧⎫=<<⎨⎬⎩⎭.【提示】解不等式求出集合A,B,结合交集的定义,可得答案.【考点】交集及其运算2.【答案】B【解析】(1i)x1yi+=+,x xi1yi∴+=+,即x1x y=⎧⎨=⎩,解得x1y1=⎧⎨=⎩,即x y i12+=+【提示】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【考点】复数求模3.【答案】C【解析】等差数列{an}前9项的和为27,195959(a a)92aS9a22+⨯===,59a27∴=,5a3=,又10a8=,d1∴=,10010a a90d98∴=+=.【提示】根据已知可得5a3=,进而求出公差,可得答案.【考点】等差数列的性质4.【答案】B【解析】设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故201P402==.【提示】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【考点】几何概型5.【答案】A 【解析】双曲线两焦点间的距离为4,c 2∴=,当焦点在x 轴上时,可得224(m n)(3m n)=++-,解得2m 1=,方程2222x y 1m n 3m n-=+-表示双曲线,22(m n)(3m n)0∴+->,可得(n 1)(3n)0+->,解得1n 3-<<,即n 的取值范围是(1,3)-,当焦点在y 轴上时,可得224(m n)(3m n)-=++-,解得2m 1=-,无解.【提示】由已知可得c 2=,利用224(m n)(3m n)=++-,解得2m 1=,又22(m n)(3m n)0+->,从而可求n 的取值范围.【考点】双曲线的标准方程 6.【答案】A【解析】由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图:可得37428ππR 833⨯=,R 2=,它的表面积是22714π2+3π2=17π84⨯⨯⨯⨯. 【提示】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【考点】由三视图求面积、体积 7.【答案】D【解析】2x ||f (x)y 2x e ==-,2x 2x ||||f (x)2(x)e 2x e -∴-=--=-,故函数为偶函数,当x 2=±时,2y 8e (0,1)=-∈,故排除A ,B ;当x []0,2∈时,2xf (x)y 2x e ==-,x f (x)4x e 0∴'=-=有解,故函数2x ||y 2x e =-在[0,2]不是单调的,故排除C .【提示】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答. 【考点】函数的图象8.【答案】C【解析】a b 1>>,0c 1<<,∴函数cy x =在(0,)+∞上为增函数,故c c a b >,故A错误;函数c 1y x-=在(1,)+∞上为减函数,故c 1c 1a b --<,故c c ba ab <,故B 错误;a log c 0<,且b logc 0<,a log b 1<,即c a a b log b log c1log a log c<=,即a b log c log c >,故D 错误;a b 0log c log c <-<-,故a b blog c alog c -<-,即a b blog c alog c >,即b a alogc blog c <,故C 正确.【提示】根据已知中a b 1>≥,0c 1<<,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【考点】不等式比较大小,对数值大小的比较 9.【答案】C【解析】输入x 0=,y 1=,n 1=,则x 0=,y 1=,不满足22x y 36+≥,故n 2=,则1x 2=,y 2=,不满足22x y 36+≥,故n 3=,则3x 2=,y 6=,满足22x y 36+≥,故y 4x =.【提示】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x ,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【考点】程序框图 10.【答案】B【解析】设抛物线为2y 2px =,如图:AB =,AM =,DE =,DN =pON 2=,A x 4p ==,OD OA =,2216p 85p 4+=+,解得p 4=,C 的焦点到准线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质 11.【答案】A【解析】如图,α∥平面11CB D ,α平面ABCD m =,α平面11ABA B n =,可知:1n CD ∥,11m B D ∥,11CB D △是正三角形,m 、n 所成角就是11CD B 60∠=,则m 、n.【提示】画出图形,判断出m 、n 所成角,求解即可. 【考点】异面直线及其所成的角 12.【答案】B【解析】πx 4=-为f (x)的零点,πx 4=为y f (x)=图象的对称轴,2n 1πT 42+∴=,即2n 12ππ(n )N 42+=∈ω,即2n 1)N (n ω=+∈,即ω为正奇数,f (x)在π5π,1836⎛⎫⎪⎝⎭上单调,则5πππT 3618122∴-=≤,即2ππT 6=≥ω,解得12ω≤,当11ω=时,11πk π4-+ϕ=,k ∈Z ,π2ϕ≤,π4∴ϕ=-,此时f (x)在π5π,1836⎛⎫ ⎪⎝⎭不单调,不满足题意;当9ω=时,9πk π4-+ϕ=,k ∈Z ,π2ϕ≤,π4∴ϕ=,此时f (x)在π5π,1836⎛⎫⎪⎝⎭单调,满足题意;故ω的最大值为9. 【提示】根据已知可得ω为正奇数,且12ω≤,结合πx 4=-为f (x)的零点,πx 4=为y f (x)=图象的对称轴,求出满足条件的解析式,并结合f (x)在π5π,1836⎛⎫⎪⎝⎭上单调,可得ω的最大值. 【考点】正弦函数的对称性第Ⅱ卷二、填空题13.【答案】2-【解析】222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,m 20+=,解得m 2=-.【提示】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【考点】平面向量数量积的运算 14.【答案】10 【解析】5(2x )的展开式中,通项公式为r25r 5r r r 5r r 155T C (2x)C 2x ---+==,令r 532-=,解得r 4=,3x ∴的系数452C 10=. 【提示】利用二项展开式的通项公式求出第r 1+项,令x 的指数为3,求出r ,即可求出展开式中3x 的系数. 【考点】二项式定理的应用 15.【答案】64【解析】等比数列n {a }满足13a a 10+=,24a a 5+=,可得13q(a a )5+=,解得1q 2=,211a q a 10+=,解得1a 8=,则22n 1n n 23n 1n 17n n 32n n ()2211n(n 1)222a a a q 82a ++++----⎛⎫== ⎪⎝⎭==……,当n 3=或4时,表达式取得最大值12622264==.【提示】求出数列的等比与首项,化简12n a a a …,然后求解最值. 【考点】数列与函数的综合,等比数列的性质 16.【答案】216000元【解析】设A ,B 两种产品分别是x 件和y 件,获利为z 元,由题意得x N,y N1.5x 0.5y 150x 0.3y 905x 3y 600∈∈⎧⎪+≤⎪⎨+≤⎪⎪+≤⎩,z 2100x 900y =+,不等式组表示的可行域如图,由题意可得x 0.3y 905x 3y 600+=⎧⎨+=⎩,解得x 60y 100=⎧⎨=⎩,A(600,100),目标函数z 2100x 900y =+经过A 时,直线的截距最大,目标函数取得最大值210060900100216000⨯+⨯=元.【提示】设A ,B 两种产品分别是x 件和y 件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用 三、解答题17.【答案】(Ⅰ)在ABC △中,0C π<<,sinC 0∴≠,已知等式利用正弦定理化简得2cosC(sin AcosB sin BcosA)sinC +=,整理得2cosCsin(A B)sinC +=,即[]2c o s C s i n π(A B )s i n C -+=,2cosCsinC sinC =, 1cosC 2∴=,πC 3∴=;(Ⅱ)由余弦定理得2217a b 2ab2=+-,2(a b)3ab 7∴+-=,,ab 6∴=,2(a b)187∴+-=,a b 5∴+=,ABC ∴△的周长为5【提示】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC 不为0求出cosC 的值,即可确定出出C 的度数; (Ⅱ)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a b +的值,即可求ABC △的周长. 【考点】解三角形18.【答案】(Ⅰ)ABEF 为正方形,AF EF ∴⊥,AFD 90∠=,AF DF ∴⊥,DF EF F =,AF ∴⊥平面EFDC , AF ⊂平面ABEF ,∴平面ABEF ⊥平面EFDC ;(Ⅱ)由A F D F ⊥,AF EF ⊥,可得DFE ∠为二面角D AF E --的平面角,由ABEF 为正方形,AF ⊥平面EFDC , BE EF ⊥,BE ∴⊥平面EFDC ,即有CE BE ⊥,可得CEF ∠为二面角C BE F --的平面角,可得DFE CEF 60∠=∠=.A B EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC , AB ∴∥平面EFDC ,平面EFDC平面ABCD CD =,AB ⊂平面ABCD ,AB CD ∴∥, CD EF ∴∥,∴四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,设FD a =,则E(0,0,0),B(0,2a,0),a C 2⎛⎫⎪ ⎪⎝⎭,A(2a,2a,0),EB (0,2a,0)∴=,a BC ,2⎛⎫=- ⎪ ⎪⎝⎭,AB (2a,0,0)=-, 设平面BEC 的法向量为111m (x ,y ,z )=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则11112ay 0a x 2ay 022=⎧⎪⎨-+=⎪⎩,取m (3,0,1)=-,设平面ABC 的法向量为222n (x ,y ,z )=,则n BC=0n A B 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=,设二面角E-BC-A 的大小为θ,则m n cos |m ||n|31316θ===++,则二面角E-BC-A 的余弦值为.【提示】(Ⅰ)证明AF ⊥平面EFDC ,利用平面与平面垂直的判定定理证明平面ABEF ⊥平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,求出平面BEC 、平面ABC 的法向量,代入向量夹角公式可得二面角E BC A --的余弦值.【考点】与二面角有关的立体几何19.【答案】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,2201P(X 16)10025⎛⎫=== ⎪⎝⎭, 20404P(X 17)210010025==⨯⨯=,22P 40206(X 18)210010025⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭, 24020206P(X 19)2210010010025⎛⎫==⨯⨯+⨯= ⎪⎝⎭, 220402051P(X 20)2100100100255⎛⎫==+⨯⨯== ⎪⎝⎭, 2202P(X 21)210025⎛⎫==⨯= ⎪⎝⎭, 2201P(X 22)10025⎛⎫===⎪⎝⎭, X ∴(Ⅱ)由(Ⅰ)知:4611P(X 18)P(X 16)P(X 17)P(X 18)25252525≤==+=+==++=, 146617P(X 19)P(X 16)P(X 17)P X 18P(X 19)2525252525≤==+=+=+==+++=(), P(x n)0.5∴≤≥中,n 的最小值为19;(Ⅲ)解法一:由(Ⅰ)得146617P(X 19)P(X 16)P(X 17)P X 18P(X 19)2525252525≤==+=+=+==+++=(), 买19个所需费用期望:117521EX 20019(20019500)(200195002)(200195003)404025252525=⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯⨯=,买20个所需费用期望:22221EX 20020(20020500)(200205002)4080252525=⨯⨯+⨯+⨯+⨯+⨯⨯=,12EX EX <,∴买19个更合适;解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n 19=时,费用的期望为:192005000.210000.0815000.044040⨯+⨯+⨯+⨯=,当n 20=时,费用的期望为:202005000.0810000.044080⨯+⨯+⨯=,∴买19个更合适.【提示】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X 的分布列; (Ⅱ)由X 的分布列求出11P(X 18)25≤=,17P(X 19)25≤=,由此能确定满足P(x n)0.5≤≥中n 的最小值;(Ⅲ)方法一:由X 的分布列得17P(X 19)25≤=,求出买19个所需费用期望1EX 和买20个所需费用期望2EX ,由此能求出买19个更合适;方法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n 19=时,费用的期望和当n 20=时,费用的期望,从而得到买19个更合适. 【考点】离散型随机变量及其分布列20.【答案】(Ⅰ)圆22x y 2x 150++-=即为22(x 1)y 16++=,可得圆心A(1,0)-,半径r 4=,由BEAC ∥,可得C EBD ∠=∠,由AC AD =,可得D C ∠=∠,即为D EBD ∠=∠,即有EB ED =,则EA EB EA ED AD 4+=+==,故E 的轨迹为以A ,B 为焦点的椭圆,且有2a 4=,即a 2=,c 1=,b =点E 的轨迹方程为22x y 143+=,(y 0)≠,(Ⅱ)椭圆221x y C :143+=,设直线l :x my 1=+,由PQ ⊥l ,设PQ:y m(x 1)=--,由22x my 1x y 143=+⎧⎪⎨+=⎪⎩可得22(3m 4)y 6my 90++-=,设11M(x ,y ),22N(x ,y ),可得1226m y y 3m 4+=-+,1229y y=-, 则2M N212(m 1)|MN |y y |3m 4+=-==+,A 到PQ 的距离为d == 则四边形MPNQ 面积为2222221143m 41m 1mS |PQ ||MN |1224223m 41m3m 4+++====+++当m 0=时,S 取得最小值12,又2101m >+,可得3S 2483<= 即有四边形MPNQ 面积的取值范围是⎡⎣.【提示】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB ED =,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my 1=+,代入椭圆方程,运x 10-<用韦达定理和弦长公式,可得|MN |,由PQ ⊥l ,设PQ:y m(x 1)=--,求得A 到PQ 的距离,再由圆的弦长公式可得|PQ |,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【考点】直线与椭圆的位置关系,圆的一般方程 21.【答案】(Ⅰ)函数x 2f (x)(x 2)e a(x 1)=-+-,x x f (x)(x 1)e 2a(x 1)(x 1)(e 2a)∴'=-+-=-+,①若a 0=,那么xf (x)0(x 2)e 0x 2=⇔-=⇔=,函数f (x)只有唯一的零点2,不合题意;②若a 0>,那么x e 2a 0+>恒成立,当x 1<时,f (x)0'<,此时函数为减函数; 当x 1>时,f (x)0'>,此时函数为增函数;此时当x 1=时,函数f (x)取极小值e -,由f (2)a 0=>,可得:函数f (x)在x 1>存在一个零点; 当x 1<时,x e e <,x 210-<-<,x 222f (x)(x 2)e a(x 1)(x 2)e a(x 1)a(x 1)e(x 1)e∴=-+->-+-=-+--,令2a (x 1)e (x 1)e 0-+--=的两根为1t ,2t ,且12t t <,则当1x t <,2x t >时,2f (x )a (x 1)e(x 1)e 0>-+-->,故函数f (x)在x 1<存在一个零点; 即函数f (x)在R 是存在两个零点,满足题意;③若ea 02-<<,则ln (2a )l n e 1-<=,当x l n (2a )<-时,x 1ln(2a)1lne 10-<--<-=,x ln(2a)e 2a e 2a 0-+<+=,即xf '(x)(x 1)(e 2a)0=-+>恒成立,故f (x)单调递增,当ln(2a)x 1-<<时,,x ln(2a)e 2a e 2a 0-+>+=,即xf '(x)(x 1)(e 2a)0=-+<恒成立,故f (x)单调递减,当x 1>时,x 10->,x ln(2a)e 2a e 2a 0-+>+=,即xf '(x )(x1)(e 2a )0=-+>恒成立,故f (x)单调递增,故当x ln(2a)=-时,函数取极大值,由[][][][]{}22f ln(2a)2a ln(2a)2a ln(2a)1a ln(2a)210-=---+--=--+<得:函数f (x)在R 上至多存在一个零点,不合题意; ④若ea 2=-,则l n (2a)1-=,当x 1l n (2a)<=-时,x 10-<,x ln(2a)e2a e 2a 0-+<+=,即xf (x)(x 1)(e 2a)0'=-+>恒成立,故f (x)单调递增,当x 1>时,x 10->,x ln(2a)e 2a e 2a 0-+>+=,即x f (x)(x 1)(e 2a)0'=-+>恒成立,故f (x)单调递增,故函数f (x)在R 上单调递增,函数f (x)在R 上至多存在一个零点,不合题意;⑤若ea 2<-,则ln(2a)lne 1->=,当x 1<时,x 10-<,x ln(2a)e 2a e 2a 0-+<+=,即xf (x)(x 1)(e 2a)0'=-+>恒成立,故f (x)单调递增,当1x ln(2a)<<-时,x 10->,x ln(2a)e 2a e 2a 0-+<+=,即xf (x)(x 1)(e 2a)0'=-+<恒成立,故f (x)单调递减,当x ln(2a)>-时,x 10->,x ln(2a)e 2a e 2a 0-+>+=,即xf (x)(x 1)(e 2a)0'=-+>恒成立, 故f (x)单调递增,故当x 1=时,函数取极大值,由f (1)e 0=-<得:函数f (x)在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为(0,)+∞; (Ⅱ)1x ,2x 是f (x)的两个零点,12f (x )f (x )0∴==,且1x 1≠,2x 1≠,12x x 122212(x 2)e (x 2)e a (x 1)(x 1)--∴-==--,令x2(x 2)eg (x )(x 1)-=-,则12g(x )g(x )a ==-,2x3[(x 2)1]eg (x)(x 1)-+'=-,∴当x 1<时,g (x)0'<,g(x)单调递减;当x 1>时,g (x)0'>,g(x)单调递增;设,则1m 1m 1m 2m 222m 1m 1m 1m 1g (1m )g (1m )e e e e 1m mm m 1+-----+-⎛⎫+--=-=+ ⎪+⎝⎭,设2mm 1h(m)e 1m 1-=++,m 0>,则22m 22m h '(m)e 0(m 1)=>+恒成立,即h(m)在(0,)+∞上为增函数,h(m)h(0)0>=恒成立, 即g(1m)g(1m)+>-恒成立,令1m 1x 0=->,则1111212g(11x )g(11x )g(2x )g(x )g(x )2x x +->+-⇔->=⇔->,即12x x 2+<. 【提示】(Ⅰ)由函数x 2f (x)(x 2)e a(x 1)=-+-可得xxf (x)(x 1)e 2a(x 1)(x 1)(e 2a)'=-+-=-+,对a 进行分类讨论,综合讨论结果,可得答案;(Ⅱ)设1x ,2x 是f (x)的两个零点,则12x x 122212(x 2)e (x 2)e a (x 1)(x 1)---==--,令x2(x 2)e g (x )(x 1)-=-, 则12g(x )g(x )a==-,分析g(x)的单调性,令m 0>,则1m 2m2m 1m 1g (1m )g (1m )ee 1m m 1-+-⎛⎫+--=+ ⎪+⎝⎭, 设2mm 1h(m)e 1m 1-=++,m 0>,利用导数法可得h(m)h(0)0>=恒成立,即g(1m)g(1m)+>-恒成立,令1m 1x 0=->,可得结论.【考点】利用导数研究函数的极值,函数的零点22.【答案】(Ⅰ)设K 为AB 中点,连结OK ,OA OB =,AOB 120∠=,OK AB ∴⊥,A 30∠=,1OK OAsin30OA 2==,∴直线AB 与O 相切;(Ⅱ)因为OA 2OD =,所以O 不是A ,B ,C ,D 四点所在圆的圆心,设T 是A ,B ,C ,D 四点所在圆的圆心,OA OB =,TA TB =,OT ∴为AB 的中垂线,同理,OC OD =,TC TD =,OT ∴为CD 的中垂线,AB CD ∴∥.【提示】(Ⅰ)设K 为AB 中点,连结OK ,根据等腰三角形AOB 的性质知OK AB ⊥,A 30∠=,1OK OAsin30OA 2==,则AB 是圆O 的切线;m 0>(Ⅱ)设圆心为T ,证明OT 为AB 的中垂线,OT 为CD 的中垂线,即可证明结论. 【考点】圆的切线的判定定理的证明23.【答案】(Ⅰ)由x a cos t y 1a sin t =⎧⎨=+⎩,得x aco st y 1as i n t =⎧⎨-=⎩,两式平方相加得,22x (y 1)a +-=,1C ∴为以(0,1)为圆心,以a 为半径的圆,化为一般式222x y 2y 1a 0+-+-=①,由222x y +=ρ,y sin =ρθ, 得222sin 1a 0ρ-ρθ+-=;(Ⅱ)2C 4cos ρ=θ:,两边同时乘ρ得24cos ρ=ρθ,22x y 4x ∴+=②, 即22(x 2)y 4-+=,由30C θ=α:,其中0α满足0tan 2α=,得y 2x =,曲线1C 与2C 的公共点都在3C 上,y 2x ∴=为圆1C 与2C 的公共弦所在直线方程,数学试卷 第21页(共56页) 数学试卷 第22页(共56页)①-②得:24x 2y 1a 0-+-=,即为3C ,21a 0∴-=,a 1(a 0)∴=>.【提示】(Ⅰ)把曲线1C 的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线1C 是圆,化为一般式,结合222x y +=ρ,y sin =ρθ化为极坐标方程;(Ⅱ)化曲线2C 、3C 的极坐标方程为直角坐标方程,由条件可知y 2x =为圆C 1与C 2的公共弦所在直线方程,把1C 与2C 的方程作差,结合公共弦所在直线方程为y 2x =可得21a 0-=,则a 值可求.【考点】简单曲线的极坐标方程,参数方程的概念24.【答案】(Ⅰ)x 4x 13f (x)3x 21x 234x x 2⎧⎪-≤-⎪⎪=--<<⎨⎪⎪-≥⎪⎩,,,,由分段函数的图象画法,可得f (x)的图象,如图:(Ⅱ)由f (x)1>,可得,当x 1≤-时,x 41->,解得x 5>或x 3<,即有x 1≤-;当31x 2-<<时,3x 21->,解得x 1>或1x 3<,即有11x 3-<<或31x 2<<;当3x 2≥时,4x 1->,解得x 5>或x 3<,即有3x 32≤<或x 5>.综上可得,1x 3<或1x 3<<或x 5>.则f (x)1>的解集为1,(1,3)(5,)3⎛⎫-∞+∞ ⎪⎝⎭【提示】(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x 1≤-时,当31x 2-<<时,当3x 2≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集. 【考点】带绝对值的函数,函数图象的作法绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)iz m m=++-在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(3,1)-B.(1,3)-C.(1,)+∞D.(,3)∞--2.已知集合{1,2,3}A=,则{|(1)(2)0,}=+-<∈B x x x x Z,则A B =( )A.{1}B.{1,2}C.{0,1,2,3}D.{1,0,1,2,3}-3.已知向量a(1,)m=,b(3,2)-=,且(a+b)⊥b,则m=( )A.—8B.—6C.6D.84.圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a= ( )A.43-B.34-CD.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效数学试卷第23页(共56页)数学试卷第24页(共56页)数学试卷 第25页(共56页) 数学试卷 第26页(共56页)7.若将函数2sin 2y x =的图象向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的=s( )A .7B .12C .17D .34 9.若3cos()45πα-=,则sin2α=( ) A .725B .15C .15-D .725-10.从区间[]0,1随机抽取2n 个数1x ,2x,…,n x ,1y ,2y ,…,n y ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n mB .2n mC .4m nD .2m n11.已知1F ,2F 是双曲线E:22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) A.B .32C .3D .212.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图象的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( ) A .0B .mC .2mD .4m第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .14.α,β是两个平面,,m n 是两条直线,有下列四个命题: ①如果m n ⊥,m α⊥,n β∥那么αβ⊥;②如果m α⊥,n α∥,那么m n ⊥; ③如果αβ∥,m α⊂,那么m β∥;④如果mn ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 (填写所有正确命题的编号).15.有三张卡片,分别写有1和2,1和3,2和3,甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .16.若直线y k x b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且1=1a ,728S=.记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求1b ,11b ,101b;数学试卷 第27页(共56页) 数学试卷 第28页(共56页)(Ⅱ)求数列{}n b 的前1 000项和.18.(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BC 交于点O ,5=AB ,6=AC ,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△'D EF 的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.20.(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4=t ,||||=AM AN 时,求AMN △的面积;(Ⅱ)当2||=||AM AN 时,求k 的取值范围.21.(本小题满分12分)(Ⅰ)讨论函数2()2-=+xx f x x e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2=(0)()-->x e ax ag x x x 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F .(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin ,,αα=⎧⎨=⎩x t y t (t 为参数),l 与C 交于A ,B 两点,||AB =求l 的斜率.数学试卷 第29页(共56页) 数学试卷 第30页(共56页)24.(本小题满分10分)选修4—5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【解析】集合A B {0,1,2,3}=A B 的值.a (4,m ,b(3,2)-,ab (4,m ∴+=-(a b)b +⊥,,解得m 【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得【考点】平面向量的基本定理及其意义【解析】输入的:πcos4⎛-⎝πcos4⎛-⎝9712525-=.22π1n1,π∴=c a b=+,可得2e e20--=,e1>,解得e2=.1数学试卷第31页(共56页)数学试卷第32页(共56页)数学试卷第33页(共56页)数学试卷第34页(共56页)数学试卷 第35页(共56页) 数学试卷 第36页(共56页)(Ⅰ)某保险的基本保费为(Ⅰ)ABCD 是菱形,ABCD 是菱形,得AC 6=,AO ∴=AEOD 1AO=,则DH D =2OD OH '=OH EF H =,建立如图所示空间直角坐标系,AB 5=,6,B(5,0,0)∴,AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=的一个法向量为n (x,y,z)=,由11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z +=++1n (3,4,5)∴=-同理可求得平面AD C '的一个法向量2n (3,0=,,设二面角B-D '122n n 9255210n n +==,∴二面角数学试卷 第37页(共56页) 数学试卷 第38页(共56页)(Ⅱ)以H 为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC 的坐标,的一个法向量n 、n ,求.221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM 22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥226t 3tk +,26t t 3k k+,AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,当2)(2,)-+∞2)和(2,-+∞x2e f (0)=2>数学试卷 第39页(共56页) 数学试卷 第40页(共56页)x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t2e a 2=-,t2e 02≤恒成立,可得2t 2-<≤,由时,g (x)0'<g (x)0'>tt 2e e 2t 2=+,,e k (t )'=Rt DFC Rt EDC ∴△∽△,DF CFED CD∴=, DE DG =,CD BC =, DF CFDG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=, GFB GCB 180∴∠+∠=, B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,AB 1=,1DG CG DE 2∴===,∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△,BCGBCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=; (Ⅱ)在Rt DFC △中,1G F C D G C 2==,因此可得B C G B F G △≌△,则S 2S =,据此解答. )圆22x ρ=+(Ⅱ)直线l xx α, l ,半径r =数学试卷 第41页(共56页) 数学试卷 第42页(共56页)24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-,11x 2∴-<<-,当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立,11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<,1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即222a b 1a b +>+,即222a b 2a b 1a 2a b b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+. 【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法数学试卷 第43页(共56页) 数学试卷 第44页(共56页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0T x x =>,则ST =( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =-( )A. 1B. 1-C. iD. i -3.已知向量1331()()22BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个 5. 若3tan 4α=,则2cos 2sin 2αα+=( )A.6425B. 4825C. 1D. 16256. 已知432a =,254b =,1325c =,则( ) A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效---。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“2×3×5×9×17”的值,则判断框内可以填入(
)
A.k≤10
C.k≤22 [易错分析 ] 致错误. [ 解答 ]
B.k≤16
D.k≤34 解答本题常因没有弄明白 k= 2k -1 的含义导
程序运行过程依次为:开始 → S = 1 , k = 2→S =
1×2 = 2 , k = 2×2 - 1 = 3→S = 2×3 , k = 2×3 - 1 = 5→S =
(理)(2015·陕西理,8)根据下边框图,当输入x为2 006时, 输出的y=( )
A.2
B.4
C.10
[立意与点拨 ]
D.28
考查循环结构程序框图;解答本题关键抓
住在什么情况下执行语句y=3-x+1.
[答案] C
体:第一次循环, x =2
006-2×1=2 004>0,继续循环;第二次循环,x=2 004-2 =2 006-2×2=2 002>0,继续循环;„„;第1 003次循环, x=2-2=2 006-2×1 003=0,继续循环;第1 004次循环,x
2×3×5 , k = 2×5 - 1 = 9→S = 2×3×5×9 , k = 2×9 - 1 = 17→S=2×3×5×9×17,k=2×17-1=33.此时不满足条件输
出S的值后结束,故选C.
[ 警示 ]
解答循环结构框图问题,要注意: ( 一 ) 弄清循环
控制变量(如计数变量)初值、步长、终值(或变化特征).(二)语
数和复数及其代数运算的几何意义,与其他知识较少结合,应
注意和三角函数结合的练习.
考题引路
考例 1
2i (2015· 安徽理,1)设 i 是虚数单位,则复数 在 1-i ) B.第二象限 D.第四象限
复平面内所对应的点位于( A.第一象限 C.第三象限
[立意与点拨]
考查1.复数的运算;2.复数的几何意义.解
=0-2=2 006-2×1 004=-2<0,跳出循环,则y=32+1=
10.故本题正确答案为C. [点评] 注意观察可以发现,x 初值2 006 ,每循环一次减 少2,x=0时执行最后一次循环变为x=-2,此时y=3-(-2)+1 =10,要多进行这种思维训练.
易错防范
案例1 循环结束条件判断不准致误 (2014· 北京西城区模拟 ) 如图所示的程序框图表示求算式
走向高考 ·数学
高考二轮总复习
路漫漫其修远兮 吾将上下而求索
第一部分
微专题强化练
第一部分 一 18 考点强化练 算法框图与复数
1
考 向 分 析
3
强 化 训 练
2
考 题 引 路
4
易 错 防 范
考向分析
1 .以客观题形式考查算法的基本逻辑结构,会与函数、
数列、不等式、统计、概率等知识结合命题. 2 .以客观题形式考查复数的运算、复数的相等、共轭复
答本题先按复数运算法则化为代数形式,再依据复数的几何意
义确定选项.
[答案] B
2i1+i -2+2i 2i [解析] 由题意 = = 2 =-1+i, 其对 1-i 1-i1+i 应点的坐标为(-1,1),位于第二象限,故选 B.
考例2 ( ) A.3
(文)(2015· 北京文, 5) 执行
句的先后顺序.(三)输出什么?何时输出?(四)填条件时要抓住 循环多少次,最后一次循环的情况(如加上了什么?或乘了什么
等等 ) ,避免对表达式特征识读不清致误和循环次数不明确致
误.
如图所示的程序框图,输出的k值为 B.4
C.5
[ 立意与点拨 ]
D.6
考查循环结构程序
框图,解答本题关键抓住循环条件的掌
握.
[答案] B
[解析] 初值为 a=3,k=0,进入循环体后,第一次循环 3 3 3 a=2,k=1;第二次循环 a=4,k=2;第三次循环 a=8,k=3; 3 1 第四次循环 a=16,k=4;此时满足 a<4,退出循环,故 k= 4.
相关文档
最新文档