广东省深圳市中考数学总复习专题三动点型问题课件
中考数学复习专题-动点问题ppt
230、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。
•
231、出门走好路,出口说好话,出手做好事。
•
232、旁观者的姓名永远爬不到比赛的计分板上。
•
233、怠惰是贫穷的制造厂。
•
234、莫找借口失败,只找理由成功。(不为失败找理由,要为成功找方法)
•
235、如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。
为何值时,S最大,并求最大 值。
析-
典 已知:如图①,在Rt△ABC中,∠C=90°,
AC=4cm,BC=3cm,点P由B出发沿BA方向向点A
例 匀速运动,速度为1cm/s;点Q由A出发沿AC方向
向点C匀速运动,速度为2cm/s;连接PQ.若设运 动的时间为t(s),解答下列问题 :
分 ⑷当t为何值时,△APQ是
时, PQ∥BC?”类型的 题目结论变条件,寻找 解题思路;必要时画出
相应的图形。
典 已知:如图①,在Rt△ABC中,∠C=90°,
AC=4cm,BC=3cm,点P由B出发沿BA方向向点A
例 匀速运动,速度为1cm/s;点Q由A出发沿AC方向
向点C匀速运动,速度为2cm/s;连接PQ.若设运 动的时间为t(s),解答下列问题 :
•
225、积极思考造成积极人生,消极思考造成消极人生。
•
226、人之所以有一张嘴,而有两只耳朵,原因是听的要比说的多一倍。
•
227、别想一下造出大海,必须先由小河川开始。
•
228、有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。
•
229、以诚感人者,人亦诚而应。
•
初三数学 动点问题的几种题型解题思路思考ppt课件
D B
H
EP R C
Q
动点问题综合题解题思路小结:
动点产生等腰三角形一般要进行分类,在分类讨论的过程 中要找到分类的标准,要做到不重不漏
在解决等腰三角形问题时注意与等腰三角形的性质相联系, 特别是”三线合一“
要注意锐角三角比的应用,能用锐角三角比的尽量避免用 相似
练习:
SUCCESS
此类问题常集代数、几何知识于一体,数形结合,有 很强的综合性。是中考的必考题,且每年都为压轴题, 以函数与三角形和四边形结合的题目为主
动点产生等腰三角形问题
例1、如图,在Rt△ABC中,∠A=90º,AB=6,AC=8,D,E分别是边AB,AC的中点, 点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点 Q与点C重合时,点P停止运动.设BQ=x,QR=y.
① 求相似三角形的第三个顶点时,先要分析已知三角形的 边和角的特点,进而得出已知三角形是否为特殊三角形。根 据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股 定 理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进 而用函数解析式来表示各边的长度,之后利用相似来列方程 求解。
谢 谢!
SUCCESS
THANK YOU
2019/5/10
THANK YOU
2019/5/10
答案:
动点产生相似三角形
y
5 4 3 2 1
-5 -4 -3 -2 -1-01
-2 -3 -4 -5
12345x
解答:(1)
解答:(2)
y
5
中考数学复习专题讲座十三 动点型问题
中考数学复习专题讲座十三:动点型问题中考数学复习专题讲座十三动点型问题(三)(函数引动点产生的相似三角形问题、以圆为载体的动点问题)一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲专题五:函数引动点产生的相似三角形问题函数因动点产生的相似三角形问题一般有三个解决途径:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
例1 (2012�6�1义乌市)如图1,已知直线y=kx 与抛物线y= 交于点A(3,6).(1)求直线y=kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM,交x 轴于点M(点M、O 不重合),交直线OA 于点Q,再过点Q 作直线PM 的垂线,交y 轴于点N.试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O、A 不重合),点D(m,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E 点的个数分别是1 个、2 个?思路分析:(1)利用待定系数法求出直线y=kx 的解析式,根据A 点坐标用勾股定理求出线段OA 的长度;(2)如答图1,过点Q 作QG⊥y 轴于点G,QH⊥x 轴于点H,构造相似三角形△ QHM 与△ QGN,将线段QM与线段QN 的长度之比转化为相似三角形的相似比,即为定值.需要注意讨论点的位置不同时,这个结论依然成立;(3)由已知条件角的相等关系∠BAE=∠BED=∠AOD,可以得到△ ABE∽△OED.设OE=x,则由相似边的比例关系可以得到m关于x 的表达式(),这是一个二次函数.借助此二次函数图象(如答图3),可见m在不同取值范围时,x 的取值(即OE 的长度,或E 点的位置)有1 个或2 个.这样就将所求解的问题转化为分析二次函数的图象与性质问题.另外,在相似三角形△ ABE与△ OED中,运用线段比例关系之前需要首先求出AB的长度.如答图2,可以通过构造相似三角形,或者利用一次函数(直线)的性质求得AB 的长度.解:(1)把点A(3,6)代入y=kx 得;∵6=3k,∴k=2,∴y=2x.(2 分)OA= .…(3 分)(2)是一个定值,理由如下:如答图1,过点Q 作QG⊥y 轴于点G,QH⊥x 轴于点H.①当QH 与QM重合时,显然QG 与QN 重合,此时;②当QH 与QM不重合时,∵QN⊥QM,QG⊥QH 不妨设点H,G 分别在x、y 轴的正半轴上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90° ∴△QHM∽△QGN…(5 分),∴,当点P、Q 在抛物线和直线上不同位置时,同理可得.…(7 分)①①(3)如答图2,延长AB 交x 轴于点F,过点F 作FC⊥OA 于点C,过点A 作AR⊥x 轴于点R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC= OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF= ,∴点F(,0),设点B(x,),过点B 作BK⊥AR 于点K,则△ AKB∽△ARF,∴,即,解得x 1 =6,x 2 =3(舍去),∴点B(6,2),∴BK=6-3=3,AK=6-2=4,∴AB=5 …(8 分);(求AB 也可采用下面的方法)设直线AF 为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得k= ,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5…(8 分)(其它方法求出AB 的长酌情给分)在△ ABE 与△ OED 中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.…(9 分)设OE=x,则AE= -x (),由△ ABE∽△OED 得,∴∴()…(10 分)∴顶点为(,)如答图3,当时,OE=x= ,此时E 点有1 个;当时,任取一个m的值都对应着两个x 值,此时E 点有2 个.∴当时,E 点只有1 个…(11 分)当时,E 点有2 个…(12 分).点评:本题是中考压轴题,难度较大,解题核心是相似三角形与抛物线的相关知识,另外也考查了一次函数、勾股定理等重要知识点.解题的难点在于转化思想的运用,本题第(2),(3)问都涉及到了问题的转化,要求同学们能够将所求解的问题转化为常见的数学问题,利用自己所熟悉的数学知识去解决问题,否则解题时将不知道从何下手而导致失分.对应训练1.(2012�6�1绍兴)如图,矩形OABC 的两边在坐标轴上,连接AC,抛物线y=x 2 -4x-2 经过A,B 两点.(1)求A 点坐标及线段AB 的长;(2)若点P 由点A 出发以每秒1 个单位的速度沿AB 边向点B 移动,1 秒后点Q 也由点A 出发以每秒7 个单位的速度沿AO,OC,CB 边向点B 移动,当其中一个点到达终点时另一个点也停止移动,点P 的移动时间为t 秒.①当PQ⊥AC 时,求t 的值;②当PQ‖AC 时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H 的纵坐标的取值范围.考点六:以圆为载体的动点问题与圆有关的动点问题也是中考的热点,此类问题以圆为载体,主要研究几何图形在点的运动中的位置关系和数量关系;这类问题集几何、代数知识于一体,是数形结合思想的完美表现,具有较强的综合性、灵活性和多样性。
深圳中考数学压轴专题题突破-三爪图之动点问题
中考数学压轴题突破-三爪图之动点问题
模型介绍:
爪子模型:共顶点引发的三条(多)条线段
一、破解策略:
1、辅助圆
2、旋转:
当三条线段不等时或题目隐含等边时,遇多少度旋转多少度,构造手拉手模型(全等或相似)来解决问题。
二、例题赏析:
题型一:辅助圆类
例题赏析:
题型二:旋转全等类(由边导角,由角导边)等边三角形内含三爪图。
题型三:变式:正方形内含三爪图
题型四:矩形含三爪图(旋转相似)
小结:
题目中遇到公共端点的三爪(多)图时,旋转是它的克星,通过旋转把分散的条件(线段或角)整合在一个三角形内解决。
旋转时明确旋转中心和旋转角。
因此,当我们再遇到类似问题时,首先考虑旋转来解决。
譬如解决经典的费马点问题。
四、练习反馈:
1、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的
最小值.
2、已知:P是边长为1的等边三角形ABC内的一点,求PA+PB+PC的最小值.
3、阅读下面材料:
如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值。
提示:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A’BC,连接,当点A落在上时,此题可解(如图2).请你回答:AP的最大值是.
4、如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,
则AP+BP+CP的最小值是 .(结果可以不化简)。
中考常见动点问题解题方法(共29张PPT)
AE
10-2t
t
30o
2t
30o
B
F
D
C
(3)当t为何值时,△DEF为直角三角形?请说明理由.
1单位/s
解析:
2单位/s
②当∠DEF=90o时
30o
由(2)知EF∥AD
5
∴∠ADE=∠DEF=90o
∵∠A=90o-∠C=60o
1
∴AD= AE
2
1
2
即10-2t= t
A
E 10-2t
60o
t
2t
则t=4
10、阅读一切好书如同和过去最杰出的人谈话。01:48:2201:48:2201:488/23/2021 1:48:22 AM
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.2301:48:2201:48Aug-2123-Aug-21
最小值时,△APD中AP边上的高为 _________
3、如图,⊙O的半径为2,点A、B、C
在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上
的一动点,则PA+PC的最小值是________
两个动点(一)
例、如图,∠AOB=45°,P是∠AOB内一
特点:已知一个定点位于平面内两相交直线之间,
点,PO=10,Q、R分别是OA、OB上的动点,
∵点D'和点D关于x轴对称,
∴点D'的坐标为(0,-2).
设直线CD'的解析式为y=kx+b,
∵直线CD'过点C(-3,2),D'(0,-2),
4
2 = -3 + ,
中考数学动点问题专题讲解(22页)
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学复习专题——动点问题课件
①∠MB′C=90° ②∠B′MC=90°
45 °
2 1
【2017· 河南T15】如图,在Rt△ABC中,∠A=90°, AB=AC,BC= √2 +1 ,点M,N分别是边BC,AB上的 动点,沿MN所在直线折叠∠B,使点B的对应点B′始终落 在边AC上.若△MB′C为直角三角形,则BM的长为_____ .
3 与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个
单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发 ,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停 止运动,另一个点也随之停止运动,连接PQ,设运动时间为t (s)(0<t≤3)
(2014年 新疆)如图,直线y 4 x 8
7
当BP=BC时
D
4
30°
当
4
P
A
7
B
2 3
E
当CB=CP时
∴t=3或11或7+ 4 3 或 4 3 /3 +7 时 △PBC为等腰三角形
探究动点关键:化动为静,分类讨论,数形结合
∟
P
A
7
B
当PB=PC时
合作探究
1::如图.△ABC中AB=6cm,BC=4cm, ∠B=60°,动点P、Q分别从A、B两点同时出发. 分别沿AB、BC方向匀速移动;它们的速度分别为 2cm/s和1cm/s.当点P到达点B时.P、Q两点停止 运动.设点P的运动时间为t(s).当t为 ______时 ,△PBQ为直角三角形.
(1)写出A,B两点的坐标; (2)设△AQP的面积为S,试求出S与t之间的函 数关系式;并求出当t为何值时,△AQP的面积最 大? (3)当t为何值时,以点A,P,Q为顶点的三角 形与△ABO相似,并直接写出此时点Q的坐标.
中考总复习动点问题精品PPT教学课件
E
(P)
D (Q)
F两点,若△BEF与题
(1)中的△APQ相似, 试求a的值.
2020/12/8
(F) C 综上:当a=2或6或12时,
△BEF与△APQ相似 4
3、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,点P从点A开 始沿折线A—B—C—D以4厘米/秒的速度移动,点Q从点C开 始沿CD以1厘米/秒的速度移动,如果点P和Q分别从点A、C 同时出发,当其中一个点到达D点时,另一点也随之停止运 动.设运动时间为t(秒).
厘米的等边三角形,质点P从点A沿AB—
A
BD作匀速运动,质点Q从点D同时出发沿
DC—CB—BA作匀速运动.
3a
Q
(P)
(21)如果问质点题(P、1) Q运中 3a
的 动的质速点度P、分Q别分是别同4厘时米沿/ B F
原 秒路、返5厘回米,/质秒点,请P的说速出 度 经不过变12,秒质后点△QA的PQ速是度哪 3a F 改 一类变三为角a厘形米?/(秒按,角经的过 3大秒小后分,类P)、Q分别到达E、
2020/12/8
1
1、如图,已知正三角形
ABC的高为9厘米,⊙O的
半径为r厘米,当圆心O
A
从点A出发,沿线路AB—
BC—CA运动,回到点A时,
⊙O随着点O的运动而停
止.
B
C
(1)当r=9厘米时,⊙O
在移动过程中与△ABC三
边有几个切点?
当r=9厘米时,⊙O在移动过程
中与△ABC三边有三个切点.
2020/12/8
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
第35讲动点问题专题PPT课件
④当x≥6时,y=0.
②如答图2-35-5,作DH⊥AB于点H. 在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
在Rt△BDH中, ∴矩形BDEF的面积为
∴当x=3时,y有最小值为
分层训练
A组
3.(202X衢州)如图2-35-3,正方形ABCD的边长为4,点
E是AB的中点,点P从点E出发,沿E→A→D→C移动至终
第35讲 动态专题(1) (动点问题)
近五年广东中考情况
2015年 202X年 202X年 202X年 202X年 (5分) (4分) (5分) (5分) (0分)
双动点问 题
动线问题
的运动中,一些图 形位置、数量关系的“变”与“不变”的问题.常用 的数学思想是方程思想、数学建模思想、函数思想、 转化思想等;常用的数学方法有分类讨论法、数形 结合法等.
(3)在直线l移动过程中,l上是否存在一点Q,使以B, C,Q为顶点的三角形是等腰直角三角形?若存在,直 接写出Q点的坐标;若不存在,请说明理由.
解:(1)在Rt△BOC中,OB=3,
设CO=4k,则BC=5k, ∵BC2=CO2+OB2,∴25k2=16k2+9, ∴k=1或-1(不符,舍去).∴BC=5,OC=4. ∵四边形ABCD是菱形,∴CD=BC=5.∴D(5,4). (2)①如答图2-35-6,当0≤t≤2时,直线l扫过的图形 是四边形OCQP,S=4t.
②如图2-35-2②,当点E在OC的延长线上时, △DCE是等腰三角形,则只有CD=CE, ∠DBC=∠DEC=∠CDE= ∠ACO=15°, ∴∠ABD=∠ADB=75°.∴AB=AD= 综上所述,满足条件的AD的值为2或
中考数学复习课件:动点与函数图像(共26张PPT)
一、点动
• 1、点在三角形边上动 • 2、点在四边形边上动
答案:B
答案A
2、点在四边形边上动
AB与F,可得DF=BC=4,所以 解析:作DF1 AF=3,FB=CD=2,先看特殊点, 1 当t=2时S= 2x3x4=6,当t=5时,S= 2 x2x5=5,所以A,C错误;B、D的区 别就是第一段不同,所以需要求出第一段的函数关系式,选AP为底, 4t 1 4t AP=1+t,可根据相似求出高为 3 ,S= 2 (1+t) 3 ,可看出是抛物线应开口向上,所以选C
答案:A
答案:A
• 2.如图1,已知A、B是反比例函数(k>0,x>0)图象 上的两点,BC//x轴,交y轴于点C.动点P从坐标原 点O出发,沿O→A→B→C (图中“→”所示路线) 匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴, 垂足分别为M、N.设四边形OMPN的面积为S,P 点运动时间为t,则S关于t的函数图象大致为
B 60 ,动点p以1cm/s的 1、如图,菱形ABCD的边长是4cm,
0
速度自A点出发沿AB方向运动至B点停止,动点Q以2cm/s的速 度自B点出发沿折线BCD运动到D点停止,若P,Q同时出发运动 了t秒,记 BPQ 的面积为S cm2 ,下面图像中能表示S与t之间 函数关系式的是 ( )
3
答案:D
O 图1 图2
x
五、点在一些特殊情况下运动与函数的图像
• 1.如图,菱形 ABCD 中,∠BAD:∠ADC=1:2, 对角线 AC=20cm,点 O 沿 A 点以 1cm/s 的速度 运动到 C 点(不与 C 重合),以点 O 为圆心的 圆始终与菱形的两边相切,设圆 O 的面积为 S, 则 S 与点 O 运动的时 间 t 的函数图像大致是
2023年九年级数学中考压轴复习专题几何综合——动点问题课件
∴
=
4
Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,
25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,
4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,
∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我
展
中考数学专题复习 三角形动态问题 ——动点,动线,动图(25张PPT)
∵△BPD≌△CPQ,
∴CQ=BD=6.
∴点P的运动时间
t
BP 3
4.5 3
1.5(秒)
此时
VQ
CQ t
பைடு நூலகம்
6 1.5
4(厘米/秒)
∴△BPD≌△CQP(SAS),
(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多 走AB+AC的路程 设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12, 解得x=24(秒) 此时P运动了24×3=72(厘米) 又∵△ABC的周长为33厘米,72=33×2+6, ∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第 一次在BC边上相遇.
解:(1)∵长方形ABCD, ∴∠A=∠B=90°, ∵点E为AD的中点,AD=6cm, ∴AE=3cm, 又∵P和Q的速度相等可得出AP=BQ=1cm,BP=3, ∴AE=BP, 在△AEP和△BQP中,
∴△AEP≌△BPQ( SAS), ∴∠AEP=∠BPQ, 又∵∠AEP+∠APE=90°, 故可得出∠BPQ+∠APE=90°, 即∠EPQ=90°, 即EP⊥PQ.
5.如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若 点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC 上由点B向点C运动. (1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与 △BPQ是否全等?请说明理由,并判断此时线段PE和线段PQ的位置关系; (2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设 △PEQ的面积为Scm2 ,请用t的代数式表示S;
(1)①∵t=1(秒), ∴BP=CQ=3(厘米) ∵AB=12,D为AB中点, ∴BD=6(厘米) 又∵PC=BC-BP=9-3=6 (厘米) ∴PC=BD ∵AB=AC, ∴∠B=∠C, 在△BPD与△CQP中,
九年级数学动点问题ppt课件
!
图形中的点、线运动,构成了数学中的一个新问题---动态几何。它通常分为三种类型:动点问题、动线问题、 动形问题。在解这类问题时,要充分发挥空间想象的能力 ,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“ 静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能 找到解决问题的途径。
C
5、等腰梯形
思
化动为静
分类讨论
路
构建函数模型、方程模型
3、求面积
A
M
D
P
Q
B
C
6、直角三角形
A
B' B
A
B'
B
P D
E' E
P
C
D
E'
E
C
数形结合
小结:
积累就是知识
动点问题 动点题是近年来中考的的一个热点问题,解这类题目要“以静制动”, 即把动态问题,变为静态问题来解。一般方法:首先根据题意理清题目中两个变量X、Y 及相关常量。第二找关系式。把相关的量用一个自变量的表达式表达出来,再解出。 第三,确定自变量范围,画相应的图象。
tD
Q
B
A
4
3 2t
∟G
P
C
∵点D在线段PQ的中垂线上 ∴DQ=DP
DQ 2 DP 2
t242(2t3)2
3 t2 1t2 2 5 0
∵ △ = —156<0
.
∴方程无解。
即点D都不可能在线段QP的中垂线 上。
4. ( 2009 中 考 ) 例 1 、 如 图 , 已 知 在 直 角 梯 形 ABCD 中 ,
比为7︰15?若存在,求出相应的t的值;不存在说明理由。
中考数学复习:专题三:动点或最值问题
点拨:在 Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO = 22-12= 3,①当点 P 从 O→B 时,如图 1、图 2 所示,点 Q 运动的 路程为 3;②当点 P 从 B→C 时,如图 3 所示,这时 QC⊥AB,则∠ACQ =90°,∵∠ABO=30°,∴∠BAO=60°,∴∠OQD=90°-60°= 30°,∴cos30°=ACQQ,∴AQ=cosC3Q0°=2,∴OQ=2-1=1,则点 Q 运动的路程为 QO=1;③当点 P 从 C→A 时,如图 3 所示,点 Q 运动的 路程为 QQ′=2- 3;④当点 P 从 A→O 时,点 Q 运动的路程为 AO=1, ∴点 Q 运动的总路程为 3+1+2- 3+1=4,故答案为 4
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
解决最值问题的两种方法: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连接直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆的所有弦中,直径最长. (2)运用代数证法: ①运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式.
【例 2】 (2016·雅安)如图,在矩形 ABCD 中,AD=6,AE⊥BD, 垂足为 E,ED=3BE,点 P,Q 分别在 BD,AD 上,则 AP+PQ 的最小 值为( D )
中考一轮复习--专题三 动点(面)问题
1
2
3
4
5
6
1.(2019·江苏苏州)如图,菱形ABCD的对角线AC,BD交于点
O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当
点A'与点C重合时,点A与点B'之间的距离为( C )
A.6
B.8
C.10
D.12
由折叠知△A1DE≌△ADE,
所以A1D=AD=1.
由 A1B+A1D≥BD,得 A1B≥BD-A1D= 5-1.
故 A1B 长的最小值是 5-1.
类型一
类型二
类型三
类型二 图形中的动点问题
例2如图(1),已知正方形ABCD,E是线段BC上一点,N是线段BC延
长线上一点,以AE为边在直线BC的上方作正方形AEFG.
∴在线段 BC 上点 H 的左右两边各有一个点 P 使 PE+PF=9,同理在
线段 AB,AD,CD 上都存在两个点使 PE+PF=9.即共有 8 个点 P 满足
PE+PF=9.
1
2
3
4
5
6
5.(2019·辽宁锦州)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中
点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A'MN,连
AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B
作BE⊥BD交DF延长线于点E,连接CE,下列结论:
①若BF=CF,则CE2+AD2=DE2;
15
②若∠BDE=∠BAC,AB=4,则CE= 8 ;
中考数学复习 第2部分 核心母题三 动点、存在性、距离、面积问题课件
2
2
第二十五页,共二十九页。
(3)利用等积变形原理.如图,过△PBC的顶点P作所对的边
BC的平行线l,则l上的任一点P′与BC组成的三角形的面积 等于△PBC的面积.由△PBC变形成(xíngchéng)△P′BC保持面积不变, 因此,这种变形称为等积变形,此外,若△PBC与△P′BC面 积相等,且点P与P′在直线BC的同侧,则可得直线PP′∥BC.
第二页,共二十九页。
(2)设抛物线的对称轴为l,lFra bibliotekx轴的交点为D.在直线l上是 否存在点M,使得四边形CDPM是平行四边形?若存在,求出 点M的坐标;若不存在,请说明理由. (3)如图2,连接BC,PB,PC,设△PBC的面积为S. ①求S关于(guānyú)t的函数解析式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
第二十六页,共二十九页。
变化(biànhuà)6:图形运动下的面积问题
图形运动下的面积问题,往往涉及二次函数与一次函数、待
定系数法、相似、动点问题、函数图象等知识点.解决此类
问题,根据图形的运动变化进行适当分类是解题的关键.
第二十七页,共二十九页。
探究(tànjiū)运动变化过程中的多种可能情况,特别要关注不同情况
核心母题三 动点、存在(cúnzài)性、距离、面积问题
第一页,共二十九页。
【核心母题】 如图1,已知抛物线y=-x2+bx+c与x轴交于A(-1,0), B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限(xiàngxiàn) 内
的一个动点,且点P的横坐标为t. (1)求抛物线的解析式;
第十八页,共二十九页。
变化2:平行四边形 以点A,点B,点C,点D为顶点的四边形是平行四边形,通常
深圳市中考数学总复习课件(专题:动点型问题)
欢迎大家参加深圳市数学中考课件。本节课我们将会介绍动点型问题。
动点型问题的概念和特点
动点型问题是指在平面直角坐标系中,一个或多个点按照某种规律运动的问 题。
动点型问题解题比较灵活,需要善于归纳、抽象;其运动轨迹可以是任意形 状,要具有很强的想象力。
• 定义 • 特点
特点 挺难的 不知道
思路 没办法 睡睡觉
• 小学奥数技巧 • 中学数学技巧
动点型问题的常见错误和注意事项
将匀速运动问题中的t1,t2当作时间 速度,加速度方向与坐标轴方向混淆 在速度问题中,速度的概念与大小混淆 转换坐标系前需先画出原坐标系与目标坐标系 图形不准确定时,应适当加上坐标轴刻度
• 常见错误 • 注意事项
解答学生疑惑和回答问题
点P(3,-7)在坐标轴上运动, 每秒在X轴正方向上移动2个 单位。求点P在2秒后的坐标。
例3
已知一个线段BAC,B在坐标 轴上,A、C分别在两条直线 y=x和y=2x上,且AC=2AB, 点P在线段BAC上运动,且 AP=2CP,求点P轨迹方程。
动点型问题解题技巧
抽象问题,分类讨论,利用对称性,化简计算。 建立坐标系,列方程求解,向量代数解法,参数方程解法。
动点型问题的解题思路
具体分析
建立模型
通过观察,找出运动物体的规律, 具体化问题。
建立运动物体的数据模型,建立 坐标系,列出问题方程。
解方程
通过解方程,求解得到问题的答 案。
动点型问题实例分析
例
速度为3m/s的小车沿一条直 线公路行驶,经过10s时,发 现离起点60m,请求出它距 终点的距离。
例2
1 1.如何定义坐标系?