最新一元二次不等式基础练习题

合集下载

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B.{x |x ≤-1或x >2}C .{x |-1≤x ≤2} D.{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( )A .a =-8,b =-10B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x(x-a+1)>a的解集是{}x|x<-1或x>a,则( ) A.a≥1 B.a<-1C.a>-1 D.a∈R6.已知函数f(x)=ax2+bx+c,不等式f(x)>0的解集为{}x|-3<x<1,则函数y=f(-x)的图象为( )7.在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围是( )A.(0,2) B.(-2,1)C.(-∞,-2)∪(1,+∞) D.(-1,2)二、填空题8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________.9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+b x-2>0的解集是________.10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x 的不等式:ax 2-2≥2x -ax (a <0)..12.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎨⎧a >0,Δ≤0,即⎩⎨⎧a >0,4-12a ≤0,∴a ≥13.【答案】 B3.【解析】 x +1x -2≥0?⎩⎨⎧?x +1??x -2?≥0,x -2≠0?x >2或x ≤-1.【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14,∴⎩⎨⎧-2-14=-b a,12=-2a ,即⎩⎨⎧a =-4,b =-9.【答案】 C5.【解析】 x (x -a +1)>a ?(x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C.6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0?-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧m +1=32,1·m =a 2,∴m =12.【答案】 129.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +bx -2>0?(ax +b )(x -2)=a (x +1)(x -2)>0?(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎪⎫3x +43x ≤-4,当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0?(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1;②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a.综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1;当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立.若m =0,-1<0,显然成立;若m ≠0,则应⎩⎨⎧m <0,Δ=m 2+4m <0?-4<m <0.综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立,即mx 2-mx -1<-m +5恒成立;即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1.∵6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34,∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________.9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+bx-2>0的解集是________.10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x的不等式:ax2-2≥2x-ax(a<0)..12.设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⇔⎩⎪⎨⎪⎧ (x +1)(x -2)≥0,x -2≠0⇔x >2或x ≤-1. 【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14, ∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a ⇔(x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C .6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0⇔-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧ m +1=32,1·m =a 2,∴m =12. 【答案】 129.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0⇔(ax +b )(x -2)=a (x +1)(x -2)>0⇔(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0⇔(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1;②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a. 综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立. 若m =0,-1<0,显然成立;若m ≠0,则应⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇔-4<m <0. 综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立; 即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1. ∵6x 2-x +1=6⎝⎛⎭⎫x -122+34, ∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

(完整版)一元二次不等式练习题含答案

(完整版)一元二次不等式练习题含答案

一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________.9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+bx-2>0的解集是________.10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x的不等式:ax2-2≥2x-ax(a<0)..12.设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⇔⎩⎪⎨⎪⎧ (x +1)(x -2)≥0,x -2≠0⇔x >2或x ≤-1. 【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14, ∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a ⇔(x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C .6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0⇔-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧ m +1=32,1·m =a 2,∴m =12. 【答案】 129.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0⇔(ax +b )(x -2)=a (x +1)(x -2)>0⇔(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0⇔(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1;②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a. 综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立. 若m =0,-1<0,显然成立; 若m ≠0,则应⎩⎪⎨⎪⎧ m <0,Δ=m 2+4m <0⇔-4<m <0.综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立; 即m (x 2-x +1)<6恒成立,而x 2-x +1>0, ∴m <6x 2-x +1.∵6x 2-x +1=6⎝⎛⎭⎫x -122+34,∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67,∴m 的取值范围是m <67.。

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。

一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。

(完整版)一元二次不等式练习题(完)

(完整版)一元二次不等式练习题(完)

一、一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=∆0>∆ 0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象()002>=++a c bx ax的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax1、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。

(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。

(根据一元二次方程的根及不等式的方向)不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式(1) (x+4)(x+5)2(2-x)3<0 (2)x 2-4x+13x 2-7x+2≤1解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}.2-4-5(2)变形为(2x-1)(x-1)(3x-1)(x-2)≥0根据穿根法如图不等式解集为 {x |x< 1 3 或 12≤x ≤1或x>2}.巩固练习一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x31、03282>--x x 32、031082≥-+x x 33、041542<--x x34、02122>--x x 35、021842>-+x x 36、05842<--x x37、0121752≤-+x x 38、0611102>--x x 39、038162>--x x40、038162<-+x x 41、0127102≥--x x 42、02102>-+x x43、0242942≤--x x 44、0182142>--x x 45、08692>-+x x46、0316122>-+x x 47、0942<-x 48、0320122>+-x x49、0142562≤++x x 50、0941202≤+-x x 51、(2)(3)6x x +-<二填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________.3、不等式2310x x -++>的解集是 ;4、不等式2210x x -+≤的解集是 ;5、不等式245x x -<的解集是 ; 9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合MN = ;10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为___________________________。

一元二次不等式的解法练习题含答案

一元二次不等式的解法练习题含答案

一元二次不等式的解法练习题(1)1. 不等式−2x 2+x +3≤0的解集是( )A. B.{x|x ≤−1或x ≥}C.{x|x ≤−或x ≥1}D.2. 不等式x 2−7x <0的解集是( ) A.{x|x <−7或x >0} B.{x|x <0或x >7} C.{x|−7<x <0}D.{x|0<x <7}3. 不等式x 2+2x −3≥0的解集是( ) A.{x|x ≥1} B.{x|x ≤−3} C.{x|−3≤x ≤1} D.{x|x ≤−3或x ≥1}4. 不等式x 2−4x −5>0的解集为( )A.{x|x ≥5或x ≤−1}B.{x|x >5或x <−1}C.{x|−1≤x ≤5}D.{x|−1<x <5}5. 不等式2x 2−x −1>0的解集是( ) A.(−12,1)B.(1,+∞)C.(−∞,1)∪(2,+∞)D.(−∞,−12)∪(1,+∞)6. 不等式组{x 2−2x −3<0log 2x <0 的解集为( )A.(−1, 0)B.(−1, 1)C.(0, 1)D.(1, 3)7. 已知集合A ={x ∈N|−2<x <4},B ={x|12≤2x ≤4},则A ∩B =( ) A.{x|−1≤x ≤2} B.{−1, 0, 1, 2} C.{1, 2} D.{0, 1, 2}8. 下列四个不等式中,解集为⌀的是()A.−x2+x+1≤0B.2x2−3x+4<0C.x2+6x+9≤0D.9. 已知函数f(x)=3x2−6x−1,则()A.函数f(x)有两个不同的零点B.函数f(x)在(−1, +∞)上单调递增C.当a>1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=3D.当0<a<1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=1310. 已知集合A={−1,0,2}, B={2,a2},若B⊆A,则实数a的值为________.11. 不等式|x−3|<2的解集为________.12. 不等式3x2−6x−5>4的解集为________.13. 已知不等式kx2−2x+6k<0(k≠0)若不等式的解集为{x|x<−3或x>−2},求实数k的值________.14. 不等式9−x2>0的解集是________.15. 已知集合A={x|x2−3x−10≤0}.(Ⅰ)若B={x|m−6≤x≤2m−1},A⊆B,求实数m的取值范围;(Ⅱ)若B={x|m+1≤x≤2m−1},B⊆A,求实数m的取值范围.16. 已知函数f(x)=ax2+bx−a+2.(1)若关于x的不等式f(x)>0的解集是(−1,3),求实数a的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.17. 某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(利润和投资单(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元投资金,并将全部投入A,B两种产品的生产,怎样分配这18万元,才能使该企业获得最大利润?其最大利润约为多少万元?参考答案与试题解析一元二次不等式的解法练习题(1)一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】一元二次不等式的应用【解析】将不等式变形为(x+1)(2x−3)≥0,由一元二次不等式的解法得出答案.【解答】不等式−2x2+x+3≤0,即2x2−x−3≥0,即(x+1)(2x−3)≥0,解得x≤−1或,故不等式−2x2+x+3≤0的解集是{x|x≤−1或x≥}.2.【答案】D【考点】一元二次不等式的应用【解析】不等式化为x(x−7)<0,求出解集即可.【解答】不等式x2−7x<0可化为x(x−7)<0,解得0<x<7,所以不等式的解集是{x|0<x<7}.3.【答案】D【考点】一元二次不等式的解法【解析】将不等式左边因式分解可得:(x+3)(x−1)≥0,从而可解不等式.【解答】解:由题意,不等式可化为:(x+3)(x−1)≥0,∴x≤−3或x≥1.故选D.4.【答案】B【考点】直接解一元二次不等式即可. 【解答】解:∵ x 2−4x −5>0, ∴ (x −5)(x +1)>0, 解得,x <−1或x >5. 故选B . 5.【答案】 D【考点】一元二次不等式的解法 【解析】 此题暂无解析 【解答】 此题暂无解答 6.【答案】 C【考点】其他不等式的解法 【解析】由题意可得,{−1<x <30<x <1 ,解不等式可求.【解答】由题意可得,{−1<x <30<x <1 ,即可得,0<x <1. 7. 【答案】 D【考点】 交集及其运算 【解析】化简集合A 、B ,根据交集的定义写出A ∩B . 【解答】集合A ={x ∈N|−2<x <4}={0, 1, 2, 3}, B ={x|12≤2x ≤4}={x|−1≤x ≤2},则A ∩B ={0, 1, 2}.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 ) 8.【答案】 B,D【考点】此题暂无解析【解答】此题暂无解答9.【答案】A,C,D【考点】二次函数的图象二次函数的性质【解析】结合二次函数的零点及单调性及复合函数的单调性与最值的关系分别检验各选项即可判断.【解答】因为二次函数对应的一元二次方程的判别式△=(−6)2−4×3×(−1)=48>0,所以函数f(x)有两个不同的零点,A正确;因为二次函数f(x)图象的对称轴为x=1,且图象开口向上,所以f(x)在(1, +∞)上单调递增,B不正确;令t=a x,则f(a x)=g(t)=3t2−6t−1=3(t−1)2−4.当a>1时,1a ≤t≤a,故g(t)在[1a,a]上先减后增,又a+1a2>1,故最大值为g(a)=3a2−6a−1=8,解得a=3(负值舍去).同理当0<a<1时,a≤t≤1a ,g(t)在[a,1a]上的最大值为g(1a)=3a2−6a−1=8,解得a=13(负值舍去).三、填空题(本题共计 5 小题,每题 5 分,共计25分)10.【答案】【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:已知A={−1,0,2}, B={2,a2},若B⊆A,则a2=0,解得:a=0.故答案为:0.11.【答案】(1, 5)【考点】由题意利用绝对值不等式的基本性质,求得不等式|x−3|<2的解集.【解答】不等式|x−3|<2,即−2<x−3<2,求得1<x<5,12.【答案】{x|x>3或x<−1}【考点】一元二次不等式的解法【解析】先化简不等式,然后根据十字相乘法求出不等式的解集.【解答】解:由题意得,不等式化简为x2−2x−3>0,所以(x−3)(x+1)>0,解得x>3或x<−1,所以不等式的解集为{x|x>3或x<−1}.故答案为:{x|x>3或x<−1}.13.【答案】−2 5【考点】一元二次不等式的解法【解析】(1)由题设条件,根据二次函数与方程的关系,得:k<0,且−3,−2为关于x的方程k x2−2x+6k=0的两个实数根,再由韦达定理能求出k的值.【解答】解:∵不等式kx2−2x+6k<0(k≠0)的解集为{x|x<−3或x>−2},∴−3和−2是方程kx2−2x+6k=0的两个根,∴−3+(−2)=2k,∴k=−25,故答案为:−25.14.【答案】{x|−3<x<3}【考点】一元二次不等式的解法【解析】此题暂无解析【解答】解:不等式9−x2>0变形为x2<9,所以解集为{x|−3<x <3}. 故答案为:{x|−3<x <3}.四、 解答题 (本题共计 3 小题 ,每题 10 分 ,共计30分 ) 15.【答案】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 【考点】集合的包含关系判断及应用 【解析】先求出集合A ,再利用集合A 与集合B 的包含关系,列出不等式组,即可求出m 的取值范围,注意对空集的讨论. 【解答】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5 ,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 16.【答案】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.【考点】一元二次不等式的解法 【解析】左侧图片未给出解析 左侧图片未给出解析【解答】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ f (x )=ax 2+2x −a +2=(x +1)(ax −a +2)>0, ∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.17.f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以当t=4时,y max=172=8.5,所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元. 【考点】二次函数在闭区间上的最值函数模型的选择与应用【解析】此题暂无解析【解答】解:(1)根据题意可设A,B两种产品的利润与投资的函数关系式分别为:f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.试卷第11页,总11页。

最新一元二次不等式测试题及答案

最新一元二次不等式测试题及答案

一元二次不等式测试题及答案一、选择题1.如果不等式ax 2+bx+c<0(a ≠0)的解集为空集,那么( ) A .a<0,Δ>0 B .a<0,Δ≤0 C .a>0,Δ≤0 D .a>0,Δ≥0 2.不等式(x+2)(1-x)>0的解集是( ) A .{x|x<-2或x>1} B .{x|x<-1或x>2} C .{x|-2<x<1} D .{x|-1<x<2}3.设f(x)=x 2+bx+1,且f(-1)=f(3),则f(x)>0的解集是( ) A .),3()1,(+∞⋃--∞ B .RC .{x|x≠1}D .{x|x=1} 4.不等式(x+5)(3-2x)≥6的解集为( )A.{x|x ≤-1或x≥29} B. {x|-1≤x≤29} C.{x|x ≥1或x≤-29} D. {x|-29≤x≤1}5.设一元二次不等式ax 2+bx+1>0的解集为{x|-1≤x≤31},则ab 的值是( )A.-6 B.-5 C.6 D.5 6.已知M={x|x2-2x -3>0},N={x |x2+ax+b ≤0},若M ∪N =R ,M∩N=(3,]4,则a+b=( ) A.7 B.-1 C.1 D.-7 7.已知集合M ={x| x 2-3x -28≤0}, N={ x 2-x -6>0},则M ∩N 为( ) A.{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7}C .{x|x≤-2或x>3}D .{x|x<-2或x≥3} 8.已知集合M ={x|3x 0x 1≥(-)},N ={y|y=3x2+1,x∈R},则M ∩N =( ) A.∅ B. {x|x≥1} C.{x|x>1} D.{x| x≥1或x<0} 二.填空题9、有三个关于x 的方程:,已知其中至少有一个方程有实根,则实数a 的取值范围为 10.若二次函数y=ax 2+bx+c(x ∈R)的部分对应值如下表: x-3-2-11234y 6 0 -4 -6 -6 -4 0 6则不等式ax 2+bx+c>0的解集是 。

一元二次不等式练习题

一元二次不等式练习题

一元二次不等式练习题例1.解下列不等式(1)x 2-7x+12>0 (2)-x 2-2x+3≥0 (3)x 2-2x+1<0(4)x 2-2x+2<0 (5).1<x 2-3x+3≤7 (6)(x 2+4x-5)(x 2-2x+2)>0(7) (x 2+4x-5)(x 2-4x+4)>0 (8)x 4-x 2-6≥0 (9)22(23)(6)0xx x x(10)22411372x x x x例2已知不等式x 2+ax+b<0的解集为{x|-1<x<2}, 求不等式bx 2-ax+1<0的解集。

变式1:已知不等式b x 2-ax+1 <0的解集为{x| x < -12或x>1}, 求不等式x 2+ax+b<0的解集.变式2.不等式ax2+bx+2<0的解集为{x| -12<x<13}, 求a-b.变式3.已知关于x的不等式ax2+2x+6a<0的解集为{x| x <2或x>3}, 求a的值.变式4:已知关于x不等式kx2-2x+6k<0的解集为R 求k的取值范围。

变式5:已知关于x不等式kx2-2kx+6<0的解集为 ,求k的取值范围。

例3.解关于x的不等式x2-(a+1)x+a>0变式1:解关于x的不等式ax2-x+1>0变式2. 解关于x的不等式ax2-(a+1)x+1>0 变式3. 解关于x的不等式x2-ax+1>0例4.当a为何值时, 不等式(a2-3a+2) x2+(a-1)x+2>0恒成立.例5. 分别求m的取值范围, 使方程x2-mx-m+3=0 的两根满足下列条件: (1)两根都大于-5 ; (2)一根大于0小于1 , 一根大于1小于2 .例6:已知A={x|x2+(P+2)x+4=0}, M={x|x>0}, 若A∩M=φ, 求实数P的取值范围. 例7:方程x2-mx-m+3=0的两根均在(-4,0)内,求m的取值范围.例8:若不等式x2-2ax+a+6>0在x∈[-2,2]上时总成立,求实数a的取值范围.例9:已知不等式1≤-x2+x+a≤174在x [-1,1]上时总成立,求实数a的取值范围.例10:设不等式mx2-2x-m+1<0对满足|m|≤2的一切m都成立,求实数x的取值范围。

一元二次不等式30道题

一元二次不等式30道题

一元二次不等式30道题一、简单形式(x²项系数为1)1. 解不等式。

就看这个二次式,啥时候比0还大呢?2. 求不等式的解集。

这个式子有点小复杂,不过咱肯定能搞定它。

3. 解不等式。

这个不等式像个小谜题,等我们解开它。

4. 求的解。

这就像在找让这个式子快乐的取值范围。

5. 解不等式。

看看x取啥值能让这个式子乖乖小于0。

6. 求不等式的解集。

这就像探索一个数字的小秘密。

7. 解不等式。

这个二次式在啥情况下比0大呢?8. 求的解。

要找到那些让式子变小的x值。

9. 解不等式。

让我们把这个不等式的解集找出来。

10. 求不等式的解集。

看看哪些x能让这个式子兴高采烈地大于0。

二、x²项系数不为111. 解不等式。

这个2倍的二次式有点调皮,看看啥时候它比0大。

12. 求不等式的解集。

这3倍的二次式看起来有点难搞,不过别怕。

13. 解不等式。

负的二次式也来凑热闹了,找到它的解集哦。

14. 求的解。

这个4倍的二次式在等我们去发现它大于0的时候。

15. 解不等式。

负2倍的二次式也想考考我们呢。

16. 求不等式的解集。

这个5倍的二次式有点复杂,加油解哦。

17. 解不等式。

负3倍的二次式的不等式,可不容易呢。

18. 求的解。

这个6倍的二次式像个小怪兽,要打败它求出解集。

19. 解不等式。

负4倍的二次式也需要我们去征服。

20. 求不等式的解集。

这个7倍的二次式在召唤我们找到它大于0的x值。

三、带参数的一元二次不等式(参数在二次项系数位置)21. 解不等式(假设)。

这个a在前面捣乱呢,不过我们有办法。

22. 求不等式(假设)。

这个b是负数的不等式,要小心哦。

23. 解不等式(假设)。

当c有具体值的时候,我们来解这个不等式。

24. 求(假设)。

这个有分数参数的不等式也难不倒我们。

25. 解不等式(假设)。

当e是 - 1的时候,这个不等式会变成啥样呢?四、综合类型(带括号或者变形)26. 解不等式。

这个式子有括号,要先打开看看吗?还是有其他妙招?27. 求不等式。

一元二次不等式基础练习

一元二次不等式基础练习

一元二次不等式基础练习1、不等式2654x x +<的解集为( )A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭D .14,23⎛⎫- ⎪⎝⎭2、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞ D .[]2,2- 3、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是( ) A .6- B .5- C .6 D .54、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a5、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14- B .14 C .10- D .106、不等式222693191122x x x x -+++⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭的解集是( ) A .[]1,10- B .()[),110,-∞-+∞ C .R D .(][),110,-∞-+∞7、不等式()()120x x --≥的解集是( ) A .{}12x x ≤≤ B .{}12x x x ≥≤或 C .{}12x x << D .{}12x x x ><或8、不等式()200++<≠ax bx c a 的解集为∅,那么( ) A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥ 9、设()21f x x bx =++,且()()13f f -=,则()0f x >的解集是( )A .()(),13,-∞-+∞B .RC .{}1x x ≠D .{}1x x =10、若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( ) A .1a x a << B .1x a a<< C .x a <或1x a >D .1x a <或x a > 11、若0a b >>,则()()0a bx ax b --≤的解集是_____________________________.12、不等式20ax bx c ++>的解集为{}23x x <<,则不等式20ax bx c -+>的解集是________________________.13、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.14、已知不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,则a 、b 的值为 . 15、不等式062-2<+k x kx 的解集为R ,则k 的取值范围是________________.16、解下列不等式1. 06522>+-a ax x2. 022≤-+k kx x17、若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.。

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________.9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+bx-2>0的解集是________.10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x的不等式:ax2-2≥2x-ax(a<0)..12.设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⇔⎩⎪⎨⎪⎧ (x +1)(x -2)≥0,x -2≠0⇔x >2或x ≤-1. 【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14, ∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a ⇔(x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C .6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0⇔-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧ m +1=32,1·m =a 2,∴m =12. 【答案】 129.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0⇔(ax +b )(x -2)=a (x +1)(x -2)>0⇔(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0⇔(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1; ②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a. 综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立. 若m =0,-1<0,显然成立;若m ≠0,则应⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇔-4<m <0. 综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立; 即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1. ∵6x 2-x +1=6⎝⎛⎭⎫x -122+34, ∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

一元二次不等式 练习题

一元二次不等式 练习题

一元二次不等式练习题
一、基础练习题:
1. 解不等式 2x^2 - 3x - 2 > 0。

2. 解不等式x^2 + 5x + 6 ≤ 0。

3. 解不等式 x^2 - 4x + 3 < 0。

4. 解不等式 x^2 + 2x - 3 > 0。

5. 解不等式 3x^2 - 7x + 2 ≥ 0。

6. 解不等式4x^2 + 3x + 1 ≤ 0。

二、综合练习题:
1. 解不等式 x^2 + 4x - 5 > 0 的解集为何?
2. 解不等式 x^2 - 6x + 9 < 0 的解集为何?
3. 解不等式 x^2 + 3x - 10 ≥ 0 的解集为何?
4. 解不等式 2x^2 - 5x + 3 > 0 的解集为何?
5. 解不等式 3x^2 + 2x - 1 ≤ 0 的解集为何?
6. 解不等式 4x^2 + 4x + 1 < 0 的解集为何?
三、挑战练习题:
1. 解不等式 x^2 - 5x + 6 < 0 的解集为何?
2. 解不等式 x^2 - 9x + 18 > 0 的解集为何?
3. 解不等式 x^2 + 2x - 8 ≥ 0 的解集为何?
4. 解不等式 2x^2 - 3x - 2 ≤ 0 的解集为何?
5. 解不等式 3x^2 + 4x - 4 > 0 的解集为何?
6. 解不等式 4x^2 + 5x - 6 < 0 的解集为何?
请按照题目给出的一元二次不等式练习题进行解答,并在每个练习题后面标明解集。

注意使用合适的数学符号和格式,确保解答的清晰明了。

一元二次不等式练习题

一元二次不等式练习题

一元二次不等式练习题一、选择题1. 已知一元二次不等式x²-4x+3<0,解集为:A. (-∞,1)∪(3,+∞)B. (-∞,1)∪(3,+∞)C. (1,3)D. (-∞,1)∪(3,+∞)2. 一元二次不等式x²-6x+8<0的解集为:A. (-∞,2)∪(4,+∞)B. (-∞,2)∪(4,+∞)C. (2,4)D. (-∞,4)∪(4,+∞)3. 对于一元二次不等式ax²+bx+c>0,若a<0,则解集为:A. (-∞,-b/2a)∪(-b/2a,+∞)B. (-b/2a,+∞)C. (-∞,-b/2a)D. (-∞,-b/2a)∪(-b/2a,+∞)二、填空题1. 一元二次不等式x²-2x+1≤0的解集是______。

2. 若一元二次不等式ax²+bx+c>0的解集为R(实数集),则a______0。

三、解答题1. 解一元二次不等式x²-5x+6<0,并说明其解集。

2. 已知一元二次不等式x²-4x+4≤0,求出其解集,并判断该不等式是否有实数解。

四、证明题1. 证明:对于任意实数x,不等式(x-1)²≥0总是成立。

2. 证明:如果一元二次不等式ax²+bx+c<0的解集不为空,则a>0。

五、应用题1. 某工厂生产一种产品,其成本函数为C(x)=0.5x²-40x+1000,其中x表示生产量。

求出当生产量在哪个范围内时,成本小于1100元。

2. 某公司计划投资一项新项目,预计该项目的收益函数为R(x)=-2x²+120x-1000,其中x表示投资金额(单位:万元)。

求出该公司投资金额在哪个范围内时,收益大于等于0。

六、综合题1. 已知一元二次不等式ax²+bx+c≤0,其中a>0,b>0,c<0。

求出该不等式的解集,并讨论当a、b、c的值变化时,解集的变化情况。

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________.9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+bx-2>0的解集是________.10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x的不等式:ax2-2≥2x-ax(a<0)..12.设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.答案 1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧ a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⇔⎩⎪⎨⎪⎧ x +1x -2≥0,x -2≠0⇔x >2或x ≤-1.【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14,∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a ⇔(x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C.6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0⇔-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧m +1=32,1·m =a 2,∴m =12.【答案】 12 9.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0⇔(ax +b )(x -2)=a (x +1)(x -2)>0⇔(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0⇔(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a ≤x ≤-1;②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a .综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立. 若m =0,-1<0,显然成立;若m ≠0,则应⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇔-4<m <0. 综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立;即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1. ∵6x 2-x +1=6⎝⎛⎭⎫x -122+34, ∴当x ∈[1,3]时,⎝⎛⎭⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次不等式强化
222222222一、十字相乘法练习:
1、x +5x+6=
2、x -5x+6=
3、x +7x+12=
4、x -7x+6=
5、x -x-12=
6、x +x-12=
7、x +7x+12= 8、x -8x+12= 9、x -4x-12= 2222222
10、3x +5x-12= 11、3x +16x-12=
12、3x -37x+12= 13、2x +15x+7=
14、2x -7x-15= 15、2x +11x+12=
16、2x +2x-12=
二、一元二次不等式 22解一元二次不等式时
化为一般格式:ax +bx+c>0(a>0)或ax +bx+c<0(a>0);
65045033200440(21)(5)(3)0x x x x m x x +-<-+<-+<+->-++->2222222练习:
1、解下列不等式:
(1)3x -7x>10; (2)-2x ;
(3)x ; (4)10x ;
(5)-x ; (6)x x+m +m<0;(7) ; (8)(5-x)(3-x)<0;
(9)(5+2x)(3-x)<0; (1x--40x+3
2(11)04x x
>-<+0); ;
2x 230
x (1)0.
ax a a x a --<+--<222、(1)解关于的不等式x
(2)解关于的不等式x
230ax bx c ++>22、(1)若不等式的解集是{x -3<x<4},求不等式bx +2ax-c-3b<0的解;
(2)已知一元二次不等式ax +bx+2>0的解集为{x|-2<x<1},求a 、b 的值.
x a 0;........a 0.
x a x ≤≤≤≤224、(1)若不等式ax +ax-5<0,对一切实数都成立,那么的取值范围是( )
A.a<0;
B.-20a<0;
C.-20a
D.-20< (2)对于任意实数,不等式ax +2ax-(a+2)<0恒成立,则的取值范围是
______________________________
(3)对任意实数,不等式x k 2+x+k>0恒成立,则的取值范围是___________
七年级上第一次月考数学试卷
一、填空题(每小题2分,共20分)
1. 如果盈利150元记为+150元,那么-80元表示
2. 在数轴上,与表示 -1的点距离为3的点所表示是数是
3. 如果( )+2=0,那么( )内应填的数是 .
4. 若m 、n 互为相反数,m +n = .
5. 重庆市某天的最高气温是17 ℃,最低气温是 -5℃,那么当天的最大温差是 ℃.
6. -0.02的倒数是 .
7. 5--= .
8. 绝对值小于5的整数共有 个,它们的和为 .
9. 观察下列数,按规律在横线上填上适当的数:
1, -5 ,9 ,-13 ,17 , .
10.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则b a - = .
二、选择题(每小题3分,共15分)
11“甲比乙大-8岁”表示的意义是 ( )
A 甲比乙小8岁
B 甲比乙大8岁
C 乙比甲大-8岁
D 乙比甲小8岁
12.下列说法不正确的是 ( )
A 0是最小的数
B 0是整数
C 0没有倒数
D 0是偶数
13.点A 在数轴上表示+2,则从点A 沿数轴向左平移3个单位到点B ,点B 所表示的数是 ( )
A 3
B -1
C 5
D -1或3
14.计算—2—6的结果是 ( )
A —8
B 8
C —4
D 40
15.如果a 与—2互为倒数,那么a 是 ( )
A .-2 B. —21 C. 2
1 D .2
三、计算题:(每小题5分,共30分)直接得数扣分
17.(1)(-2)+3+6+(-3)+2(-4)
(2)()()1581315413-+⎪⎭
⎫ ⎝⎛----
(3)-7×(-3)×(-0.5)+(-12)×(-2.6)
(4))8
14521()8(+-⨯-。

相关文档
最新文档