生化名词解释总结
生化名词解释
名词解释:1、结构域:分子量较大的蛋白质在形成三级结构时,肽链中一些肽段可形成结构较为紧密、功能相对独立的特定区域称为结构域常包含多个超二级结构。
2、氨基酸的等电点:在某一PH值溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相同,成为兼性离子,呈电中性,此溶液的pH值称该氨基酸的等电点。
3、蛋白质的等电点:在某一PH值溶液中,蛋白质解离成阳离子和阴离子的趋势相同,成为兼性离子,呈电中性,此溶液的pH值称为该蛋白质的等电点。
4、蛋白质的变性:在某些物理因素或化学因素的作用下,蛋白质特定的空间构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。
5、酶的活性中心:酶分子中能和底物特意地结合并催化底物转化为产物的具有特定三维结构的区域称为活性中心。
辅酶或辅基参与组成酶的活性中心。
6、同工酶:同工酶是指在同种生物体内,催化同一种化学反应,但酶蛋白的分子结构和理化性质、免疫学特性都有所不同的一组酶。
7、酶的变构调节:某些特异的代谢物分子作用于酶时,以共价键的形式可逆地结合至活性中心以外的部位,使其构象改变,活性也随之改变,这种调节称为酶的变构调节。
8、共价修饰:酶蛋白多肽链上的某些残疾侧链在另一种酶的催化作用发生可逆的共价变化,从而引起酶空间结构及催化活性的改变,这种调节称为酶的化学修饰,也称共价修饰。
9、酶的竞争性抑制:竞争性抑制剂的化学结构与底物的化学结构相似,两者能够共同竞争同一种酶的活性中心,结果影响了酶与底物的结合,使有活性的酶分子数减少,导致酶促反应速度下降,这种作用称为竞争性抑制作用。
竞争性抑制作用的强弱取决于抑制剂浓度与底物浓度的相对比例。
10、底物水平磷酸化:代谢物脱氢、脱水时,引起分子内能量重新分布,形成高能化学键,将底物分子中的高能键的能量直接转移给ADP生成ATP的过程,称之为底物水平磷酸化。
11、脂肪动员:储存在脂肪库中的脂肪,在脂肪酶的作用下逐步水解为甘油和脂肪酸并释放入血以供其它组织细胞摄取利用的过程叫脂肪动员。
生化名词解释
第一章1、等电点(isoelectric point):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2、肽(peptide):是由氨基酸通过肽键缩合而形成的化合物。
3、肽键(peptide bond):是由一个氨基酸的 -羧基与另一个氨基酸的 -氨基脱水缩合而形成的化学键。
4、氨基酸的理化性质:氨基酸具有两性解离的性质;含共轭双键的氨基酸具有紫外线吸收的性质。
5、蛋白质(protein):是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物,是生命的物质基础。
6、蛋白质的理化性质:两性解离性质;胶体的性质;蛋白质空间结构破坏而引起变形;蛋白质的紫外线吸收的性质;蛋白质的呈色反应(茚三酮反应,双缩脲反应)7、肽单元:参与肽键的6个原子Cα1,C、O、N、H、Cα2位于同一平面,此同一平面上的6个原子构成肽单元。
8、模体:是蛋白子分子中具有特定空间构象和特定功能的结构成分。
一个模体有其特征性的氨基酸序列,并发挥特殊的功能。
9、结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能。
结构域是在三级结构层次上的独立功能区。
10、蛋白质的一级结构:蛋白质分子从N-端至C-端所有氨基酸的排列顺序,并且包括二硫键的位置。
11、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。
12、蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
三级结构是在二级结构的基础上形成的进一步卷曲或折叠的状态。
13、蛋白质的四级结构:是指蛋白质分子中各个亚基之间的空间排布及亚基亚基接触部位的布局和相互作用。
14、蛋白质变性:在一些理化因素的作用下,蛋白质的特定的空间构象被破坏,从而导致其理化性质改变和生物学活性丧失。
生化名词解释
1.蛋白质等电点:AA所带电荷为零时所处溶液的PH值。
2.肽键和肽链:一分子AA的羧基与另一分子AA的氨基脱水缩合形成的共价键结构即肽键。
多个AA分子脱水缩合就形成肽链。
3.肽平面:组成肽腱的四个原子相邻的两个α碳原子处于同一平面上,为刚性平面结构。
4.一级结构:指组成蛋白质的多肽链中氨基酸的排列顺序,不涉及肽链的空间排序。
5.二级结构:多肽链主链的局部空间结构,不考虑侧链的空间构象。
6.三级结构:指整个多肽链的空间结构,包括侧链在内的所有原子的空间排布,即蛋白质的三维结构。
7.四级结构:蛋白质由相同或不同的亚基以非共价键结合在一起,这种亚基间的组合方式即为蛋白质的四级结构。
8.超二级结构:相邻的二级结构单元组合在一起,相互作用,形成有规则的,在空间上能辨认的二级结构组合体,充当三级结构的构件,即超二级结构。
9.结构域:较大的球形蛋白质分子中,多肽链往往形成几个紧密的球状构象,这些球状结构间以松散的肽链相连,这些球状构象即结构域。
10.蛋白质的变性与复性:当受到某些因素影响时,维系天然构象的次级键被破坏,蛋白质失去天然构象,导致生物活性丧失及相关物理、化学性质的改变的过程为变性。
变性后蛋白质除去变性因素后,重新恢复天然构象和生物活性的过程称为蛋白质的复性。
11.分子病:由于遗传上的原因而造成蛋白质分子结构或合成量的异常所引起的疾病。
12.盐析法:在蛋白质溶液中加入大量的中性盐以破坏蛋白质胶体的稳定性使其析出。
13.别构效应:一个蛋白质与其配体结构后,蛋白质的空间构象发生变化,使它适用于功能的需要,这一类变化称为别构效应。
14.构型与构象:构型,分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构;构象,由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低、最稳定的构象是优势对象。
生化 名词解释
1. peptide unit肽单元:在多肽分子中肽键的6个原子(Cα1,C,O,N,H,Cα2)位于同一平面,被称为肽单元2. motif模体:在蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,并具有相应的功能,被称为模体。
3. 蛋白质变性: 在某些理化因素作用下,致使蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物活性,称为蛋白质变性。
4.谷胱甘肽:由谷氨酸、半胱氨酸和甘氨酸组成的三肽,半胱氨酸的巯基是该三肽的功能基团。
它是体内重要的还原剂,以保护体内蛋白质或酶分子等中的巯基免遭氧化。
5. β-pleated sheetβ折叠: 在多肽链β折叠结构中,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方。
两条以上肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,其走向可相同,也可相反。
并通过肽链间的肽键羰基氧和亚氨基氢形成氢键从而稳固β-折叠结构.6. chaperon分子伴侣: 分子伴侣是一类帮助新生多肽链正确折叠的蛋白质。
它可逆的与未折叠肽段的疏水部分结合随后松开,如此重复进行可以防止错误的聚集发生,使肽链正确折叠。
分子伴侣对于蛋白质分子中二硫键的正确形成起到重要作用。
7. protein quaternary structure四级结构:数个具有三级结构的多肽链,在三维空间作特定排布,并以非共价键维系其空间结构稳定,每一条多肽链称为亚基。
这种蛋白质分子中各个亚基的空间排布及亚基间的相互作用,称为蛋白质的四级结构。
8. 结构域:蛋白质的三级结构常可分割成1个和数个球状区域,折叠得较为紧密,各行其能,称为结构域。
9. 蛋白质等电点:在某一pH溶液中,蛋白质分子所带的正电荷和负电荷相等,净电荷为零,此溶液的pH值,即为该蛋白质的等电点。
10. α-螺旋: α-螺旋为蛋白质二级结构类型之一。
在α-螺旋中,多肽链主链围绕中心轴作顺时钟方向的螺旋式上升,即所谓右手螺旋。
生化名词解释
1、等电点(isoelectric point):在某一pH值的溶液中,氨基酸解离成阴/阳离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH值称该氨基酸的等电点。
2、肽单元(肽平面):参与肽键的6个原子——C-α1,C,O,N,H,C-α2。
位于同一平面,C-α1 和C-α2 在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成肽单元。
3、蛋白质一级结构:蛋白质分子中氨基酸的排列顺序称蛋白质的一级结构。
一级结构的主要化学键是肽键,有的还包含二硫键。
一级结构是蛋白质空间构象和特异生物学功能的基础。
4、二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
蛋白质二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲。
维持蛋白质二级结构的化学键是氢键。
5、三级结构:多肽链中全部氨基酸残基的相对空间位置,也就是整条多肽链所有原子在三维空间的排布位置。
6、亚基:在蛋白质的四级结构中,每个具有独立三级结构的多肽链就是一个亚基,亚基与亚基间呈特定的三维空间排布,并以非共价键相连接。
7、四级结构:由两条或两条以上多肽链组成的蛋白质,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接,这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
8、α-螺旋(α-helix):是蛋白质多肽链主链二级结构的主要类型之一,肽链主链骨架围绕中心轴盘绕成有规律的右手螺旋状。
9、β-折叠(βpleated sheet):是蛋白质二级结构的一种,其主要特征是:①多肽链充分伸展,每个肽单元以C-α为旋转点,依次折叠成锯齿结构;②氨基酸侧链交替地位于锯齿状结构的上、下方;③两条以上肽链或一条肽链内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,从而稳固β-折叠结构;④肽链有顺式平行和反式平行两种。
生化:名词解释大全
生化:名词解释大全生化学是一门研究生命体系化学成分和化学过程的学科。
在这个领域中,蛋白质和核酸是两个重要的研究对象。
下面是一些与蛋白质和核酸相关的重要术语和定义。
第一章:蛋白质1.两性离子(n)是指在特定pH值下,蛋白质分子的某些氨基酸会同时带有正负电荷。
2.必需氨基酸(essential amino acid)是指人体无法自行合成的氨基酸,必须从食物中获得。
3.等电点(isoelectric point,pI)是指蛋白质分子带有零电荷的pH值。
4.稀有氨基酸(rare amino acid)是指在自然界中含量较少的氨基酸,如色氨酸和甲硫氨酸等。
5.非蛋白质氨基酸(nonprotein amino acid)是指不属于蛋白质结构的氨基酸,如肽类和生物碱等。
6.构型(n)是指蛋白质分子中氨基酸的空间排列方式。
7.蛋白质的一级结构(protein primary structure)是指由氨基酸序列构成的线性结构。
8.构象(n)是指蛋白质分子中氨基酸的三维空间排列方式。
9.蛋白质的二级结构(protein secondary structure)是指由氢键和其他键连接的多肽链的局部折叠形成的结构,如α-螺旋和β-折叠等。
10.结构域(domain)是指蛋白质分子中具有独立结构和功能的部分。
11.蛋白质的三级结构(protein tertiary structure)是指由各种键连接的多个结构域的整体折叠形成的结构。
12.氢键(hydrogen bond)是一种弱键,通常用于连接蛋白质分子中的氨基酸。
13.蛋白质的四级结构(protein quaternary structure)是指由多个蛋白质分子相互作用形成的复合物。
14.离子键(ionic bond)是一种强键,通常用于连接蛋白质分子中的离子。
15.超二级结构(super-secondary structure)是指由多个二级结构域相互作用形成的结构。
生化名词解释
1.当氨基酸分子带有相等正、负电荷,即所带净电荷为零时,溶液的pH值称为该氨基酸的等电点(pI)。
2.两氨基酸单位之间的酰胺键(-CO-NH-),称为肽键.3.蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence)。
4.蛋白质的二级结构(secondary structure)多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。
维系蛋白质二级结构的主要化学键是氢键。
5.肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内6.β-折叠是由若干肽段或肽链排列起来所形成的扇面状片层构象。
7.模序是指在多肽链内顺序上相互邻近的二级结构肽段常常在空间折叠中靠近,彼此相互作用,形成一个具有特殊功能的空间结构8.整条多肽链中所有原子在三维空间的排布位置。
9.结构域也是蛋白质构象中二级结构与三级结构之间的一个层次。
在较大的蛋白质分子中,蛋白质三级结构常可分割成一个或数个球状或纤维状的区域,每个区域折叠得较为紧密,有独特的空间构象,各行其功能,称为结构域。
(10.蛋白质的四级结构是指亚基的立体排布、相互作用及接触部位的布局。
11.协同效应(cooperativity)的定义是指一个亚基与其配体结合后,能影响寡聚体中另一亚基与配体的结合能力。
如果是促进作用则称为正协同效应,反之称为负协同效应12.当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子,此时溶液的pH值称为蛋白质的等电点(isoelectric point,简写pI)13.天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,称之为蛋白质的变性作用14.将接近于等电点附近的蛋白质溶液加热,可使蛋白质可形成比较坚固的凝块,称蛋白质凝固15.在蛋白质溶液中加入大量的中性盐以破坏蛋白质的胶体稳定性而使其析出,这种方法称为盐析。
生化名词解释
一1.结构域:蛋白质的三级结构常可分割成1个和数个球状区域,折叠得较为紧密,各行其功能,称为结构域。
2.蛋白质的等电点:在某一pH值溶液中,蛋白质分子解离成的正电荷和负电荷相符,其净电荷为零,此溶液的pH值,即为该蛋白质的等电点。
3.辅基:结合蛋白质中的非蛋白部分被称为辅基,绝大部分辅基是通过非共份健与蛋白部分相连,辅基与该蛋白质的功能密切相关。
4.a—螺旋:a—螺旋为蛋白质二级结构类型之一。
在。
—螺旋中,多肽链主链围绕中心轴作顺时针方向的螺旋式上升,即所谓右手螺旋。
每3.6个氨基酸残基上升一圈,氨基酸残基的侧链伸向螺旋的外侧。
—螺旋的稳定依靠上下肽键之间所形成的氢键维系。
5.变构效应:蛋白质空间构象的改变伴随其功能的变化,称为变构效应。
具有变构效应的蛋白质称为变构蛋白,常有四级结构。
以血红蛋白为例,一分子O2与一个血红素辅基结合,引起亚基构象变化,进而引进相邻亚基构象变化,更易与O2结合。
6.蛋白质三级结构:蛋白质三级结构是指整条多肽链中全部氨基酸残基的相对空间位置,也即整条多肽链所有原子在三维空间的排布位置。
7.肽键:一个氨基酸的氨基与另一个氨基酸的羧基脱去1分子H2O,所形成的酰胺键称为肽键。
肽键的键长为0.132nm,具有一定程度的双键性质。
参与肽键的6个原子位于同一平面。
二1.核小体:核小体由DNA和组蛋白共同构成。
组蛋白分子共有5种,分别称为H1,H2A,H2B,H3和H4。
各2分子的H2A,H2B,H3和H4共同构成了核小体的核心,DNA双螺旋分子缠绕在这一核心上构成了核小体。
2.碱基互补:在DNA双链结构中,碱基位于内侧,两条链的碱基之间以氢键相接触。
由于碱基结构不同造成了其形成氢键的能力不同,因此产生了固有的配对方式。
即腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G=C)。
这种配对方式称为碱基互补。
3.脱氧核苷酸:脱氧核苷与磷酸通过酯键结合即构成脱氧核苷酸,它们是构成DNA的基本结构单位,包括dAMP、dGMP、dTMP、dCMP四种。
生化名词解释
1、核酸的增色效应;核酸变性后,增加了A260的光吸收称为增色效应。
变性后DNA溶液的紫外线吸收具有增强的效应,变性DNA的双链解开,碱基中电子的相互作用有利于紫外线吸收,故而产生增色效应。
一般以260nm下的紫外线吸收光度作为此效应的指标,DNA变性后260nm 处的吸收光度通常有明显增加,但不同来源DNA的变化不一。
核酸的减色效应;双螺旋结构和3’,5’-磷酸二酯键的形成都会减弱碱基对紫外光的吸收,这种效应称减色效应DNA复性后,其溶液的A260减小,最多可减小至变性前的A260,这现象称减色效应。
2、核酸的 Tm 值;通常将DNA的变性达到50%时,即增色效应达到一半时的温度称为DNA的解链温度(Tm),Tm也称熔解温度或DNA的熔点。
DNA的Tm值一般在70-85℃之间。
加热可以使DNA变性,DNA热变性是在很狭的温度范围内突发的跃变过程,很像结晶达到熔点时的融化现象,故名熔解温度,用Tm表示。
Tm定义中包含了使被测DNA50%的双螺旋结构遭到破坏,即增色效应达到一半的温度作为Tm的含义,不同来源的DNATm值一般为70~85℃。
3、DNA 双螺旋; DNA分子由两条反向平行的多核苷酸链构成双螺旋结构。
两条链围绕同一个“中心轴”形成右手螺旋,在螺旋中形成大沟和小沟两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,形成一个大沟和小沟,大沟位于相毗邻的双股之间,而小沟位于双螺旋的互补链之间。
磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T,G-C配对,碱基对以氢键维系,配对的碱基处于同一个平面上,与螺旋轴垂直。
4、核酸分子杂交;把不同的DNA或RNA链放在同一溶液中作变性处理,然后复性,不同来源的DNA或RNA 单链之间就按碱基配对原则可能形成局部的双链,这一过程称为分子杂交。
根据变性和复性的原理,将不同来源的DNA变性,若这些异源DNA之间在某些区域有相同的序列,则退火条件下能形成DNA-DNA异源双链,或将变性的单链DNA与RNA经复性处理形成DNA-RNA杂合双链,这种过程称为分子杂交5、核小体;真核生物染色质的基本结构单位,是DNA绕组蛋白核心盘旋所形成的串珠结构是染色体形成的基本结构单位,是由组蛋白形成的寡聚蛋白体核心和盘绕在其上的DNA组成6、退火;热变性DNA在缓慢冷却时,可以复性,这种复性成为退火7、核酸变性;核酸双螺旋区的H键断裂,变成单链,没有共价键的断裂。
生化名词解释
名词解释1、呼吸链:呼吸链又叫电子传递链,是由位于线粒体内膜(真核)中的一系列电子传递体按标准氧化还原电位,由低到高顺序排列组成的一种能量转换体系。
2、生物氧化:能源物质在活细胞中氧化分解,释放化学能并转化为生物能的生化过程,称 为生物氧化,又叫细胞氧化或细胞呼吸。
3、联合脱氨基作用:将转氨基作用与谷氨酸氧化脱氨基作用联合进行,促进各种氨基酸脱去氨基生成α-酮酸和氨的过程称氨基酸的联合脱氨基作用。
例如:丙氨酸的联合脱氨基作用。
4、DNA 内切酶:具有识别双链DNA 分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切酶统称为限制性核酸内切酶。
5、酵解与发酵:.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸降解,生成丙酮酸并产生ATP的代谢过程。
6、分子杂交:不同来源的变性DNA ,若彼此之间有部分互补的核苷酸顺序,当它们在同一溶液中进行热变性和退火处理时,可以得到分子间部分配对的缔合双链,此过程叫分子杂交。
7、增色效应:伴随着变性,核酸的紫外吸收值增加,此现象为增色现象。
减色效应:复制过程中,紫外吸收值降低,次现象为减色现象。
8、逆转录:以RNA 为模板,依靠逆转录酶的作用,以四种脱氧核苷三磷酸(dNTP)为底物,产生DNA 链。
9、等电点:分子所带正负电荷相等,净电荷为零的环境PH 成为等电点。
10、活性中心:酶分子上直接参与底物的结合并对其进行催化的区域。
11、酶的活性中心:酶分子上由与催化功能有关的原子或基团构成的特殊的空间结构,称为酶的活性中心C COOH CH COOH CH 2C O CH 2CH 2COOH CH COOH NH 2CH 2谷氨NH 2CH 3CH 3O 丙氨酸丙酮酸谷丙转或或NADPH H+++H +NH 3酸脱氢酶α-酮戊二酸。
生化名词解释
两性离子(dipolarion):氨基酸分子含有一个正电荷和一个负电荷。
等电点(isoelectric point, 简写为pI ):正负电荷数相等,即静电荷为零时溶液的pH值。
在等电点时氨基酸的溶解度最低。
盐析(salting out):在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质(破坏蛋白质分子的水化层),使蛋白质从溶液中沉淀析出,称为盐析(salt precipitation)。
盐溶(salting in):低浓度时,中性盐可以增加蛋白质的溶解度,这种现象称为盐溶(salting in)。
盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电表层使蛋白质分子彼此排斥,而蛋白质分子与水分子间的相互作用却加强,因而溶解度提高。
构型(configuration):是指在立体异构体中取代原子或基团在空间的取向。
构象(conformation):是指这些取代基团当单键旋转时可能形成的不同的立体结构。
超二级结构(super-secondary struture):蛋白质中相邻的二级结构单位(即单个α-螺旋或β-折叠或β-转角)组合在一起,形成有规则的、在空间上能辩认的二级结构组合体称为蛋白质的超二级结构基本组合方式:αα;β×β;βββ结构域(structure domain):在二级结构的基础上,多肽进一步卷曲折叠成几个相对独立、近似球形的三维实体,再由两个或两个以上这样的三维实体缔合成三级结构,这种相对独立的三维实体称为结构域。
蛋白质一级结构(protein primary structure):是指多肽链的氨基酸序列,也包括多肽链中连接氨基酸残基的共价键,主要是肽键和二硫键。
蛋白质二级结构(protein secondary structure):多肽链借助氢键排列成有规则的α螺旋和β折叠等元件蛋白质的三级结构(protein tertiary structure):多肽键在二级结构的基础上,通过侧链基团的相互作用进一步卷曲折叠,借助次级键维系使α-螺旋、β-折叠片、β-转角等二级结构相互配置而形成特定的构象。
生化名词解释
1.肽键:一个氨基酸的氨基与另一个氨基酸的基脱去一分子的水,所形成的酰胺键称为肽键。
2.蛋白质变性:在某些理化因素的作用下,使蛋白质的空间构象破坏,进而改变蛋白质的理化性质和生物活性,称为蛋白质变性。
3.蛋白质的等电点:在某一PH溶液中,蛋白质分子解离成正电荷和负电荷的趋势相等,其净电荷为零,此时溶液的PH为该蛋白质的等电点。
4.α-螺旋:α-螺旋为蛋白质二级结构。
在α-螺旋中,多肽链主链围绕中心轴作有规律的螺旋式上升,螺旋的走向为顺时针方向,即所谓的右手螺旋。
氨基酸侧链伸向螺旋外侧。
每3.6个氨基酸残基螺旋上升一圈。
α-螺旋的稳定依靠上下肽键之间所形成的氢键维系。
5.蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间排布,即整条肽链所有原子在三维空间的排布位置。
蛋白质三级结构的形成和稳定主要靠次级键,包括氢键、离子键、疏水作用、范德华力。
6.核酸的一级结构:是指从5'-末端到3'-末端核酸或脱氧核苷酸的排列顺序。
7.DNA的变性:当DNA受到某些理化因素作用时,DNA双链互补碱基对之间的氢键和相邻碱基之间的堆积力受到破坏,DNA双链被解开成单链,逐步形成无规则线团构象的过程。
DNA 变性的本质是破坏互补碱基间的氢键,并未破坏磷酸二酯键,因此DNA的变性仅破坏DNA的空间结构,一级结构不受影响。
8.T m值:是指DNA分子达到50%解链时所需的温度。
T m值的大小与DNA分子中的GC含量有关,GC含量越高T m值则越大。
10.维生素:维生素是维持机体正常代谢和健康所必需的,但体内不能合成或合成很少,必须由食物供给的一类小分子有机化合物。
11.脂溶性维生素:脂溶性维生素属于疏水性化合物,不溶于水,而溶于脂类及有机溶剂,在食物中与脂类共存,随脂类物质一同被吸收。
当脂类吸收障碍时易导致其缺乏。
12.视紫红质:视紫红质是视网膜杆状细胞内能感受弱光或暗光的一种由11-顺视黄醛和不同的视蛋白组成的色素结合蛋白质。
生化名词解释大全
生化名词解释大全1. DNA:脱氧核糖核酸,生物体的遗传物质,由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、鸟嘌呤)组成的双链螺旋结构。
2. RNA:核糖核酸,参与蛋白质的合成和转运,可以分为信使RNA(mRNA)、核糖体RNA(rRNA)和转移RNA (tRNA)。
3. 蛋白质:多肽链或多种肽链编织而成,具有广泛的功能,如结构支持、酶催化和信号传递。
4. 酶:催化化学反应的蛋白质,通过降低反应活化能来加速反应速率。
5. 细胞膜:包围和保护细胞的薄膜,由脂质双层和蛋白质构成。
6. 生物催化:生物体利用酶促进化学反应发生的过程。
7. 代谢:生物体所进行的化学反应,包括合成物质和分解物质两个方面。
8. 基因:DNA上的功能区段,确定了特定蛋白质的合成。
9. 氨基酸:蛋白质的构成单位,共有20种不同的氨基酸。
10. 异源重组:将来自不同生物体的DNA片段重新组合,形成新的基因组合。
11. 基因工程:利用基因工具和技术对生物体的基因进行改造,实现特定目标。
12. 克隆:复制生物个体或基因的过程。
13. 基因表达:基因的信息从DNA转录为mRNA,再由mRNA翻译为蛋白质的过程。
14. 遗传:生物体通过基因的传递将遗传信息传递给下一代。
15. 内质网:细胞内一种网状结构,参与蛋白质合成和修饰。
16. 线粒体:细胞内的双层膜结构,参与细胞呼吸和能量产生。
17. 基因突变:DNA序列发生改变,导致基因功能或表达出现不同。
18. 病原体:引起疾病的微生物或病毒。
19. 感染:病原体侵入和繁殖在宿主体内,导致宿主出现病症。
20. 免疫系统:人体防御病原体和异物入侵的生物系统。
21. 抗生素:一类能抑制或杀死细菌生长的化学物质。
22. 肥料:提供植物所需养分的物质,促进植物生长。
23. 基因组:一个生物体的所有基因的集合。
24. 表型:生物体可观察到的形态特征,由基因和环境共同决定。
25. DNA修复:维护DNA完整性的一系列修复机制。
生化名词解释
A【氨同化】生物体将氨(无机形态的氮素)转变为有机氮(主要是氨基酸)的过程,是氮同化的关键内容。
氨同化的核心问题是氨如何掺入到碳骨架中,其共同点是还原性的氮素以NH3(或HN4+)的形式被同化。
B【摆动性】一种氨基酸的tRNA上的反密码子可以同该氨基酸的几种密码子配对结合。
摆动学说认为,在密码子和反密码子之间的碱基配对时,密码子的第一、二碱基严格遵守标准的碱基配对规律;但是第三位碱基配对时不那么严格,具有一定的自由度,除标准碱基配对外,还有非标准碱基配对。
【半保留复制】在DNA复制过程中,DNA分子的两条多核苷酸链彼此分离,然后以每条链为模板,按A与T、G与C碱基互补配对的原则,在DNA聚合酶的催化下,合成相应新的互补多核苷酸链,由此便合成了两个新DNA分子。
这样,新形成的两个子代DNA分子与原来的DNA分子的碱基序列完全相同。
子代双螺旋DNA的一条链来自亲代,而另一条则是与亲代链互补的新链。
【半不连续复制】DNA复制时,以5'→3'方向模板链合成的新链,其走向也是5'→3',但这条新链与复制叉前进的方向相反,而且是分段、倒退着合成,因而它的合成是不连续的;以3'→5'方向模板链合成的新链是连续的。
就单个复制叉而言,DNA的合成是半不连续复制。
【苯丙酮酸尿症】PKU患者由于先天性缺乏苯丙氨酸羟化酶,苯丙氨酸不能正常地转变为酪氨酸。
积累的苯丙氨酸通过另外一条不常用的途经分解,即苯丙氨酸与α-酮戊二酸(或丙酮酸)发生转氨反应,生成苯丙酮酸,苯丙酮酸还可进一步代谢形成苯乙酸或苯乳酸。
这些苯丙氨酸异常分解的产物在血液中积累,最后随尿排出,即产生苯丙酮酸尿症。
【比活性】指每mg蛋白质所具有的活性,用"活力单位数/每mg蛋白质"表示。
比活性高,表明酶的纯度高。
【必需氨基酸】从营养学范畴,必需氨基酸是动物必须从食物中获取的氨基酸,因为动物体内不具备合成这类氨基酸的能力。
生化名词解释
生化名词解释1多羟基醛或酮及其缩聚物和衍生物的总称。
2构型:原子或基团在空间的相对分布或排列。
涉及共价键的断裂。
3构象:当单键旋转时,取代基团可能形成不同的立体结构。
不涉及共价键的断裂。
4差向异构体:仅一个手性碳原子构型不同的非对映异构体5必需脂肪酸:人体不能合成,必需由膳食提供的对人体功能必不可少的多不饱和脂肪酸。
6自由基:分子/原子/基团中有未配对电子的一类物质。
7抗氧化剂:具有还原性、能抑制靶分子自动氧化的物质。
8等电点:当溶液为某一pH值时,AA主要以兼性离子的形式存在,分子中所含的正负电荷数目相等,净电荷为0。
这一pH值即为AA的等电点。
9均一蛋白质:对任一种给定的蛋白质,其所有分子在AA组成和顺序以及肽链的长度方面都应是相同的,即所谓均一的蛋白质。
10一级结构:肽链中的氨基酸排列顺序。
11二级结构:指肽链的主链在空间的排列,或规则的几何走向、旋转及折叠。
12超二级结构:若干相邻的二级结构单元按照一定规律有规则组合在一起,相互作用,形成在空间构象上可彼此区别的二级结构组合单位。
13结构域:存在于球状蛋白质分子中的两个或多个相对独立的、在空间上能辨认的三维实体。
14三级结构:已由二级结构元件构建成的总三维结构,包括一级结构中相距较远的肽段间的几何相互关系和侧链在三维空间中彼此间的相互关系。
15四级结构:指由多条各自具有一、二、三级结构的肽链通过非共价键连接起来的结构形式。
15亚基:四级结构的蛋白质中每个球状蛋白质。
具有独立三级结构的肽链。
亚基有时也称单体。
15单体蛋白质:仅由一个亚基组成并因此无四级结构的蛋白质。
15原聚体、聚体:对称的寡聚蛋白质分子中的两个或多个不对称的相同结构。
16氨基酸残基:肽链中的氨基酸由于参加肽键的形成已经不是原来完整的分子,因此称为氨基酸残基。
16肽基、肽单位:肽链中的酰胺基(-CO-NH-)。
16:肽:氨基酸的线性聚合物,因此也常称肽链。
16:共价主链:由-N-Cα-C-序列重复排列而成的肽链骨干。
生化名词解释
58.一碳单位:指具有一个碳原子的基团
59.从头合成:生物体内用简单的前体物质合成生物分子的途径
60.补救合成:将已分解的生物体的一部分物质加以利用,再次进行该物质的生物合成的一个途径
61.复制:以亲代DNA分子为模板合成一个新的子代DNA分子的过程
62.转录:遗传信息由DNA转换到RNA的过程
31.糖原的合成与分解:合成:指葡萄糖合成糖原的过程.分解:肝糖原分解成为 葡萄糖,是一个非耗能过程.
32.三羧酸循环:是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸
33.乳酸循环:肌肉收缩通过糖酵解生成乳酸。肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝脏内异生为葡萄糖。葡萄糖释入血液后又被肌肉摄取,这就构成了一个循环(肌肉-肝脏-肌肉),此循环称为乳酸循环。
15.DNA的变性:DNA变性指理化因素下,DNA分子中氢键断裂,双螺旋结构松开,形成无规则的单键线状结构.
16.退火:变性DNA有适应条件下,两条彼此分开后的单链从新缔合成双螺旋结构。称为DNA的复性退火
17.酶:由活细胞产生的具有催化功能的生物催化剂.
18.结合酶:由蛋白质和非蛋白质成分组成,其中蛋白质部分称酶蛋白,非蛋白质部分称辅酶因子.
63.翻译:转录合成mRNA可以作为模版合成蛋白质.
64.逆转录:也称反转录以RNA为模板合成DNA的过程,是RNA病毒的复制形式,需逆转录酶的催化种
65.半保留复制:一种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板
66.前导链和后随链:
9.蛋白质的电泳:在同一PH环境下,由于各种蛋白质所带电荷的性质和数量不同分子量大小不一,因此它们在同一电场中移动速率不同.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释总结:1. 遗传密码:mRNA分子上从5'→3'方向,由起始密码子AUG开始,每3个核苷酸组成的三联体,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码,也叫密码子。
2. 别构酶:又称为变构酶,是一类重要的调节酶。
其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。
通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。
3. 酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β-羟基丁酸及丙酮统称为酮体。
在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。
4. 糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。
5. EMP途径:又称糖酵解途径。
指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量ATP和NADH+H+的过程。
是绝大多数生物所共有的一条主流代谢途径。
6. 糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA 循环彻底氧化,生成C02和水,并产生大量能量的过程。
7. 氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物ATP中,这种伴随放能的氧化作用而使ADP磷酸化生成ATP的过程称为氧化磷酸化。
根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。
8. 三羧酸循环:又称柠檬酸循环、TCA循环,是糖有氧氧化的第三个阶段,由乙酰辅酶A和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。
9. 糖异生:由非糖物质转变为葡萄糖或糖原的过程。
糖异生作用的途径基本上是糖无氧分解的逆过程---除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。
10. 乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。
剧烈运动后,骨骼肌中的糖经无氧分解产生大量的乳酸,乳酸可通过细胞膜弥散入血,通过血液循环运至肝脏,经糖异生作用再转变为葡萄糖,葡萄糖经血液循环又可被运送到肌肉组织利用。
11. 血糖:指血液当中的葡萄糖,主要来源是膳食中消化吸收入血的葡萄糖及肝糖原分解产生的葡萄糖,另外还有糖异生作用由中间代谢物合成的葡萄糖。
12. 退火:热变性的DNA分子溶液,在缓慢冷却的情况下,DNA单链又重新配对复性的情况称为退火。
13. 引发体:DNA的生物合成起始时由DNA模板链、多种蛋白因子和酶(包括引发酶,解旋酶等)所形成的复合体,功能是合成引物和起始DNA的生物合成。
14. 维生素:是维持机体正常生命活动必需的一类小分子有机物质。
在体内的含量很少,不能作为能量物质和结构物质,主要功能是对物质代谢过程起调节作用,在机体的生长、代谢、发育过程中发挥着重要的作用。
维生素在体内不能合成,或合成的量不能满足机体的需要,所以必需从食物中摄取。
15. 分子杂交:不同来源的DNA分子放在一起加热变性,然后慢慢冷却,让其复性。
若这些异源DNA之间有互补的序列或部分互补的序列,则复性时会形成杂交分子。
这种在退火条件下,不同来源的DNA互补区形成DNA-DNA杂合双链、或DNA单链和RNA的互补区形成DNA-RNA杂合双链的过程称分子杂交。
16. 核糖体:核糖体是细胞内一种核糖核蛋白颗粒,主要由rRNA和蛋白质构成,其功能是按照mRNA上的遗传密码将氨基酸合成蛋白质多肽链,是细胞内蛋白质合成的分子机器。
17. 基因:是指DNA分子上具有遗传效应的特定核苷酸序列的总称,是DNA分子中最小的功能单位,基因包含于DNA大分子中,存在于染色体上,基因在遗传中具有独立性和完整性。
18. 蛋白质的二级结构:指蛋白质分子多肽链的主链骨架靠氢键在空间盘曲折叠形成的有规则的局部空间结构。
主要形式有α-螺旋、β-折叠、β-转角、无规卷曲等。
19. 比活力:是表示酶制剂纯度的一个指标,指每毫克酶蛋白(或每毫克蛋白氮)所含的酶活力单位数(有时也用每克酶制剂或每毫升酶制剂含多少活力单位来表示),即:比活力=活力单位数/酶蛋白(氮)毫克数。
20. 0.14摩尔法:一种分离提取DNP和RNP的方法,DNP的溶解度在低浓度盐溶液中随盐浓度的增加而增加,在1mol/L的NaCl溶液中溶解度比在纯水中高2倍,而在0.14mol/L的NaCl溶液中的溶解度最低,而RNP在溶液中的溶解度受盐浓度的影响较小,在0.14mol/L 的NaCl溶液中溶解度仍较大。
因此,在核酸分离提取时,常用0.14mol/L的NaCl溶液来分离提取DNP和RNP。
此即0.14摩尔法。
21. 同功酶:催化相同的化学反应,但具有不同分子结构的一组酶。
同一种属不同个体、同一个体的不同组织和器官、不同细胞、同一细胞的不同亚细胞结构、甚至在生物生长发育的不同时期和不同条件下,都有不同的同功酶分布。
22. 中间产物学说:中间产物学说是目前公认的用来解释酶降低活化能、加速化学反应的原理的学说。
该学说认为,在酶促反应中,底物先与酶结合形成不稳定的中间物,然后再分解释放出酶与产物。
酶和底物形成过渡态的中间物时,要释放出一部分结合能,从而使得过渡态的中间物处于较低的能及,使整个反应的活化能降低。
23. 呼吸链:又称电子传递链,是一系列电子传递体按对电子亲和力逐渐升高的顺序组成的电子传递系统,所有组成成分都嵌于线粒体内膜。
生物氧化产生的氢和电子通过电子传递链传递给氧,产生的自由能可以通过与磷酸化作用偶联产生ATP。
24. 冈崎片段:DNA复制合成时,由于DNA聚合酶的特性,后随链不能连续复制,只能一段一段地复制,然后连接成完整的DNA链。
这种不连续复制而合成的DNA片段称为冈崎片段。
25. 联合脱氨基作用:是体内氨基酸分解代谢主要的脱氨方式。
主要有两种反应途径:一是由L-谷氨酸脱氢酶所催化的氧化脱氨基作用和转氨酶催化的转氨基作用联合脱去氨基;二是由L-谷氨酸脱氢酶所催化的氧化脱氨基作用和嘌呤核苷酸循环联合作用脱去氨基。
26. 探针:人工制成的放射性同位素标记的已知核苷酸顺序的DNA小片段,用于检测未知DNA分子中是否有同源性区段。
27. 酶的活性中心:酶分子上的与酶活性(催化作用、结合作用)有关的必需基团由于肽链的折叠、盘绕在空间位置上相互靠近,形成具有一定空间结构的区域,参与酶促反应,这一区域称为酶的活性中心。
28. 磷氧比:氧化磷酸化过程中某一代谢过程消耗无机磷酸和氧的比值。
29. 底物水平磷酸化:物质在生物氧化过程中,由于分子内部能量的重排生成的含有高能键的化合物,其高能键中的能量可转移给ADP或GDP合成ATP和GTP,这种产生ATP等高能分子的方式称为底物水平磷酸化。
30. 电子传递磷酸化:生物氧化过程中产生的电子或氢经电子传递链传递给氧时可生成很多能量,这一过程可与磷酸化偶联从而将一部分能量转移给ADP生成ATP,这种ATP的生成机制称为电子传递磷酸化。
31. 细胞色素:一类以鉄卟啉为辅基的蛋白质,在呼吸链中,依靠鉄的化合价变化传递电子。
36.尿素循环:在肝脏中,由两分子氨一分子二氧化碳在相关酶的催化作用下,生成尿素的过程叫尿素循环。
37.补救途径:利用体内游离的嘌呤或嘌呤核苷、嘧啶或嘧啶核苷经过简单的反应过程,合成嘌呤或嘧啶核苷酸的过程。
此合成途径主要在脑、骨髓中进行1、何谓三羧酸循环?它有何特点和生物学意义?特点。
1。
乙酰CoA进入三羧酸循环后,是六碳三羧酸反应2。
在整个循环中消耗2分子水,1分子用于合成柠檬酸,一份子用于延胡索酸的水和作用。
3在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。
所以每循环一次,净结果为1个乙酰基通过两次脱羧而被消耗。
循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源。
4在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP。
5三羧酸循环严格需要氧气6。
琥珀CoA生成琥珀酸伴随着底物磷酸化水平生成一分子GTP,能量来自琥珀酰CoA的高能硫酯键意义。
1三羧酸循环是机体将糖或者其他物质氧化而获得能量的最有效方式2,三羧酸循环是糖,脂和蛋白质3大类物质代谢和转化的枢纽。
2、磷酸戊糖途径有何特点?其生物学意义何在?特点:无ATP生成,不是机体产能的方式。
1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3- 磷酸甘油醛和6-磷酸果糖经基团转移反应生成。
2)提供NADPH a.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;α-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成相应的氨基酸。
b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。
c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。
物学意义1,产生大量的NADPH,为细胞的各种合成反应提供还原力2,1 产生NADPH(注意:不是NADH!NADPH 不参与呼吸链)2 生成磷酸核糖,为核酸代谢做物质准备3 分解戊糖意义:1 补充糖酵解2 氧化阶段产生NADPH,促进脂肪酸和固醇合成。
3 非氧化阶段产生大量中间产物为其它代谢提供原料3、糖酵解和发酵有何异同?糖酵解过程需要那些维生素或维生素衍生物参与?1. 相同点:(1)都要进行以下三个阶段:葡萄糖——>1,6-二磷酸果糖;1,6-二磷酸果糖——>3-磷酸甘油醛;3-磷酸甘油醛——>丙酮酸。
(2)都在细胞质中进行。
不同点:通常所说的糖酵解就是葡萄糖——>丙酮酸阶段。
根据氢受体的不同可以把发酵分为两类:(1)丙酮酸接受来自3-磷酸甘油醛脱下的一对氢生成乳酸的过程称为乳酸发酵。
(有时也将动物体内的这一过程称为酵解。
)(2)丙酮酸脱羧后的产物乙醛接受来自3-磷酸甘油醛脱下的一对氢生成乙醇的过程称为酒精发酵。
糖酵解过程需要的维生素或维生素衍生物有:NAD+。
什么是乙醛酸循环?有何意义?在异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程。