2016年重庆市数学中考试卷及参考答案PDF(a卷)
2016年重庆市中考数学试卷-答案
1 / 11
C.
【考点】相似三角形的性质
9.【答案】A
【解析】AB 为直径,ACB 90 , AC BC 2 ,△ACB 为等腰直角三角形,OC AB ,
△AOC 和△BOC 都是等腰直角三角形,S AOC S BOC , OA
2 AC 1, 2
S阴影部分
2
2
【考点】圆周角定理 16.【答案】 1
6
【解析】根据题意画树状图如下
由树形图可知,共有 12 种情况. 正比例函数 y=kx 的图像经过第三、第一象限,k 0 , k mn ,mn 0 , 符合条件的情况共有 2 种,正比例函数 y=kx 的图像经过第三、第一象限的概率是 2 = 1 .
2
2
故选 B.
【考点】解分式方程,解一元一次不等式组
2 / 11
第Ⅱ卷
二、填空题 13.【答案】 6.05104 【解析】 60500 6.05104 . 【考点】科学计数法 14.【答案】3 【解析】 4 (2)0 2 1 3 .
【考点】实数的运算
15.【答案】60
【解析】 ACB 1 AOB 1 120 60 .
2016年重庆市中考数学试卷A卷
重庆市2016年初中毕业暨高中招生考试数 学 试 题 (A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试题卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括做辅助线)一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线c bx ax y ++=2)0(≠a 的顶点坐标为)44,2(2a b ac a b --,对称轴为ab x 2-=一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.在实数﹣2,2,0,﹣1中,最小的数是A .﹣2B .2C .0D .﹣12.下列图形中是轴对称图形的是A .B .C .D .3.计算23a a ⋅正确的是A .aB .5aC .6aD .9a4.下列调查中,最适合采用全面调查(普查)方式的是A .对重庆市辖区内长江流域水质情况的调查B .对乘坐飞机的旅客是否携带违禁物品的调查C .对一个社区每天丢弃塑料袋数量的调查D .对重庆电视台“天天630”栏目收视率的调查〔机密〕2016年6月13日11:00前5.如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于A .120°B .110°C .100°D .80°6.若2=a ,1-=b ,则32++b a 的值为A .﹣1B .3C .6D .5 7.函数21+=x y 中,x 的取值范围是 A .0≠x B .x >﹣2 C .x <﹣2 D .x ≠﹣28.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为A .1:2B .1:3C .1:4D .1:169.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC=BC =2,则图中阴影部分的面积是A .4π B .421π+ C .2π D .221π+ 10.下列图形都是由同样大小的小圆圈按一定规律所组成的,一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A .64B .77C .80D .8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为(参考数据:sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)A .8.1米B .17.2米C .19.7米D .25.5米 5题图 9题图 11题图 10题图12.从﹣3,﹣1,21,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎪⎩⎪⎨⎧-≥+03)72(31<a x x 无解,且使关于x 的分式方程3-x x ﹣132-=--x a 有整数解,那么这5个数中所有满足条件的a 的值之和是A .﹣3B .﹣2C .23-D .21 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为 .14.计算:=-+0)2(4 .15.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB = 度.16.从数﹣2,﹣,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k=mn ,则正比例函数y=kx的图象经过第三、第一象限的概率是 . 17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.18.如图,正方形ABCD 中,对角线AC ,BD 相交于点O , DE平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE′,点F 是DE 的中点,连接AF ,BF ,E′F .若AE =.则四边形ABFE′的面积是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 19.如图,点A ,B ,C ,D 在同一条直线上,CE ∥DF ,EC=BD ,AC=FD .求证:AE=FB .15题图 19题图17题图 18题图20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题..卡.中对应的位置上. 21.计算:(1))2()(2b a b b a +-+ (2)1)1122(2+-+-++-x x x x x x22.在平面直角坐标系中,一次函数)0(≠+=a b ax y 的图形与反比例函数)0(≠=x xk y 的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH=3,tan ∠AOH =,点B 的坐标为(m ,﹣2).(1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a %出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a %,且储备猪肉的销量占总销量的43,两种猪肉销售的总金额比5月20日提高了101a %,求a 的值.七年级部分学生阅读中外名著本数条形统计图 22题图 20题图24.我们知道,任意一个正整数n 都可以进行这样的分解:q p n ⨯=(q p ,是正整数,且q p ≤),在n 的所有这种分解中,如果q p ,两因数之差的绝对值最小,我们就称q p n ⨯=是n 的最佳分解.并规定:q p n F =)(.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以43)12(=F . (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有1)(=m F ;(2)如果一个两位正整数t ,y x t +=10(91≤≤≤y x ,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中)(t F 的最大值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题..卡.中对应的位置上. 25.在△ABC 中,∠B =45°,∠C =30°,点D 是BC 上一点,连接AD ,过点A 作AG ⊥AD ,在AG 上取点F ,连接DF .延长DA 至E ,使AE=AF ,连接EG ,DG ,且GE=DF .(1)若AB =22,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD =21CG ; (3)如图2,当点G 在AC 的垂直平分线上时,直接写出CGAB 的值.25题图2 25题图126.如图1,在平面直角坐标系中,抛物线3332312++-=x x y 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,抛物线的顶点为点E .(1)判断△ABC 的形状,并说明理由;(2)经过B ,C 两点的直线交抛物线的对称轴于点D ,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E′,点A 的对应点为点A′,将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A ,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A′,C 1E′,△A′C 1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.26题备用图 26题图1 26题图22016年重庆市中考数学试卷(A卷)参考答案一、选择题1.A 2.D 3.B 4.B 5.C 6.D 8.C 9.A 10.D 11.A 12.B 二、填空题13.6.05×104 14.3 15.60 16.17.175 18.三、解答题19.证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.20.解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为:=6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.四、解答题21.解:(1)(a+b)2﹣b(2a+b)=a2+2ab+b2﹣2ab﹣b2=a2;(2)(+x﹣1)÷=×=×=.22.解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.23.解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),。
重庆市初中中考数学试卷习题a卷包括答案解析.docx
2016 年重庆市中考数学试卷 (a 卷)( 含答案解析 )2016 年重庆市中考数学试卷( A 卷)一、选择题(本题共12 个小题,每小题 4 分,共 48 分)1.(4分)在实数﹣ 2, 2, 0,﹣ 1 中,最小的数是()A.﹣ 2 B .2 C.0 D.﹣ 12.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4 分)计算 a3 ?a2正确的是()A.a B.a5C.a6D.a94.(4 分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.(4 分)如图, AB∥CD,直线 l 交 AB于点 E,交 CD于点 F,若∠ 2=80°,则∠ 1 等于()A.120°B.110°C.100°D.80°6.(4 分)若 a=2,b=﹣ 1,则 a+2b+3 的值为()A.﹣ 1 B .3C.6D.57.(4 分)函数 y=中,x的取值范围是()A.x≠0B.x>﹣ 2 C.x<﹣ 2D.x≠﹣ 28.( 4 分)△ABC与△ DEF的相似比为 1:4,则△ ABC与△ DEF的周长比为()A.1:2B.1:3C.1:4D.1:169.(4 分)如,以 AB直径,点 O心的半点C,若 AC=BC= ,中阴影部分的面是()A.B.C.D.+10.( 4 分)下列形都是由同大小的小圈按一定律所成的,其中第①个形中一共有 4 个小圈,第②个形中一共有10 个小圈,第③个形中一共有 19 个小圈,⋯,按此律排列,第⑦个形中小圈的个数()A.64 B.77 C.80 D.8511.( 4 分)某数学趣小同学行量大 CD高度的合践活,如,在点 A 得直立于地面的大端 C 的仰角 36°,然后沿在同一剖面的斜坡AB 行走 13 米至坡 B ,然后再沿水平方向行走 6 米至大脚底点 D ,斜面 AB的坡度(或坡比)i=1 :2.4 ,那么大 CD的高度(参考数据:sin36 °≈ 0.59 ,cos36°≈ 0.81 ,tan36 °≈ 0.73 )()A.8.1 米B.17.2 米 C .19.7 米 D.25.5 米12.( 4 分)从 3, 1,,1,3五个数中,随机抽取一个数,a,若数 a 使关于 x 的不等式无解,且使关于x的分式方程= 1 有整数解,那么 5 个数中所有足条件的 a 的之和是()A. 3 B . 2 C.D.二、填空题(本题 6 个下题,每小题 4 分,共 24 分)13.(4 分)据报道,2015 年某市城镇非私营单位就业人员年平均工资超过60500元,将数 60500 用科学计数法表示为.14.( 4 分)计算:+(﹣ 2)0=.15(.4 分)如图,OA,OB是⊙ O的半径,点 C 在⊙ O上,连接 AC,BC,若∠ AOB=120°,则∠ ACB=度.16.( 4 分)从数﹣ 2,﹣,0,4 中任取一个数记为 m,再从余下的三个数中,任取一个数记为 n,若 k=mn,则正比例函数 y=kx 的图象经过第三、第一象限的概率是.17.( 4 分)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500 米,先到终点的人原地休息,已知甲先出发30 秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.( 4 分)正方形 ABCD中,对角线 AC,BD相交于点 O,DE平分∠ ADO交 AC于点 E,把△ ADE沿 AD翻折,得到△ ADE′,点 F 是 DE的中点,连接 AF,BF,E′F.若AE= .则四边形 ABFE′的面积是.第 4页(共 32页)三、解答题(本题共 2 个小题,每小题7 分,共 14 分)19.( 7 分)如图,点 A,B, C,D 在同一条直线上, CE∥ DF,EC=BD, AC=FD.求证: AE=FB.20.( 7 分)为响应“全民阅读”号召,某校在七年级 800 名学生中随机抽取 100 名学生,对该年级学生在 2015 年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有 5 本,最多的有8 本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了 6 本的人数占被调查人数的 30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在 2015 年全年阅读中外名著的总本数.四、解答题(本题共 4 个下题,每小题10 分,共 40 分)2( 2)(+x﹣1)÷.22.( 10 分)在平面直角坐标系中,一次函数y=ax+b( a≠0)的图形与反比例函数 y=(k≠0)的图象交于第二、四象限内的A、B 两点,与 y 轴交于 C点,过点 A 作 AH⊥ y 轴,垂足为 H,OH=3,tan ∠ AOH= ,点 B 的坐标为( m,﹣ 2).(1)求△ AHO的周长;(2)求该反比例函数和一次函数的解析式.23.( 10 分)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至 5 月 20 日,猪肉价格不断走高, 5 月 20 日比年初价格上涨了60%.某市民在今年 5 月 20 日购买 2.5 千克猪肉至少要花 100 元钱,那么今年年初猪肉的最低价格为每千克多少元?(2) 5 月 20 日,猪肉价格为每千克 40 元 .5 月 21 日,某市决定投入储备猪肉并规定其销售价在每千克40 元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克 40 元的情况下,该天的两种猪肉总销量比 5 月 20 日增加了 a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比 5 月 20 日提高了a%,求 a 的值.24.( 10 分)我们知道,任意一个正整数 n 都可以进行这样的分解: n=p×q( p,q 是正整数,且 p≤ q),在 n 的所有这种分解中,如果 p,q 两因数之差的绝对值最小,我们就称 p×q 是 n 的最佳分解.并规定: F(n)= .例如 12 可以分解成 1×12, 2×6 或 3× 4,因为 12﹣1>6﹣2>4﹣3,所有 3×4 是 12 的最佳分解,所以 F(12)= .(1)如果一个正整数 a 是另外一个正整数 b 的平方,我们称正整数 a 是完全平方数.求证:对任意一个完全平方数 m,总有 F( m) =1;(2)如果一个两位正整数 t , t=10x+y ( 1≤ x≤ y≤ 9, x, y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t )的最大值.五、解答题(本题 2 个小题,每小题12 分,共 24 分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 .25.( 12 分)在△ ABC中,∠ B=45°,∠ C=30°,点 D 是 BC上一点,连接 AD,过点 A 作 AG⊥ AD,在 AG上取点 F,连接 DF.延长 DA至 E,使 AE=AF,连接 EG,DG,且 GE=DF.(1)若 AB=2 ,求 BC的长;(2)如图 1,当点 G在 AC上时,求证: BD= CG;( 3)如图 2,当点 G在 AC的垂直平分线上时,直接写出的值.26.( 12 分)如图 1,在平面直角坐标系中,抛物线y=﹣x2+x+3 与 x 轴交于A,B 两点(点 A在点 B 左侧),与 y 轴交于点 C,抛物线的顶点为点E.( 1)判断△ ABC的形状,并说明理由;( 2)经过 B, C 两点的直线交抛物线的对称轴于点 D,点 P 为直线 BC上方抛物线上的一动点,当△ PCD的面积最大时, Q从点 P 出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点 N 处,最后沿适当的路径运动到点 A 处停止.当点Q 的运动路径最短时,求点N的坐标及点 Q经过的最短路径的长;(3)如图 2,平移抛物线,使抛物线的顶点 E 在射线 AE上移动,点 E 平移后的对应点为点 E′,点 A 的对应点为点 A′,将△ AOC绕点 O顺时针旋转至△ A1OC1的位置,点 A,C的对应点分别为点A1,C1,且点 A1恰好落在 AC上,连接 C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.2016 年重庆市中考数学试卷( A 卷)参考答案与试题解析一、选择题(本题共12 个小题,每小题 4 分,共 48 分)1.(4 分)在实数﹣ 2, 2, 0,﹣ 1 中,最小的数是()A.﹣ 2 B .2C.0D.﹣ 1【分析】找出实数中最小的数即可.【解答】解:在实数﹣ 2,2,0,﹣ 1 中,最小的数是﹣ 2,故选 A【点评】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.2.(4 分)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解: A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有一条,符合题意.故选: D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4 分)计算 a3 ?a2正确的是()A.a B.a5C.a6D.a9【分析】根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.323+25【解答】解: a ?a =a =a .故选 B.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.4.(4 分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【分析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论.【解答】解: A、对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C、对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D、对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选 B.【点评】本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键.5.(4 分)如图, AB∥CD,直线 l 交 AB于点 E,交 CD于点 F,若∠ 2=80°,则∠ 1 等于()A.120°B.110°C.100°D.80°【分析】由平行线的性质得出∠1+∠DFE=180°,由对顶角相等求出∠DFE=∠2=80°,即可得出结果.【解答】解:∵ AB∥CD,∴∠ 1+∠DFE=180°,∵∠ DFE=∠2=80°,∴∠ 1=180°﹣ 80°=100°;故选: C.【点评】本题考查了平行线的性质、对顶角相等的性质;熟记平行线的性质,由对顶角相等求出∠ DFE是解决问题的关键.6.(4 分)若 a=2,b=﹣ 1,则 a+2b+3 的值为()A.﹣ 1 B .3C.6D.5【分析】把 a 与 b 代入原式计算即可得到结果.【解答】解:当 a=2,b=﹣ 1 时,原式 =2﹣ 2+3=3,故选 B【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.(4 分)函数 y=中,x的取值范围是()A.x≠0B.x>﹣ 2 C.x<﹣ 2D.x≠﹣ 2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得: x+2≠0,解得 x≠﹣ 2.故选: D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.8.( 4 分)△ABC与△ DEF的相似比为 1:4,则△ ABC与△ DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ ABC与△ DEF的相似比为 1:4,∴△ ABC与△ DEF的周长比为 1:4;故选: C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.9.(4 分)如图,以 AB为直径,点 O为圆心的半圆经过点C,若 AC=BC= ,则图中阴影部分的面积是()A.B.C.D.+【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ ACB为等腰直角三角形,接着判断△ AOC和△ BOC都是等腰直角三角形,于是得到 S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵ AB为直径,∴∠ ACB=90°,∵AC=BC= ,∴△ ACB为等腰直角三角形,∴OC⊥AB,∴△ AOC和△ BOC都是等腰直角三角形,∴ S△AOC=S△BOC,OA=A C=1,∴ S 阴影部分 =S 扇形AOC==.故 A.2【点】本考了扇形面的算:面公式: S=πr,(2)扇形:由成心角的两条半径和心角所的弧所成的形叫做扇形.求阴影面常用的方法:①直接用公式法;②和差法;③割法.求阴影面的主要思路是将不形面化形的面.10.( 4 分)下列形都是由同大小的小圈按一定律所成的,其中第①个形中一共有 4 个小圈,第②个形中一共有10 个小圈,第③个形中一共有 19 个小圈,⋯,按此律排列,第⑦个形中小圈的个数()A.64 B.77 C.80 D.85【分析】察形特点,从中找出律,小圈的个数分是3+12,6+22,10+32,15+42,⋯,出其律+n2,根据律求解.【解答】解:通察,得到小圈的个数分是:第一个形:+12=4,第二个形:+22=10,第三个形:+32=19,第四个形:+42=31,⋯,所以第 n 个形:+n2,当 n=7 ,+72=85,故 D.【点评】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.11.( 4 分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点 A 处测得直立于地面的大树顶端 C 的仰角为 36°,然后沿在同一剖面的斜坡AB 行走 13 米至坡顶 B 处,然后再沿水平方向行走 6 米至大树脚底点 D 处,斜面 AB的坡度(或坡比)i=1 :2.4 ,那么大树 CD的高度约为(参考数据:sin36 °≈ 0.59 ,cos36°≈ 0.81 ,tan36 °≈ 0.73 )()A.8.1 米B.17.2 米 C .19.7 米 D.25.5 米【分析】作 BF⊥ AE于 F,则 FE=BD=6米,DE=BF,设 BF=x米,则 AF=2.4 米,在 Rt △ABF中,由勾股定理得出方程,解方程求出 DE=BF=5米,AF=12米,得出AE 的长度,在 Rt △ACE中,由三角函数求出 CE,即可得出结果.【解答】解:作 BF⊥AE于 F,如图所示:则FE=BD=6米, DE=BF,∵斜面 AB的坡度 i=1 : 2.4 ,∴ AF=2.4BF,设 BF=x米,则 AF=2.4x 米,在 Rt△ ABF中,由勾股定理得: x2 +( 2.4x )2=132,解得: x=5,∴ DE=BF=5米, AF=12米,∴AE=AF+FE=18米,在 Rt△ ACE中, CE=AE?tan36°=18× 0.73=13.14 米,∴CD=CE﹣DE=13.14 米﹣ 5 米≈ 8.1 米;故选: A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.12.( 4 分)从﹣ 3,﹣ 1,,1,3这五个数中,随机抽取一个数,记为a,若数 a 使关于 x 的不等式组无解,且使关于x的分式方程﹣=﹣ 1 有整数解,那么这 5 个数中所有满足条件的 a 的值之和是()A.﹣ 3 B .﹣ 2 C.﹣D.【分析】根据不等式组无解,求得a≤1,解方程得 x=,于是得到 a=﹣ 3 或 1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤ 1,解方程﹣=﹣1 得 x=,∵ x=为整数,a≤ 1,∴a=﹣3 或 1 或﹣ 1,∵ a=﹣1 时,原分式方程无解,故将a=﹣1 舍去,∴所有满足条件的 a 的值之和是﹣ 2,故选 B.【点评】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.二、填空题(本题 6 个下题,每小题 4 分,共 24 分)13.(4 分)据报道,2015 年某市城镇非私营单位就业人员年平均工资超过60500元,将数 60500 用科学计数法表示为 6.05 × 104.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤|a| < 10,n 为整数.确定n 的值是易错点,由于 60500 有 5 位,所以可以确定 n=5﹣1=4.【解答】解: 60500=6.05 ×104.故答案为: 6.05 ×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.14.( 4 分)计算:+(﹣ 2)0= 3 .【分析】根据开平方,非零的零次幂等于1,可得答案.+(﹣ 2)0【解答】解:=2+1=3.故答案为: 3.【点评】本题考查了零指数幂,利用非零的零次幂等于 1 是解题关键.15.(4 分)如图,OA,OB是⊙ O的半径,点 C 在⊙ O上,连接 AC,BC,若∠AOB=120°,则∠ ACB= 60 度.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.【解答】解:∵∠AOB=120°,∴∠ ACB=120°×=60°,第16页(共 32页)故答案为: 60.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.( 4 分)从数﹣ 2,﹣,0,4 中任取一个数记为 m,再从余下的三个数中,任取一个数记为 n,若 k=mn,则正比例函数 y=kx 的图象经过第三、第一象限的概率是.【分析】根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.【解答】解:从数﹣ 2,﹣, 0, 4 中任取 1 个数记为 m,再从余下, 3 个数中,任取一个数记为 n.根据题意画图如下:共有 12 种情况,∵正比例函数y=kx 的图象经过第三、第一象限,∴ k=mn> 0.由树状图可知符合mn> 0 的情况共有 2 种,∴正比例函数y=kx 的图象经过第三、第一象限的概率是=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.( 4 分)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500 米,先到终点的人原地休息,已知甲先出发30 秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为: 75÷ 30=2.5 米/ 秒,设乙的速度为 m米/ 秒,则( m﹣ 2.5 )×( 180﹣30) =75,解得: m=3米/ 秒,则乙的速度为 3 米/ 秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5 ×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.( 4 分)正方形 ABCD中,对角线 AC,BD相交于点 O,DE平分∠ ADO交 AC于点 E,把△ ADE沿 AD翻折,得到△ ADE′,点 F 是 DE的中点,连接 AF,BF,E′F.若AE= .则四边形 ABFE′的面积是.【分析】如图,连接 EB、EE′,作 EM⊥AB于 M,EE′交 AD于 N.易知△ AEB≌△ AED≌△ ADE′,先求出正方形 AMEN的边长,再求出 AB,根据 S 四边形ABFE′ =S 四边形第18页(共 32页)【解答】解:如图,连接EB、EE′,作 EM⊥AB于 M,EE′交 AD于 N.∵四边形 ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠ DAC=∠ CAB=∠DAE′=45°,根据对称性,△ ADE≌△ ADE′≌△ ABE,∴D E=DE′, AE=AE′,∴AD垂直平分 EE′,∴EN=NE′,∵∠ NAE=∠NEA=∠MAE=∠MEA=45°, AE=,∴AM=EM=EN=AN=1,∵ED平分∠ ADO, EN⊥DA,EO⊥DB,∴EN=EO=1,AO= +1,∴ AB= AO=2+ ,∴ S△AEB=S△AED=S△ADE′ =× 1×(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴ S△EFB=,∴ S△DEE′ =2S△ADE﹣ S△AEE′ = +1,S△DFE′ = S△DEE′ =,∴ S 四边形AEFE′ =2S△ADE﹣ S△DFE′ =,∴ S 四边形ABFE′ =S四边形AEFE′+S△AEB+S△EFB=.故答案为.【点评】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.三、解答题(本题共 2 个小题,每小题7 分,共 14 分)19.( 7 分)如图,点 A,B, C,D 在同一条直线上, CE∥ DF,EC=BD, AC=FD.求证: AE=FB.【分析】根据 CE∥DF,可得∠ ACE=∠ D,再利用 SAS证明△ ACE≌△ FDB,得出对应边相等即可.【解答】证明:∵ CE∥DF,∴∠ ACE=∠D,在△ ACE和△ FDB中,,∴△ ACE≌△ FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.20.( 7 分)为响应“全民阅读”号召,某校在七年级800 名学生中随机抽取100名学生,对该年级学生在2015 年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有 5 本,最多的有8 本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了 6 本的人数占被调查人数的 30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在 2015 年全年阅读中外名著的总本数.【分析】由阅读了 6 本的人数占被调查人数的 30%可求得阅读 6 本的人数,将总人数减去阅读数是 5、6、8 本的人数可得阅读 7 本人数,据此补全条形图可得;根据样本计算出平均每人的阅读量,再用平均数乘以七年级学生总数即可得答案.【解答】解:根据题意,阅读了 6 本的人数为 100×30%=30(人),阅读了 7 本的人数为: 100﹣ 20﹣30﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为:=6.45 (本),∴估计该校七年级全体学生在2015 年全年阅读中外名著的总本数为800×6.45=5160 本,答:估计该校七年级全体学生在2015 年全年阅读中外名著的总本数约为5160本.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.四、解答题(本题共 4 个下题,每小题10 分,共 40 分)21.( 10 分)计算:(1)(a+b)2﹣b(2a+b)第21页(共 32页)( 2)(+x﹣1)÷.【分析】(1)根据完全平方公式和单项式乘多项式的法则计算即可;(2)根据分式的混合运算法则进行计算.【解答】解:(1)(a+b)2﹣b(2a+b)=a2+2ab+b2﹣ 2ab﹣b2=a2;( 2)(+x﹣1)÷=×=×=.【点评】本题考查的是整式的混合运算、分式的混合运算,掌握完全平方公式、分式的混合运算法则是解题的关键.22.( 10 分)在平面直角坐标系中,一次函数y=ax+b( a≠0)的图形与反比例函数 y=(k≠0)的图象交于第二、四象限内的A、B 两点,与 y 轴交于 C点,过点 A 作 AH⊥ y 轴,垂足为 H,OH=3,tan ∠ AOH= ,点 B 的坐标为( m,﹣ 2).(1)求△ AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得 AH 的长,根据勾股定理,可得 AO的长,根据三角形的周长,可得答案;第22页(共 32页)【解答】解:(1)由 OH=3,tan ∠ AOH= ,得AH=4.即 A(﹣ 4,3).由勾股定理,得AO==5,△AHO的周长 =AO+AH+OH=3+4+5=12;( 2)将 A 点坐标代入 y= (k≠0),得k=﹣4×3=﹣ 12,反比例函数的解析式为y=;当 y=﹣ 2 时,﹣ 2=,解得x=6,即B(6,﹣2).将A、B 点坐标代入 y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.23.( 10 分)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至 5 月 20 日,猪肉价格不断走高, 5 月 20 日比年初价格上涨了60%.某市民在今年 5 月 20 日购买 2.5 千克猪肉至少要花 100 元钱,那么今年年初猪肉的最低价格为每千克多少元?(2) 5 月 20 日,猪肉价格为每千克 40 元 .5 月 21 日,某市决定投入储备猪肉并规定其销售价在每千克40 元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克 40 元的情况下,该天的两种猪肉总销量比 5 月 20 日增加了 a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比 5 月 20 日提高了a%,求 a 的值.【分析】(1)设今年年初猪肉价格为每千克x 元;根据题意列出一元一次不等式,解不等式即可;( 2)设 5 月 20 日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x 元;根据题意得: 2.5 ×( 1+60%)x≥100,解得: x≥25.答:今年年初猪肉的最低价格为每千克25 元;( 2)设 5 月 20 日两种猪肉总销量为1;根据题意得: 40(1﹣ a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为: 40(1﹣y)× (1+y)+40×(1+y)=40( 1+ y),整理得: 5y2﹣ y=0,解得: y=0.2 ,或 y=0(舍去),则a%=0.2,∴ a=20;答: a 的值为 20.【点评】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.24.( 10 分)我们知道,任意一个正整数 n 都可以进行这样的分解: n=p×q( p,q 是正整数,且 p≤ q),在 n 的所有这种分解中,如果 p,q 两因数之差的绝对值最小,我们就称 p×q 是 n 的最佳分解.并规定: F(n)= .例如 12 可以分解成1×12, 2×6 或 3× 4,因为 12﹣1>6﹣2>4﹣3,所有 3×4 是 12 的最佳分解,所以 F(12)= .(1)如果一个正整数 a 是另外一个正整数 b 的平方,我们称正整数 a 是完全平方数.求证:对任意一个完全平方数 m,总有 F( m) =1;(2)如果一个两位正整数 t , t=10x+y ( 1≤ x≤ y≤ 9, x, y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t )的最大值.2【分析】(1)根据题意可设m=n,由最佳分解定义可得F(m)==1;( 2)根据“吉祥数”定义知( 10y+x)﹣( 10x+y) =18,即 y=x+2,结合 x 的范围可得 2 位数的“吉祥数”,求出每个“吉祥数”的 F(t ),比较后可得最大值.2【解答】解:(1)对任意一个完全平方数m,设 m=n( n 为正整数),∵|n ﹣n|=0 ,∴n× n 是 m的最佳分解,∴对任意一个完全平方数 m,总有 F(m)= =1;( 2)设交换 t 的个位上的数与十位上的数得到的新数为t ′,则 t ′=10y+x,∵ t 为“吉祥数”,∴t ′﹣ t= ( 10y+x)﹣( 10x+y)=9(y ﹣x)=18,∴ y=x+2,∵ 1≤ x≤ y≤ 9, x,y 为自然数,∴“吉祥数”有: 13,24, 35, 46,57,68, 79,∴ F(13)=,F(24)== ,F(35)=,F(46)=,F(57)=,F(68)= ,F(79) =,∵>>>>>,∴所有“吉祥数”中, F(t )的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.五、解答题(本题 2 个小题,每小题 12 分,共 24 分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 .25.( 12 分)在△ ABC中,∠ B=45°,∠ C=30°,点D 是 BC上一点,连接 AD,过点 A 作 AG⊥ AD,在 AG上取点 F,连接 DF.延长 DA至 E,使 AE=AF,连接 EG,DG,且 GE=DF.(1)若 AB=2 ,求 BC的长;(2)如图 1,当点 G在 AC上时,求证: BD= CG;( 3)如图 2,当点 G在 AC的垂直平分线上时,直接写出的值.【分析】(1)如图 1 中,过点 A作 AH⊥ BC于 H,分别在 RT△ABH,RT△ AHC中求出BH、 HC即可.( 2)如图 1 中,过点 A 作 AP⊥AB 交 BC于 P,连接 PG,由△ ABD≌△ APG推出BD=PG,再利用 30 度角性质即可解决问题.(3)如图 2 中,作 AH⊥BC于 H,AC的垂直平分线交 AC于 P,交 BC于 M.则 AP=PC,作 DK⊥ AB于 K,设 BK=DK=a,则 AK= a,AD=2a,只要证明∠ BAD=30°即可解决问题.【解答】解:(1)如图 1 中,过点 A 作 AH⊥ BC于 H.∴∠ AHB=∠AHC=90°,在 RT△ AHB中,∵ AB=2 ,∠ B=45°,∴BH=AB?cosB=2 × =2,AH=AB?sinB=2,在RT△ AHC中,∵∠ C=30°,∴ AC=2AH=4,CH=AC?cosC=2 ,∴BC=BH+CH=2+2 .(2)证明:如图 1 中,过点 A 作 AP⊥ AB交 BC于 P,连接 PG,∵ AG⊥AD,∴∠ DAF=∠EAC=90°,在△ DAF和△ GAE中,,∴△ DAF≌△ GAE,∴AD=AG,∴∠ BAP=90°=∠ DAG,∴∠ BAD=∠PAG,∵∠ B=∠APB=45°,∴AB=AP,在△ ABD和△ APG中,,∴△ ABD≌△ APG,∴BD=PG,∠ B=∠APG=45°,∴∠ GPB=∠GPC=90°,∵∠C=30°,∴PG= GC,∴BD= CG.AC于 P,交 BC于 M.则 AP=PC,(3)如图 2 中,作 AH⊥BC于 H,AC的垂直平分线交在 RT△ AHC中,∵∠ ACH=30°,∴ AC=2AH,∴ AH=AP,在 RT△ AHD和 RT△APG中,,∴△ AHD≌△ APG,∴∠ DAH=∠GAP,∵GM⊥AC,PA=PC,∴ MA=MC,∴∠ MAC=∠MCA=∠MAH=30°,∴∠ DAM=∠GAM=45°,∴∠ DAH=∠GAP=15°,∴∠ BAD=∠BAH﹣∠ DAH=30°,作DK⊥ AB于 K,设 BK=DK=a,则 AK= a, AD=2a,∴==,∵AG=CG=AD,∴=.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.26.( 12 分)如图 1,在平面直角坐标系中,抛物线y=﹣x2+x+3 与 x 轴交于A,B 两点(点 A在点 B 左侧),与 y 轴交于点 C,抛物线的顶点为点E.( 1)判断△ ABC的形状,并说明理由;( 2)经过 B, C 两点的直线交抛物线的对称轴于点 D,点 P 为直线 BC上方抛物线上的一动点,当△ PCD的面积最大时, Q从点 P 出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点 N 处,最后沿适当的路径运动到点 A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点 Q经过的最短路径的长;(3)如图 2,平移抛物线,使抛物线的顶点 E 在射线 AE上移动,点 E 平移后的对应点为点 E′,点 A 的对应点为点 A′,将△ AOC绕点 O顺时针旋转至△ A1OC1的位置,点 A,C的对应点分别为点A1,C1,且点 A1恰好落在 AC上,连接 C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.。
2016年重庆市中考数学真题(A卷)
重庆市2016年初中毕业暨高中招生考试数学试卷(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)0(a 2≠++=c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为a bx 2-= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑. 1、在实数2-,2,0,1-中,最小的数是( ) A. 2- B. 2 C. 0 D. 1- 2.下列图形中是轴对称的是( )ABCD3.计算23a a ⋅正确的是()A. aB. 5a C. 6a D. 9a4.下列调查中,最适合采用全面调查(普查)方式的是( ) A.对重庆市直辖区内长江流域水质情况的调查 B.对乘坐飞机的旅客是否携带违禁物品的调查 C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80° 6.若1,2==b a ,则32++b a 的值为( )A.-1B.3C.6D.5 7.函数21+=x y 中,x 的取值范围是( )A. 0≠xB. 2->xC. 2-<xD. 2≠x8.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A. 1:2B. 1:3C. 1:4D. 1:169.如图,以AB 为直径,点O 为圆心的半径经过点C ,若2==BC AB ,则图中阴影部分的面积是()A.4πB.421π+ C.2πD.221π+ 10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为( )A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为( )(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎪⎩⎪⎨⎧<-≥+03)72(31a x x 无解,且使关于x 的分式方程1323-=----xa x x 有整数解,那么这5个数中所有满足条件的a 的值之和是( ) A.-3B.-2C. 23-D.21 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
2016年重庆市中考数学试卷(A卷)附详细答案(原版+解析版)
重庆市2016年中考数学试卷(A卷)一、选择题(本题共12个小题,每小题4分,共48分)1.在实数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣12.下列图形中是轴对称图形的是()A.B.C.D.3.计算a3a2正确的是()A.a B.a5C.a6D.a94.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°6.若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.57.函数y=中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣28.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:169.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+10.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.8511.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米12.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣D.二、填空题(本题6个下题,每小题4分,共24分)13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为.14.计算:+(﹣2)0=.15.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB=度.16.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是.三、解答题(本题共2个小题,每小题7分,共14分)19.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.四、解答题(本题共4个下题,每小题10分,共40分)21.计算:(1)(a+b)2﹣b(2a+b)(2)(+x﹣1)÷.22.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.五、解答题(本题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB=2,求BC的长;(2)如图1,当点G在AC上时,求证:BD=CG;(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.26.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C 的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.重庆市2016年中考数学试卷(A卷)参考答案与解析一、选择题(本题共12个小题,每小题4分,共48分)1.在实数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣1【分析】找出实数中最小的数即可.【解答】解:在实数﹣2,2,0,﹣1中,最小的数是﹣2,故选A【点评】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.2.下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.计算a3a2正确的是()A.a B.a5C.a6D.a9【分析】根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.【解答】解:a3a2=a3+2=a5.故选B.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【分析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论.【解答】解:A、对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C、对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D、对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选B.【点评】本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°【分析】由平行线的性质得出∠1+∠DFE=180°,由对顶角相等求出∠DFE=∠2=80°,即可得出结果.【解答】解:∵AB∥CD,∴∠1+∠DFE=180°,∵∠DFE=∠2=80°,∴∠1=180°﹣80°=100°;故选:C.【点评】本题考查了平行线的性质、对顶角相等的性质;熟记平行线的性质,由对顶角相等求出∠DFE是解决问题的关键.6.若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.5【分析】把a与b代入原式计算即可得到结果.【解答】解:当a=2,b=﹣1时,原式=2﹣2+3=3,故选B【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.函数y=中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.8.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.9.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC==.故选A.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.10.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为+n2,根据规律求解.【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.【点评】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.11.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF 中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE 中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AEtan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.12.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣D.【分析】根据不等式组无解,求得a≤1,解方程得x=,于是得到a=﹣3或1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x=,∵x=为整数,a≤1,∴a=﹣3或1,∴所有满足条件的a的值之和是﹣2,故选B.【点评】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.二、填空题(本题6个下题,每小题4分,共24分)13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为 6.05×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于60500有5位,所以可以确定n=5﹣1=4.【解答】解:60500=6.05×104.故答案为:6.05×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.14.计算:+(﹣2)0=3.【分析】根据开平方,非零的零次幂等于1,可得答案.【解答】解:+(﹣2)0=2+1=3.故答案为:3.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.15.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB= 60度.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.【解答】解:∵OA⊥OB,∴∠AOB=120°,∴∠ACB=120°×=60°,故答案为:60.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.【分析】根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.【解答】解:根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k>0,∵k=mn,∴mn>0,∴符合条件的情况数有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×150=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是.【分析】如图,连接EB 、EE ′,作EM ⊥AB 于M ,EE ′交AD 于N .易知△AEB ≌△AED ≌△ADE ′,先求出正方形AMEN 的边长,再求出AB ,根据S 四边形ABFE ′=S四边形AEFE ′+S △AEB +S △EFB 即可解决问题.【解答】解:如图,连接EB 、EE ′,作EM ⊥AB 于M ,EE ′交AD 于N .∵四边形ABCD 是正方形,∴AB=BC=CD=DA ,AC ⊥BD ,AO=OB=OD=OC ,∠DAC=∠CAB=∠DAE ′=45°,根据对称性,△ADE ≌△ADE ′≌△ABE , ∴DE=DE ′,AE=AE ′,∴AD 垂直平分EE ′,∴EN=NE ′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED 平分∠ADO ,EN ⊥DA ,EO ⊥DB ,∴EN=EO=1,AO=+1,∴AB=AO=2+,∴S △AEB =S △AED =S △ADE ′=×1(2+)=1+,S △BDE =S △ADB ﹣2S △AEB =1+,∵DF=EF , ∴S △EFB =,∴S △DEE ′=2S △ADE ﹣S △AEE ′=+1,S △DFE ′=S △DEE ′=,∴S 四边形AEFE ′=2S △ADE ﹣S △DFE ′=,∴S 四边形ABFE ′=S 四边形AEFE ′+S △AEB +S △EFB =.故答案为.【点评】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.三、解答题(本题共2个小题,每小题7分,共14分)19.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.【分析】由阅读了6本的人数占被调查人数的30%可求得阅读6本的人数,将总人数减去阅读数是5、6、8本的人数可得阅读7本人数,据此补全条形图可得;根据样本计算出平均每人的阅读量,再用平均数乘以七年级学生总数即可得答案.【解答】解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为:=6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.四、解答题(本题共4个下题,每小题10分,共40分)21.计算:(1)(a+b)2﹣b(2a+b)(2)(+x﹣1)÷.【分析】(1)根据完全平方公式和单项式乘多项式的法则计算即可;(2)根据分式的混合运算法则进行计算.【解答】解:(1)(a+b)2﹣b(2a+b)=a2+2ab+b2﹣2ab﹣b2=a2;(2)(+x﹣1)÷=×=×=.【点评】本题考查的是整式的混合运算、分式的混合运算,掌握完全平方公式、分式的混合运算法则是解题的关键.22.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点评】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F(m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.五、解答题(本题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB=2,求BC的长;(2)如图1,当点G在AC上时,求证:BD=CG;(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.【分析】(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30度角性质即可解决问题.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,只要证明∠BAD=30°即可解决问题.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∴∠AHB=∠AHC=90°,在RT△AHB中,∵AB=2,∠B=45°,∴BH=ABcosB=2×=2,AH=ABsinB=2,在RT△AHC中,∵∠C=30°,∴AC=2AH=4,CH=ACcosC=2,∴BC=BH+CH=2+2.(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,∵AG⊥AD,∴∠DAF=∠EAC=90°,在△DAF和△GAE中,,∴△DAF≌△GAE,∴AD=AG,∴∠BAP=90°=∠DAG,∴∠BAD=∠PAG,∵∠B=∠APB=45°,∴AB=AP,在△ABD和△APG中,,∴△ABD≌△APG,∴BD=PG,∠B=∠APG=45°,∴∠GPB=∠GPC=90°,∵∠C=30°,∴PG=GC,∴BD=CG.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,在RT△AHC中,∵∠ACH=30°,∴AC=2AH,∴AH=AP,在RT△AHD和RT△APG中,,∴△AHD≌△APG,∴∠DAH=∠GAP,∵GM⊥AC,PA=PC,∴MA=MC,∴∠MAC=∠MCA=∠MAH=30°,∴∠DAM=∠GAM=45°,∴∠DAH=∠GAP=15°,∴∠BAD=∠BAH﹣∠DAH=30°,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,∴==,∵AG=CG=AD,∴=.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.26.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为。
重庆市中考数学真题试题(A卷,含答案)
重庆市2016年初中毕业暨高中招生考试数学试卷(A卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)(a2≠++=cbxaxy的顶点坐标为⎪⎪⎭⎫⎝⎛--abacab44,22,对称轴为abx2-=一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑.1、在实数2-,2,0,1-中,最小的数是()A. 2- B. 2 C. 0 D. 1-2.下列图形中是轴对称的是()A B C D3.计算23aa⋅正确的是()A. aB. 5aC. 6aD. 9a4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市直辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°6.若1,2==ba,则32++ba的值为()A.-1B.3C.6D.57.函数21+=xy中,x的取值范围是()A. 0≠x B. 2->x C. 2-<x D. 2≠x8.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A. 1:2B. 1:3C. 1:4D. 1:169.如图,以AB为直径,点O为圆心的半径经过点C,若2==BCAB,则图中阴影部分的面积是()A.4πB.421π+ C.2πD.221π+10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图在点A处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为()(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组⎪⎩⎪⎨⎧<-≥+3)72(31axx无解,且使关于x的分式方程1323-=----xaxx有整数解,那么这5个数中所有满足条件的a的值之和是()A.-3B.-2C.23- D.21二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
重庆市中考数学试卷A卷含答案.doc
2016 年重庆市中考数学试卷( A 卷)一、选择题(本题共12 个小题,每小题 4 分,共 48 分)1.(4 分)( 2016?重庆)在实数﹣ 2,2, 0,﹣ 1 中,最小的数是()A.﹣ 2 B. 2 C. 0D.﹣ 12.(4 分)( 2016?重庆)下列图形中是轴对称图形的是()A.B.C.D.3.(4 分)( 2016?重庆)计算a3 ?a2正确的是()A. a B. a5C. a6D. a94.(4 分)( 2016?重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.( 4 分)( 2016?重庆)如图, AB∥ CD,直线 l 交 AB于点 E,交 CD于点 F,若∠ 2=80°,则∠ 1 等于()A.120°B.110°C.100°D.80°6.(4 分)( 2016?重庆)若 a=2, b=﹣ 1,则 a+2b+3 的值为()A.﹣ 1 B. 3 C. 6D. 57.(4 分)( 2016?重庆)函数y=中,x的取值范围是()A.x≠0B.x>﹣ 2 C. x<﹣ 2 D.x≠﹣ 28.( 4 分)(2016?重庆)△ABC与△ DEF的相似比为1:4,则△ ABC与△ DEF 的周长比为()A. 1: 2 B.1:3C. 1: 4D.1:169.(4 分)(2016?重庆)如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC= ,则图中阴影部分的面积是()A.B.C.D. +10.( 4 分)( 2016?重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有 4 个小圆圈,第②个图形中一共有10 个小圆圈,第③个图形中一共有19 个小圆圈,⋯,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 64 B. 77 C. 80D. 8511.( 4 分)(2016?重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点 A 处测得直立于地面的大树顶端 C 的仰角为 36°,然后沿在同一剖面的斜坡 AB行走 13 米至坡顶 B 处,然后再沿水平方向行走 6 米至大树脚底点 D 处,斜面 AB的坡度(或坡比) i=1 :,那么大树 CD的高度约为(参考数据:sin36 °≈, cos36°≈, tan36 °≈)()A.米B.米C.米D.米12.( 4 分)( 2016?重庆)从﹣ 3,﹣ 1,,1,3这五个数中,随机抽取一个数,记为 a,若数 a 使关于 x 的不等式组无解,且使关于x 的分式方程﹣=﹣ 1 有整数解,那么这 5 个数中所有满足条件的a 的值之和是()A.﹣ 3 B.﹣ 2 C.﹣D.二、填空题(本题 6 个下题,每小题 4 分,共 24 分)13.( 4 分)(2016?重庆)据报道, 2015 年某市城镇非私营单位就业人员年平均工资超过60500 元,将数 60500 用科学计数法表示为.14.( 4 分)(2016?重庆)计算:+(﹣ 2)0=.15.( 4 分)(2016?重庆)如图, OA,OB是⊙ O的半径,点 C在⊙ O上,连接 AC, BC,若∠ AOB=120°,则∠ ACB=度.16.( 4 分)(2016?重庆)从数﹣ 2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若 k=mn,则正比例函数y=kx 的图象经过第三、第一象限的概率是.17.( 4 分)( 2016?重庆)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500 米,先到终点的人原地休息,已知甲先出发 30 秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.( 4 分)(2016?重庆)正方形ABCD中,对角线 AC, BD相交于点 O,DE平分∠ ADO交 AC于点 E,把△ ADE沿 AD翻折,得到△ ADE′,点 F 是DE的中点,连接 AF, BF,E′F.若 AE= .则四边形 ABFE′的面积是.三、解答题(本题共 2 个小题,每小题7 分,共 14 分)19.( 7 分)(2016?重庆)如图,点A,B,C,D 在同一条直线上,CE∥DF,EC=BD, AC=FD.求证: AE=FB.20.( 7 分)( 2016?重庆)为响应“全民阅读”号召,某校在七年级800 名学生中随机抽取 100 名学生,对概念机学生在 2015 年全年阅读中外名着的情况进行调查,整理调查结果发现,学生阅读中外名着的本数,最少的有5 本,最多的有 8 本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了 6 本的人数占被调查人数的 30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015 年全年阅读中外名着的总本数.四、解答题(本题共 4 个下题,每小题10 分,共 40 分)21.( 10 分)(2016?重庆)计算:( 1)( a+b)2﹣ b(2a+b)( 2)(+x﹣ 1)÷.22.( 10 分)( 2016?重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的 A、B 两点,与 y 轴交于 C点,过点 A 作 AH⊥y 轴,垂足为 H, OH=3,tan ∠ AOH=,点B 的坐标为( m,﹣ 2).(1)求△ AHO的周长;(2)求该反比例函数和一次函数的解析式.23.( 10 分)(2016?重庆)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.( 1)从今年年初至 5 月 20 日,猪肉价格不断走高, 5 月 20 日比年初价格上涨了 60%.某市民在今年 5 月 20 日购买千克猪肉至少要花 100 元钱,那么今年年初猪肉的最低价格为每千克多少元?(2) 5 月 20 日,猪肉价格为每千克 40 元 .5 月 21 日,某市决定投入储备猪肉并规定其销售价在每千克 40 元的基础上下调 a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40 元的情况下,该天的两种猪肉总销量比 5 月 20 日增加了 a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比 5 月 20 日提高了a%,求 a 的值.24.( 10 分)(2016?重庆)我们知道,任意一个正整数n 都可以进行这样的分解: n=p×q( p, q 是正整数,且p≤q),在 n 的所有这种分解中,如果 p,q 两因数之差的绝对值最小,我们就称 p×q是 n 的最佳分解.并规定:F( n)= .例如 12 可以分解成 1×12,2×6或 3×4,因为 12﹣ 1> 6 ﹣ 2>4﹣3,所有 3×4是 12 的最佳分解,所以 F( 12) = .( 1)如果一个正整数 a 是另外一个正整数完全平方数.求证:对任意一个完全平方数b 的平方,我们称正整数m,总有 F(m)=1;a 是(2)如果一个两位正整数 t , t=10x+y (1≤x≤y≤9, x, y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为 18,那么我们称这个数 t 为“吉祥数”,求所有“吉祥数”中 F(t )的最大值.五、解答题(本题 2 个小题,每小题 12 分,共 24 分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上 .25.( 12 分)(2016?重庆)在△ ABC中,∠ B=45°,∠ C=30°,点 D 是 BC上一点,连接 AD,过点 A 作 AG⊥ AD,在 AG上取点 F,连接 DF.延长 DA 至 E,使 AE=AF,连接 EG, DG,且 GE=DF.(1)若 AB=2 ,求 BC的长;(2)如图 1,当点 G在 AC上时,求证: BD= CG;( 3)如图 2,当点 G在 AC的垂直平分线上时,直接写出的值.26.( 12 分)(2016?重庆)如图 1,在平面直角坐标系中,抛物线y=﹣x2+x+3 与 x 轴交于 A, B 两点(点 A 在点 B 左侧),与 y 轴交于点 C,抛物线的顶点为点E.( 1)判断△ ABC的形状,并说明理由;( 2)经过 B,C 两点的直线交抛物线的对称轴于点 D,点 P 为直线 BC上方抛物线上的一动点,当△ PCD的面积最大时, Q从点 P 出发,先沿适当的路径运动到抛物线的对称轴上点 M处,再沿垂直于抛物线对称轴的方向运动到 y 轴上的点 N处,最后沿适当的路径运动到点 A 处停止.当点 Q的运动路径最短时,求点 N 的坐标及点 Q经过的最短路径的长;(3)如图 2,平移抛物线,使抛物线的顶点 E 在射线 AE上移动,点 E 平移后的对应点为点E′,点A 的对应点为点A′,将△AOC绕点O顺时针旋转至△ A1OC1的位置,点 A,C 的对应点分别为点 A1, C1,且点 A1恰好落在AC上,连接 C1A′, C1 E′,△ A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.2016 年重庆市中考数学试卷( A 卷)参考答案一、选择题1. A2. D3. B4. B5. C6. D8. C9. A10.D11.A12.B二、填空题13.× 10414.315.6016.17.17518.三、解答题19.证明:∵ CE∥ DF,∴∠ ACE=∠ D,在△ ACE和△ FDB中,,∴△ ACE≌△ FDB( SAS),∴AE=FB.20.解:根据题意,阅读了 6 本的人数为 100×30%=30(人),阅读了 7 本的人数为: 100﹣20﹣ 30﹣﹣ 15=35(人),补全条形图如图:∵平均每位学生的阅读数量为:=(本),∴估计该校七年级全体学生在2015 年全年阅读中外名着的总本数为800×=5160 本,答:估计该校七年级全体学生在2015 年全年阅读中外名着的总本数约为5160 本.四、解答题21.解:( 1)( a+b)2﹣b( 2a+b)=a2+2ab+b2﹣ 2ab﹣ b2=a2;( 2)(+x﹣ 1)÷=×=×=.22.解:( 1)由 OH=3,tan ∠ AOH=,得AH=4.即 A(﹣ 4,3).由勾股定理,得AO==5,△AHO的周长 =AO+AH+OH=3+4+5=12;( 2)将 A 点坐标代入y= (k≠0),得k=﹣4×3=﹣ 12,反比例函数的解析式为y=;当y=﹣ 2 时,﹣ 2= ,解得 x=6,即 B( 6,﹣ 2).将A、B 点坐标代入 y=ax+b,得,解得,一次函数的解析式为y=﹣ x+1.23.解:( 1)设今年年初猪肉价格为每千克x 元;根据题意得:×(1+60%)x≥100,解得: x≥25.答:今年年初猪肉的最低价格为每千克25 元;( 2)设 5 月 20 日两种猪肉总销量为1;根据题意得: 40( 1﹣ a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为: 40( 1﹣y)× ( 1+y)+40×( 1+y)=40( 1+ y),整理得: 5y2﹣y=0,解得: y=,或 y=0(舍去),则a%=,∴ a=20;答: a 的值为 20.24.解:( 1)对任意一个完全平方数2m,设 m=n( n 为正整数),∵|n ﹣ n|=0 ,∴n×n是 m的最佳分解,∴对任意一个完全平方数m,总有 F( m) = =1;( 2)设交换 t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y+x,∵ t 为“吉祥数”,∴t ′﹣ t= ( 10y+x)﹣( 10x+y) =9( y﹣ x) =18,∴y=x+2,∵1≤x≤y≤9, x,y 为自然数,∴“吉祥数”有:13, 24,35,46, 57, 68, 79,∴F( 13) = , F(24)= = , F( 35) = , F( 46) = , F( 57) = , F (68) = , F( 79) = ,∵ >>>>>,∴所有“吉祥数”中,F( t )的最大值是.五、解答题25.解:( 1)如图 1 中,过点 A 作 AH⊥ BC于 H.∴∠ AHB=∠AHC=90°,在RT△ AHB中,∵ AB=2 ,∠B=45°,∴ BH=AB?cosB=2 × =2,AH=AB?sinB=2,在RT△ AHC中,∵∠ C=30°,∴AC=2AH=4, CH=AC?cosC=2 ,∴BC=BH+CH=2+2 .(2)证明:如图 1 中,过点 A 作 AP⊥AB交 BC于 P,连接 PG,∵ AG⊥ AD,∴∠ DAF=∠EAC=90°,在△ DAF和△ GAE中,,∴△ DAF≌△ GAE,∴AD=AG,∴∠ BAP=90°=∠ DAG,∴∠ BAD=∠ PAG,∵∠ B=∠APB=45°,∴AB=AP,在△ ABD和△ APG中,,∴△ ABD≌△ APG,∴BD=PG,∠ B=∠APG=45°,∵∠ C=30°,∴PG= GC,∴BD= CG.( 3)如图 2 中,作 AH⊥ BC于 H,AC的垂直平分线交AC于 P,交 BC于 M.则AP=PC,在RT△ AHC中,∵∠ACH=30°,∴ AC=2AH,∴ AH=AP,在RT△ AHD和 RT△APG中,,∴△ AHD≌△ APG,∴∠ DAH=∠ GAP,∵GM⊥ AC, PA=PC,∴ MA=MC,∴∠ MAC=∠ MCA=∠MAH=30°,∴∠ DAH=∠GAP=15°,∴∠ BAD=∠ BAH﹣∠ DAH=30°,作DK⊥ AB于 K,设 BK=DK=a,则 AK= a,AD=2a,∴==,∵AG=CG=AD,∴ =.26.解:( 1)△ ABC为直角三角形,当 y=0 时,即﹣ x2+ x+3=0,∴x1 =﹣, x2=3∴A(﹣, 0), B(3 , 0),∴OA= , OB=3 ,当 x=0 时, y=3,∴C( 0,3),∴OC=3,根据勾股定理得,2 2 2 2 2 2AC=OB+OC=12, BC=OB+OC=36,2 2∴AC+BC=48,2﹣(﹣2=48,∵ AB=[3 ) ]22 2∴ AC+BC=AB,∴△ ABC是直角三角形,( 2)如图,∵B( 3 , 0), C( 0, 3),∴直线 BC解析式为 y=﹣ x+3,过点 P 作∥ y 轴,设P(a,﹣ a2 +a+3),∴G( a,﹣ a+3),∴PG=﹣ a2+ a,设点 D 的横坐标为 x D, C点的横坐标为x C,S△PCD= ×( x D﹣ x C)× PG=﹣(a﹣)2+,∵0< a<3 ,∴当 a=时,S△PCD最大,此时点P(,),将点 P 向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN ⊥抛物线对称轴于点M,连接 PM,点 Q沿 P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴ P(,)∴P′(,),∵点 A(﹣,0),∴直线 AP′的解析式为y=x+ ,当 x=0 时, y= ,∴ N( 0,),过点 P′作 P′H⊥ x 轴于点 H,∴AH= ,P′H= ,AP′=,∴点 Q 运动得最短路径长为PM+MN+AN= + =;(3)在 Rt △AOC中,∵ tan ∠ OAC= =,∴∠ OAC=60°,∵OA=OA1,∴△ OAA1为等边三角形,∴∠ AOA1=60°,∴∠ BOC1=30°,∵OC1=OC=3,∴ C1(,),∵点 A(﹣,0),E(,4),∴ AE=2,∵直线 AE的解析式为 y= x+2,设点 E′( a,a+2),∴A′( a﹣ 2 ,﹣ 2)∴ C1 E′2=( a﹣ 2)2+(+2﹣)2= a2﹣a+7,C1A′2 =(a﹣ 2﹣)2+(﹣2﹣)2= a2﹣a+49,①若 C1 A′=C1E′,则 C1A′2=C1E′2即: a2﹣a+7= a2﹣a+49,∴ a=,∴E′(,5),②若 A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴ a1 =,a2=,∴E′(,7+),或(,7﹣),∴E′A′2=E′C12即:a2﹣a+7=28,∴ a1 =,a2=(舍),∴E′(,3+),即,符合条件的点E′(, 5),(,7+ ),或(,7﹣),(, 3+ ).。
2016年重庆市中学考试数学试卷(A卷)
重庆市2016年初中毕业暨高中招生考试数 学 试 题 (A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试题卷上直接作答;2.作答前认真阅读答题卡...上的注意事项;3.作图(包括做辅助线)一律用黑色..签字笔完成;4.考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线c bx ax y ++=2)0(≠a 的顶点坐标为)44,2(2a b ac a b --,对称轴为ab x 2-=一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.在实数﹣2,2,0,﹣1中,最小的数是 A .﹣2B .2C .0D .﹣12.下列图形中是轴对称图形的是A .B .C .D .3.计算23a a ⋅正确的是A .aB .5aC .6aD .9a 4.下列调查中,最适合采用全面调查(普查)方式的是 A .对重庆市辖区内长江流域水质情况的调查 B .对乘坐飞机的旅客是否携带违禁物品的调查 C .对一个社区每天丢弃塑料袋数量的调查 D .对重庆电视台“天天630”栏目收视率的调查5.如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于 A .120° B .110° C .100° D .80° 6.若2=a ,1-=b ,则32++b a 的值为 A .﹣1 B .3 C .6 D .57.函数21+=x y 中,x 的取值范围是A .0≠xB .x >﹣2C .x <﹣2D .x ≠﹣2 8.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为 A .1:2 B .1:3C .1:4D .1:169.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC=BC =2,则图中阴影部分的面积是A .4πB .421π+C .2πD .221π+ 10.下列图形都是由同样大小的小圆圈按一定规律所组成的,一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A .64B .77C .80D .8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为(参考数据:sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)A .8.1米B .17.2米C .19.7米D .25.5米12.从﹣3,﹣1,21,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎪⎩⎪⎨⎧-≥+03)72(31<a x x 无解,且使关于x 的分式方程3-x x ﹣132-=--x a 有整数解,那么这5个数中所有满足条件的a 的值之和是A .﹣3B .﹣2C .23-D .21二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为 . 14.计算:=-+0)2(4 .15.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB = 度. 16.从数﹣2,﹣,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k=mn ,则正比例函数y=kx 的图象经过第三、第一象限的概率是 . 17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.18.如图,正方形ABCD 中,对角线AC ,BD 相交于点O , DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE′,点F 是DE 的中点,连接AF ,BF ,E′F .若AE =.则四边形ABFE′的面积是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 19.如图,点A ,B ,C ,D 在同一条直线上,CE ∥DF ,EC=BD ,AC=FD .求证:AE=FB .20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信总本数.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题..卡.中对应的位置上. 21.计算:(1))2()(2b a b b a +-+ (2)1)1122(2+-+-++-x xx x x x22.在平面直角坐标系中,一次函数)0(≠+=a b ax y 的图形与反比例函数)0(≠=x xky 的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH=3,tan ∠AOH =,点B 的坐标为(m ,﹣2).(1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格. (1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a %出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a %,且储备猪肉的销量占总销量的43,两种猪肉销售的总金额比5月20日提高了101a %,求a 的值.24.我们知道,任意一个正整数n 都可以进行这样的分解:q p n ⨯=(q p ,是正整数,且q p ≤),在n 的所有这种分解中,如果q p ,两因数之差的绝对值最小,我们就称q p n ⨯=是n 的最佳分解.并规定:qpn F =)(.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以43)12(=F .(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有1)(=m F ;(2)如果一个两位正整数t ,y x t +=10(91≤≤≤y x ,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中)(t F 的最大值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题..卡.中对应的位置上. 25.在△ABC 中,∠B =45°,∠C =30°,点D 是BC 上一点,连接AD ,过点A 作AG ⊥AD ,在AG 上取点F ,连接DF .延长DA 至E ,使AE=AF ,连接EG ,DG ,且GE=DF . (1)若AB =22,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD =21CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出CGAB的值.26.如图1,在平面直角坐标系中,抛物线3332312++-=x x y 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,抛物线的顶点为点E .(1)判断△ABC 的形状,并说明理由;(2)经过B ,C 两点的直线交抛物线的对称轴于点D ,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E′,点A 的对应点为点A′,将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A ,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A′,C 1E ′,△A′C 1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.2016年重庆市中考数学试卷(A卷)参考答案一、选择题1.A 2.D 3.B 4.B 5.C 6.D 8.C 9.A 10.D 11.A 12.B 二、填空题13.6.05×104 14.3 15.60 16.17.175 18.三、解答题19.证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.20.解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为:=6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.四、解答题21.解:(1)(a+b)2﹣b(2a+b)=a2+2ab+b2﹣2ab﹣b2=a2;(2)(+x﹣1)÷=×=×=.22.解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.23.解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.24.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.五、解答题25.解:(1)如图1中,过点A作AH⊥BC于H.∴∠AHB=∠AHC=90°,在RT△AHB中,∵AB=2,∠B=45°,∴BH=AB•cosB=2×=2,AH=AB•sinB=2,在RT△AHC中,∵∠C=30°,∴AC=2AH=4,CH=AC•cosC=2,∴BC=BH+CH=2+2.(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,∵AG⊥AD,∴∠DAF=∠EAC=90°,在△DAF和△GAE中,,∴△DAF≌△GAE,∴AD=AG,∴∠BAP=90°=∠DAG,∴∠BAD=∠PAG,∵∠B=∠APB=45°,∴AB=AP,在△ABD和△APG中,,∴△ABD≌△APG,∴BD=PG,∠B=∠APG=45°,∴∠GPB=∠GPC=90°,∵∠C=30°,∴PG=GC,∴BD=CG.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,在RT△AHC中,∵∠ACH=30°,∴AC=2AH,∴AH=AP,在RT△AHD和RT△APG中,,∴△AHD≌△APG,∴∠DAH=∠GAP,∵GM⊥AC,PA=PC,∴MA=MC,∴∠MAC=∠MCA=∠MAH=30°,∴∠DAM=∠GAM=45°,∴∠DAH=∠GAP=15°,∴∠BAD=∠BAH﹣∠DAH=30°,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,∴==,∵AG=CG=AD,∴=.26.解:(1)△ABC为直角三角形,当y=0时,即﹣x2+x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3,0),∴OA=,OB=3,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)如图,∵B(3,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+a+3),∴G(a,﹣a+3),∴PG=﹣a2+a,设点D的横坐标为x D,C点的横坐标为x C,S△PCD=×(x D﹣x C)×PG=﹣(a﹣)2+,∵0<a<3,∴当a=时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA 的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y=x+,当x=0时,y=,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH=,P′H=,AP′=,∴点Q运动得最短路径长为PM+MN+AN=+=;(3)在Rt△AOC中,∵tan∠OAC==,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2,∴A′E′=AE=2,∵直线AE的解析式为y=x+2,设点E′(a,a+2),∴A′(a﹣2,﹣2)∴C1E′2=(a﹣2)2+(+2﹣)2=a2﹣a+7,C1A′2=(a﹣2﹣)2+(﹣2﹣)2=a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7=a2﹣a+49,∴a=,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1=,a2=,∴E′(,7+),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1=,a2=(舍),∴E′(,3+),即,符合条件的点E′(,5),(,7+),或(,7﹣),(,3+).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20. (7 分)为响应“全民阅读”号召,某校在七年级 800 名学生中随机抽取 100 名学生,对该年级学生在 2015 年全年阅读中外名著的情况进行调查,整理调查 结果发现,学生阅读中外名著的本数,最少的有 5 本,最多的有 8 本,并根据调 查结果绘制了如图所示的不完整的条形统计图, 其中阅读了 6 本的人数占被调查 人数的 30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生 在 2015 年全年阅读中外名著的总本数.
23. (10 分)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪 肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格. (1)从今年年初至 5 月 20 日,猪肉价格不断走高,5 月 20 日比年初价格上涨 了 60%.某市民在今年 5 月 20 日购买 2.5 千克猪肉至少要花 100 元钱,那么今 年年初猪肉的最低价格为每千克多少元? (2)5 月 20 日,猪肉价格为每千克 40 元.5 月 21 日,某市决定投入储备猪肉并 规定其销售价在每千克 40 元的基础上下调 a%出售. 某超市按规定价出售一批储 备猪肉,该超市在非储备猪肉的价格仍为每千克 40 元的情况下,该天的两种猪 肉总销量比 5 月 20 日增加了 a%,且储备猪肉的销量占总销量的 ,两种猪肉销 售的总金额比 5 月 20 日提高了 a%,求 a 的值.
A.64 B.77 C.80 D.85 11. (4 分)某数学兴趣小组同学进行测量大树 CD 高度的综合实践活动,如图, 在点 A 处测得直立于地面的大树顶端 C 的仰角为 36°,然后沿在同一剖面的斜坡 AB 行走 13 米至坡顶 B 处, 然后再沿水平方向行走 6 米至大树脚底点 D 处, 斜面 AB 的坡度 (或坡比) i=1: 2.4, 那么大树 CD 的高度约为 (参考数据: sin36°≈0.59, cos36°≈0.81,tan36°≈0.73) ( )
四、解答题(本题共 4 个下题,每小题 10 分,共 40 分) 21. (10 分)计算: (1) (a+b)2﹣b(2a+b) (2) ( +x﹣1)÷ .
22. (10 分)在平面直角坐标系中,一次函数 y=ax+b(a≠0)的图形与反比例函 数 y= (k≠0)的图象交于第二、四象限内的 A、B 两点,与 y 轴交于 C 点,过 点 A 作 AH⊥y 轴,垂足为 H,OH=3,tan∠AOH= ,点 B 的坐标为(m,﹣2) . (1)求△AHO 的周长; (2)求该反比例函数和一次函数的解析式.
4. (4 分)下列调查中,最适合采用全面调查(普查)方式的是( A.对重庆市辖区内长江流域水质情况的调查 B.对乘坐飞机的旅客是否携带违禁物品的调查 C.对一个社区每天丢弃塑料袋数量的调查 D.对重庆电视台“天天 630”栏目收视率的调查
5. (4 分)如图,AB∥CD,直线 l 交 AB 于点 E,交 CD 于点 F,若∠2=80°,则∠ 1 等于( )
9. (4 分)如图,以 AB 为直径,点 O 为圆心的半圆经过点 C,若 AC=BC= 图中阴影部分的面积是( )
,则
A.
B.
C.
D. +
10. (4 分)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第① 个图形中一共有 4 个小圆圈,第②个图形中一共有 10 个小圆圈,第③个图形中 一共有 19 个小圆圈, …, 按此规律排列, 则第⑦个图形中小圆圈的个数为 ( )
16. (4 分)从数﹣2,﹣ ,0,4 中任取一个数记为 m,再从余下的三个数中, 任取一个数记为 n,若 k=mn,则正比例函数 y=kx 的图象经过第三、第一象限的 概率是 .
17. (4 分)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的 速度匀速跑步 1500 米,先到终点的人原地休息,已知甲先出发 30 秒后,乙才出 发,在跑步的整个过程中,甲、乙两人的距离 y(米)与甲出发的时间 x(秒) 之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.
18. (4 分)正方形 ABCD 中,对角线 AC,BD 相交于点 O,DE 平分∠ADO 交 AC 于点 E, 把△ADE 沿 AD 翻折, 得到△ADE′, 点 F 是 DE 的中点, 连接 AF, BF, E′F. 若 AE= .则四边形 ABFE′的面积是 .
三、解答题(本题共 2 个小题,每小题 7 分,共 14 分) 19. (7 分)如图,点 A,B,C,D 在同一条直线上,CE∥DF,EC=BD,AC=FD.求 证:AE=FB.
2016 年重庆市中考数学试卷(A 卷)
一、选择题(本题共 12 个小题,每小题 4 分,共 48 分) 1. (4 分)在实数﹣2,2,0,﹣1 中,最小的数是( A.﹣2 B.2 C.0 D.﹣1 ) )
2. (4 分)下列图形中,是轴对称图形的是(
A.
B.
C
.
D. 3. (4 分)计算 a3•a2 正确的是( A.a B.a5 C.a6 D.a9 ) )
A.8.1 米
B.17.2 米 C.19.7 米 D.25.5 米
12. (4 分)从﹣3,﹣1, ,1,3 这五个数中,随机抽取一个数,记为 a,若数 a 使关于 x 的不等式组 无解,且使关于 x 的分式方程 ﹣ =﹣
1 有整数解,那么这 5 个数中所有满足条件的 a 的值之和是( A.﹣3 B.﹣2 C.﹣ D.
A.120°B.110°C.100°D.80° 6. (4 分)若 a=2,b=﹣1,则 a+2b+3 的值为( A.﹣1 B.3 C.6 D.5 )
7. (4 分)函数 y= A.x≠0
中,x 的取值范围是(
)ห้องสมุดไป่ตู้
B.x>﹣2 C.x<﹣2 D.x≠﹣2 )
8. (4 分) △ABC 与△DEF 的相似比为 1: 4, 则△ABC 与△DEF 的周长比为 ( A.1:2 B.1:3 C.1:4 D.1:16
)
二、填空题(本题 6 个下题,每小题 4 分,共 24 分) 13. (4 分) 据报道, 2015 年某市城镇非私营单位就业人员年平均工资超过 60500 元,将数 60500 用科学记数法表示为 14. (4 分)计算: +(﹣2)0= . .
15. (4 分)如图,OA,OB 是⊙O 的半径,点 C 在⊙O 上,连接 AC,BC,若∠ AOB=120°,则∠ACB= 度.