2019-2020学年度最新北师大版高中数学必修二学案:第一章 3 三视图

合集下载

2019-2020学年度最新北师大版高中数学必修二学案:第一章 1 简单几何体

2019-2020学年度最新北师大版高中数学必修二学案:第一章 1 简单几何体

2019-2020学年度最新北师大版高中数学必修二学案:第一章1简单几何体 1.理解旋转体与多面体的概念.2.掌握球、圆柱、圆锥、圆台的结构特征.3.掌握棱柱、棱锥、棱台的基本性质.知识点一两平面平行和直线与平面垂直的概念思考1如何定义两平面平行?思考2如何判定直线与平面垂直?梳理(1)________________的两个平面平行.(2)如果一条直线与一个平面内的__________________都垂直,则这条直线与这个平面垂直.知识点二旋转体与多面体知识点三常见的旋转体及概念思考1以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥吗?思考2能否由圆锥得到圆台?梳理记作:球O 球面:以_______线为旋转轴,将半圆________面.球体:球面所围成的几何体叫作球体,简称球记作:圆柱OO′以直线为旋转轴,其余各边旋转而形成的的几何体叫作圆柱记作:圆锥OO′以直角三角形的__________直线为旋转轴,其余各边旋转而形成的的几何体叫作圆锥记作:圆台OO′以直角梯形_____________在的直线为旋转轴,其余各边旋转而形成的所围成的几何体叫作圆台特别提醒:(1)经过旋转体轴的截面称为该几何体的轴截面.(2)圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点.知识点四常见的多面体及相关概念思考观察下列多面体,试指明其类别.梳理(1)棱柱①定义要点:(ⅰ)两个面________________;(ⅱ)其余各面都是________________;(ⅲ)每相邻两个四边形的公共边都________________.②相关概念:底面:两个________________的面.侧面:除底面外的其余各面.侧棱:相邻______________的公共边.顶点:底面多边形与________的公共顶点.③记法:如三棱柱ABC-A1B1C1.④分类及特殊棱柱:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、…….(ⅱ)直棱柱:侧棱________于底面的棱柱.(ⅲ)正棱柱:底面是________________的直棱柱.(2)棱锥①定义要点:(ⅰ)有一个面是________________;(ⅱ)其余各面是三角形;(ⅲ)这些三角形有一个________________.②相关概念:底面:除去棱锥的侧面余下的那个________________.侧面:除底面外的其余__________面.侧棱:相邻两个________的公共边.顶点:________的公共顶点.③记法:如三棱锥S-ABC.④分类及特殊棱锥:(ⅰ)按底面多边形的边数分,有________、__________、__________、……,(ⅱ)正棱锥:底面是______________,且各侧面________的棱锥.(3)棱台①定义要点:用一个______________________的平面去截棱锥,________与________之间的部分.②相关概念:上底面:原棱锥的________.下底面:原________的底面.侧棱:相邻的________的公共边.顶点:________与底面的公共顶点.③记法:如三棱台ABC-A1B1C1.④分类及特殊棱台:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、……,(ⅱ)正棱台:由________________截得的棱台.类型一旋转体的概念例1下列命题正确的是________.(填序号)①以直角三角形的一边所在直线为旋转轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为旋转轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.反思与感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球心与球面上任意一点的连线段.其中正确的个数为()A.0 B.1C.2 D.3类型二多面体及其简单应用例2(1)下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.(2)如图所示,长方体ABCD-A1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,说明理由.(提示:可以证明BC綊MN)引申探究若用一个平面去截本例(2)中的四棱柱,能截出三棱锥吗?反思与感悟(1)棱柱的识别方法①两个面互相平行.②其余各面都是四边形.③每相邻两个四边形的公共边都互相平行.(2)棱锥的识别方法①有一个面是多边形.②其余各面都是有一个公共顶点的三角形.③棱锥仅有一个顶点,它是各侧面的公共顶点.④对几类特殊棱锥的认识(ⅰ)三棱锥是面数最少的多面体,又称四面体.它的每一个面都可以作为底面.(ⅱ)各棱都相等的三棱锥称为正四面体.(ⅲ)正棱锥有以下性质:侧面是全等的等腰三角形,顶点与底面正多边形中心的连线与底面垂直.(3)棱台的识别方法①上、下底面互相平行.②各侧棱延长交于一点.跟踪训练2下列说法正确的是()A.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B.两底面平行,并且各侧棱也互相平行的几何体是棱柱C.棱锥的侧面可以是四边形D.棱柱中两个互相平行的平面一定是棱柱的底面1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个2.关于下列几何体,说法正确的是()A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台3.下面有关棱台说法中,正确的是()A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形4.等腰三角形ABC绕底边上的中线AD所在的直线旋转一周所得的几何体是() A.圆台B.圆锥C.圆柱D.球5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.1.圆柱、圆锥、圆台的关系如图所示.2.棱柱、棱锥、棱台定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.(3)用一水平平面截棱锥可得到棱台.答案精析问题导学知识点一思考1两平面无公共点.思考2直线和平面内的任何一条直线都垂直.梳理(1)无公共点(2)任何一条直线知识点二平面曲线旋转面旋转体平面多边形多面体知识点三思考1不是.以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥的一半,不是整个圆锥.思考2用平行于圆锥底面的平面截去一个圆锥可以得到.梳理半圆的直径曲面圆心球面球心矩形的一边曲面一条直角边曲面垂直于底边的腰曲面旋转轴旋转轴圆面不垂直于旋转轴不垂直于旋转轴知识点四思考(1)五棱柱;(2)四棱锥;(3)三棱台.梳理(1)①(ⅰ)互相平行(ⅱ)四边形(ⅲ)互相平行②互相平行两个侧面侧面④(ⅰ)三棱柱四棱柱五棱柱(ⅱ)垂直(ⅲ)正多边形(2)①(ⅰ)多边形(ⅲ)公共顶点②多边形三角形侧面侧面④(ⅰ)三棱锥四棱锥五棱锥(ⅱ)正多边形全等(3)①平行于棱锥底面底面截面②截面棱锥侧面侧面④(ⅰ)三棱台四棱台五棱台(ⅱ)正棱锥题型探究例1④⑤⑥解析①以直角三角形的一条直角边所在直线为旋转轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的腰所在直线为旋转轴旋转一周可得到圆台;③它们的底面为圆面;④⑤⑥正确.跟踪训练1 C例2 3解析①中两个四棱柱放在一起,如下图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错;②中棱台的侧面一定是梯形,不可能为平行四边形,②正确;根据棱锥的概念知,③正确;根据棱台的概念知,④正确;棱柱的底面可以是三角形,故⑤错.正确的个数为3.(2)解①长方体是棱柱,是四棱柱.因为它有两个平行的平面ABCD与A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义.②用平面BCNM把这个长方体分成两部分,其中一部分有两个平行的平面BB1M与CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1M-CC1N;另一部分有两个平行的平面ABMA1与DCND1,其余各面都是四边形且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是四棱柱,可用符号表示为四棱柱ABMA1-DCND1.引申探究解如图,几何体B-A1B1C1就是三棱锥.跟踪训练2B[A中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D不正确.]当堂训练1.D[由棱柱的定义知,①③为棱柱.]2.D[由旋转体的结构特征知,D正确.]3.B[由棱台的结构特征知,B正确.]4.B[中线AD⊥BC,左右两侧对称,旋转体为圆锥.]5.2解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知,圆锥的母线长即为△ABC的边长,且S△ABC=34AB 2,∴3=34AB2,∴AB=2.故答案为2.11 / 11。

高中数学北师大版必修二学案:第一章 3 三视图

高中数学北师大版必修二学案:第一章 3 三视图

学习目标1.理解三视图的概念,能画出简单空间图形的三视图.2.了解简单组合体的组成方式,会画简单几何体的三视图.3.能识别三视图所表示的立体模型.知识点一组合体1.定义:由__________________形成的几何体叫作组合体.2.基本形式:有两种,一种是将基本几何体________成组合体;另一种是从基本几何体中______或______部分构成组合体.知识点二空间几何体的三视图思考对于一般的物体,三视图分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?梳理(1)三视图的概念三视图包括__________(又称__________)、__________,左视图(侧视图通常选择________,简称__________).(2)三视图的画法规则①________视图反映物体的长度——“____________”.②________视图反映物体的高度——“____________”.③________视图反映物体的宽度——“____________”.(3)绘制三视图时的注意事项①在绘制三视图时,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮廓线画虚线.②同一物体放置的位置不同,所画的三视图可能不同.③三视图的摆放规则:左视图放在主视图的右面,俯视图放在主视图的正下方.类型一简单几何体的三视图例1(1)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为()(2)画出如图所示的几何体的三视图.反思与感悟(1)观察立体图形时,要选择在某个方向上“平视”,用目光将立体图形“压缩”成平面图形,这样就得到了三视图.注意三视图的排列规则和虚、实线的确定.一般地,几何体的轮廓线中能看到的画成实线,不能看到的画成虚线.(2)画简单组合体的三视图,要注意从三个方向观察几何体的轮廓线,还要搞清楚各简单几何体之间的组接位置,其组接的交线往往又是简单组合体的轮廓线,被挡住的要画成虚线.跟踪训练1如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.类型二由三视图还原成实物图例2(1)若某几何体的三视图如图所示,则这个几何体的直观图可以是()(2)根据以下三视图想象物体原形,并画出物体的实物草图.反思与感悟(1)通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.(2)通过俯视图确定是多面体还是旋转体,若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.跟踪训练2(1)已知如图所示的三视图,则该几何体是什么?它的高与底面面积分别是多少?(尺寸的长度单位为m)(2)如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.1.如图所示,甲、乙、丙是三个几何体的三视图,则下列甲、乙、丙对应的标号正确的是()①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.②①③C.①②③D.③②④2.一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()4.如图所示,正三棱柱ABC-A1B1C1(底面为等边三角形)的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()A.83B.4 3C.23D.165.有一个正三棱柱的三视图如图所示,则这个三棱柱的高和底面边长分别为________.1.三视图是指主视图、左视图和俯视图,画图时应遵循“长对正、高平齐、宽相等”或“主俯一样长,主左一样高,俯左一样宽”的原则,若相邻两物体的表面相交,表面的交线是它们的分界线.在三视图中,分界线和可见轮廓线都用实线画出,重叠的线只画一条,不可见轮廓线要用虚线画出.2.空间几何体的三视图可以使我们很好地把握空间几何体的性质,由空间几何体可画出它的主视图,同样由三视图可以想象出空间几何体的形状,两者之间的相互转化,可以培养我们的几何直观能力和空间想象能力.答案精析问题导学知识点一1.基本几何体2.拼接切掉挖掉知识点二思考主视图反映了物体上下、左右的位置关系,即反映物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映物体的高度和宽度.梳理(1)主视图正视图俯视图左侧视图左视图(2)①主、俯长对正 ②主、左高平齐③俯、左宽相等 题型探究例1B [依题意,左视图中棱的方向是从右下角到左上角,故选B.](2)解题图①是一个圆柱和一个长方体的组合体,按照圆柱、长方体的三视图画法画出它们的组合体的三视图,如图(1);题图②为球与圆台的组合体,其三视图如图(2).跟踪训练1解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.例2D [A 、B 选项中的主视图不符合要求,C 选项中的俯视图显然不符合要求,故选D.] (2)解此几何体上面可以为圆台,下面可以为圆柱,所以实物草图如图.跟踪训练2(1)解由三视图可知,该几何体为三棱锥(如图),AC =4m ,BD =3m ,高为2m ,S △ABC =12AC ·BD =12×4×3=6(m 2).(2)4解析由三视图知,几何体由4块木块组成.如图.当堂训练1.A2.C3.D4.A5.2,4。

2019-2020年高中数学《三视图、表面积、体积的综合应用》导学案 北师大版必修2

2019-2020年高中数学《三视图、表面积、体积的综合应用》导学案 北师大版必修2

2019-2020年高中数学《三视图、表面积、体积的综合应用》导学案北师大版必修21.熟悉常见几何体的三视图,能将三视图还原为几何体.2.能熟练应用常见几何体的体积、表面积公式求其体积和表面积.3.能进行简单的球的外接或内切几何体的计算.同学们,通过前面几节课的学习,我们会画一个几何体的三视图,也会画一个几何体的直观图,又学习了简单几何体和简单组合体的表面积和体积公式,那么把所有的知识串联起来呢?这节课我们就一起来探究解决它们之间的综合性问题,首先我们来巩固一下有关的知识.直观图主(正)视图俯视图问题2:常见几何体的侧面积、表面积公式1.柱体、锥体、台体的侧面积就是之和,表面积是之和,即侧面积与底面积之和.2.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,它的表面积就是的面积.3.圆柱的侧面积公式是S柱侧= ,表面积公式是S柱= ;圆锥的侧面积公式是S锥侧= ,表面积公式是S锥=;圆台的侧面积公式是S台侧=π(r+r')l,表面积公式是S台=π(r'2+r2+r'l+rl).4.半径为R的球的表面积为.问题3:常见几何体的体积公式1.长方体的体积公式是,正方体的体积公式是,圆柱的体积公式是.所有棱柱和圆柱的体积公式可以统一为,其中S为底面积,h为高.2.圆锥的体积公式是V=πr2h,棱锥的体积公式是V=Sh.圆锥和棱锥的体积公式可以统一为,其中S为底面积,h为高.3.圆台的体积公式为V=π(r'2+r'r+r2)h,棱台的体积公式为V=(S'++S)h,圆台和棱台的体积公式可以统一为V台=(S'++S)h,其中S'、S分别为上、下底的底面积,h为高.4.半径为R的球的体积为.1.一个正方体的体积是a,表面积是2a,则a等于().A.3B.6C.27D.542.圆柱的主(正)视图是一个边长分别为2和3的矩形,则圆柱的表面积为().A.8πB.πC.20D.8π或π3.如图是某几何体的三视图,且主(正)视图、左(侧)视图、俯视图都是直角边长为2的等腰直角三角形,则该几何体的体积为.4.已知六棱柱ABCDEF-A1B1C1D1E1F1的侧棱与底面垂直,且底面为正六边形,对角面的面积为S,求六棱柱的侧面积.三视图与表面积、体积的综合应用若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于cm3.几何体侧面展开问题如图所示,在正三棱柱ABC-A1B1C1中,AB=2,AA1=2,从顶点B沿棱柱侧面(经过棱AA1)到达顶点C1,与AA1的交点记为M.求:(1)正三棱柱侧面展开图的对角线长;(2)从B经过M到C1的最短路线长及此时的值.球的外接与内切几何体已知正方体的棱长为a,求正方体的外接球的表面积和内切球的体积.已知某几何体的三视图如图所示,则该几何体的体积为().A. B.3π C. D.6π如图,侧棱长为2的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面△AEF,则截面△AEF的周长的最小值为.一个棱长都为a的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为().A.πa2B.2πa2C.πa2D.πa21.设正六棱锥的底面边长为1,侧棱长为,则它的体积是().A.6B.C.2D.22.若圆锥的侧面展开图是圆心角为120°,半径为l的扇形,则这个圆锥的表面积与侧面积的比是().A.3∶2B.2∶1C.4∶3D.5∶33.有一个几何体的三视图及其尺寸如图,则该几何体的表面积为.4.求边长为2的正方形以过对边中点所在直线为旋转轴,旋转所成几何体的表面积.(2013年·重庆卷)某几何体的三视图如图所示,则该几何体的体积为().A. B. C.200 D.240考题变式(我来改编):第14课时三视图、表面积、体积的综合应用知识体系梳理问题2:1.各侧面面积各个面的面积2.展开图3.2πrl 2πr(r+l)πrl πr(r+l)4.4πR2问题3:1.V=abc V=a3V=πr2h V柱=Sh2.V锥=Sh4.πR3基础学习交流1.C设正方体的棱长为m,则m3=a,6m2=2a,解得m=3,a=27.2.D圆柱的正(主)视图是矩形,则该矩形的两边分别是底面直径和母线,所以有两种情形:一是r=1,l=3,此时表面积为S=2π×1×3+2π×12=8π;二是r=,l=2,此时表面积为S=2π××2+2π×()2=π.3.作出该几何体的直观图,可发现是该几何体是个三棱锥,易求得底面积为2,高为2,所以体积为.4.解:设棱柱的底面边长为a,高为h.由题意可知2ah=S,故S侧=6ah=3×2ah=3S.重点难点探究探究一:【解析】此三视图所表示的几何体由一个直三棱柱截去一个三棱锥所得,故其体积V=×3×4×5-××3×4×3=24(cm3).【答案】24【小结】根据三视图正确地还原几何体是解决问题的关键,常见三视图的特征与几何体的对应关系如下:一般地,棱柱的三视图为两个平行四边形、一个多边形;棱锥的三视图为两个三角形、一个多边形;棱台的三视图为两个梯形,一个多边形;圆柱的三视图为两个矩形、一个圆;圆锥的三视图为两个三角形、一个圆;圆台的三视图为两个等腰梯形、一个圆;球的三视图为三个圆.探究二:【解析】沿侧棱BB1将正三棱柱的侧面展开,得到一个矩形BB1B1'B'(如图).(1)矩形BB1B1'B1的长为BB'=6,宽为BB1=2,所以正三棱柱侧面展开图的对角线长为=2.(2)由侧面展开图可知:当B,M,C1三点共线时,从B经过M到达C1的路线最短.所以最短路线长为BC1==2.显然Rt△ABM≌Rt△A1C1M,所以A1M=AM,即=1.所以从B经过M到C1的最短路线长为2,此时的值为1.【小结】几何体面上线段的最值问题,一般转化为侧面展开图问题解决,处理这类问题的过程中注意体会立体问题平面化的思想.探究三:【解析】由正方体的对称性可知:正方体的外接球的半径为a,∴S外接球=4π×(a)2=2πa2, 内切球的半径为正方体的中心到面的距离,即r=,∴V内切球=π()3=πa3.[问题]求正方体的外接球半径是否正确?[结论]不正确,错误之处在于把正方体的面对角线当成了外接球直径,事实上外接球半径为正方体体对角线长的一半,即R=a,∴S外接球=4π(a)2=3πa2.【小结】球的外接与内切几何体常与长方体结合考查,长方体的体对角线为外接球的直径,注意内切球的直径为正方体边长的一半.球的外接与内切其他几何体问题也常转化为长方体问题解决.思维拓展应用应用一:B由题意,画出几何体的直观图(如图),利用对称性补形,可转化为高为6的半圆柱体,则所求几何体的体积为×(π×12×6)=3π.故选B.应用二:6沿着侧棱VA把正三棱锥V-ABC展开在一个平面内,如图.则AA'即为截面△AEF周长的最小值,且∠AVA'=3×40°=120°.在△VAA'中,由余弦定理可得AA'=6,故答案为6.应用三:A如图,设O1、O2为直三棱柱两底面的中心,球心O为O1O2的中点.又直三棱柱的棱长为a,可知OO1=a,AO1=a,设该球的半径为R,则R2=OA2=O+A=,因此该直三棱柱外接球的表面积为S=4πR2=4π×=·πa2,故选A.基础智能检测1.B正六棱锥的高是=2,底面面积是×1××6=,所以体积为V=××2=,故选B.2.C设圆锥的底面半径为r,则有l=2πr,∴l=3r,∴===.3.24π由图可知此几何体是圆锥,r=3,l=5,h=4,所以S表=π×32+π×3×5=24π.4.解:所成的几何体是底面半径为1,母线长为2的圆柱,所以S侧=2π×1×2=4π,S底=π×12=π,所以S表=S侧+2S底=6π.全新视角拓展C由三视图可知该几何体是直四棱柱,底面是等腰梯形,底面面积S=×(2+8)×4=20, 几何体的体积V=S·h=20×10=200.选C.。

2019-2020学年高中数学北师大版必修2一课三测:1.3 三视图 含解析

2019-2020学年高中数学北师大版必修2一课三测:1.3 三视图 含解析

§3三视图填一填1。

三视图的概念三视图包括主视图(又称正视图)、俯视图,侧视图(通常选择左侧视图,简称左视图).2.三视图的画法规则(1)主、俯视图反映物体的长度—-“长对正”.(2)主、左视图反映物体的高度-—“高平齐".(3)俯、左视图反映物体的宽度-—“宽相等”.3.由基本几何体形成的组合体的两种基本形式(1)将基本几何体拼接.(2)从基本几何体中切掉或挖掉部分.判一判1。

任何一个几何体都可画出三视图.(√)2.主视图和左视图都是矩形的几何体一定是长方体.(×)3.主视图的高就是看到的几何体的高.(×)4.画三视图时应保证光线与投射面垂直.(√)5.同一个物体的主视图可能不同.(√)6.画三视图时,被遮住的部分可不画.(×)7.圆柱的三视图都是矩形.(×)8.三视图可以是全等的三角形.(√)想一想1.提示:常见几何体正视图侧视图俯视图长方体矩形矩形矩形正方体正方形正方形正方形圆柱矩形矩形圆圆锥等腰三角形等腰三角形圆圆台等腰梯形等腰梯形两个同心的圆球圆圆圆2.画组合体三视图的“四个步骤”是什么?提示:(1)析:分析组合体的组成形式;(2)分:把组合体分解成简单几何体;(3)画:画分解后的简单几何体的三视图;(4)拼:将各个三视图拼合成组合体的三视图.3.画三视图时要注意避免出现哪些问题?提示:(1)没有确定主视方向直接画图;(2)三个视图摆放位置混乱;(3)未遵循长、宽、高的画图原则;(4)看不见的边界轮廓线未画成虚线.4.由三视图还原几何体的步骤是什么?提示:思考感悟:练一练1。

以下说法正确的是( )A.任何物体的三视图都与物体摆放位置有关B.任何物体的三视图都与物体摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形答案:C2.有一个几何体的三视图如图所示,这个几何体应是一个________.答案:四棱台3.水平放置的下列几何体,主视图是长方形的是________.(填序号)答案:①③④4.一个圆柱的三视图中,一定没有的图形是()A.矩形B.圆C.三角形D.正方形答案:C5.根据如图所示的俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.答案:(1)(D) (2)(A) (3)(E) (4)(C)(5)(B)知识点一简单几何体的三视图1。

2019-2020高中数学第一章立体几何初步1.3三视图学案北师大版必修2

2019-2020高中数学第一章立体几何初步1.3三视图学案北师大版必修2

§3三视图学习目标 1.理解三视图的概念;能画出简单空间图形的三视图(重点);2.了解简单组合体的组成方式,会画简单几何体的三视图(重点);3.能识别三视图所表示的立体模型(重、难点).知识点一组合体(1)定义:由基本几何体生成的几何体叫作组合体.(2)基本形式:有两种,一种是将基本几何体拼接成组合体;另一种是从基本几何体中切掉或挖掉部分构成组合体.【预习评价】描述下列几何体的结构特征.提示图①所示的几何体是由两个圆台拼接而成的组合体;图②所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图③所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.知识点二三视图(1)空间几何体的三视图是指主视图、左视图、俯视图.(2)三视图的排列规则是俯视图放在主视图的下方,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.(3)三视图的主视图、俯视图、左视图分别是从正前方、正上方、正左侧观察同一个几何体,所画出的空间几何体的平面图形.【预习评价】(1)画三视图时一定要求光线与投影面垂直吗?提示是.由画三视图的规则要求可知光线与投影面垂直.(2)三视图中的三个图形一般怎样排列?对于一般的几何体,几何体的主视图、左视图和俯视图的长度、宽度和高度有什么关系?提示三视图的排列规则是:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.为了便于记忆,通常说:“长对正,高平齐,宽相等”或说“主俯一样长,主左一样高,俯左一样宽”.题型一画空间几何体的三视图【例1】如图是按不同方式放置的同一个圆柱,阴影面为正面,画出其三视图.解三视图分别如图所示.规律方法画三视图应遵循的原则和注意事项:(1)务必做到“长对正,高平齐,宽相等”.(2)三视图的排列方法是主视图与左视图在同一水平位置,且主视图在左,左视图在右,俯视图在主视图的正下方.(3)在三视图中,要注意实、虚线的画法.(4)画完三视图草图后,要再对照实物图来验证其正确性.【训练1】画出图中棱柱的三视图(不考虑尺寸).解此棱柱的上、下底面是全等的两个等腰梯形,各侧面均是矩形.从正前方看它的轮廓是一个矩形,有两条不可见侧棱,从正左侧看它的轮廓是一个矩形,从上向下看它的轮廓是一个梯形.可见轮廓线用实线,不可见侧棱用虚线画出,它的三视图如图所示.题型二简单组合体的三视图【例2】如图是球放在圆筒上形成的组合体,画出它的三视图.解它的三视图如图所示:规律方法在绘制简单组合体的三视图时,首先要分析组合体是由哪几部分组成,各部分是怎样的简单几何体以及它们的相对位置;其次要注意实线、虚线的处理.【训练2】如图,设所给的方向为物体的正前方,试画出它的三视图.解三视图如下:【探究1】根据以下三视图想象物体原形,并画出物体的实物草图.解此几何体上面可以为圆柱,下面可以为圆台,所以实物草图可以如图.【探究2】如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析如图,几何体为三棱柱.答案 B【探究3】一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图,则这个组合体包含的小正方体的个数是( )A.7B.6C.5D.4解析由三视图可知,该几何体共两层,下层有四个小正方体,上层有一个小正体,共五个,其实物图如图所示.故选 C.答案 C【探究4】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B. 2C. 3D.2解析由题中三视图知,此四棱锥为正方体的一部分,如图中的四棱锥S-ABCD,其中正方体的棱长为1,所以四棱锥最长棱的棱长为SC= 3.答案 C规律方法由三视图还原空间几何体的步骤:课堂达标1.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④解析在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.答案 D2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )解析从左往右看,主体的轮廓是一个长方形,长方体的对角线可以看见,且该对角线是从左下角往右上角倾斜的.答案 D3.如图所示,桌面上放着一个半球,则它的三视图中,与其他两个视图不同的是________(填“主视图”“左视图”或“俯视图”).解析该半球的主视图与左视图均为半圆,而俯视图是一个圆,所以俯视图与其他两个视图不同.答案俯视图4.一几何体的直观图如图所示,下列给出的四个俯视图中正确的是________.解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此填②.答案②5.画出下面的三视图表示的物体形状.解几何体为三棱台,结构特征如图:课堂小结1.三视图的主视图、左视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体三视图的要求是主视图、左视图长对正,主视图、左视图高平齐,俯视图、左视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出的两条互相垂直的辅助坐标轴,在第二象限画出主视图;根据“主、俯两图长对正”的原则,在第三象限画出俯视图;根据“主、左两图高平齐”的原则,在第一象限画出左视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.基础过关1.下列说法正确的是( )A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形解析对于A,球的三视图与物体摆放位置无关,故A错;对于B,D,正方体的三视图与摆放位置有关,故B,D错;故选 C.答案 C2.在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图可以为( )解析由几何体的主视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其左视图可以是一个由等腰三角形及底边上的高构成的平面图形.答案 D3.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )解析由三视图中的主视图、左视图得到几何体如图所示,所以该几何体的俯视图为 C.答案 C4.若一个正三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底面边长为 4. 答案 2 45.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为________.解析依题意得三棱锥P-ABC的主视图与左视图分别是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都等于正方体的棱长,因此三棱锥P-ABC的主视图与左视图的面积的比值为 1.答案 16.已知如下三视图,试分析该几何体结构特征并画出物体的实物草图.解由三视图可知该几何体为四棱锥P-ABCD,对应空间几何体如图:PA⊥AB,PA⊥AD,AB⊥AD.7.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.能力提升8.如图所示,正三棱柱ABC-A1B1C1的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A.8 3B.4 3C.2 3D.16解析由主视图可知三棱柱的高为4,底面边长为4,所以底面正三角形的高为23,所以左视图的面积为4×23=8 3.故选A.答案 A9.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A.1B. 2C.2-12D.2+12解析由题意知正方体的底面水平放置.当主视图为正方形时,其面积最小为1;当主视图为对角面时,其面积最大为 2.则正方体的主视图的面积的范围为[1,2].而2-12<1,故C不可能.答案 C10.一个锥体的主视图和左视图如图所示,下列选项中不可能是该锥体的俯视图的是( )解析在三视图中,俯视图的宽度应与左视图的宽度相等,而在选项C中,其宽度为3 2,与题中所给的左视图的宽度为1不相等,故选 C.答案 C11.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于____________.解析由图可得该几何体为三棱柱,因为主视图、左视图、俯视图的内切圆最小的是主视图(直角三角形)所对应的内切圆,所以最大球的半径为主视图中直角三角形的内切圆的半径r.由题意,得8-r+6-r=82+62.解得r=2.答案 212.一个物体由几块相同的正方体组成,其三视图如图所示,试据图回答下列问题:(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?解(1)该物体一共有两层,从主视图和左视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从左视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个.该物体一共由7个小正方体构成. 13.(选做题)某几何体的一条棱长为7,在该几何体的主视图中,这条棱的投影是长为a的线段,在该几何体的左视图与俯视图中,这条棱的投影分别是长为6和b的线段,求a2+b2的值.解如图所示,设长方体的长、宽、高分别为m,n,k,体对角线长为7,体对角线在三个相邻面上的投影长分别为a,6,b.则由题意,得m2+n2+k2=7,n2+k2=6,解得m=1或m=-1(舍去),则k2+1=a,n2+1=b,所以(a2-1)+(b2-1)=6,即a2+b2=8.。

高中数学 第1章 立体几何初步3三视图同步教学案 北师大版必修2

高中数学 第1章 立体几何初步3三视图同步教学案 北师大版必修2

高中数学第1章立体几何初步3三视图同步教学案北师大版必修2【课时目标】1.初步认识简单几何体的三视图.2.会画出空间几何体的三视图并会由空间几何体的三视图画出空间几何体.1.空间几何体的三视图是指__________、__________、__________.2.三视图的排列规则是__________放在主视图的下方,长度与主视图一样,__________放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.3.三视图的主视图、俯视图、左视图分别是从________、__________、________观察同一个几何体,画出空间几何体的图形.一、选择题1.下列说法正确的是( )A.任何几何体的三视图都与其摆放的位置有关B.任何几何体的三视图都与其摆放的位置无关C.有的几何体的三视图与其摆放的位置无关D.正方体的三视图一定是三个全等的正方形2.如图所示的一个几何体,哪一个是该几何体的俯视图( )3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④4.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )5.实物图如图所示.无论怎样摆放物体,如图所示中不可能为其主视图的是( )6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是( )二、填空题7.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.9.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.三、解答题10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).11.如图是截去一角的长方体,画出它的三视图.能力提升12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?在绘制三视图时,要注意以下三点:1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.§3三视图答案知识梳理1.主视图左视图俯视图2.俯视图左视图3.正前方正上方左侧作业设计1.C[球的三视图与其摆放位置无关.]2.C3.D[在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.]4.C[由三视图中的正、左视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.] 5.D[A图可看做该物体槽向前时的主视图,B图可看做槽向下时的主视图,C图可看做槽向后时的主视图.]6.A7.(1)D(2)A(3)E(4)C(5)B8.2 4解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.9.710.解图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.11.解该图形的三视图如图所示.12.解该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.。

北师大版数学高一1.3 三视图学案必修2

北师大版数学高一1.3 三视图学案必修2

§2 三视图自主学习1.了解空间几何体的三视图的概念,初步认识简单几何体的三视图.2.会画出空间几何体的三视图,并会由空间几何体的三视图画出空间几何体.1.空间几何体的三视图是指__________、__________、__________.2.三视图的主视图、俯视图、左视图分别是从正前方、正上方、左侧观察同一个几何体,画出空间几何体的图形.3.三视图的排列规则是__________放在主视图的下方,长度与主视图一样,__________ 放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.对点讲练简单几何体的三视图例1 画出如图所示的正四棱锥的三视图.点评(1)在画三视图时,务必做到主(视图)左(视图)高平齐,主(视图)俯(视图)长对正,俯(视图)左(视图)宽相等.(2)习惯上将主视图与左视图画在同一水平位置上,俯视图在主视图的正下方.变式训练1画出如图所示的空间几何体的三视图(尺寸不作严格要求).简单组合体的三视图例2 画出螺母的三视图.点评绘制空间物体的三视图,要注意“长对正、高平齐、宽相等”这一规律.另外,相邻面的交线与物体的可见轮廓线都要用实线画出,不可见轮廓线用虚线画出.变式训练2画出如图所示几何体的三视图.由三视图还原成实物图例 3 一个几何体的三视图如图所示,请说出这个几何体的结构特征,并画出这个几何体.点评只要熟悉简单几何体的三视图形式,由简单几何体的三视图还原几何体并不困难,对于组合体,需要综合主视图、左视图、俯视图的特征,确定分界线,找出组成组合体的简单几何体,再将组合体还原,其中确定分界线是正确还原的关键.变式训练3如图所示,根据三视图想像物体原形,并画出它的实物图.在绘制三视图时,要掌握如下技巧:(1)若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出;(2)一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”;(3)在画物体的三视图时应注意观察的角度,角度不同,往往画出的三视图不同.课时作业一、选择题1.下列说法正确的是()A.任何几何体的三视图都与其摆放的位置有关B.任何几何体的三视图都与其摆放的位置无关C.有的几何体的三视图与其摆放的位置无关D.正方体的三视图一定是三个全等的正方形2.下列几何体的三视图中,三个视图不全相同的序号是()A.①②B.②③C.③④D.②④3.四个正方体按如图所示的方式放置,其中阴影部分为我们观察的正面,则该物体的三视图正确的为()4.实物图如图所示.无论怎样摆放物体,如图所示中不可能为其主视图的是()5.若已知一个几何体的主视图如图所示,则此几何体不可能为()A.圆台B.圆柱C.圆台或棱台D.棱柱二、填空题6.给出下列命题:①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是长方形,则这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,则这个几何体是圆台.其中正确的命题是________(将正确命题的序号都填上).7.根据如图所示的俯视图,找出对应的物体.(1)对应______;(2)对应______;(3)对应_________________________________________________________________;(4)对应________;(5)对应________.8.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是________.三、解答题9.画出如图所示的几何体的三视图.10.下图是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.§3三视图答案自学导引1.主视图左视图俯视图3.俯视图左视图对点讲练例1 解正四棱锥的三视图如图所示:变式训练1解三视图分别如图所示.例2 解三视图如图所示.变式训练2解三视图如下图所示.例 3 解由三视图可得几何体的直观图如图所示,该几何体是由三个圆柱拼接而成的组合体.变式训练3解由三视图可以看出,该物体下部是一个长方体,上部是半个圆柱,在中间挖去了一个圆柱,虚线表示被挡住的轮廓线,实物图如图所示.课时作业1.C2.D[①的三个视图都是正方形,③的三个视图都是圆.]3.B4.D[A图可看做该物体槽向前时的主视图,B图可看做槽向下时的主视图,C图可看做槽向后时的主视图.]5.B6.③7.(1)D(2)A(3)E(4)C(5)B8.6解析由主视图和左视图,知该几何体由两层小正方体拼接成,由俯视图可知,最下层有5个小正方体,由左视图知上层仅有一个正方体,则共有6个小正方体.9.解三视图如图所示.10.解由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱,下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.。

2020高中数学第一章立体几何初步1.3三视图学案北师大版必修2

2020高中数学第一章立体几何初步1.3三视图学案北师大版必修2

§3三视图学习目标 1.理解三视图的概念;能画出简单空间图形的三视图(重点);2.了解简单组合体的组成方式,会画简单几何体的三视图(重点);3.能识别三视图所表示的立体模型(重、难点).知识点一组合体(1)定义:由基本几何体生成的几何体叫作组合体.(2)基本形式:有两种,一种是将基本几何体拼接成组合体;另一种是从基本几何体中切掉或挖掉部分构成组合体.【预习评价】描述下列几何体的结构特征.提示图①所示的几何体是由两个圆台拼接而成的组合体;图②所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图③所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.知识点二三视图(1)空间几何体的三视图是指主视图、左视图、俯视图.(2)三视图的排列规则是俯视图放在主视图的下方,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.(3)三视图的主视图、俯视图、左视图分别是从正前方、正上方、正左侧观察同一个几何体,所画出的空间几何体的平面图形.【预习评价】(1)画三视图时一定要求光线与投影面垂直吗?提示是.由画三视图的规则要求可知光线与投影面垂直.(2)三视图中的三个图形一般怎样排列?对于一般的几何体,几何体的主视图、左视图和俯视图的长度、宽度和高度有什么关系?提示三视图的排列规则是:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.为了便于记忆,通常说:“长对正,高平齐,宽相等”或说“主俯一样长,主左一样高,俯左一样宽”.题型一画空间几何体的三视图【例1】如图是按不同方式放置的同一个圆柱,阴影面为正面,画出其三视图.解三视图分别如图所示.规律方法画三视图应遵循的原则和注意事项:(1)务必做到“长对正,高平齐,宽相等”.(2)三视图的排列方法是主视图与左视图在同一水平位置,且主视图在左,左视图在右,俯视图在主视图的正下方.(3)在三视图中,要注意实、虚线的画法.(4)画完三视图草图后,要再对照实物图来验证其正确性.【训练1】画出图中棱柱的三视图(不考虑尺寸).解此棱柱的上、下底面是全等的两个等腰梯形,各侧面均是矩形.从正前方看它的轮廓是一个矩形,有两条不可见侧棱,从正左侧看它的轮廓是一个矩形,从上向下看它的轮廓是一个梯形.可见轮廓线用实线,不可见侧棱用虚线画出,它的三视图如图所示.题型二简单组合体的三视图【例2】如图是球放在圆筒上形成的组合体,画出它的三视图.解它的三视图如图所示:规律方法在绘制简单组合体的三视图时,首先要分析组合体是由哪几部分组成,各部分是怎样的简单几何体以及它们的相对位置;其次要注意实线、虚线的处理.【训练2】如图,设所给的方向为物体的正前方,试画出它的三视图.解三视图如下:【探究1】根据以下三视图想象物体原形,并画出物体的实物草图.解此几何体上面可以为圆柱,下面可以为圆台,所以实物草图可以如图.【探究2】如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析如图,几何体为三棱柱.答案 B【探究3】一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图,则这个组合体包含的小正方体的个数是( )A.7B.6C.5D.4解析由三视图可知,该几何体共两层,下层有四个小正方体,上层有一个小正体,共五个,其实物图如图所示.故选C.答案 C【探究4】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B. 2C. 3D.2解析由题中三视图知,此四棱锥为正方体的一部分,如图中的四棱锥S-ABCD,其中正方体的棱长为1,所以四棱锥最长棱的棱长为SC= 3.答案 C规律方法由三视图还原空间几何体的步骤:课堂达标1.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④解析在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.答案 D2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )解析从左往右看,主体的轮廓是一个长方形,长方体的对角线可以看见,且该对角线是从左下角往右上角倾斜的.答案 D3.如图所示,桌面上放着一个半球,则它的三视图中,与其他两个视图不同的是________(填“主视图”“左视图”或“俯视图”).解析该半球的主视图与左视图均为半圆,而俯视图是一个圆,所以俯视图与其他两个视图不同.答案俯视图4.一几何体的直观图如图所示,下列给出的四个俯视图中正确的是________.解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此填②.答案②5.画出下面的三视图表示的物体形状.解几何体为三棱台,结构特征如图:课堂小结1.三视图的主视图、左视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体三视图的要求是主视图、左视图长对正,主视图、左视图高平齐,俯视图、左视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出的两条互相垂直的辅助坐标轴,在第二象限画出主视图;根据“主、俯两图长对正”的原则,在第三象限画出俯视图;根据“主、左两图高平齐”的原则,在第一象限画出左视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.基础过关1.下列说法正确的是( )A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形解析对于A,球的三视图与物体摆放位置无关,故A错;对于B,D,正方体的三视图与摆放位置有关,故B,D错;故选C.答案 C2.在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图可以为( )解析由几何体的主视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其左视图可以是一个由等腰三角形及底边上的高构成的平面图形.答案 D3.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )解析由三视图中的主视图、左视图得到几何体如图所示,所以该几何体的俯视图为C.答案 C4.若一个正三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底面边长为4. 答案 2 45.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为________.解析依题意得三棱锥P-ABC的主视图与左视图分别是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都等于正方体的棱长,因此三棱锥P-ABC的主视图与左视图的面积的比值为1.答案 16.已知如下三视图,试分析该几何体结构特征并画出物体的实物草图.解由三视图可知该几何体为四棱锥P-ABCD,对应空间几何体如图:PA⊥AB,PA⊥AD,AB⊥AD.7.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.能力提升8.如图所示,正三棱柱ABC-A1B1C1的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A.8 3B.4 3C.2 3D.16解析由主视图可知三棱柱的高为4,底面边长为4,所以底面正三角形的高为23,所以左视图的面积为4×23=8 3.故选A.答案 A9.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A.1B. 2C.2-12D.2+12解析由题意知正方体的底面水平放置.当主视图为正方形时,其面积最小为1;当主视图为对角面时,其面积最大为 2.则正方体的主视图的面积的范围为[1,2].而2-12<1,故C不可能.答案 C10.一个锥体的主视图和左视图如图所示,下列选项中不可能是该锥体的俯视图的是( )解析在三视图中,俯视图的宽度应与左视图的宽度相等,而在选项C中,其宽度为32,与题中所给的左视图的宽度为1不相等,故选C.答案 C11.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于____________.解析由图可得该几何体为三棱柱,因为主视图、左视图、俯视图的内切圆最小的是主视图(直角三角形)所对应的内切圆,所以最大球的半径为主视图中直角三角形的内切圆的半径r.由题意,得8-r+6-r=82+62.解得r=2.答案 212.一个物体由几块相同的正方体组成,其三视图如图所示,试据图回答下列问题:(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?解 (1)该物体一共有两层,从主视图和左视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从左视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个.该物体一共由7个小正方体构成.13.(选做题)某几何体的一条棱长为7,在该几何体的主视图中,这条棱的投影是长为a 的线段,在该几何体的左视图与俯视图中,这条棱的投影分别是长为6和b 的线段,求a 2+b 2的值.解 如图所示,设长方体的长、宽、高分别为m ,n ,k ,体对角线长为7,体对角线在三个相邻面上的投影长分别为a ,6,b .则由题意,得m 2+n 2+k 2=7, n 2+k 2=6,解得m =1或m =-1(舍去),则⎩⎨⎧k 2+1=a ,n 2+1=b ,所以(a 2-1)+(b 2-1)=6,即a 2+b 2=8.。

高中数学必修2(北师版)第一章1.3 三视图(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修2(北师版)第一章1.3 三视图(与最新教材完全匹配)知识点总结含同步练习题及答案

描述:高中数学必修2(北师版)知识点总结含同步练习题及答案第一章 立体几何初步 1.3 三视图一、知识清单三视图二、知识讲解1.三视图投影由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中我们把光线叫做投影线,把留下物体影子的屏幕叫做投影面.平行投影投影线平行的投影称为平行投影.其中投影线与投影面垂直的平行投影叫做正投影,投影线与投影面不垂直的平行投影称为斜投影.平行投影的性质线段的平行投影是线段或点;平行直线的平行投影是平行或重合的直线;平行于投影面的线段,它的投影与这条线段平行且等长;与投影面平行的平面图形,它的投影与这个图形全等;在同一直线或平行直线上,两条线段平行投影长的比等于这两条线段长的比.中心投影投影线交于一点的投影称为中心投影.空间几何体的三视图三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形.通常,总是选择三种正投影:投影线从几何体的前面向后面正投影得到投影图,这种投影称为几何体的正视图,也叫主视图;投影线从几何体的左面向右面正投影得到投影图,这种投影称为几何体的侧视图,也叫左视图;投影线从几何体的上面向下面正投影得到投影图,这种投影称为几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.三视图的画法一个几何体的俯视图和正视图长度一样,侧视图和主视图高度一样,侧视图和俯视图宽度一样,例题:简称为:“长对正,高平齐,宽相等”.侧视图在正视图的右边,俯视图在正视图的下边.能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.给出以下四个命题:①正方形的平行投影一定是菱形;②三角形的平行投影一定是三角形;③平行直线的平行投影仍是平行的直线;④当直线或线段不平行于投影线时,它的平行投影仍是直线或线段.其中真命题的个数是( )A. B. C. D.解:B①正方形的平行投影有三种情况:a.当正方形所在平面与投影面平行时,它的投影是正方形;b.当正方形所在平面与投射面垂直时,它的投影是一条线段;c.当正方形所在平面与投射面斜交时,它的投影是平行四边形.②三角形的平行投影可能是一条线段或三角形.③两条平行直线的平行投影为两个点或重合为一条直线或仍为两条平行直线.④由平行投影的性质知④是真命题.0123如图(1),、 分别是正方体的面 ,面 的中心,则四边形 在该正方体的面上的正投影可能是图(2)中的______.(要求把可能序号都填上)解:②③四边形 在正方体的面 、面 、面 、面 上的投影是②.四边形 在正方体的面 、面 上的投影是③.E F AD D1A 1BC C1B 1BF E D 1BF E D 1ABCD A 1B 1C 1D 1CD D 1C 1AB B 1A 1BF E D 1BC C 1B 1AD D 1A 1下列四个几何体中,只有主视图和左视图相同的是( )A.①② B.①③ C.①④ D.②④解:D如图(1)(2)所示的是两个相同的正方体,阴影面选为正面,正方体的棱长均为 ,分别画出它们的三视图.解:三视图分别如下图中的(1)(2).1一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如下图所示,则该几何体的俯视图为( )A. B. C.862√×4×2+43√。

高中数学北师大版必修2教案-3_三视图_教学设计_教案

高中数学北师大版必修2教案-3_三视图_教学设计_教案

教学准备1. 教学目标教学目标1、知识与技能目标理解和掌握三视图的概念和画法,能识别简单物体的三视图,会画简单几何体的三视图。

2、过程与方法目标1、经历“从不同方向观察物体的”活动过程,培养学生的空间想象能力,发展学生的空间思维能力,是他们能在与他人交流的过程中,合理清晰的表达自己的思维过程。

2、在学习的过程中体会通过图形位置及其变换来认识图形的思维方法,体会立体图形和平面图形的转化关系,渗透应用数学的意识。

3、情感态度价值观目标培养用运动变化的眼光来分析问题的习惯,培养学生认真参与、积极交流的主体意识和乐于探究,勇于创新的科学态度。

2. 教学重点/难点教学重难点重点:三视图的概念及其画法难点:简单组合体的三视图及画法规则3. 教学用具4. 标签教学过程教学过程设计(一)创设情境,新课引入活动 1:投影仪《题西林壁》诗,通过用飞机模型图纸和工业零件图引入这样一种由平面图形表示空间几何体的方法¬——三视图。

(设计意图:通过文学作品和生活中的实例,可以体现教师的“亲和”和学科之间的联系性,也体现了数学中的应用性,展示数学之美)(二)动画演示,形成概念活动 2:几何画板动画演示平行投影的相关知识点。

活动 3:探究长方体的三视图(1)按你观察到方向,想象一束平行光线正对着物体投射过去,那么会留下什么样的影子(正投影)?(2)由动画形成长方体的三视图,由学生自己根据形成过程总结三视图的概念,再通过一个复杂些的动画图形加深对三视图形成的印象,最后通过学生自己发现三视图之间长宽高的关系。

方式:让学生参与思考,提问个别学生,由学生归纳推理。

(3)游戏环节:给出错误的三视图,让学生“找找查”,巩固三视图的规则,同时也可以活跃课堂气氛。

(三)动手画图,巩固联系活动 4:探究简单几何体的三视图画法方式:交流合作探究,学生板书和动画演示(设计意图:通过完成简单的三视图画法,一方面巩固三视图的概念和作图规则,一方面增强自信心)(1)画出该旋转体的三视图变式:将圆台倒过来,三视图该怎么画?(2)画出该多面体(正六棱柱)的三视图活动5:思考:几何体的三视图是不是唯一的?并由学生自己总结作图步骤。

2019-2020学年北师大版高中数学必修二教师用书:1-3 三视图 Word版含答案

2019-2020学年北师大版高中数学必修二教师用书:1-3 三视图 Word版含答案

姓名,年级:时间:§3三视图1.由基本几何体形成的组合体有两种基本的组成形式:(1)将基本几何体拼接成组合体;(2)从基本几何体中切掉或挖掉部分构成组合体.2.绘制三视图时的注意点(1)主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等,前后对应.(2)在三视图中,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮廓线画虚线.(3)同一物体放置的位置不同,所画的三视图可能不同.(4)清楚简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置.判断正误(正确的打“√”,错误的打“×”)(1)任何几何体的三视图都与其摆放的位置有关.( )(2)任何几何体的三视图都与其摆放的位置无关.()(3)有的几何体的三视图与其摆放的位置无关.()(4)正方体的三视图一定是三个全等的正方形.( )[答案] (1)×(2)×(3)√(4)×题型一简单几何体的三视图【典例1】画出如图所示几何体的三视图.[思路导引]图①为正六棱柱,可按棱柱的画法画出,图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.[解] 按正六棱柱、圆锥、圆台的三视图画法如图所示.(1)画三视图时,首先确定主视、左视、俯视的方向,同一物体放置的位置不同,所画的三视图可能不同.一般主视方向确定了,则左视与俯视的方向也就确定了,在有的问题里,直接给出主视图,也是确定主视方向的一个方法.(2)一个物体的三视图的排列规则是:俯视图放在主视图的下面,左视图放在主视图的右面.[针对训练1]如下图所示,图(1)是底面边长和侧棱长都是2 cm 的四棱锥,图(2)是上、下底面半径分别为1 cm,2 cm,高为2 cm的圆台,分别画出它们的三视图.[解](1)四棱锥的三视图如下图所示:(2)圆台的三视图如下图所示:题型二简单组合体的三视图【典例2】画出如图所示的几何体的三视图.[思路导引]画三视图之前,先把几何体的结构弄清楚,图为两个圆柱的组合体.[解] 如图所示.画简单组合体的三视图时要注意的问题(1)分清简单组合体是由哪些简单几何体组成的,是组合型还是切挖型.(2)先画主体部分,后画次要部分.(3)几个视图要配合着画.一般是先画主视图再确定左视图和俯视图.(4)组合体的各部分之间要画出分界线.[针对训练2]画出如图所示几何体的三视图.[解] 如图所示(1)(2)题型三由三视图还原成实物图【典例3】如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体( )[思路导引](1)通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.(2)通过俯视图确定是多面体还是旋转体,若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.[解析] 由俯视图可知该几何体为旋转体,由主视图、左视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D由三视图还原成实物图时,一般先由俯视图确定底面,由主视图与左视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[针对训练3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[解]由俯视图知,该几何体的底面是一直角梯形;再由主视图和左视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.1.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①② B.①②③ C.③②④ D.④②③[答案] D2.已知三棱柱ABC—A1B1C1如右图所示,以BCC1B1的前面为正前方,画出的三视图正确的是( )[解析]主视图是矩形,左视图是三角形,俯视图是矩形,中间有一条线.[答案] A3.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于()A.1 B. 2 C。

北师大版必修2:《三视图》(第1课时)

北师大版必修2:《三视图》(第1课时)


(3)俯视图与左视图的宽要相等.
其次, 简单组合体是由哪几个基本几何体组成的, 并注意它们 的组成方式, 特别是它们的交线位置.
不可见的轮廓线要用虚线表示.
普通高中课程标准实验教科书(北师大版)
数学必修2(必修) 第一章 立体几何初步
§3 三视图(第1课时) 作者 江西省南昌市铁路第一中学 蔡少华
观察与思考
观察与思考
观察与思考
观察与思考
一、三视图的概念 (1)一个投影面水平放置, 叫做水平投影面, 投影到这个平面的图形叫做俯视图; (2)一个投影面放置在正前方, 这个投影面 叫做直立投影面, 投影到这个平面的图形叫做 主视图; 三视图包括 (3)和直立、水平两个投影面都垂直的投射 面叫做侧立投影面, 通常把这个平面放在直立 投影面的右面, 投影到这个平面内的图形叫做 左视
主视 左视图
主视 左视图
练习4.标出下列几何体的视图方向,并画出它们的三视图.
主 视 图
左 视 图
俯视
俯 视 图
左视
主视
主视图
左视图
俯视
通空
主视
左视
俯视图
练习5.画出下图所示组合体的三视图.
主视图
俯视
左视
主视
左视图
俯视图
四、课堂小结
三视图的概念: 将空间图形向三个两两互相垂足 的平面作正投影, 然后把这三个投影按一定的 布局放在一个平面内, 这样构成的图形叫作空 空间几何体 间图形的三视图. 的三视图 柱、锥、台、球的三视图 简单组合体的三视图 绘制三视图时, 要注意: 主视图 左视图 (1)俯视图与主视图上下要长对正; 俯视图 (2)主视图与左视图左右要高平齐;

§3 三 视 图(1)

2019—2020年最新北师大版高中数学必修二空间几何体的三视图教案(精品教学设计)

2019—2020年最新北师大版高中数学必修二空间几何体的三视图教案(精品教学设计)

空间几何体的三视图一、教学目标:1.知识与技能:(1)掌握画三视图的基本技能;(2)丰富学生的空间想象力。

2.过程与方法:主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:(1)提高学生空间想象力;(2)体会三视图的作用。

二、教学重点、难点重点:画出简单组合体的三视图。

难点:识别三视图所表示的空间几何体三、学法与教法1.学法:观察、动手实践、讨论、类比;2.教法:观察讨论类比法。

四、教学基本流程(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图)。

(二)给出三视图的定义:1、从几何体的前面向后面正投影,得到的投影图称为几何体的正视图(主视图)。

2、从几何体的左面向右面正投影,得到的投影图称为几何体的侧视图(左视图)。

3、从几何体的上面向下面正投影,得到的投影图称为几何体的俯视图。

(三)通过多媒体课件展示长方体的三视图,并给出三视图之间的投影规律。

虽然在画三视图时取消了投影轴和投影间的连线,但三视图间的投影规律和相对位置关系仍应保持。

三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方。

按照这种位置配置视图时,国家标准规定一律不标注视图的名称。

对应上图还可以看出:主视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

由此可得出三视图之间的投影规律为:主、俯视图——长对正;主、左视图——高平齐;俯、左视图——宽相等。

(四)基本几何体的三视图1、球的三视图2、圆柱的三视图3、圆锥的三视图作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

2019-2020年北师大版数学必修二:第1章+§3+3.1+3.2+三视图及答案

2019-2020年北师大版数学必修二:第1章+§3+3.1+3.2+三视图及答案

§3三视图3.1简单组合体的三视图3.2由三视图还原成实物图1.组合体(1)定义:由基本几何体生成的几何体叫作组合体.(2)基本形式:有两种,一种是将基本几何体拼接成组合体;另一种是从基本几何体中切掉或挖掉部分构成组合体.2.三视图(1)三视图的特点:①空间几何体的三视图是指主视图、左视图、俯视图.②三视图的主视图、俯视图、左视图分别是从正前方、正上方、正左侧观察同一个几何体,所画出的空间几何体的平面图形.③三视图的排列规则是俯视图放在主视图的下方,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.(2)绘制三视图时的注意事项:①首先,确定主视、俯视、左视的方向,同一物体放置的位置不同,所画三视图可能不同.②其次,简单组合体是由哪几个基本几何体生成的,并注意它们的生成方式,特别是它们的交线位置.③分界线和可见轮廓线都用实线画出;不可见轮廓线都用虚线画出.思考:三视图分别反映物体的哪些位置关系(上下、左右、前后)?哪些数量关系(长、宽)?提示:主视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④[答案] D2.一个圆柱的三视图中一定没有的图形是()A.圆B.矩形C.三角形D.正方形C[直立圆柱的主视图、左视图都是矩形,也可以是正方形,俯视图是圆.] 3.下列说法正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形[答案] C4.有一个几何体的三视图如图所示,这个几何体应是一个________.[答案]四棱台【例1】画出如图所示的空间几何体的三视图.(阴影面为主视面,尺寸不作严格要求)[解]三视图如下.1.在画三视图时,先要想象几何体的后面、右面、下面各有一个屏幕,一组平行光线分别从前面、左面、上面垂直照射,我们画的是影子的轮廓,再验证几何体的轮廓线,能看到的画实线,不能看到的画虚线.2.作三视图时,要遵循三视图的排列规则,即“长对正,高平齐,宽相等”.3.画完三视图草图后,要再对照实物图验证其正确性.1.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为()B[依题意,左视图中棱的方向是从左上角到右下角,故选B.]【例2】如图是将球放在圆筒上形成的组合体,画出它的三视图.[解]它的三视图如图所示:1.画组合体的三视图的步骤:(1)分析组合体的组成形式;(2)把组合体分解成简单几何体;(3)画分解后的简单几何体的三视图;(4)将各个三视图拼合成组合体的三视图.2.画三视图时要注意的问题:(1)先画主体部分,后画次要部分;(2)几个视图要配合着画,一般是先画主视图,再确定左视图和俯视图;(3)组合体的各部分之间要画出分界线.2.一几何体的直观图如图,下列给出的四个俯视图中正确的是()B[由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.]1.根据如图所给出的物体的三视图,请说出它们的名称.提示:从观察三视图的特征入手,联想简单几何体三视图,从而确定几何体的名称,所以①是圆锥,②是三棱柱.2.如图是某一几何体的三视图,你能想象几何体的结构特征,并画出几何体的直观图吗?提示:由几何体的三视图可知,几何体是一个倒立的三棱台,即上底面面积大,下底面面积小,直观图如图.【例3】根据三视图想象物体原形,并画出物体的实物草图.[思路探究]观察三视图时可将该几何体分解为上下两部分进行判断,易知该物体是由一个圆柱和一个长方体组合而成的.[解]由俯视图并结合其他两个视图可以看出,这个物体是由一个圆柱和一个长方体组合而成,它的实物草图如图所示.1.例3中,若将俯视图改为如图所示的图形,试画出实物图.[解]由三视图可知,该几何体上方是一个直三棱柱,下方是长方体,其草图如图.2.例3中,若将主视图、俯视图改为如图所示的图形,试画出其实物图.[解]由三视图可知,该几何体下方是一个圆柱,上方是一个三棱柱,其草图如图.由三视图还原空间几何体的策略:(1)通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.(2)通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.1.三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体三视图的要求是主视图、俯视图长对正,主视图、左视图高平齐,俯视图、左视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.画组合体的三视图的步骤特别提醒:画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.1.思考辨析(1)画三视图时应保证光线与投射面垂直.()(2)同一个物体的主视图可能不同.()(3)画三视图时,被遮住的部分可不画.()(4)圆柱的三视图都是矩形.()[解析](3)×,被遮挡部分画成虚线.(4)×,其三视图中有一个是圆形.[答案](1)√(2)√(3)×(4)×2.如图,该几何体的上半部分为正三棱柱,下半部分为圆柱,其俯视图是()C[因为俯视图是从上往下看的,所以图中的几何体的俯视图是一个圆,且圆内有一个内接正三角形.]3.三视图如图所示的几何体是________.4.画出如图所示几何体的三视图.[解]三视图如图所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年度最新北师大版高中数学必修二学案:第一章3三视图 1.理解三视图的概念,能画出简单空间图形的三视图.2.了解简单组合体的组成方式,会画简单几何体的三视图.3.能识别三视图所表示的立体模型.
知识点一组合体
1.定义:由__________________形成的几何体叫作组合体.
2.基本形式:有两种,一种是将基本几何体________成组合体;另一种是从基本几何体中______或______部分构成组合体.
知识点二空间几何体的三视图
思考对于一般的物体,三视图分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?
梳理(1)三视图的概念
三视图包括__________(又称__________)、__________,左视图(侧视图通常选择________,简称__________).
(2)三视图的画法规则
①________视图反映物体的长度——“____________”.
②________视图反映物体的高度——“____________”.
③________视图反映物体的宽度——“____________”.
(3)绘制三视图时的注意事项
①在绘制三视图时,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮
廓线画虚线.
②同一物体放置的位置不同,所画的三视图可能不同.
③三视图的摆放规则:左视图放在主视图的右面,俯视图放在主视图的正下方.
类型一简单几何体的三视图
例1(1)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为()
(2)画出如图所示的几何体的三视图.
反思与感悟(1)观察立体图形时,要选择在某个方向上“平视”,用目光将立体图形“压缩”成平面图形,这样就得到了三视图.注意三视图的排列规则和虚、实线的确定.一般地,几何体的轮廓线中能看到的画成实线,不能看到的画成虚线.
(2)画简单组合体的三视图,要注意从三个方向观察几何体的轮廓线,还要搞清楚各简单几何体之间的组接位置,其组接的交线往往又是简单组合体的轮廓线,被挡住的要画成虚线.
跟踪训练1如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.
类型二由三视图还原成实物图
例2(1)若某几何体的三视图如图所示,则这个几何体的直观图可以是()
(2)根据以下三视图想象物体原形,并画出物体的实物草图.
反思与感悟(1)通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.
(2)通过俯视图确定是多面体还是旋转体,若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.
跟踪训练2(1)已知如图所示的三视图,则该几何体是什么?它的高与底面面积分别是多少?(尺寸的长度单位为m)
(2)如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.
1.如图所示,甲、乙、丙是三个几何体的三视图,则下列甲、乙、丙对应的标号正确的是()
①长方体;②圆锥;③三棱锥;④圆柱.
A.④③②B.②①③
C.①②③D.③②④
2.一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()
3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()
4.如图所示,正三棱柱ABC-A1B1C1(底面为等边三角形)的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()
A.8 3 B.4 3
C.2 3 D.16
5.有一个正三棱柱的三视图如图所示,则这个三棱柱的高和底面边长分别为________.
1.三视图是指主视图、左视图和俯视图,画图时应遵循“长对正、高平齐、宽相等”或“主俯一样长,主左一样高,俯左一样宽”的原则,若相邻两物体的表面相交,表面的交线是它们的分界线.在三视图中,分界线和可见轮廓线都用实线画出,重叠的线只画一条,不可见轮廓线要用虚线画出.
2.空间几何体的三视图可以使我们很好地把握空间几何体的性质,由空间几何体可画出它的主视图,同样由三视图可以想象出空间几何体的形状,两者之间的相互转化,可以培养我们的几何直观能力和空间想象能力.
答案精析
问题导学
知识点一
1.基本几何体
2.拼接切掉挖掉
知识点二
思考主视图反映了物体上下、左右的位置关系,即反映物体的高度和长度;俯视图反映
了物体左右、前后的位置关系,即反映物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映物体的高度和宽度.
梳理 (1)主视图 正视图 俯视图 左侧视图 左视图 (2)①主、俯 长对正 ②主、左 高平齐 ③俯、左 宽相等 题型探究
例1 B [依题意,左视图中棱的方向是从右下角到左上角,故选B.]
(2)解 题图①是一个圆柱和一个长方体的组合体,按照圆柱、长方体的三视图画法画出它们的组合体的三视图,如图(1);题图②为球与圆台的组合体,其三视图如图(2).
跟踪训练1 解 这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.
例2 D [A 、B 选项中的主视图不符合要求,C 选项中的俯视图显然不符合要求,故选D.]
(2)解 此几何体上面可以为圆台,下面可以为圆柱,所以实物草图如图.
跟踪训练2 (1)解 由三视图可知,该几何体为三棱锥(如图),AC =4 m ,BD =3 m ,高为2 m ,S △ABC =12AC ·BD =1
2
×4×3=6(m 2).
(2)4
解析由三视图知,几何体由4块木块组成.如图.
当堂训练
1.A 2.C 3.D 4.A 5.2,4。

相关文档
最新文档