苏科版八年级上册第1章 全等三角形 单元测试(解析版)
苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E 3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DF B.BE=CF C.∠B=∠F D.∠ACB=∠DEF 5.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B 6.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形7.下列条件中,不能判定两个直角三角形全等的是()A.两直角边对应相等B.斜边和一条直角边对应相等C.两锐角对应相等D.一个锐角和斜边对应相等8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.49.在一次小制作活动中,艳艳剪了一个燕尾图案(如图所示),她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等,小麦走过来说:“不用量了,肯定相等”,小麦的说法利用了判定三角形全等的方法是()A.ASA B.SAS C.AAS D.SSS10.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD二.填空题11.能够的两个图形叫做全等图形.12.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.15.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.16.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,.(只需填一个答案即可)17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.三.解答题21.如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.22.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.23.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.24.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.25.如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.27.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:全等图形是指两个图形的形状和大小都相等,故选:C.2.解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.3.解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.4.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∠B=∠DEF,∠ACB=∠F,∠A=∠D,∴BE=CF,故选:B.5.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.6.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.7.解:A、正确.根据SAS即可判断.B、正确.根据HL即可判断.C、错误.两锐角对应相等不能判断两个三角形全等.D.正确.根据AAS即可判断.8.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.9.解:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠B=∠C,故选:D.10.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.13.解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO(答案不唯一).14.解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.15.解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.16.解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.17.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.18.解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.20.解:∵AB∥CD,∴∠B=∠D,∵AE∥CF,∴∠AEB=∠CFD,在△ABE和△CFD中,,∴△ABE≌△CFD,∴BE=DF,∵BD=10,BF=3.5,∴DF=BD﹣BD=6.5,∴BE=6.5,∴EF=BE﹣BF=6.5﹣3.5=3.故答案为3三.解答题21.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=∠ACB﹣∠CAD=90°,∴∠DFG=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.22.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.24.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.25.证明:∵AC∥EF,∴∠CAB=∠FED,∵AE=BD,∴AE+EB=BD+EB,即AB=ED,又∵AC=EF,∴△ABC≌△EDF.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.27.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC的面积为1.5cm2, AP垂直∠B的平分线BP于P,则△PBC的面积为()A.1cm 2B.0.75 cm 2C.0.5cm 2D.0.25cm 22、李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSSB.SASC.ASAD.AAS3、下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个4、如图,△ABC≌△ADE,若∠B=80°,∠C=35°,∠EAC=40°,则∠DAC=()A.40°B.35°C.30°D.25°5、用尺规作一个角等于已知角,如图,能得出的依据是().A.SASB.SSSC.ASAD.AAS6、如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A.∠B=∠CB.BE=CDC.BD=CED.∠ADC=∠AEB7、如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSSB.SASC.AASD.ASA8、在平面直角坐标系中,以原点为旋转中心,把点逆时针旋转,得到点B,则点B的坐标为()A. B. C. D.9、如图,甲,乙两军区进行军事演练,乙军区在河东岸处,因不知河宽,甲军的狙击手在处很难瞄准乙军军营,于是甲军连长站在西岸的点处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到乙军军营处,然后他后退到点,这时他的视点恰好落在处,此时他只需测量脚站的点和点的距高,即可知道狙击手与乙军军营的距离,他判断的依据是()A. B. C. D.10、如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去11、如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°12、下列命题中,正确的是()A.有理数和数轴上的点一一对应B.等腰三角形的对称轴是它的顶角平分线C.全等的两个图形一定成轴对称D.有理数和无理数统称为实数13、如图,AC=DF,∠1=∠2,再添加一个条件,不一定能判定△ABC≌△DEF的是()A.AB=DEB.BF=CEC.∠A=∠DD.∠B=∠E14、如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是A.∠B=∠EB.AC='EF'C.AB=EDD.不用补充条件15、不能确定△ABC与△DEF全等的是()A.AC=DF,AB=DE,BC=EF,B.AB=DE,∠A=∠D, BC=EFC.AC= DF,∠A=∠D,∠C=∠FD.AC= DF,∠B=∠E,∠A=∠D二、填空题(共10题,共计30分)16、如图,AC与BD相交于点O,∠A=∠D,请你补充一个条件,使得△AOB≌△DOC,你补充的条件是________.17、如图,∠ACB=∠BDA,要使△ACB≌△BDA,请写出一个符合要求的条件________.18、如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为________.(答案不唯一,只需填一个)19、如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是________.20、如图,∠E=∠F=900,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是________ (填序号).21、如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD=________·22、如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB=________米;23、如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为________厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.24、如图,已知AB=AD,需要条件________可得△ABC≌△ADC,根据是________.25、如图,∠BAC=∠ABD,请你添加一个条件:________,能使△ABD≌△BAC(只添一个即可).三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE相交于点O,请判断△OEF的形状,并说明理由.28、如图,已知:AB=CD,AD=BC,EF过BD的上一点O与DA、BC的延长线交于E、F两点.求证:∠E=∠F.29、按照命题的证明步骤证明命题:“全等三角形对应边上的高相等.”30、如图,完成下列推理过程:如图所示,点E在外部,点D在BC边上,DE交AC于F,若,,求证:.证明:∵(已知),(▲),∴(▲),又∵,∴▲▲(▲),即,在和中(已证)∵(已知)(已证)∴(▲).∴(▲)参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、D5、B6、B7、D9、B10、C11、A12、D13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)27、28、。
苏科版八年级上册数学第1章《全等三角形》单元测试卷(基础卷)(含解析)
第1章 全等三角形(基础卷)一、选择题(每小题3分,共18分)1.如图,,若,则∠B 的度数是( )A .80°B .70°C .65°D .60°2.如图,△ABD ≌△CDB ,若AB ∥CD ,则AB 的对应边是( )A .DB B .BC C .CD D .AD(第2题图)(第3题 图)3.如图,沿直角边所在的直线向右平移得到,下列结论错误的是( )A .B .C .D .4.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .BD 与CE 交于O ,连接AO ,则图中共有全等的三角形的对数为( )A .1对B .2对C .3对D .4对(第4题 图) (第5题 图)5.如图,已知,为的中点.若,,,则 A .B .C .D .6.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当ABC DEF △≌△80,30A F ∠=︒∠=︒Rt ABC BC DEF ABC ≌DEF 90DEF ∠=︒BE EC =D A∠=∠//AB CF E DF 12AB cm =7CF cm = 4.5FE cm =(B D =)5cm 6cm 7cm 4.5cm(第7题图)已知图中的两个三角形全等,则∠1=①;②;③15.如图,在中,已知AD 是到AB 的最短距离是_________.12∠=∠BE CF =CAN ABC A ∠运动,到达点C 停止,同时,点Q 从点C 出发,以vcm /s 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为______时,△ABP 与△PCQ 全等.三、解答题(共62分)17.(6分)如图,DE ⊥AB ,CF ⊥AB ,垂足分别是点E 、F ,DE=CF ,AE=BF ,求证:AC ∥BD .18.(8分)已知:,且,,,,,求:的度数及DE 的长.19.(8分)如图,已知AB =CB ,BE =BF ,点A ,B ,C 在同一条直线上,∠1=∠2.(1)证明:△ABE ≌△CBF ;(2)若∠FBE =40°,∠C =45°,求∠E的度数.DEF MNP ≌EF NP =F P ∠=∠48D ∠=︒52E ∠=︒12MN =cm P ∠20.(10分)如图,在△ABC 中,已知:点D 是BC 中点,连接AD 并延长到点E ,连接BE.(1)请你添加一个条件使△ACD ≌△EBD ,并给出证明.(2)若,,求边上的中线的取值范围.21.(10分)如图,与的顶点A ,F ,C ,D 共线,与交于点G ,与相交于点,,,.(1)求证:;(2)若,求线段的长.5AB =3AC =BC AD Rt ABC Rt DEF △AB EF BC DEH 90B E ∠=∠=︒AF CD =AB DE =Rt ABC Rt DEF ≌1GF =HC22.(10分)求证:全等三角形的对应角平分线相等.(1)在图②中,作出相应的角平分线,保留作图痕迹;(2)根据题意,写出已知、求证,并加以证明。
2019年苏科新版数学八年级上册《第1章全等三角形》单元测试卷(解析版)
2019年苏科新版数学八年级上册《第1章全等三角形》单元测试卷一.选择题(共15小题)1.王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上木条的条数为()A.0根B.1根C.2根D.3根2.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.两点确定一条直线C.三角形具有稳定性D.长方形的四个角都是直角4.下列各组的两个图形属于全等图形的是()A.B.C.D.5.下列图形中,和所给图全等的图形是()A.B.C.D.6.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对7.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形的对应角平分线相等8.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.29.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°10.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE11.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等12.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC13.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等14.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等15.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC二.填空题(共6小题)16.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.17.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.18.已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=.19.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.20.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件.21.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN 中,以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点.图①中,∠APD 的度数为60°,图②中,∠APD的度数为90°,则图③中,∠APD的度数为.三.解答题(共3小题)22.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC 与QFC全等?请说明理由.23.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:△ABC≌△DEF.24.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.2019年苏科新版数学八年级上册《第1章全等三角形》单元测试卷参考答案与试题解析一.选择题(共15小题)1.王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上木条的条数为()A.0根B.1根C.2根D.3根【分析】根据三角形的稳定性可得答案.【解答】解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故选:B.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【分析】根据三角形具有稳定性解答.【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.两点确定一条直线C.三角形具有稳定性D.长方形的四个角都是直角【分析】根据三角形的稳定性,可直接选择.【解答】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选:C.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.5.下列图形中,和所给图全等的图形是()A.B.C.D.【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解;如图所示:和左图全等的图形是选项D.故选:D.【点评】本题考查全等形的定义,属于基础题,注意掌握全等形的定义.6.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对【分析】根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.【解答】解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选:D.【点评】本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.7.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形的对应角平分线相等【分析】认真读题,只要甄别,其中A、B、C选项中都没有“对应”二字,都是错误的,只有D是正确的.【解答】解:∵A、B、C项没有“对应”∴错误,而D有“对应”,D是正确的.故选:D.【点评】本题考查了全等三角形的性质;注意全等三角形的性质中指的是各对应边上高,中线,角平分线相等.对性质中对应的真正理解是解答本题的关键.8.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.2【分析】根据全等三角形的对应边相等可得AB=AC,AE=AD,再由CD=AC﹣AD即可求出其长度.【解答】解:∵△ABD≌△ACE,∴AB=AC=6,AE=AD=4,∴CD=AC﹣AD=6﹣4=2,故选:D.【点评】本题考查了全等三角形对应边相等的性质,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.9.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.10.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添AD=AE,利用SAS即可证明△ABE≌△ACD.故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.11.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等【分析】要逐个对选项进行验证,根据各个选项的已知条件结合三角形全等的判定方法进行判定,其中B满足SSA时不能判断三角形全等的.【解答】解:A、三条边对应相等的三角形是全等三角形,符合SSS,故A不符合题意;B、两边和一角对应相等的三角形不一定是全等三角形,故B符合题意;C、两角和其中一角的对边对应相等是全等三角形,符合AAS,故C不符合题意;D、两角和它们的夹边对应相等是全等三角形,符合ASA,故D不符合题意.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.13.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等【分析】根据全等三角形的判定定理:AAS、SAS、ASA、SSS及直角三角形的判定定理HL对4个选项逐个分析,然后即可得出答案.【解答】解:A、两条直角边对应相等,可利用全等三角形的判定定理SAS来判定两直角三角形全等,故本选项正确;B、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;C、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA来判定两个直角三角形全等;故本选项正确;D、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA或AAS来判定两个直角三角形全等;故本选项正确;故选:B.【点评】本题考查了直角全等三角形的判定.注意,判定两个三角形全等时,必须有边的参与.15.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.二.填空题(共6小题)16.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.17.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于225°.【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,然后可得∠1+∠2+∠3+∠4+∠5的值.【解答】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.【点评】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等.18.已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=1或.【分析】分两种情形分别求解即可.【解答】解:如图,当CD在AB同侧时,∵AC=AD=1,∠C=60°,∴△ACD是等边三角形,∴CD=AC=1,当C、D在AB两侧时,∵△ABC与△ABD不全等,∴△ABD′是由△ABD沿AB翻折得到,∴△ABD≌△ABD′,∴∠AD′B=∠ADB=120°,∵∠C+∠AD′B=180°,∠ABD′=45°,∠AD′B=120°∴∠BAD′=15°∵△ACD为等边三角形∴∠ACD=60°,又∠ABC=45°,∴∠CAB=75°,∴∠CAD′=90°,∴CD′==.当D″在BD′的延长线上时,AD″=AC,也满足条件,此时CD″=BC=,此时△ABD≌△ABC,不符合题意,故答案为1或.【点评】本题考查全等三角形的性质、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.19.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为2或3.2厘米/秒.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【解答】解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2厘米/秒【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.20.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件AB=AC.【分析】根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.【解答】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.【点评】此题主要考查了直角三角形全等的判定,关键是正确理解HL定理.21.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN 中,以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点.图①中,∠APD 的度数为60°,图②中,∠APD的度数为90°,则图③中,∠APD的度数为108°.【分析】图③中,根据AB=BC,BE=CD可以证明△ABE≌△BCD,可得∠EBP=∠BAE,可以求得∠APD的度数.【解答】解:正五边形各内角相等,则∠ABE=∠BCD∵在△ABE和△BCD中,,∴△ABE≌△BCD(SAS),∴∠EBP=∠BAE,∴∠APD=∠BPE=180°﹣∠EBP﹣∠BEP∵∠EBP=∠BAE,∴∠APD=180°﹣∠BAE﹣∠BEP=∠ABE.∵正五边形各内角均为108°,∴∠APD=108°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中熟练运用SAS方法求证三角形全等是解题的关键.三.解答题(共3小题)22.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC 与QFC全等?请说明理由.【分析】推出CP=CQ,①P在AC上,Q在BC上,推出方程6﹣t=8﹣3t,②P、Q都在AC上,此时P、Q重合,得到方程6﹣t=3t﹣8,Q在AC上,③P在BC上,Q在AC时,此时不存在,④当Q到A点,与A重合,P在BC上时,求出即可得出答案.【解答】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意答:点P运动1或3.5或12秒时,△PEC与△QFC全等.【点评】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键.23.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:△ABC≌△DEF.【分析】由AF=DC可得出AC=DF,结合AB=DE、∠A=∠D即可证出△ABC≌△DEF (SAS).【解答】证明:∵AF=DC,∴AF+FC=DC+CF,即AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】此题主要考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.24.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【分析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.【解答】解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.【点评】考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.。
苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)
苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
苏科新版八年级上册数学《第1章 全等三角形》 单元测试卷(,含答案)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷(,含答案)一.选择题(共6小题,满分24分)1.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②2.对于两个图形,下列结论:①两个图形的周长相等;②两个图形的面积相等;③能够完全重合的两个图形.其中能得出这两个图形全等的结论共有()A.0个B.1个C.2个D.3个3.如图,△OAB≌△OCD,若∠A=80°,OB=3,则下列说法正确的是()A.∠COD=80°B.CD=3C.∠D=20°D.OD=34.如图,已知MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN的是()A.AM=CN B.AC=BD C.AB=CD D.AM∥CN5.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF6.如图,AD是△ABC的中线,CE∥AB交AD的延长于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.12二.填空题(共6小题,满分24分)7.如图,AC=DB,AO=DO,CD=200m,则A,B两点间的距离为m.8.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)9.如图,△ACE≌△DBF,若∠A=66°,∠E=78°,则∠FBD的度数为.10.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是(只需写一个,不添加辅助线).11.如图,在4×4的正方形网格中,求α+β=度.12.如图,在△ABC中,E是AC边的中点,过点A作∠ABC平分线BD的垂线,垂足为D,连接DE,若DE=2,BC=8,则AB=.三.解答题(共6小题,满分72分)13.找出图中的全等图形.14.如图,已知△DEF的顶点E在△ABC的边BC上,F在BC的延长线上,且BE=CF,∠ABC=∠DEF,请你再添加一个条件,使得△ABC≌△DEF,并说明理由(不再添加其他线条和字母).15.如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,过点A作AC⊥BD 于C,点A到地面的距离AE=1.5m(AE=CD),当他从A处摆动到A′处时,A′B=AB,若A′B⊥AB,作A′F⊥BD,垂足为F.求A′到BD的距离A′F.16.如图,已知△ABC≌△AEF中,∠EAB=26°,∠F=54°.(1)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(2)求∠AMB的度数.17.求证:一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.要求:根据给出的Rt△ABC和Rt△A′B′C′(∠C=∠C′=90°,AC=A′C′),(1)在此图形上用尺规作出BC与B′C′边上的中线,不写作法,保留作图痕迹,(2)写出已知、求证和证明过程.18.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.参考答案与试题解析一.选择题(共6小题,满分24分)1.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.2.解:①周长相等的两个图形不一定重合,所以这两个图形不一定全等;②面积相同而形状不同的两个图形不全等;③两个图形能够完全重合,则这两个图形全等.所以只有1个结论正确.故选B.3.解:∵△OAB≌△OCD,∠A=80°,OB=3,∴∠C=∠A=80°,OD=OB=3.所以选项ABC说法错误,选项D说法正确.故选:D.4.解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AC=BD可得出AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM∥CN可证明∠A=∠NCB,可利用AAS定理证明△ABM≌△CDN,故此选项不合题意;故选:A.5.解:∵∠B=∠E=90°,AB=DE,∴当添加AC=DF或AD=CF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故选:D.6.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.二.填空题(共6小题,满分24分)7.解:∵AC=DB,AO=DO,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=DC,∵CD=200m,∴AB=200m,即A,B两点间的距离是200m,故答案为:200.8.解:∵OB=OD,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(SAS),∴要使△AOB≌△COD,添加一个条件是OA=OC,故答案为:OA=OC(答案不唯一).9.解:∵△ACE≌△DBF,∠A=66°,∠E=78°,∴∠D=∠A=66°,∠F=∠E=78°,∴∠FBD=180°﹣∠D﹣∠F=36°,故答案为:36°.10.解:∵∠B=∠E=90°,AB=DE,∴当添加AD=CF或AC=DF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故答案为:AD=CF(或AC=DF).11.解:连接BC,∵AB=BC==,AC==,∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=∠ACB=45°,∵AB=BC=,AE=BD=1,BE=CD=2,∴△ABE≌△BCD,∴∠ACD=∠ABE=α,∵AE∥CD,∴∠DCA=∠CAE=β,∴α+β=∠BCA=45°,故答案为:45.12.解:如图,延长AD交BC于点F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠ADB=∠FDB=90°,在△ABD与△FBD中,,∴△ABD≌△FBD(ASA),∴AD=DF,AB=BF,∴点D是AF的中点,∵E是AC的中点,∴DE是△AFC的中位线,∴CF=2DE=4,∴AB=BF=BC﹣CF=8﹣4=4,故答案为:4.三.解答题(共6小题,满分72分)13.解:②与⑦是全等图形.14.证明:添加条件:∠A=∠D;理由如下:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).15.解:∵A′B⊥AB,作A′F⊥BD,∴∠ACB=∠A'FB=90°,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS),∴A'F=BC,∴BC=BD﹣CD=2.5﹣1.5=1(m),∴A'F=1m,16.解:(1)∵△ABC≌△AEF,∠EAB=26°,∴△ABC绕点A顺时针旋转26°得到△AEF.(2)∵△ABC≌△AEF,∠F=54°,∴∠C=∠F=54°,∠EAF=∠BAC,∴∠FAC=∠EAB=26°,∴∠AMB=∠C+∠FAC=54°+26°=80°.17.解:(1)所作的图形如图所示:(2)已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AD 与A′D′分别为BC与B′C′边上的中线,且AD=A′D′,求证:Rt△ABC≌Rt△A′B′C′.证明:∵∠C=∠C′=90°,在Rt△ADC和Rt△A′D′C′中,,∴Rt△ADC≌Rt△A′D′C′(HL),∴CD=C′D′,∵AD与A′D′分别为BC与B′C′边上的中线,∴BC=2CD,B′C′=2C′D′,∴BC=B′C′,在Rt△ABC和Rt△A′B′C′中,,∴Rt△ABC≌Rt△A′B′C′(SAS).18.(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S=BC•DE=×5×4=10,△BCD∴△BCD的面积为10.。
苏科版数学八年级上册第一章《全等三角形》单元卷(含答案解析)
苏科版数学八年级上第一章《全等三角形》单元卷题号一二三四五总分第分一.选择题(共9小题)1.如图,△ACB ≌△A ′CB ′,∠ACB =70°,∠ACB ′=100°,则∠BCA ′的度数为()A .30°B .35°C .40°D .50°2.如图,△ABC ≌△ADC ,∠ABC =118°,∠DAC =40°,则∠BCD 的度数为()A .40°B .44°C .50°D .84°3.如果△ABC ≌△DEF ,△DEF 的周长为12,AB =3,BC =4,则AC 的长为()A .2B .3C .4D.54.如图,已知△ABC ≌△DEF .若AC =22,CF =4,则CD 的长是()A .22B .18C .16D .45.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠CB .BE =CDC .AD =AED .BD =CE6.如图,在△ABC 和△DEF 中,AB =DE ,AC =DF ,BE =CF,且BC =5,∠A =70°,∠B =75°,EC =2,则下列结论中错误的是()A .BE =3B .∠F =35°C .DF =5D .AB ∥DE7.如图,在△ABC 中,∠C =90°,AD平分∠CAB ,BC =12cm ,BD =8cm ,那么点D 到直线AB 的距离是()A .2cmB .4cmC .6cmD .10cm8.如图,点D 为∠AOB 的平分线OC 上的一点,DE ⊥AO 于点E .若DE =4,则D 到OB 的距离为()A .5B .4C .3.5D .39.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =8,BF =6,AD =10,则EF 的长为()A .4B .72C .3D .52二.填空题(共10小题)10.已知,△ABC ≌△DEF ,△ABC 的周长为64cm ,AB =20cm ,AC =18cm ,则DE =,EF=.11.如图,△ABC ≌△DBE ,A 、D 、C 在一条直线上,且∠A =60°,∠C =35°,则∠DBC =°.12.如图,△ABC ≌△ADE ,线段BC 的延长线过点E ,与线段AD 交于点F ,∠ACB =∠AED =108°,∠CAD =12°,∠B =48°,则∠DEF 的度数.13.一个三角形的三边为6、10、x ,另一个三角形的三边为y 、6、12,如果这两个三角形全等,则x +y =.14.如图,△ABC 中,∠C =90°,AC =8,BC =4,AX ⊥AC ,点P 、Q 分别在边AC 和射线AX 上运动,若△ABC 与△PQA 全等,则AP 的长是.15.如图,AB ⊥CF ,垂足为B ,AB ∥DE ,点E 在CF 上,CE =FB ,AB =DE ,依据以上条件可以判定△ABC ≌△DEF ,这种判定三角形全等的方法,可以简写为.16.如图所示的网格是正方形网格,点A ,B ,C ,D 均落在格点上,则∠BAC +∠ACD =°.17.在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 与BC 相交于点D ,若BD =2,CD =1,则AC 的长是.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8,若S △ABC =21,则DE =.19.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG =4GE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的答案是;三.解答题(共9小题)20.已知:如图,△ABC ≌△A ′B ′C ,∠A :∠BCA :∠ABC =3:10:5,求∠A ′,∠B ′BC的度数.21.如图,已知△ABC ≌△DEF ,B 、E 、C 、F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出边FG的对应边与∠EGF的对应角;(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.23.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.25.已知:△ABC≌△EDC.(1)若DE∥BC(如图1),判断△ABC的形状并说明理由.(2)连结BE,交AC于F,点H是CE上的点,且CH=CF,连结DH交BE于K(如图2).求证:∠DKF=∠ACB26.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.27.如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.一.选择题(共9小题)参考答案与试题解析【点评】本题主要考查了全等三角形的性质,解题时注意:全等三角形的对应角相等.3.如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()1.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【分析】根据全等三角形的性质和角的和差即可得到结论.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.2.如图,△ABC≌△ADC,∠ABC=118°,∠DAC=40°,则∠BCD的度数为()A.40°B.44°C.50°D.84°【分析】根据全等的性质得出∠DAC=∠BAC=40°,∠B=∠D=118°,根据四边形内角和定理求出∠BCD即可.【解答】解:∵△ABC≌△ADC,∴∠ABC=118°=∠D,∠DAC=40°=∠BAC,∴∠BAD=80°,∴四边形ABCD中,∠BCD=360°﹣2×118°﹣80°=44°,故选:B.A.2B.3C.4D.5【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=3,BC=4,∴AC=5,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.4.如图,已知△ABC≌△DEF.若AC=22,CF=4,则CD的长是()A.22B.18C.16D.4【分析】根据全等三角形的性质得AC=DF,则依据CF=4可得CD的长.【解答】解:△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边,∴AC=DF=22,又∵CF=4,∴CD=DF﹣CF=22﹣4=18,故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.5.如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添加AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,在△ABC和△DEF中,AB=DE,AC=DF,BE=CF,且BC=5,∠A=70°,∠B=75°,EC=2,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE【分析】由SSS证明△ABC≌△DEF得出∠B=∠DEF,∠ACB=∠F,BC=EF=5,证出AB∥DE,得出BE=BC﹣EC=3,由三角形内角和定理得出∠F=∠ACB=35°,即可得出答案.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF 中,,∴△ABC≌△DEF(SSS)∴∠B=∠DEF,∠ACB=∠F,BC=EF=5,∴AB∥DE,∵EC=2,∴BE=BC﹣EC=3,∵∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,∴∠F=35°,即选项A、B、D正确,选项C错误;故选:C.【点评】本题考查了全等三角形的判定和性质、平行线的判定、三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm【分析】先求出CD的长,过点D作DE⊥AB于点E,根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于点E,∵BC=12cm,BD=8cm,∴CD=BC﹣BD=12﹣8=4cm,∵∠C=90°,AD平分∠CAB,∴DE=CD=4cm,即点D到直线AB的距离是4cm.故选:B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.8.如图,点D为∠AOB的平分线OC上的一点,DE⊥AO于点E.若DE=4,则D到OB的距离为()A.5B.4C.3.5D.3【分析】如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【解答】解:如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选:B.【点评】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线,则有中考常考题型.9.如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=8,BF=6,AD=10,则EF的长为()A.4B.72C.3D.52【分析】由题意可证△ABF≌△CDF,可得BF=DE=6,CE=AF=8,可求EF的长.【解答】证明:∵AB⊥CD,CE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,且AB=CD,∠AFB=∠CED,∴△ABF≌△CDF(AAS)∴BF=DE=6,CE=AF=8,∵AE=AD﹣DE=10﹣6=4∴EF=AF﹣AE=8﹣4=4,故选:A.【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.二.填空题(共10小题)10.已知,△ABC≌△DEF,△ABC的周长为64cm,AB=20cm,AC=18cm,则DE=20cm,EF=26cm.【分析】由三角形的周长可求得BC,再由全等三角形的性质可求得DE、EF.【解答】解:∵△ABC的周长为64cm,AB=20cm,AC=18cm,∴BC=64﹣20﹣18=26cm,∵△ABC≌△DEF,∴DE=AB=20cm,EF=BC=26cm,故答案为:20cm,26cm.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.11.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=25°.【分析】由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC 即可.【解答】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°﹣35°=25°,故答案为25.【点评】本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数36°.【分析】由△ACB的内角和定理求得∠CAB=24°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=24°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=108°,∠B=48°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣48°﹣108°=24°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=24°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=12°,∴∠EAB=24°+12°+24°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣48°=72°,∴∠DEF=∠AED﹣∠AEB=108°﹣72°=36°.故答案为:36°【点评】本题考查全等三角形的性质.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.13.一个三角形的三边为6、10、x,另一个三角形的三边为y、6、12,如果这两个三角形全等,则x+y =22.【分析】根据全等三角形对应边相等求出x、y,然后相加计算即可得解.【解答】解:∵两个三角形全等,∴x=12,y=10,∴x+y=10+12=22.故答案为:22【点评】本题考查全等三角形的性质,熟记全等三角形对应边相等是解题的关键.14.如图,△ABC中,∠C=90°,AC=8,BC=4,AX⊥AC,点P、Q分别在边AC和射线AX上运动,若△ABC与△PQA全等,则AP的长是4或8.【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC与△PQA全等,∴AP=BC=4或AP=AC=8,故答案为:4或8.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.15.如图,AB⊥CF,垂足为B,AB∥DE,点E在CF上,CE=FB,AB=DE,依据以上条件可以判定△ABC≌△DEF,这种判定三角形全等的方法,可以简写为SAS.【分析】依据AB⊥CF,AB∥DE,可得△ABC和△DEF都是直角三角形,由CE=FB,可得BC=EF,所以可用SAS判定△ABC≌△DEF,于是答案可得.【解答】解:∵AB⊥CF,AB∥DE,∴△ABC和△DEF都是直角三角形.∵CE=FB,CE为公共部分,∴CB=EF,又∵AB=DE,∴△ABC≌△DEF(SAS).故答案为:SAS.【点评】本题考查的是直角三角形全等的判定定理及平行线的性质;两边及其夹角分别对应相等的两个三角形全等.16.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=90°.【分析】证明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根据同角的余角相等和三角形的内角和可得结论.【解答】解:在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE +∠ADC =∠ADC +∠DAB =90°,∴∠AFD =90°,∴∠BAC +∠ACD =90°,故答案为:90.【点评】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关系,本题构建全等三角形是关键.17.在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 与BC 相交于点D ,若BD =2,CD =1,则AC 的长是3【分析】作DE ⊥AB 于E ,根据角平分线的性质得到DE =DC ,根据勾股定理求出BE ,再根据勾股定理计算即可.【解答】解:作DE ⊥AB 于E ,∵AD 是∠BAC 的平分线,∠ACB =90°,DE ⊥AB ,∴DE =DC =1,在Rt △ACD 和Rt △AED 中,AD ADCD DE =⎧⎨=⎩,∴Rt △ACD ≌Rt △AED (HL ),∴AC =AE ,由勾股定理得BE =22BD DE -3设AC =AE =x ,由勾股定理得x 2+32=(x 32,解得x =3.∴AC 3故3.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8,若S △ABC =21,则DE =3.【分析】根据角平分线上的点到角的两边的距离相等可得DE =DF ,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∵AB =6,BC =8,∴S △ABC =12AB •DE +12BC •DF =12×6DE +12×8DE =21,即3DE +4DE =21,解得DE =3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.19.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG =4GE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的答案是①②③④;【分析】首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan∠ABE=tan∠EAG=12,得到AG=12BG,GE=12AG,于是得到BG=4EG,故②正确;根据AD∥BC,求出S△BDE=S△CDE,推出S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确;【解答】证明:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,DH=DH,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故①正确;∵tan∠ABE=tan∠EAG=12,∴AG=12BG,GE=12AG,∴BG=4EG,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE ﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故答案为①②③④.【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角.三.解答题(共9小题)20.已知:如图,△ABC≌△A′B′C,∠A:∠BCA:∠ABC=3:10:5,求∠A′,∠B′BC的度数.【分析】先求出△ABC的各角的度数,再根据全等三角形对应角相等求出∠B′CB′的度数,利用三角形的外角知识求出∠A′,∠B′BC的度数.【解答】解:∵∠A:∠BCA:∠ABC=3:10:5,∴设∠A=3x,∠ABC=5x,∠BCA=10x.∵∠A+∠ABC+∠BCA=180°,∴3x+5x+10x=180°,x=10°.∴∠A=30°∠ABC=50°∠BCA=100°.∵△ABC≌△A'B'C,∴∠A'=∠A=30°,∠B'=∠ABC=50°.∵∠B'C B=180°﹣∠BCA=80°.∴∠B'B C=180°﹣∠B'﹣∠B'C B=180°﹣50°﹣80°=50°.【点评】本题主要考查全等三角形的性质,根据比值和三角形内角和定理求出△ABC的各角的度数是解题的关键.21.如图,已知△ABC≌△DEF,B、E、C、F在同一直线上.(1)若∠BED=130°,∠D=70°,求∠ACB的度数;(2)若2BE=EC,EC=6,求BF的长.【分析】(1)根据三角形的外角的性质求出∠F,根据全等三角形的对应角相等解答;(2)根据题意求出BE、EF,根据全等三角形的性质解答.【解答】解:(1)由三角形的外角的性质可知,∠F=∠BED﹣∠D=60°,∵△ABC≌△DEF,∴∠ACB=∠F=60°;(2)∵2BE=EC,EC=6,∴BE=3,∴BC=9,∵△ABC≌△DEF,∴EF=BC=9,∴BF=EF+BE=12.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出边FG的对应边与∠EGF的对应角;(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【分析】(1)根据全等三角形的定义即可判断;(2)利用全等三角形的性质即可解决问题;【解答】解:(1)∵△EFG≌△NMH,∴FG的对应边是MH,∠EGF的对应角是∠MHN.(2))∵△EFG≌△NMH,∴MN=EF=2.1cm,HM=FG=3.3cm,∵FH=1.1cm,∴HG=3.3﹣1.1=2.2cm.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.23.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.【分析】(1)直接利用三角形内角和定理得出∠BAC的度数,再利用角平分线的定义得出答案;(2)过D作DF⊥AC于F,依据角平分线的性质,即可得到DF=DE=3,再根据S△ABC=12×AB×DE+12×AC ×DF进行计算即可.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=12×AB×DE+12×AC×DF=12×10×3+12×8×3=27.【点评】本题主要考查了角平分线的性质以及三角形的面积,角的平分线上的点到角的两边的距离相等.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.【分析】由SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;【解答】证明:(1)在△AED与△AEC中∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;【点评】本题考查全等三角形的判定和性质,等腰三角形的判定,关键是根据SAS证明△AED与△AEC全等.25.已知:△ABC≌△EDC.(1)若DE∥BC(如图1),判断△ABC的形状并说明理由.(2)连结BE,交AC于F,点H是CE上的点,且CH=CF,连结DH交BE于K(如图2).求证:∠DKF=∠ACB【分析】(1)根据全等三角形的性质和等腰三角形的判定解答即可;(2)根据全等三角形的性质得出BC=CD,∠ACB=∠DCE,进而证明三角形全等解答即可.【解答】解:(1)∵△ABC≌△EDC,∴∠ABC=∠EDC,∠ACB=∠ECD,∵DE∥BC,∴∠EDC=∠ACB,∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.(2)∵△ABC≌△EDC,∴BC=CD,∠ACB=∠DCE,在△BCF和△DCH中,∴△BCF≌△DCH,∴∠FBC=∠HDC,在△FBC和△FDK中,∵∠FBC=∠HDC,∠BFC=∠DFK,∴∠DKF=∠ACB.【点评】此题考查全等三角形的性质,关键是根据全等三角形的性质和判定解答.26.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论;(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.【解答】解:(1)∵AB=AC,∠A=40°,∴∠B=∠C=70°,∵CE=PC,∠EPC=(180°﹣70°)×12=55°,又∵BD+CE=BP+PC,PC=CE,∴BD=PB,∠BPD=55°,∴∠DPE=180°﹣∠BPD﹣∠EPC=180°﹣55°﹣55°=70°;(2)相同,理由:∵PC=BC﹣BP,BD=BC﹣CE,PC=BD,∴BP=CE,∴△BDP≌△CPE(SAS),∴∠CPE=∠BDP,又∵∠BPD+∠CPE+∠DPE=180°,∠BPD+∠BDP+∠B=180°,∴∠DPE=∠B=70°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.27.如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.【分析】(1)利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵BE⊥AC,∴∠A+∠ABE=90°,∵∠ABC=90°,∴∠DBE+∠ABE=90°,∴∠A=∠DBE,在△ABC和△BDE中,∴△ABC≌△BDE(ASA);(2)解:AB=DE+CD,理由:由(1)证得,△ABC≌△BDE,∴AB=BD,BC=DE,∵BD=CD+BC,∴AB=CD+DE.【点评】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.。
(完整)苏科版八年级数学上册《第一章全等三角形》单元测试含答案,推荐文档
第一章全等三角形单元测试、单选题(共10题;共30 分)1.如图,已知AE=CF / AFD=/ CEB那么添加下列一个条件后,仍无法判定△A、/ A=Z CB、AD=CBC、BE='DF'D、AD// BC2.如图,D在AB上,E在AC上,且/ B=/ C,那么补充下列条件后,不能判定△A、AD=AE D、AB=ACB、BE=CD C/ AEB=/ ADC)C./ A+/ ABD=/ C+/ CBDD.AD / BC,且AD=BCABD^A ACD 的是(A.BD=DC, AB=ACB./ADB=/ ADC, BD=DC ADF^A CBE的是()ABE^A ACD 的是()C./ B=/ C,/ BAD=/ CADD./ B=/ C, BD=DC5.已知图中的两个三角形全等,则/ 1等于(9. 已知△ ABC ^A DEF,/ A=50° / B=75° 则/ F 的大小为( )A. 50 °B.55 °C.65 °D.75 ° 10. 如图,在厶ABC 和厶DEF 中,给出以下六个条件中, 以其中三个作为已知条件, 不能判断厶ABC 和厶DEF全等的是( ) ①AB=DE :② BC=EF ③ AC=DF ;④/ A=/ D ;⑤/ B=/ E ;⑥/ C=/ F.6•两组邻边分别相等的四边形叫做 筝形”如图,四边形 ABCD 是一个筝形,其中 AD=CD, AB=CB,在探究 筝形的性质时,得到如下结论:①△ ABD ^A CBD ②AC 丄BD;③四边形 ABCD 的面积=12AC?BD,其中正 C.2个 D.3个7.如图,已知△ ABE ^A ACD,Z 仁/ 2,/ B=Z C ,不正确的等式是( 确的结论有( ) A.0个 B.1个 A.AB=AC B.Z BAE=Z CAD C.BE=DC D.AD=DE ABM ^A CDN 的是(A 3^——^C EA、①⑤②B、①②③C、④⑥①D、②③④、填空题(共8题;共27 分)11. _______________________________________________________________ 如图,△ ABC^A ADE,/ B= 100 ° / BAC= 30 ° 那么/ AED= ___________________________________________12. ________________________________________________________________________________ 如图所示,已知△ ABC^A ADE , / C=/ E , AB=AD ,则另外两组对应边为 _______________________________________ ,另外两组对应角为__________ .13•如图,△ ACE^A DBF,点A、B、C D共线,若AC=5, BC=2,则CD的长度等于_________ ,就可以判定△ ABC^A ADE.14.如图,AB=AD,只需添加一个条件15.A ABC中,AB=AC=12厘米,/ B=/ C, BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△ BPD 与厶CQP 全等时,v 的值为16•如图,已知△ ABC ^^ DCB, / BDC=35°, / DBC=50°,则/ ABD=再添加的一个条件可以是ABC ^A ADC,只需三、解答题(共5题;共37 分) 19•如图,已知△ ABC ^A BAD, AC 与BD 相交于点 0,求证:0C=0D.18.如图,在△ ABC 与厶ADC 中,已知 P.若/ DEF=40; PB=PF ,贝艮20.图中所示的是两个全等的五边形,/ 3=115 ° d=5,指出它们的对应顶点?对应边与对应角,并说出图中标的a,b,c, e, a各字母所表示的值.22.已知命题:如图,点A, D, B, E在同一条直线上,且AD=BE / A=Z FDE则厶ABg A DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线 AM 丄AB ,射线CN 丄AB , AC=3, CB=2分别在直线 AM 上取一点D ,在射线 CN 上取一点E ,使得△ ABD 与厶BDE 全等,求 CE 2的 V J』 1/ 值.4, n□ ______ 丄 ~1 C3四、综合题(共1题;共10分)24•定义:我们把三角形被一边中线分成的两个三角形叫做性质:朋友三角形”的面积相等.如图1,在△ ABC 中,CD 是AB 边上的中线.那么△ ACD 和厶BCD 是 朋友三角形 ”并且ACD =&BCD .应用:如图2,在直角梯形 ABCD 中,/ ABC=90 , AD// BC, AB=AD=4, BC=6,点E 在BC 上,点F 在AD(1)求证:△ AOB 和厶AOF 是 朋友三角形”; 朋友三角形O .形”,将△ ACD 沿CD 所在直线翻折,得到△ A 。
苏科版八年级数学上册第一章 全等三角形单元测试(二)及解析
第一章全等三角形单元测试一、选择题1.下列图形中,和所给图全等的图形是()A.B.C.D.2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.1(题1题) (题4题) (题7题)3.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°5.在下列条件中,不能说明△ABC≌△A′B′C的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,∠C=∠C′,AB=A′B′D.AB=A′B′,BC=B′C,AC=A′C′6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL8.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个(题8题)(题9题) (题10题)9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°二、填空题11.如果△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,那么△ABC中AB边上的高是.12.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=.13.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为;(2)若以“ASA”为依据,还要添加的条件为.(题13题) (题15题) (题16题)14.下列说法正确的有个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A 且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是.(仅添加一对相等的线段或一对相等的角)17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:.(题17题) (题18题)18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为.(填序号)三、解答题(共46分)19.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.20.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.21.已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.22.如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.23.如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.25.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.参考答案与试题解析一、选择题1.下列图形中,和所给图全等的图形是()A.B.C.D.【考点】全等图形.【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解;如图所示:和左图全等的图形是选项D.故选:D.【点评】本题考查全等形的定义,属于基础题,注意掌握全等形的定义.2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.1【考点】命题与定理.【分析】根据全三角形的性质,可以判断各个说法是否正确,从而可以解答本题.【解答】解:全等三角形的周长相等,故①正确;全等三角形的对应角相等,故②正确;全等三角形的面积相等,故③正确;全等三角形的对应角平分线相等,故④正确;故选A.【点评】本题考查命题和定理,解题的关键是明确全等三角形的性质.3.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等 B.有两条边对应相等C.有两边及一角对应相等 D.有两角及一边对应相等【考点】全等三角形的判定.【分析】熟练运用判定方法判断.做题时要按判定全等的方法逐个验证.【解答】解:有三个角对应相等,不能判定全等,A错误;有两条边对应相等,缺少条件不能判定全等,B错误;有两边及一角对应相等不能判定全等,C错误;有两角及一边对应相等可判断全等,符合AAS或ASA,是正确的.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°【考点】全等三角形的性质.【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ABC中可求得∠BAC,则可求得∠EA C.【解答】解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选B.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.在下列条件中,不能说明△ABC≌△A′B′C的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,∠C=∠C′,AB=A′B′D.AB=A′B′,BC=B′C,AC=A′C′【考点】全等三角形的判定.【分析】根据题意,对选项一一分析,选择正确答案.【解答】解:A、∠A=∠A′,∠C=∠C′,AC=A′C′,可用ASA判定△ABC≌△A′B′C,故选项正确;B、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故选项错误;C、∠B=∠B′,∠C=∠C′,AB=A′B′,可用AAS判定△ABC≌△A′B′C,故选项正确;D、AB=A′B′,BC=B′C,AC=A′C′,可用ASA判定△ABC≌△A′B′C,故选项正确.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′【考点】全等三角形的判定.【分析】此题难度较小,主要是对应关系的问题,可以采用排除法进行分析确定.【解答】解:如图所示,∵∠C=∠C′=90°,∠A=∠B′,AB=B′A′,∴Rt△ABC≌Rt△A′B′C′,∴AC=B′C′(A不正确,C正确),BC=A′C′(B不正确),∠A=∠B′(已知已给出,D不正确),故选C.【点评】主要考查全等三角形的判定,作此题需考虑对应关系,不能凭主观想象和习惯做题,画个图形,一目了然.7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL【考点】全等三角形的应用.【分析】结合图形根据三角形全等的判定方法解答.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选B.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.8.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个【考点】直角三角形全等的判定;全等三角形的性质.【分析】可以采用排除法对各个选项进行验证,从而得出最后的答案.【解答】解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC解④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可【考点】全等三角形的应用.【专题】应用题.【分析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.【解答】解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选:D.【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.二、填空题11.如果△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,那么△ABC中AB边上的高是15.【考点】全等三角形的性质.【分析】运用全等三角形的面积相等得出S△ABC=180,再利用AB=24本题可解.【解答】解:∵△ABC≌△A′B′C′,S△A′B′C′=180,∴S△ABC=180,设AB边上的高是h.则S△ABC=AB•h,又AB=24,∴△ABC中AB边上的高h=180×2÷24=15.故填15.【点评】本题考查了全等三角形的性质,三角形的面积;要牢固掌握这些知识,并能灵活应用.12.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=11.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求出m、n的值,再相加即可得解.【解答】解:∵两三角形全等,∴m=6,n=5,∴m+n=6+5=11.故答案为:11.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.13.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为BE=CF或BC=EF;(2)若以“ASA”为依据,还要添加的条件为∠A=∠D.【考点】全等三角形的判定.【分析】(1)根据全等三角形的SAS定理,只需找出夹角的另一边,即BC=EF,即可证得.(2)要判定△ABC≌△DEF,已知∠ABC=∠DEF,AB=DE,加∠A=∠D即可.【解答】解:(1)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“SAS”为依据,∴还要添加的条件为:BE=CF或BC=EF;故答案为:BE=CF或BC=EF;(2)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“ASA”为依据,∴还要添加的条件为:∠A=∠D.故答案为:∠A=∠D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.下列说法正确的有3个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.【考点】直角三角形全等的判定.【分析】利用全等三角形的判定方法逐个判断即可.【解答】解:(1)当这两条边都是直角边时,结合直角相等,则可用SAS可判定两个三角形全等,当这两条边一条是斜边一条是直角边时,可用HL判定这两个直角三角形全等,故(1)正确;(2)有一锐角和斜边对应相等时,结合直角,可用AAS来判定这两个直角三角形全等,故(2)正确;(3)当一条直角边和一个锐角对应相等时,结合直角,可用AAS或ASA来证明这两个直角三角形全等,故(3)正确;(4)当两个三角形面积相等时,这两个直角三角形不一定会等,故(4)不正确;综上可知正确的有3个,故答案为:3.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A 且垂直于AC的射线AO上运动,当AP=5或10时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是BE=CD 或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC.(仅添加一对相等的线段或一对相等的角)【考点】全等三角形的判定与性质.【分析】根据三角形全等的判定方法,从△BCD和△CBE全等,或者△ABD和△ACE全等考虑添加条件.【解答】解:添加BE=CD可以利用“HL”证明△BCD≌△CBE,添加∠EBC=∠DCB可以利用“AAS”证明△BCD≌△CBE,添加∠DBC=∠BCE可以利用“AAS”证明△BCD≌△CBE,添加AB=AC可以利用“HL”证明△ABD≌△ACE,综上所述,所添加的条件可以是BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=A C.故答案为:BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=A C.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:△BDE≌△CDF,BD=CD,AD是△ABC的中线.【考点】全等三角形的判定与性质.【分析】根据已知条件得到△BDE≌△CDF,根据全等三角形的性质得到BD=C D.AD是△ABC的中线【解答】解:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∴△BDE≌△CDF(AAS),∴BD=C D.∴AD是△ABC的中线.故答案为:△BDE≌△CDF,BD=CD,AD是△ABC的中线.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要根据实际情况灵活运用.18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为①②④或①③④.(填序号)【考点】命题与定理.【分析】直接利用全等三角形的判定方法分别得出符合题意的答案.【解答】解:∵BE=CF,∴BC=EF,在△ABC和△DEF中∵,∴△ABC≌△DEF(SAS),∴AC=DF,即①③④为题设,可以得出②;∵BE=CF,∴BC=EF,在△ABC和△DEF中∵,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,即①②④为题设,可以得出③;故答案为:①②④或①③④.【点评】此题主要考查了命题与定理,正确掌握全等三角形的判定方法是解题关键.三、解答题(共46分)19.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据HL判定Rt△ACB≌Rt△ADB得出BC=BD,∠CBA=∠DBA,再利用SAS判定△CBP≌△DBP从而得出CP=DP.【解答】证明:在Rt△ACB和Rt△ADB中,,∴Rt△ACB≌Rt△ADB(HL).∴BC=BD,∠CBA=∠DB A.∵BP=BP,∴△CBP≌△DBP(SAS).∴CP=DP.【点评】本题考查三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【考点】直角三角形全等的判定;全等三角形的性质.【专题】探究型.【分析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.【解答】解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)要证AD平分∠BAC,只需证明△ABD≌△ACD即可.(2)由1可证得Rt△AED≌Rt△AFD,然后推出BE=CF可得AB=A C.【解答】证明:(1)AD是△ABC的中线(已知),∴BD=C D.在Rt△EBD和Rt△FCD中,∴Rt△EBD≌Rt△FCD(HL).∴DE=DF(全等三角形的对应边相等),即AD是∠BAC的平分线.(2)在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF(全等三角形的对应边相等).又∵BE=CF(已知),∴AB=A C.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(6分)如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E 同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.【考点】全等三角形的应用.【专题】应用题;方案型.【分析】本题让我们了解测量两点之间的距离的一种方法,设计只要符合全等三角形全等的条件,具有可操作性,需要测量的线段和角度在空地可实施测量.【解答】解:方案设计如图,延长BD到点F,使BD=DF=500米,过F作FG⊥ED于点G.因为∠ABD=145°,所以∠CBD=35°,在△BED和△FGD中所以△BED≌△FGD(ASA),所以BE=FG(全等三角形的对应边相等).所以要求BE的长度可以测量GF的长度.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题主要是利用了△BED≌△FGD的判定及性质.23.如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是AC=AD;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.【考点】全等三角形的判定与性质.【分析】(1)由图形可知AE=AE,结合条件可再添加AC=AD,利用SAS可证明△ACE≌△ADE;(2)利用SAS可证明△ACB≌△AD B.【解答】解:(1)∵在图形中有AE=AE,且∠BAC=∠BAD,∴可添加AC=AD,利用SAS判断△ACE≌△ADE,故答案为:AC=AD;(2)可证明△ACB≌△ADB,证明如下:在△ACB和△ADB中∴△ACB≌△ADB(SAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.【考点】全等三角形的判定与性质.【专题】阅读型.【分析】证明三角形全等,不能用SSA,而徐波正是犯了这个错误,要解决本题,首先证明△ABF≌△ACG(AAS),再证明Rt△BEF≌Rt△CDG(HL),即可推出∠ADC=∠AE B.【解答】解:错在不能用“SSA”说明三角形全等.正确的解法如下:如图所示,因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AE B.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题要特别注意SSA不能作为全等三角形一种证明方法使用.25.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【考点】相似形综合题.【专题】几何综合题.【分析】(1)求出∠ABP=∠CBE,根据SAS推出即可;(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.【解答】(1)证明:∵BC⊥直线l1,∴∠ABP=∠CBE,在△ABP和△CBE中∴△ABP≌△CBE(SAS);(2)①证明:连结BD,延长AP交CE于点H,∵△ABP≌△CBE,∴∠APB=∠CEB,∵∠PAB+∠APB=90°,∴∠PAB+∠CEB=90°,∴AH⊥CE,∵=2,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE∥BD,∵AH⊥CE,∴AP⊥BD;②解:∵=n,∴BC=n•BP,∴CP=(n﹣1)•BP,∵CD∥BE,易得△CPD∽△BPE,∴==n﹣1,设△PBE的面积S△PBE=S,则△PCE的面积S△PCE满足=n﹣1,即S2=(n﹣1)S,∵S△PAB=S△BCE=n•S,∴S△PAE=(n+1)•S,∵==n﹣1,∴S1=(n﹣1)•S△PAE,即S1=(n+1)(n﹣1)•S,∴==n+1.【点评】本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.。
苏科版八年级上册数学《第1章全等三角形》单元测试题及答案
苏科版数学八年级上册《第1章全等三角形》单元测试题考试分值:120;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°2.(4分)长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若△ABC和△APQ全等,则AP的值为()A.6cm B.12cm C.12cm或6cm D.以上答案都不对4.(4分)如图,已知△ABC≌△CDA,∠B=∠D,则下列结论中正确的是()①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.A.①B.②C.①③D.①②③5.(4分)下列说法正确的是()A.全等三角形是指周长和面积都一样的三角形B.全等三角形的周长和面积都一样C.全等三角形是指形状相同的两个三角形D.全等三角形的边都相等6.(4分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为()A.20 B.5 C.10 D.158.(4分)下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCO B.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD9.(4分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;=S四边形ABCD;⑤BC=CE.()③∠AEB=90°;④S△ABEA.0个B.1个C.2个D.3个10.(4分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可二.填空题(共5小题,满分20分)11.(4分)如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.(4分)如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.13.(4分)七巧板是我们祖先的一项卓越创造,它虽然只有七块,但是可以拼出多种多样的图形,如图就是一个七巧板,七块刚好拼成一个正方形,图中全等的三角形有对.14.(4分)在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=°,∠E=70°,根据判定△ABC≌△DEF.15.(4分)如图,AB,D相交于点O,已知OC=OA,请你补充的一个条件或使△AOD≌△COB.三.解答题(共5小题,满分60分)16.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.17.(12分)如图,在△ABC和△DCB中AC与BD相交于点O,AB=DC.(1)请你再添加一个条件,使得△ABC≌△DCB;(2)根据(1)中你所添加的条件,求证:△ABC≌△DCB;(3)△OBC的形状是.(直接写出结论,不需证明)18.(12分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(14分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.参考答案一.选择题1.D.2.A.3.C.4.D.5.B.6.C.7.D.8.C.9.B.10.D.二.填空题11.2.12.∠B=∠E或∠ACB=∠DFE或AF=CD.13.3.14.35,ASA.15.OB=DO或∠A=∠C.三.解答题16.解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△CDF(HL).17.解:(1)添加∠ABC=∠DCB,(2)证明如下:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).(3)由(2)知△ABC≌△DCB,∴∠ACB=∠DBC,∴△OBC的形状是等腰三角形.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.20.解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=90°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F′CB≌△DCA(SAS),∴BF′=DA,由(1)知,BD=AF,∵AB=BD+AD,∴AB=AF+BF′.。
苏科版八年级上册数学 第一章 全等三角形 单元测试卷(含答案解析)
苏科版八年级上册数学第一章全等三角形单元测试卷(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 如图,△ABO≅△DCO,∠D=80∘,∠AOB=65∘,则∠B的度数是()A.35∘B.30∘C.25∘D.20∘2. 已知△ABC≅△DCB,若AB=5,AC=8,BC=12,则BD的值为()A.5B.8C.12D.5或83. 下列说法错误的是()A.全等三角形是指形状和大小都相同的两个三角形B.两角和其中一角的对边对应相等的两个三角形全等C.周长相等的两个三角形全等D.有一边相等的两个等边三角形全等4. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②5. 下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形6. 如图,在四边形ABCD中,AD // BC,∠C=90∘,点E,F分别在BC,CD上,若△ADF≅△AEB,则下列说法中不正确的是()A.DF=EBB.AE⊥BCC.∠DAF=∠EABD.AB=AD7. 如图,AB=AC,要说明△ADC≅△AEB,需添加的条件不可能是()A.∠B=∠CB.AD=AEC.∠ADC=∠AEBD.DC=BE8. 如图,∠A=∠D=90∘,AC=DB,则△ABC≅△DCB的依据是()A.HLB.ASAC.AASD.SAS9. 如图,D,E分别是AB,AC上的点,BE与CD交于点F,给出下列三个条件:①∠DBF =∠ECF;②∠BDF=∠CEF;③BD=CE.两两组合在一起,共有三种组合:。
苏科版八年级数学(上册)《第一章 全等三角形》单元检测题(含答案详解)
第1章 全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1、要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),能够讲明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A、边角边 B、角边角C、边边边 D 。
边边角2、如图所示,两个全等的等边三角形的边长为1m ,一个微型机器人由A点开始按A BCDBEA 的顺序沿等边三角形的边循环运动,行走2 012 m 停下,则这个微型机器人停在( )A 、点A 处B 、点B 处C、点C 处 D 、点E 处3、如图,已知A B∥CD ,AD ∥B C,A C与BD 交于点O,AE ⊥B D于点E ,CF ⊥BD 于点F ,那么图中全等的三角形有( ) A、5对 B。
6对C、7对 D 。
8对4。
下列命题中正确的是( )A、全等三角形的高相等B 、全等三角形的中线相等C 、全等三角形的角平分线相等D。
全等三角形对应角的平分线相等5、如图所示,点B 、C、E 在同一条直线上,△ABC与△CDE 都是等边三角形,则下列结论不一定成立的是( )A 、△AC E≌△BCDB 、△BG C≌△AF CC 、△DC G≌△ECFD 、△AD B≌△CE A 6。
如图所示,分不表示△ABC 的三边长,则下面与△一定全等的三角形是( )7、已知:如图所示,B、C 、D 三点在同一条直线上,A C=CD ,∠B =∠E =90°,AC ⊥C D,则不正确的结论是( )A、∠A与∠D互为余角 B 、∠A =∠2C 、△A BC≌△C ED D 、∠1=∠28、如图所示,两条笔直的公路、相交于点O , C村的村民在公路的旁边建三个加工厂 A 、B、D ,已知AB =BC =CD =D A=5 km,村庄C第5题图 第8题图第2题图第7题图第6题图第3题图 第1题图到公路的距离为4 km,则C 村到公路的距离是( )A、3 k m B、4 kmC 。
苏科版八年级上《第1章全等三角形》单元测试(3)含答案解析
《第1章 全等三角形》一、选择题1.如图,OA=OB ,OC=OD ,∠O=50°,∠D=35°,则∠AEC 等于( )A .60°B .50°C .45°D .30°2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= cm.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:m.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是km.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是.三、解答题19.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.《第1章全等三角形》参考答案与试题解析一、选择题1.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60° B.50° C.45° D.30°【考点】全等三角形的判定与性质;多边形内角与外角.【分析】首先由已知可求得∠OAD的度数,通过三角形全等及四边形的知识求出∠AEB的度数,然后其邻补角就可求出了.【解答】解:∵在△AOD中,∠O=50°,∠D=35°,∴∠OAD=180°﹣50°﹣35°=95°,∵在△AOD与△BOC中,OA=OB,OC=OD,∠O=∠O,∴△AOD≌△BOC,故∠OBC=∠OAD=95°,在四边形OBEA中,∠AEB=360°﹣∠OBC﹣∠OAD﹣∠O,=360°﹣95°﹣95°﹣50°,=120°,又∵∠AEB+∠AEC=180°,∴∠AEC=180°﹣120°=60°.故选:A.【点评】本题考查了全等三角形的判定及性质;解题过程中用到了三角形、四边形的内角和的知识,要根据题目的要求及已知条件的位置综合运用这些知识.2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN 的长,只需求得其对应边PQ 的长,据此可以得到答案.【解答】解:要想利用△PQO ≌△NMO 求得MN 的长,只需求得线段PQ 的长,故选:B .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确【考点】全等三角形的判定.【专题】压轴题.【分析】根据SSS 即可推出△A 1B 1C 1≌△A 2B 2C 2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.【解答】解:∵△A 1B 1C 1,△A 2B 2C 2的周长相等,A 1B 1=A 2B 2,A 1C 1=A 2C 2,∴B 1C 1=B 2C 2,∴△A 1B 1C 1≌△A 2B 2C 2(SSS ),∴①正确;∵∠A 1=∠A 2,∠B 1=∠B 2,∴△A 1B 1C 1∽△A 2B 2C 2∵△A 1B 1C 1,△A 2B 2C 2的周长相等,∴△A 1B 1C 1≌△A 2B 2C 2∴②正确;故选:D .【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,而AAA 和SSA 不能判断两三角形全等.4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E ,只要求出∠B=∠E 即可.【解答】解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC ≌△DEF ,故本选项错误;B 、∵在△ABC 和△DEF 中,∴△ABC ≌△DEF (SAS ),故本选项正确;C 、∵BC ∥EF ,∴∠F=∠BCA ,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC ≌△DEF ,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC ≌△DEF ,故本选项错误.故选B .【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】由全等三角形的判定可证明△BAE≌△DAC,从而得出BE=CD.【解答】解:∵△ABD与△ACE均为正三角形∴BA=DA,AE=AC,∠BAD=∠CAE=60°∴∠BAE=∠DAC∴△BAE≌△DAC∴BE=CD故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质;平行线分线段成比例.【专题】几何综合题;压轴题.【分析】根据题意,结合图形,对选项一一求证,判定正确选项.【解答】解:(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°,在△BCD和△ACE中∵,∴△BCD≌△ACE∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC,又∵∠ACG=∠BCF=60°,AC=BC∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∠DCE=∠ABC=60°,∴DC∥AB,∴,∵∠ACB=∠DEC=60°,∴DE∥AC,∴ =,∴,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°,∵△ACE≌△BCD,∴∠CDZ=∠CEN,在△CDZ和△CEN中∵,∴△CDZ≌△CEN,∴CZ=CN,∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述,四个结论均正确,故本题选D.【点评】本题综合考查了全等、圆、相似、特殊三角形等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于70°.【考点】全等三角形的判定与性质.【分析】在△BCO中利用外角和定理求得∠DBE的度数,然后证明△ADO≌△BCO,求得∠D的度数,在△BED中利用内角和定理求解.【解答】解:∠DBE=∠O+∠C=60°+25°=85°,∵在△ADO和△BCO,,∴△ADO≌△BCO,∴∠D=∠C=25°,∴∠BED=180°﹣∠D﹣∠DBE=180°﹣25°﹣85°=70°.故答案是:70°.【点评】本题考查全等三角形的判定与性质,以及三角形的外角的性质以及三角形内角和定理,正确证明△ADO≌△BCO是关键.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:①②④.【考点】全等三角形的判定与性质.【分析】要得到OP=OP′就要证明两三角形全等,现有的条件为有一对角相等,一条公共边,缺少角,于是答案可得.【解答】解:①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到OP=OP′;②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到OP=OP′;④PP′⊥OC,符合ASA,可得二三角形全等,从而得到OP=OP′;③中给的条件是边边角,全等三角形判定中没有这个定理.故填①②④.【点评】本题考查了全等三角形的判定与性质;转化为添加条件使三角形全等是正确解答本题的关键.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为 4 .【考点】全等三角形的判定与性质;三角形的面积.【专题】计算题.【分析】可过点C作CF⊥DE,得出Rt△ADE≌Rt△DCF,得出线段之间的关系,进而将四边形的面积转化为矩形BCFE的面积与2个△CDF的面积,通过线段之间的转化,即可得出结论.【解答】解:过点C作CF⊥DE交DE于F,∵AD=CD,∠ADE=90°﹣∠CDF=∠DCF,∠AED=∠DFC=90°,∴△ADE≌△DCF(AAS),∴DE=CF=BE,又四边形ABCD的面积为16,即S矩形BCFE +2S△CDF=16,即BE•EF+2×CF•DF=16,BE•DE=BE•BE=16,解得DE=4.故此题答案为4.【点评】本题主要考查了全等三角形的判定及性质以及三角形、矩形面积的计算,能够熟练掌握.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是 1 .【考点】全等三角形的判定与性质.【专题】几何图形问题.【分析】根据AD⊥BC,CE⊥AB,得出∠ADB=∠AEH=90°,再根据∠BAD=∠BCE,利用AAS得到△HEA ≌△BEC,由全等三角形的对应边相等得到AE=EC,由HC=EC﹣EH代入计算即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故答案为:1.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质,解题的关键是找出图中的全等三角形,并进行证明.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= 3 cm.【考点】全等三角形的判定与性质.【分析】根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FCE全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.【解答】解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B(等角的余角相等),在△FCE和△ABC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.【点评】本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:30 m.【考点】全等三角形的应用.【专题】应用题.【分析】要转化为数学问题,须仔细读题,找出有用的已知条件,其中∠BDC=∠ADC是不易被发现的.【解答】解:由题意知∠BCD=∠ACD=90°,CD=CD,∠BDC=∠ADC,∴△BCD≌△ACD,∴AC=BC=30m.故答案为:30.【点评】解决本题的关键是条件∠BDC=∠ADC的找出,做题时要认真读题,理解题意,这是正确解题的保证.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是15 km.【考点】全等三角形的应用.【分析】根据题意设出AE的长为x,再由勾股定理列出方程求解即可.【解答】解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故答案为:15【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是1<x<6 .【考点】三角形三边关系;全等三角形的判定与性质.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:如图所示,AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x,BE=AC=7,在△ABE中,BE﹣AB<AE<AB+BE,即7﹣5<2x<7+5,∴1<x<6.故答案为:1<x<6.【点评】有关三角形的中线问题,通常要倍数延长三角形的中线,把三角形的一边变换到与另一边和中线的两倍组成三角形,再根据三角形三边关系定理列出不等式,然后解不等式即可.三、解答题19.(春•大丰市期末)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.【考点】作图—应用与设计作图.【专题】网格型.【分析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.【解答】解:如图所示:【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?【考点】全等三角形的判定与性质.【分析】由平行线的性质可得∠A=∠C,已知AD=BC,根据等式的性质得AF=CE,从而可根据SAS判定△DAF≌△BCE,根据全等三角形的对应角相等即可求证.【解答】解:∠B=∠D.原因如下:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AF=CE.∵AD=BC,∴△DAF≌△BCE.∴∠B=∠D.【点评】此题主要考查学生对全等三角形的判定方法及全等三角形的性质的理解及运用.21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先证得△BOD≌△COE,得到:BD=CE,然后证明Rt△AOD≌Rt△AOE,从而证得.【解答】证明:∵OD⊥AB,OE⊥AC∴∠BDO=∠CEO=90°,又∵∠BOD=∠COE,BD=CE,∴△BOD≌△COE∴OD=OE又由已知条件得△AOD和△AOE都是Rt△,且OD=OE,OA=OA,∴Rt△AOD≌Rt△AOE.∴∠DAO=∠EAO,即AO平分∠BAC.【点评】本题主要考查了三角形全等的判定,可以通过全等三角形的对应边相等,对应角相等.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】要证BE=DE,先证△ADC≌△ABC,再证△ADE≌△ABE即可.【解答】解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC(公共边)BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.【点评】本题重点考查了三角形全等的判定定理,利用全等得出结论证明三角形全等是常用的方法.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证△ABF≌△CBF,得出AF=FC,利用等腰三角形的性质可知∠3=∠4,再利用平行线的性质可证出∠4=∠5,等量代换,可得:∠3=∠5.那么AC就是∠DCF的平分线.【解答】证明:∵BF是∠ABC的平分线,∴∠1=∠2,又AB=BC,BF=BF,∴△ABF≌△CBF(SAS),∴FA=FC,∴∠3=∠4,又AF∥DC,∴∠4=∠5,∴∠3=∠5,∴CA是∠DCF的平分线.【点评】本题考查了角平分线的性质、判定,全等三角形的判定和性质;找着并利用△ABF≌△CBF 是正确解答题目的关键.24.(•泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.【解答】(1)解:图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD.∵在△ABE与△ACD中,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,则∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.25.(•河北)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【考点】全等三角形的判定与性质;平移的性质.【专题】探究型.【分析】(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA=90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.【解答】解:(1)AB=AP;AB⊥AP;(2)BQ=AP;BQ⊥AP.证明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴△BCQ≌△ACP(SAS),∴BQ=AP.②如图,延长BQ交AP于点M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°.∴BQ⊥AP;(3)成立.证明:①如图,∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,CQ=CP,∠BCQ=∠ACP=90°,∴Rt△BCQ≌Rt△ACP.∴BQ=AP.②如图③,延长QB交AP于点N,则∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.∵在Rt△BCQ中,∠BQC+∠CBQ=90°,又∵∠CBQ=∠PBN,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.【点评】证明两个线段相等可以转化为证明三角形全等的问题.证明垂直的问题可以转化为证明两直线所形成的角是直角来解决.。
苏科版八年级上册 第1章 全等三角形单元测试
苏科版八年级上册 第1章 全等三角形单元测试1 / 11第1章全等三角形单元测试一、选择题1. 如图, ≌ 若 , , ,则CF 的长度是A. 4B. 3C. 5D. 62. 如图,点F 、A 、D 、C 在同一直线上, ≌ ,, ,则AC 等于A. 5B. 6C.D. 73. 如图,在四边形ABCD 中, , , 于 若四边形ABCD 的面积是18,则DP 的长是A.B.C.D.4. 下列说法不正确的是 A. 有两个角和一条边对应相等的两个三角形全等B. 有一条边和一个锐角对应相等的两个直角三角形全等C. 有两边和其中一边的对角对应相等的两个三角形全等D. 有两条直角边对应相等的两个直角三角形全等5.如图, ≌ ,点A与点B是对应点,那么下列结论中错误的是A. B. C. D.6.已知: ≌ ,有, ,则A. B. C. D.7.如图, ≌,和,和D分别是对应顶点,若,,,则AD的长为A. 4cmB. 5cmC. 6cmD. 以上都不对8. ≌ ,且的周长为100cm,且,,则EF的长为A. 35cmB. 30cmC. 45cmD. 55cm9.如图,,,添加下列哪些条件可以推证 ≌A. B. C. D.苏科版八年级上册 第1章 全等三角形单元测试3 / 1110. 下列说法中,正确的个数是斜边和一直角边对应相等的两个直角三角形全等;有两边和它们的对应夹角相等的两个直角三角形全等;一锐角和斜边对应相等的两个直角三角形全等;两个锐角对应相等的两个直角三角形全等.A. 1个B. 2个C. 3个D. 4个二、填空题 11. 如图, ≌ , , ,则的度数是______ .12. 如图, ≌ , , ,则 的度数为______ .13. 如图,已知≌ , , ,则______ 度14. 如图, ,若使 ≌ ,则还需要添加的条件是______ 只要写出一个答案 .15.如图,,,要使 ≌ ,还需添加条件______ 只需写出符合条件一种情况三、解答题16.已知:如图,在中,,,是AB的中点,点E在AC上,点F在BC上,且.求证:,若,求四边形DECF面积.17.如图,已知 ≌ ,且点,,,在同一条直线上,, .苏科版八年级上册 第1章 全等三角形单元测试5 / 11求 各内角的度数;若 , ,求AB 的长.18. 已知: ≌ ,且 , , , ,,则 ______ 度, ______ cm .19. 如图,已知 ≌ , 厘米, 厘米,求AB 的长.20.课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分, , 与互补,求证:小敏反复探索,不得其解她想,若将四边形ABCD特殊化,看如何解决该问题.特殊情况入手添加条件:“”,如图2,可证;请你完成此证明解决原来问题受到的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、请你补全证明苏科版八年级上册第1章全等三角形单元测试7 / 11【答案】1. A2. C3. C4. C5. C6. C7. B8. A9. C10. C11.12.13. 2014.15. 或或或16. 证明:如图,连接CD., ,是等腰直角三角形,,为BC中点,,平分,.,在和中,≌ ,, .苏科版八年级上册 第1章 全等三角形单元测试9 / 11,,即 .≌ ,,四边形 ,是AB 的中点,.四边形 .17. 解: ≌ , , , , ,;≌ ,,,,, ,. 18. 80;1219. 解: ≌ ,,,即,,.20. 证明:与互补,,,,在中,,在中,,,..由知,,为角平分线,,,.而与互补,与也互补,.在与中,≌ ...苏科版八年级上册第1章全等三角形单元测试11 / 11。
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是()A.AD=CBB.∠A=∠CC.BE=DFD.AD∥BC2、下列说法中:①法国数学家笛卡尔首先建立了坐标思想;②全等三角形对应边上的中线长相等;③若则④有两边和其中一条边所对的一个角对应相等的两个三角形一定全等.说法正确的为()A.①③④B.②④C.①②D.②③④3、在ABC与中,已知∠A=,AB=,增加下列条件,能够判定ABC与全等的是()A.BC=B.BC=C.∠B=D.∠B=∠C′4、如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E:②分别以D,E为画心,大于DE的长为半径画弧,两弧在∠AOB内交于一点c:③画射线OC,射线OC就是∠AOB的角平分线A.ASAB.SASC.SSSD.AAS5、如图,在△ABC中,AC=2 ,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A. B.3 C.2 D.46、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )A.1个B.2个C.3个D.4个7、如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠DB.AC=DFC.AB=EDD.BF=EC8、如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=()A.52°B.90°C.128°D.38°9、已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2, A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确10、如图,平面直角坐标系中,已知,将线段绕点顺时针旋转得到线段,点恰好在反比例函数的图象上,则等于()A.3 B.4 C. D.811、已知OD平分∠MON,点A,B,C分别在OM、OD、ON上(点A,B,C都不与点O重合),且AB=BC,则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCOD.无法确定12、已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠AB.90°﹣2∠AC.90°﹣∠AD.90°﹣∠A13、如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CAC.AB=ADD.∠B=∠D14、用直尺和圆规作一个角等于已知角的示意图如右,则说明∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS15、如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE二、填空题(共10题,共计30分)16、如图,OA=OB,点C、点D分别在OA、OB上,BC与AD交于点E,要使△AOD≌△BOC,则需要添加的一个条件是 ________(写出一个即可).17、如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cos∠α=,下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)18、若,且∠A=110°,∠B=30°,则∠C1=________°.19、如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是________20、如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y = 的图象恰好经过A′B 的中点 D,则k ________.21、如图,△ABC≌△ADE,其中,点B与D、点C与E是对应点.若∠BAE=120°,∠BAD=40°,则∠BAC的大小为________.22、如图,在△ABC中,AB=AC=10厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为________时,能够在某一时刻使△BPD与△CQP全等.23、小林在测量如图所示的四边形ABCD时,测得该四边形的面积为32cm²,AB=AD,∠BAD=∠BCD=90°他马上得到AC的长度为________ cm24、如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是________(写出全等判定方法的简写).25、如图,△ABC中,点A的坐标为(0,-2),点C的坐标为(2,1),点B的坐标为(3,-1),要使△ACD与△ACB全等,那么符合条件的点D有________个.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,,,,求证:。
苏科版八年级数学上册第1章《全等三角形》单元测试附答案
苏科版八年级数学上册第1章《全等三角形》单元测试一、选择题t1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()hA.∠A B.∠B C.∠C D.∠D Y2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()6A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°O3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()5A.SSS B.SAS C.AAS D.ASA I4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()aA.3对B.4对C.5对D.6对h5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()P①AC=DF②BC=EF③∠B=∠E④∠C=∠F.6A.①②③B.②③④C.①③④D.①②④y6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()6A.4B.5C.6D.787.根据下列已知条件,能唯一画出△ABC的是()ZA.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°kC.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=648.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()0A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A A9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()fA.PM>PN B.PM<PN C.PM=PN D.不能确定A10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()=①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.=A.①②B.④③C.①②④D.①④③二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌,且DF=.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至处时,△ABC与△APQ全等.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.《第1章全等三角形》参考答案与试题解析一、选择题1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠A B.∠B C.∠C D.∠D【考点】全等三角形的性质.【分析】只要牢记三角形只能有一个钝角就易解了.【解答】解:∵一个三角形中只能有一个钝角.∴100°的角只能是等腰三角形中的顶角.∴∠B=∠C是底角,∠A是顶角∴△ABC中与这个角对应的角是∠A.故选A.【点评】本题考查的知识点为:全等的三角形的对应角相等,知道一个三角形中只能有一个钝角是解决本题的关键.2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()A.3对B.4对C.5对D.6对【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行判断.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.【解答】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故选(D)【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF②BC=EF③∠B=∠E④∠C=∠F.A.①②③B.②③④C.①③④D.①②④【考点】全等三角形的判定.【分析】根据已知条件,已知一角和一边,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案.【解答】解:如图,∵AB=DE,∠A=∠D,∴根据“边角边”可添加AC=DF,根据“角边角”可添加∠B=∠E,根据“角角边”可添加∠C=∠F.所以补充①③④可判定△ABC≌△DEF.故选C.【点评】本题主要考查三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结.6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()A.4B.5C.6D.7【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得AD=DE,然后根据AD+DB=AB等量代换即可得解.【解答】解:∵∠A=90°,CD平分∠ACB,DE⊥BC,∴AD=DE,∵AD+DB=AB,∴DE+DB=AB=6.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.7.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6【考点】全等三角形的判定.【专题】作图题;压轴题.【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.8.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A【考点】全等三角形的应用.【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【解答】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:A.【点评】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】作PE⊥OB于E,PF⊥OA于F,根据角平分线的性质定理证明PE=PF,根据三角形全等的判定定理证明△PFN≌△PEM,得到答案.【解答】解:作PE⊥OB于E,PF⊥OA于F,∵OQ平分∠AOB,∴PE=PF,∵∠PNO+∠PNA=180°,∠PNO+∠PMO=180°,∴∠PNA=∠PMO,在△PFN和△PEM中,,∴△PFN≌△PEM,∴PM=PN.故选:C.【点评】本题考查的是角平分线的性质和全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③【考点】全等三角形的判定与性质.【分析】根据所加条件,结合已知条件,能够证明OP和OP′所在的三角形全等即可.【解答】解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;④若加PP′⊥OC,则根据ASA可证明△OPC≌△OP′C,得OP=OP′.故选C.【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【考点】全等三角形的性质.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌△BCE,且DF=CE.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】由题中条件可由ASA判定△ADF≌△BCE,进而得出DF=CE.【解答】解:∵AE=BF,∴AF=BE,∵AD∥BC,∴∠A=∠D,又AD=BC,∴△ADF≌△BCE,∴DF=CE.故答案为:△BCE,CE.【点评】本题主要考查了全等三角形的判定及性质,能够熟练掌握.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.【考点】直角三角形全等的判定.【分析】要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.【解答】解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.【考点】全等三角形的应用.【专题】计算题.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=40°.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】求出BD=CE和∠B的度数,根据SAS推出△ADB≌△AEC,推出∠C=∠B=40°,根据三角形内角和定理求出即可.【解答】解:∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,∵∠2=100°,∠BAE=60°,∴∠B=∠2﹣∠BAE=40°,∵在△ADB和△AEC中∴△ADB≌△AEC,∴∠C=∠B=40°,∵∠2+∠C+∠CAE=180°,∴∠CAE=180°﹣100°﹣40°=40°,故答案为:40°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质,三角形内角和定理的应用,解此题的关键是求出△ADB≌△AEC,注意:全等三角形的对应边相等,对应角相等.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=6.【考点】全等三角形的判定与性质.【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,,∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.【点评】本题考查了全等三角形的判定与性质;证明三角形全等得出对应边相等是解决问题的关键.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至P点运动到AC中点处时,△ABC 与△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt △QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5,即P点运动到AC中点;故答案为:P点运动到AC中点.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是4<BC<20;中线AD的取值范围是2<AD<10.【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】BC边的取值范围可在△ABC中利用三角形的三边关系进行求解,而对于中线AD的取值范围可延长AD至点E,使AD=DE,得出△ACD≌△EBD,进而在△ABE中利用三角形三边关系求解.【解答】解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故此题的答案为4<BC<20,2<AD<10.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够理解掌握并熟练运用.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2cm.【考点】角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,∴S=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,△ABC∴DE=2(cm).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.【点评】本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?【考点】全等三角形的判定.【专题】证明题.【分析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC.【解答】答:△AOF≌△DOC.证明:∵两块完全相同的三角形纸板ABC和DEF,∴AB=DB,BF=BC,∴AB﹣BF=BD﹣BC,∴AF=DC∵∠A=∠D,∠AOF=∠DOC,即,∴△AOF≌△DOC(AAS).【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,解答此题的关键是根据题意得出AF=DC,AO=DO.23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用同角的余角相等得到一对角相等,再由一对直角相等,CD=CE,利用AAS得到三角形ECB与三角形CDA全等,利用全等三角形对应边相等得到BC=AD,BE=AC,由AB+BC=AC=BE,等量代换即可得证.【解答】证明:∵∠ECB+∠DCA=90°,∠DCA+∠D=90°,∴∠ECB=∠D,在△ECB和△CDA中,,∴△ECB≌△CDA(AAS),∴BC=AD,BE=AC,∴AD+AB=AB+BC=AC=BE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)【考点】利用轴对称设计图案.【专题】方案型.【分析】本题主要是利用轴对称图形的性质来画,本题为开放题答案不唯一.【解答】解:.【点评】本题主要考查了轴对称图形的性质.25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为AC=BD,∠APB的大小为α【考点】全等三角形的判定与性质.【分析】(1)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.(2)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.【解答】证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.【点评】本题考查了全等三角形的性质和判定的应用,解此题的关键是求出△AOC≌△BOD,注意:全等三角形的对应边相等,对应角相等.26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有3对全等三角形,并把它们写出来△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD 可判断全等三角形的个数.(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.【解答】解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.(2)∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴ED=BF.由∠AFB=∠CED=90°得DE∥BF,∴∠EDG=∠GBF,∵∠EGD和∠FGB是对顶角,ED=BF,△DEG≌△BFG,∴EG=FG,DG=BG,所以BD与EF互相平分于G;(3)第(2)题中的结论成立,理由:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴BF=ED.∵∠BFG=∠DEG=90°,∴BF∥ED,∴∠FBG=∠EDG,∴△BFG≌△DEG,∴FG=GE,BG=GD,即第(2)题中的结论仍然成立.【点评】此题主要考查学生对全等三角形的判定与性质的理解和掌握,此题难度并不大,但是需要证明多次全等,步骤繁琐,是一道综合性较强的中档题.。
苏科版八年级数学上册第一章 全等三角形单元测试卷( 含答案)-doc
苏科版八年级数学上册第一章 全等三角形单元测试卷第1章 全等三角形(时间:100分钟 总分:120分)一、选择题 (每题3分,共24分)1.下列图形中与如图所示的图形全等的是 ( )A .B .C .D .2.如图,已知,,.则的理由是AD BD ⊥BC AC ⊥AC BD =CAB DBA △△≌( )A .HLB .SASC .AASD .ASA3.如图,,则为的长为 ( )ΔΔ35ABD EBC AB BC ≅==,,DEA .B .C .D .85324.如图所示,的度数是( )ΔΔ,3095,ABC ADE B C EAD ∠=︒∠=︒∠≌,A .44°B .55°C .66°D .77°5.根据下列条件,能画出唯一△ABC 的是 ( )A .AB =3,BC =4,CA =7 B .AC =4,BC =3.5,∠A =60°C .∠A =45°,∠B =60°,∠C =75°D .AB =5,BC =4,∠C =90°6.如图,已知OF 平分,于D 点,于E 点,F 是OF AOB ∠PD OA ⊥PE OB ⊥上的另一点,连接DF 、EF .判断图中有几对全等三角形 ( )A .1B .2C .3D .47.如图,在中,,,是边上的中线,则的取ABC A 5AB =9AC =AD BC AD 值范围是 ( )A .B .C .D .414AD <<014AD <<27AD <<59AD <<8.如果△ABC 的三边长分别为3、5、7,△DEF 的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x 的值为 ( )A .B .4C .3D .573二、填空题(每题3分,共24分)9.已知图中的两个三角形全等,则∠α的大小为______.10.如图,E 是的边的中点,过点C 作,过点E 作直线ABC A AC CF AB ∥交于D ,交于F ,若,则的长为__________. DF AB CF 9 6.5AB CF ,==BD11.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是______.13.如图是由4个相同的小正方形组成的网格图,则______.∠+∠=124cm14.如图,小虎用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,=AC BC ),点在上,点和分别与木墙的顶端重合,则两堵木墙∠=︒C DE A BACB90之间的距离为______.15.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中是格点三角形,请你找出方格中AABC所有与全等,且以A为顶点的格点三角形.这样的三角形共有_____ AABC个(除外).AABC16.如图.已知中,厘米,,厘米,D 为ABC A 12AB AC ==B C ∠=∠8BC =的中点.如果点P 在线段上以2厘米/秒的速度由点B 向点C 运动,AB BC 同时,点Q 在线段上由点C 向点A 运动.若点Q 的运动速度为a 厘米/CA 秒,则当与全等时,a 的值为______.BPD △CQP V三、解答题(每题8分,共72分)17.如图所示,点O 为AC 和BD 的中点,求证:.ABO CDO ∆≅∆18.如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.19.已知:如图,,,三点在同一条直线上,,,B C E AC DE ∥AC CE =.B D ∠=∠求证:.ABC CDE ∆≅∆20.问题发现:如图1,已知为线段上一点,分别以线段,为C AB AC BC 直角边作等腰直角三角形,,,,连接,90ACD ∠=︒CA CD =CB CE =AE BD ,线段,之间的数量关系为______;位置关系为_______.AE BD拓展探究:如图2,把绕点逆时针旋转,线段,交于点Rt ACD △C AE BD F ,则与之间的关系是否仍然成立?请说明理由.AE BD 21.如图,于点,点在直线上,90,ABC FA AB ∠=⊥ A D AB ,AD BC AF BD ==.(1)如图1,若点在线段上,判断与的数量关系和位置关系,D AB DF DC 并说明理由;(2)如图2,若点在线段的延长线上,其他条件不变,试判断(1)中D AB 结论是否成立,并说明理由.22.如图,在和中,,,.AOB A COD △OA OB =OC OD =50AOB COD ∠=∠=︒(1)试说明:;AC BD =(2)与相交于点,求的度数.AC BD P APB ∠23.如图,在△ABC 中,∠B=∠C ,点D 是边BC 上一点,CD=AB ,点E 在边AC 上.(1)若∠ADE=∠B ,求证:①∠BAD=∠CDE ;②BD=CE ;(2)若BD=CE ,∠BAC=70°,求∠ADE 的度数.24.(1)阅读理解:如图①,在中,,,,ABC A AB AC =AD BC ⊥CE AB ⊥垂足分别为,,且,与交于点,图中与全等的D E AE EC =AD CE F ABD △三角形是______,与全等的三角形是______;AEF A (2)问题探究:如图②,在中,,,平分ABC A 90A ∠=︒AB AC =BD ABC ∠,,垂足为,探究线段,,之间的关系,并证明;DE BC ⊥E BC AB AD (3)问题解决:如图③,在中,,,平分,ABC A 90A ∠=︒AB AC =CE ACB ∠交的延长线于点,求证:.BD CE ⊥CE D 2CE BD =25.问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G .使DG =BE .连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠ADF =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =∠BAD ,(1)中结论是否仍然成立,并说明理12由;(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若12成立,请证明:若不成立,请直接写出它们之间的数量关系.参考答案:1.解:观察四个选项可知,只有选项B 符合题意,故选:B .2.证明:∵AD ⊥BD ,BC ⊥AC ,∴∠C =∠D =90°,在Rt △CAB 和Rt △DBA 中,, AB BA AC BD=⎧⎨=⎩∴Rt △CAB ≌Rt △DBA (HL ).故选:A .3.解:∵△ABD ≌△EBC ,AB =3,BC =5,∴BE =AB =3,BD =BC =5,∴DE =BD -BE =2,故选D .4.在中,ABC A 3095,B C ∠=︒∠=︒,∴∠CAB =180°-30°-95°=55°,∵,ΔΔABC ADE ≌∴∠EAD =∠CAB =55°,故选B .5.解:A 、不满足三边关系,本选项不符合题意.B 、边边角三角形不能唯一确定.本选项不符合题意.C 、没有边的条件,三角形不能唯一确定.本选项不符合题意.D 、斜边直角边三角形唯一确定.本选项符合题意.故选:D .6. 解:OF 平分,,,AOB ∠PD OA ⊥PE OB ⊥,.DOP EOP ∴∠=∠PDO PEO ∠=∠ ,,,PDO PEO OP OP DOP EOP ∠=∠⎧⎪=⎨⎪∠=∠⎩.DOP EOP ∴≌△△,.PD PE ∴=DPO EPO ∠=∠.180180DPF DPO EPO EPF ∴∠=︒-∠=︒-∠=∠ ,,,PF PF DPF EPF PD PE =⎧⎪∠=∠⎨⎪=⎩.FDP FEP ∴≌△△.DFO EFO ∴∠=∠ ,,,DOP EOP OF OF DFO EFO ∠=∠⎧⎪=⎨⎪∠=∠⎩.FDO FEO ∴≌△△共有3对全等三角形.∴故选:C .7.解:如图,延长AD 至点E ,使得DE =AD ,∵是边上的中线,AD BC ∴,BD CD =在△ABD 和△CDE 中,, AD DE ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD △CDE (SAS ),≌∴AB =CE=5,AD =DE ,∵△ACE 中,AC -CE <AE <AC +CE ,∴4<AE <14,∴2<AD <7.故选:C .8.解:此题需要分类讨论.①若,则,325x -=73x =所以 112173x -=≠所以此种情况不符合题意;②若,则,327x -=3x =所以.215x -=所以此种情况符合题意.综上所述:3x =故选C .9.解:∵图中的两个三角形全等,∴边a 所对的角为72°,边c 所对的角是58°,∴边b 所对的角是180°-72°-58°=50°,∴∠α=50°.故答案为:50°.10.证明:∵CF //AB ,∴∠ADE =∠F ,∠FCE =∠A ,∵点E 为AC 的中点,∴AE = EC ,在△ADE 和∆CFE 中,ADE F A FCE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌∆CFE (AAS ),∴AD = CF = 6.5,∵AB = 9,∴BD = AB - AD =9- 6.5= 2.5,故答案为: 2.5.11.解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.12.解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,, 90F AGB AEF BAG AE AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BAG (AAS ),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=(EF +DH )•FH =80, 12S △AEF =S △ABG =AF •AE =9,12S △BCG =S △CDH =CH •DH =6,12∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.13.解:由题意得:,,,AB ED =BC DC =90D B ∠=∠=︒所以△ABC ≌△EDC(SAS ),, 1BAC ∴∠=∠所以.12180∠+∠=︒故答案为:180°.14.解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,, ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm ,∴DE =DC +CE =40(cm ),答:两堵木墙之间的距离为40cm ,故答案为:40 cm .15.解:如图,根据平移,对称,可得与△ABC 全等的三角形有5个,包括△ADE ,△ANF ,△ANG ,△ACG ,△AEF .故答案为:5.16.解:当BD =PC 时,△BPD 与△CQP 全等,∵点D 为AB 的中点,∴BD =AB =6cm ,12∵BD =PC ,∴BP =8-6=2(cm ),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∵△DBP ≌△PCQ ,∴BP =CQ =2cm ,∴a =2÷1=2;当BD =CQ 时,△BDP ≌△CQP ,∵BD =6cm ,PB =PC ,∴QC =6cm ,∵BC =8cm ,∴BP =4cm ,∴运动时间为4÷2=2(s ),∴a =6÷2=3(m /s ),故答案为:2或3.17.解:点O 为AC 和BD 的中点,∴AO =CO ,BO =DO ,在△ABO 和△CDO 中,, AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CDO (SAS ).18.(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA ); DBE DCF BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩(2)解:∵AE =13,AF =7,∴EF =AE -AF =13-7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.19.证明:,AC DE ∥ .ACB E ∴∠=∠在和中,ABC ∆CDE ∆∵, ACB E B D AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩.()ABC CDE AAS ∴∆≅∆20.解:问题发现:延长BD ,交AE 于点F ,如图所示:∵,90ACD ︒=∠∴,90ACE DCB ︒∠=∠=又∵,,CA CD CB CE ==∴(SAS ),ACE DCB ∆≅∆,,AE ED CAE CDB ∴=∠=∠∵,90CDB CBD ︒∠+∠=∴,90CAE CBD ︒∠+∠=∴,90AFD ︒∠=∴,AF FB ⊥,AE BD ∴⊥故答案为:,;AE BD =AE BD ⊥拓展探究:成立.理由如下:设与相交于点,如图1所示:CE BD G∵,90ACD BCE ︒∠=∠=∴,ACE BCD ∠=∠又∵,,CB CE =AC CD =∴(SAS ),ACE DCB ∆≅∆∴,,AE BD =AEC DBC ∠=∠∵,90CBD CGB ︒∠+∠=∴,90AEC EGF ︒∠+∠=∴,90AFB ︒∠=∴,BD AE ⊥即,依然成立.AE BD =AE BD ⊥21.(1)解:∵,90,ABC FA AB ∠=⊥ ∴,90ABC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵,90,ABC FA AB ∠=⊥∴,90DBC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .22.(1)证明:∵∠AOB =∠COD ,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,∵OA =OB ,OC =OD ,∴△AOC ≌△BOD (SAS ),∴AC =BD ;(2)解:如图,设AC 与BO 交于点M ,则∠AMO =∠BMP ,∵△AOC ≌△BOD ,∴∠OAC =∠OBD ,∴180°-∠OAC -∠AMO =180°-∠OBD -∠BMP ,即∠MPB =∠AOM =50°,∴∠APB =50°.23.(1)①∵在△ABC 中,∠BAD +∠B +∠ADB =180°∴∠BAD =180°-∠B -∠ADB ,又∵∠CDE =180°-∠ADE -∠ADB 且∠ADE =∠B ∴∠BAD =∠CDE ② 由①得∠BAD =∠CDE 在△ABD 与△DCE 中, B C AB DC BAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△DCE (ASA )∴BD =CE(2)∵在△ABD 与△DCE 中,∴△ABD ≌△DCE (SAS)∴∠BAD =∠CDE 又AB DC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∵∠ADE =180°-∠CDE -∠ADB ∴∠ADE =180°-∠BAD -∠ADB =∠B 在△ABC 中,∠BAC =70°,∠B =∠C ∴∠B =∠C =(180°-∠BAC )=1212⨯110°=55°∴∠ADE =55°24.解:(1),AD BC ⊥,90ADB ADC ∠∠∴==︒,,AB AC = AD AD =≌,Rt ABD ∴A ()HL Rt ACD A ,CE AB ⊥ ,90AEC BEC ADB ∠∠∠∴===︒,90BAD B B BCE ∠∠∠∠+=︒=+ ,BAD BCE ∠∠∴=又,AE EC = ≌,AEF ∴A ()ASA CEB A 故答案为:,;ACD △CEB △(2),理由如下:BC AB AD =+,,90A ∠=︒ AB AC =,45ABC C ∠∠∴==︒,DE BC ⊥ ,45CDE C ∠∠∴==︒,CE DE ∴=平分,BD Q ABC ∠,ABD CBD ∠∠∴=又,,A DEB ∠∠= BD BD =≌,ABD ∴A ()AAS EBD A ,,AB BE ∴=AD DE EC ==;BC BE EC AB AD ∴=+=+(3)如图,延长,交于点,BD CA H平分,CE ACB ∠,ACE BCE ∠∠∴=又,,CD CD = 90CDB CDH ∠∠==︒≌,CBD ∴A ()ASA CHD A ,BD DH ∴=,90CDH BAH ∠∠==︒ ,90H HBA H ACE ∠∠∠∠∴+=︒=+,ACE HBA ∠∠∴=又,,AB AC = 90CAE BAH ∠∠==︒≌,ACE ∴A ()ASA ABH A ,CE BH ∴=.2CE BD ∴=25.(1)解:EF =BE +FD .延长FD 到点G .使DG =BE .连接AG ,∵∠ABE =∠ADG =∠ADC =90°,AB =AD ,∴△ABE ≌△ADG (SAS ).∴AE =AG ,∠BAE =∠DAG .∴∠BAE +∠DAF =∠DAG +∠DAF =∠EAF =60°.∴∠GAF =∠EAF =60°.又∵AF =AF ,∴△AGF ≌△AEF (SAS ).∴FG =EF .∵FG =DF +DG .∴EF =BE +FD .故答案为:EF =BE +FD ;(2)解:(1)中的结论EF =BE +FD 仍然成立.证明:如图②中,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,, 1AB AD D BM DF =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =∠BAD ,12∴∠2+∠4=∠BAD =∠EAF .12∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,, AM AF MAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD . 证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,, AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =∠BAD . 12∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF=BE-FD.。
苏科版八年级上册数学第一章 全等三角形 含答案
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;② CM=CN;③ AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个2、如图,已知△ADB≌△CBD,AB=4,BD=6,BC=3,则△ADB的周长是()A.12B.13C.14D.153、如图,已知和都是等腰三角形,,交于点F,连接,下列结论:①;②;③平分;④.其中正确结论的个数有()A.1个B.2个C.3个D.4个4、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′5、如图,在△ABC和△AEF中,∠EAC=∠BAF,EA=BA,添加下面的条件:①∠EAF=∠BAC;②∠E=∠B;③AF=AC;④EF=BC,其中可以得到△ABC≌△AEF的有( )个A.1B.2C.3D.46、如图,△ABC是等边三角形,若在它边上的一点与这边所对角的顶点的连线恰好将△ABC分成两个全等三角形,则这样的点共有()A.1个B.3个C.6个D.9个7、如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的有()①AE=CF;②EC+CF=4 ;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值.A.①②B.①③C.①②③D.①②③④8、下列说法正确的是()A.等腰三角形的角平分线、中线、高线互相重合B.面积相等的两个三角形一定全等C.用反证法证明命题“三角形中至少有一个角不大于”的第一步是“假设三角形中三个角都大于”D.反比例函数中函数值随自变量的增大一定而减小9、如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是()A.SASB.ASAC.AASD.SSS10、下列说法中错误的是()A.全等三角形的对应边相等B.全等三角形的面积相等C.全等三角形的对应角相等D.全等三角形的角平分线相等11、在△ABC和△A′B′C′中:①AB=A′B′;② BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′( )A.具备①②④B.具备①②⑤C.具备①⑤⑥D.具备①②③12、如图,EA∥DF,AE=DF,要使△ACE≌△DBF,则只要()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC13、如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中错误的是()A. B. C.点D在的平分线上 D.点D是CF的中点14、如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°15、尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于长为半径画弧,两弧在∠AOB内部交于点P,作射线OP.由作法得△OCP≌△ODP的依据是()A.SASB.ASAC.AASD.SSS二、填空题(共10题,共计30分)16、如图,在中,,和分别为和的角平分线,若的周长为,,则的长为________.17、判定两个直角三角形全等的方法有________.18、如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2 ,则四边形CEDB的面积为________.19、如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P 2, P3, P4四个点中找出符合条件的点P,则点P有________个.20、如图,是等边三角形,,D是的中点,F是直线上一动点,线段绕点D逆时针旋转,得到线段,当点F运动时,的最小值是________.21、如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值________.22、已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠CEB= ________.23、如图,在平面直角坐标系中,反比例函数y1=(x>0)的图象与y2=(x>0)的图象关于x轴对称,Rt△AOB的顶点A,B分别在y1=(x>0)和y2=(x>0)的图象上.若OB=AB,点B的纵坐标为﹣2,则点A 的坐标为________.24、如图,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,且BD=CE,连接DE交BC于点F,作DH⊥BC于点H,连接CD.若tan∠DFH=,S△BCD =18,则DE的长为________.25、在直角三角形ABC中,是AB的中点,BE平分交AC于点E连接CD交BE于点O,若,则OE的长是________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,矩形ABCD中,点E是BC上一点,AD=DE,AF⊥DE,垂足为F. 求证:AF=AB.28、如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.29、如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.(不添加辅助线).30、如图,是的角平分线,在上截取.若,,试求的度数.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、B6、B7、D8、C9、D10、D11、A12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。