§2.2 函数的表示法
§2 2.2 函数的表示法
像这样, 像这样,用图像把两个变量间的函数关系表示出来 的方法,称为图像法. 的方法,称为图像法. 特点:图像法可以直观地表示函数的局部变化规律, 特点:图像法可以直观地表示函数的局部变化规律, 进而可以预测它的整体趋势. 进而可以预测它的整体趋势.
3.解析法 3.解析法
一个函数的对应关系可以用自变量的解析表达式 (简称解析式)表示出来,这种方法称为解析法. 简称解析式)表示出来,这种方法称为解析法. 例如,设正方形的边长为x 面积为y 例如,设正方形的边长为x,面积为y,则y 是x的函数,用解析式表示为 y 的函数,
2.2 函数的表示法
1. 通过丰富的实例,体会函数的三种表示方法. 通过丰富的实例,体会函数的三种表示方法. 体会三种表示方法的使用情境与各自的特点. 2. 体会三种表示方法的使用情境与各自的特点. 3.通过具体实例,了解简单的分段函数, 3.通过具体实例,了解简单的分段函数,并能 通过具体实例 简单应用. 简单应用.
= x , x ∈ (0, +∞).
2
特点: 特点:解析法表示的函数关系能较便利地通过计算 等手段研究函数性质.但是,一些实际问题很难找到它的 等手段研究函数性质.但是, 解析式. 解析式.
例题讲解
例1.国内跨省市之间邮寄信函,每封信函的质量和对应的 1.国内跨省市之间邮寄信函, 国内跨省市之间邮寄信函 邮资如下表: 邮资如下表:
在研究函数的过程中, 在研究函数的过程中,采用不同的方法表示函 数,可以帮助我们从不同的角度理解函数的性质, 可以帮助我们从不同的角度理解函数的性质, 同时也是研究函数的重要手段. 同时也是研究函数的重要手段. 初中学习过的函数的表示法有三种: 初中学习过的函数的表示法有三种: 法一:列表法,即题中的表格. 法一:列表法,即题中的表格. 法二:解析法, 法二:解析法, 法三:图像法. 法三:图像法. y
函数的表示(导学案)
§2.2函数的表示1、函数的表示法(1)解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.(2)列表法:就是列出表格来表示两个变量的函数关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值.(3)图象法:就是用函数图象表示两个变量之间的关系.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.2、分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数称为分段函数.分段函数是一个函数,而不是几个函数.3、求函数解析式的方法:(1)待定系数法;(2)换元法;(3)方程法 ;(4)配凑法等.4、作函数图象的一般步骤:(1)确定函数定义域;(2)化简或变形函数表达式(一般来说可化简成常见函数或其复合函数);(3)利用描点法或图象变换法作出图象.5、常见的图象变换有:平移变换、对称变换和翻折变换等.独立自测1.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f(x)=x -3+2-x 是函数;③函数y =2x(x ∈N)的图象是一条直线;④f(x)=x2x与g(x)=x 是同一函数. A .1个 B .2个C .3个D .4个2.下列各个图形中,不可能是函数y =f(x)的图象的是( )3.函数y =f(x)的图象如图所示,根据函数图象填空:(1)f(0)=________;(2)f(1)=________;(3)若-1<x1<x2<1,则f(x1)与f(x2)的大小关系是________.4、函数2)1(+=x y -2的图象可由函数2x y =的图象经过( )得到.A 、先向右平移1个单位,再向下平移2个单位B 、先向右平移1个单位,再向上平移2个单位C 、先向左平移1个单位,再向下平移2个单位D 、先向左平移1个单位,再向上平移2个单位5、函数1)1(2-+-=x y 的图象与函数1)1(2+-=x y 的图象关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、以上都探究案例. (1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )(2)已知)(x f 是一次函数, 且14))((-=x x f f ,求)(x f 的解析式 ;(3)已知2211)11(x x xx f +-=+-,试求)(x f 的解析式.( 4)已知x x x f 2)1(+=+,求)(x f ;(5)已知)(x f 满足x x f x f 3)1()(2=+,求)(x f训练案1、已知11)1(+=x x f ,那么)(x f 的解析式为 ( ) A 、11+x B 、x x +1 C 、1+x xD 、x +1A 、B 、C 、D 、2、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,则_______)]}1([{=-f f f .3、已知f (x )=x x 22+,则f (2x +1)= .4、已知二次函数y =f(x)的最大值为13,且f(3)=f(-1)=5,求f(x)的解析式,。
函数的表示法(公开课)省公开课获奖课件说课比赛一等奖课件
y
y
2
A
2
B
0
2
y
x
2
C
0
2x
0y 2
x
2
D
0
x
2
思索交流
x+2, (x≤-1)
5. 已知函数f (x)= x2, (-1<x<2)
2x, ( x≥2 )
若f(x)=3, 则x旳值是( D )
A. 1
B.
1或
3 2
C. 1,
3,
3 2
D. 3
怎样求函数解析式
一、【配凑法(整体代换法)】
若已知 f (g(x)) 旳体现式,欲求 f (x) 旳体现式, 可把 g(x)看成一种整体,把右边变为由 g(x) 构成 旳式子,再换元求出 f (x) 旳式子。
x
例3 、国内跨省市之间邮寄信函,每封信函旳质量和相应旳邮资如表.
信函质量 (m)/g
0<m≤20
邮资(M)/元 1.20
20<m≤40 2.40
40<m≤60 3.60
60<m≤80 4.80
80<m≤100 6.00
画出图像,并写出函数旳解析式.
解:邮资是信函质量旳函数,函数图像如图。
函数旳解析式为
7.0
9.4
10.0
11.0
y 9 x 32 5
解析法
(6)某气象站测得本地某一天旳气温变化情况如图所示:
温度
8
T (℃)
6
4
2
0
2
时间
2 4 6 81
1
1
1
1
2
2
t2
( 时
2015高考总复习数学(文)课件:2.2函数的表示法
答案:C
(2)(2012 年江苏)设 f(x)是定义在 R 上且周期为 2 的函数,
ax+1,-1≤x<0, 在区间[-1,1]上,f(x)=bx+2 ,0≤x≤1, x + 1 若
1 3 f2=f2,则
考纲要求
1.函数的三种表示法 图象法 、________ 列表法 、________. 解析法 ________ 用函数图象 表示两个变量之间的关系. (1)图象法:就是____________ 列出表格 表示两个变量的函数关系. (2)列表法:就是__________ 等式 表示. (3)解析法:就是把两个变量的函数关系,用______ 2.分段函数 在自变量的不同变化范围中,对应关系用不同式子来表示 的函数称为分段函数.分段函数的对应关系为一整体.
解析:∵f(x)=x2+4x+3, ∴f(ax+b)=(ax+b)2+4(ax+b)+3 =a2x2+(2ab+4a)x+(b2+4b+3). 又 f(ax+b)=x2+10x+24, a2=1, ∴2ab+4a=10, b2+4b+3=24. ∴5a-b=2.
a=1, 解得 b=3 a=-1, 或 b=-7.
1 fx ,从而求出
过变量替换消去
f(x)的表达式.
【互动探究】 3.(2011 年湖北)若定义在 R 上的偶函数 f(x)和奇函数 g(x)
满足 f(x)+g(x)=ex,则2
-x
e x-ex ex-e C. 2 D. 2
-
-x
考点 3 求函数的解析式 例 3:(1)已知 f(x+1)=x2-1,求 f(x)的表达式; (2)已知 f(x)为一次函数,如果 f[f(x)]=4x-1,求 f(x)的表达 式;
初中数学函数的表示法
函数的表示法
例3 北京市昌平区政府预想在2008年九龙游乐园建 造一个直径为20m 的圆形喷水池,如图所示,计划 在喷水池的周边靠近水面的位置安装一圈喷水头, 使喷出的水柱在离池中心4m处达到最高,高度为 6m。另外还要在喷水池的中心设计一个装饰物, 使各方向喷来的水柱在此处汇合。这个装饰物的高 度应当如何设计?
1993 3456 0.5
1994 4667 0.0
95 5749 4.9
1996 6685 0.5
1997 7314 2.7
1998 7696 7.1
1999 8042 2.8
2000 8940 4.0
1859 8.4
函数的表示法
例1 某种茶杯每个5元,买x(x∈{1,2,3,4})个茶杯的 钱数记为y(元),写出以x为自变量的函数y的解析式, 并画出这个函数的图象。 问题:函数的解析式是什么? 问题:怎样画出它的图象? y=5x, (x∈{1,2,3,4}) x y=5x 1 5 2 10 3 15 4 20
函数的表示法
圆形喷水池的直径为20m,计划在喷水池的周边靠近 水面的位置安装一圈喷水头告诉我们了什么? 喷水头距水池中心 告诉了喷水头的位置 10m 其高度与水面一致
“喷水池的水柱”其轨迹是什么类型?
喷出的水柱轨迹为抛物线型 “各方向喷来的水柱在装饰物处汇合”是什么意思? 各方向喷出的水柱交汇在水池的中心线上(这条 中心线实质上是过水池中心水面的垂线),关于 水池中心各相对方向喷出的水柱也交汇在水池的 中心线上。
二、新课 问题1:什么叫解析法 ?它的优点是什么? 解析法: 就是把两个变量的函数关系,用一个等式 来表示.
优点:函数关系清楚,容易从自变量的值求出其对应的函数值,便 于用解析式来研究函数的性质。
§2.2 函数的定义域、值域及函数的解析式
(3)常见基本初等函数的定义域
①分式函数中分母不等于零. ②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为___. R ④y=ax (a>0且a≠1),y=sin x, y=cos x,定义域均为__. R { x | x R且x k π , k Z} π ⑤y=tan x的定义域为________________________. 2 0的定义域为_________________. ⑥函数f(x)=x {x|x∈R且x≠0}
R
{ y | y R且y 0}
④y=ax (a>0且a≠1) ⑤y=logax (a>0且a≠1) ⑥y=sin x, y=cos x ⑦ y=tan x 主页
(0, ) R [1, 1] R
要点梳理
忆一忆知识要点
3.函数解析式的求法
(1)换元法:若已知f(g(x))的表达式,求f(x)的解析式, 通常是令g(x)=t,从中解出x= (t),再将g(x)、x代入已知 解析式求得f(t)的解析式,即得函数f(x)的解析式,这种方 法叫做换元法,需注意新设变量“t”的范围. (2)待定系数法:若已知函数类型,可设出所求函数的 解析式,然后利用已知条件列方程(组),再求系数. (3)消去法:若所给解析式中含有f(x), f ( 1 ) 或 f(x), f(-x) x 等形式,可构造另一个方程,通过解方程组得到f(x). (4)配凑法或赋值法:依据题目特征,能够由一般到特 殊或由特殊到一般寻求普遍规律,求出解析式.
对称性
函数的 基本性质 奇偶性 周期性 最值 函数常见的 几种变换 基本初等 函数 复合函数 抽象函数 函数与方程 函数的应用 常见函数模型
函 数
平移变换、对称变换、翻折变换、伸缩变换. 正(反)比例函数; 一次(二次)函数; 幂、指、对函数;
新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法
题型一 题型二 题型三
反思列表法、图像法和解析法分别从三个不同的角度刻画了自 变量与函数值的对应关系.采用列表法的前提是定义域内自变量的 个数较少;采用图像法的前提是函数的变化规律清晰;采用解析法 的前提是变量间的对应关系明确.
题型一 题型二 题型三
【变式训练1】 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个 笔记本需要y元,试用三种表示法表示函数y=f(x).
123456
解析:由题意知该学生离学校越来越近,故排除选项A;又由于开始 匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C. 答案:C
123456
3若g(x+2)=2x+3,则g(3)的值是( ) A.9 B.7 C.5 D.3 答案:C
123456
4某航空公司规定,乘客所携带行李的质量(kg)与其运费(元)由图中 的函数图像确定,则乘客可免费携带行李的最大质量为( )
题型一 题型二 题型三
题型一 函数的表示方法 【例1】 某商场新进了10台彩电,每台售价3 000元,试分别用列 表法、图像法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与 收款总额y(元)之间的函数关系. 分析:明确函数的定义域 明确函数的值域 用三种表示 方法表示函数
2.2 函数的表示法
第1课时 函数的三种表示方法
1.掌握函数的三种表示方法——解析法、图像法、列表法. 2.会作简单函数的图像,掌握求函数解析式的一般方法.
1.函数的表示法
名师点拨函数的三种表示方法的优缺点比较.
【做一做1】 以下形式中,不能表示“y是x的函数”的是 ( )
A.
x
1
2
3
4
赛教课件——2.2函数的表示法(一)
y 5x, x ,2,3,
y
25 20
15 10
5 0
. . . . .
1 2 3 4 5
用描点法画函数图象的 一般步骤是什么? 列表、描点、连线 (视其定义域决定是否连线)
x
例 2.以下是某班三名同学在高一学年度
六次数学测试中的成绩及班级平均分,请你 对这三位同学在高一学年度的数学情况做一 个分析. 王伟同学成绩: 98,87,91,92,88,95; 张诚同学成绩: 90,76,88,75,86,80; 赵磊同学成绩: 68,65,73,72,75,82; 班级平均分: 88.2,78.3,85.4,80.3,75.7,82.6;
y
100
90 80
.
班♦ 平 均 分
▲ ■
. . . .
▲
.
■ ▲
王伟
♦
▲
♦ ▲
■ ■
♦
♦ 张城
▲ ■
■
♦
70
60 0
赵磊 1
2
3
4
5
6
x
解:将“成绩”与“测试时间”之间的关系用函数图象表示 出来。可以看出:王伟同学学习情况稳定且成绩优秀;张城 同学的成绩在班级平均水平上下波动,且波动幅度较大;赵 磊同学的成绩低于班级平均水平,但成绩在稳步提高。
例 3.画出函数y=|x|的图象.
x0 x 解: y x x 0
图象如下:
y
此函数在它的定义域中,对 于自变量的不同取值范围, 对应关系不同,把这种函数 称为分段函数。
5
4 3 2
..
1 -3 -2 -1 0 1
2 3
分段函数是一个函数, 不要误以为是几个函数。
新教材北师大版必修第一册 第二章2.2函数的表示法1函数的表示法 课件(49张)
所以f(x)=- 1.
x
=-
x
,
3
xx
【补偿训练】
已知f(x)满足f(x)=2f ( 1 )+x,则f(x)的解析式为________.
x
【解析】因为f(x)=2f ( 1+) x,用
x
替1 换x得f
x
=( 12)f(x)+
x
,1
x
代入上式得f(x)= 2[2f x 1 ] x,
x
解得f(x)= 2 . x
【补偿训练】 某公共汽车,行进的站数与票价关系如表:
行进的 站数
票价
123456789 111222333
此函数的关系除了列表之外,能否用其他方法表示?
类型二 函数的图象及其应用(直观想象) 【典例】1.(2020·徐州高一检测)函数y= x2 的图象的大致形状是( )
x
2.已知函数f(x)=x2-2x(-1≤x≤2). (1)画出f(x)图象的简图. (2)根据图象写出f(x)的值域. 【思路导引】1.分x>0,x<0两种情况作出判断. 2.先作出图象,再根据图象写值域.
【跟踪训练】 作出下列函数的图象并写出其值域. (1)y=-x,x∈{0,1,-2,3}. (2)y= 2 ,x∈[2,+∞).
x
【拓展延伸】关于图象变换的常见结论有哪些? 提示:(1)y=f(x)与y=f(-x)的图象关于y轴对称. (2)y=f(x)与y=-f(x)的图象关于x轴对称. (3)y=f(x)与y=-f(-x)的图象关于点(0,0)对称. (4)y=f(|x|)是保留y=f(x)的y轴右边的图象,去掉y轴左边的图象,且将右边图象 沿y轴对折而成. (5)y=|f(x)|是保留y=f(x)的x轴上方的图象,将x轴下方的图象沿x轴对折且去掉 x轴下方的图象而成.
函数的表示法
函数的定义 设A、B是非空的数集, 如果按照某都有唯一确定的数 f (x)与 之对应, 那么就把对应关系 f 叫作定义在集合A上的函数.
记作 f:A→B,或 y=f (x), x∈A.
其中x叫做自变量, x的取值范围A叫做函数的定义域, 与x的值相对应的 y [或 f (x)]值叫做函数值, 函数值的集 合{y |y=f (x), x∈A}叫做函数的值域.
二、例题与练习:
1.作函数的图像
x, x 0, 例1.请画出下面函数的图像:y x x, x 0.
解: 图像为第一和第二象限的角平分线,如图, y
1 o
1 2
x
x 4, 2 例2.已知函数 f ( x) x 2 x, x 2,
f f (5) f (3) 3 4 1.
( x 1) 2 , x 0, 练习1.已知函数 f ( x ) x 0. x, (2)画出函数的图像. (1)求 f f f 1 的值;
2.求函数的解析式 例3.国内跨省市之间邮寄信函,每封信函的质量和对应的邮资 如表.画出图像,并写出函数的解析式.
§2.2函数的表示法
一、函数的表示:
把函数的两个变量之间的函数关系, 用一个等式来表示, (1)解析法: 这个等式叫做函数的解析表达式,简称解析式.
函数的表示法 (2)列表法: 列出表格来表示两个变量的函数关系. (3)图象法:用函数的图象表示两个变量之间的函数关系.
(1)函数关系清楚. 解析法的优点:(2)给自变量一个值,可求它的函数值. (3)便于研究函数的性质. 列表法的优点:不必计算,查表可得到自变量与函数的对应值. 图象法的优点:直观形象地表示出函数值随自变量的变化规律.
2.2函数的表示法
例1:请画出函数y=|x|的图像。 解:由绝对值的定义,得
x, y =| x |= − x,
x ≥ 0, x < 0.
它的图像为第一和第二象限的角平分线,如图所示。
例 2: 国内跨省市之间邮寄信函,每封信函的质量和对应 的邮资如下表.画出函数的图像,并写出函数的解析式.
0<m≤20 0.80
x > 2或x < 0, 0 < x < 2.
如图所示: 如图所示:
的正方形ABCD中,点P从A开始沿 ,B, 开始沿A, , 例5:在边长为 的正方形 :在边长为4的正方形 中 从 开始沿 C,D,A方向运动,求点 与A,B连成图形的面积 ,与点 方向运动, 连成图形的面积S, , , 方向运动 求点P与 , 连成图形的面积 P运动的距离 之间的函数关系,并作出函数图像。 运动的距离x之间的函数关系 运动的距离 之间的函数关系,并作出函数图像。 分析: 分析:
◆练习1 练习 画出下列函数的图象: 画出下列函数的图象:
(1)
f ( x) = 2 x, x ∈ Z , 且 x ≤ 2;
(2)
1, x ∈ (0, +∞), y= −1, x ∈ (−∞, 0].
解(1) )
f ( x) = 2 x, x ∈ Z , 且 x ≤ 2;
(2) )
1, x ∈ (0,+∞), y= − 1, x ∈ (−∞,0].
例如: 例如: 国内生产总值
单位: 单位:亿元
年份 生产 总值
1990 18598.4
1991 21662.5
1992 26651.9
1993 34560.5
列表法的优点: 列表法的优点: 不必通过计算就知道当自变量取某些值时函数的 对应值。 对应值。
高中数学第二章函数2.2.2函数的表示法省公开课一等奖新名师优质课获奖PPT课件
3.已知函数
f(x)
=
x2+1,x≤0, 2x+1,x>0,
若
f(x) = 10 , 则
x = ___-__3_或__92____.
导学号 00814239 [解析] 当 x≤0 时,由 f(x)=10 可得 x2+1=10,所以 x=-3(x=3 舍去);
当 x>0 时,由 f(x)=10 可得 2x+1=10,所以 x=29.故 x 的值等于-3 或92. 4.已知 f(x)是正比例函数,且过点(1,1),则 f(x)=___x____. 导学号 00814240
第6页
2.分段函数 (1)在函数定义域内,对于自变量x不一样取值范围,有着不一样对应法则, 这么函数通常叫____分__段__函__数. (2)分段函数定义域是各段定义域_______,并其集值域是各段值域_______.(填 “并交集集”或“并集”)
第7页
1.已知函数 f(x)由下表给出:
x -1 0 1 2
其中说法正确是( A)
A.②与③
B.②与④
C.①与③
D.①与④
[解析] 因为纵坐标表示八年来前t年产品生产总量,故②③正确.
第29页
分段函数
1.分段函数概念: 在函数定义域内,对于自变量x不一样取值区间,有着不一样对应法则函 数,叫做分段函数.分段函数表示式因其特点分成两个或两个以上不一样表示 式,所以它图像也由几部分组成,有能够是光滑曲线,有也能够是一些孤立点 或几段线段. 2.关于分段函数,我们应注意以下几点: (1)分段函数是一个函数,不能写成几个函数,求分段函数解析式时,能够 分段求解,但最终结果一定要合并;
第27页
〔跟踪练习 3〕 导学号 00814246 某工厂八年来产品累积产量 C(即前 t 年年产量之和)与时间 t(年)的函数图像如 图,下列四种说法: ①前三年中,产量增长的速度越来越快; ②前三年中,产量增长的速度越来越慢; ③第三年后,这种产品停止生产; ④第三年后,年产量保持不变.
2.2函数的表示方法教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册
3. 函数的表格表示方法:
- 表格的概念:函数的表格是将函数的输入值和输出值列举在一个表格中,以便于观察和分析。
- 表格的编制方法:根据函数的定义,选择合适的输入值,计算对应的输出值,然后将它们放入表格中。
- 表格的作用:表格可以用来查找函数的值,分析函数的特性,以及进行函数的插值和外推等操作。
过程:
开场提问:“你们知道什么是函数的表示方法吗?它与我们的生活有什么关系?”
展示一些关于函数图像的图片或视频片段,让学生初步感受函数图像的魅力或特点。
简短介绍函数的表示方法的基本概念和重要性,为接下来的学习打下基础。
2. 函数表示方法基础知识讲解(10分钟)
目标:让学生了解函数的表示方法的基本概念、组成部分和原理。
2. 教学手段:利用多媒体课件、黑板、粉笔等教学手段,生动形象地展示函数图像和性质,提高学生的直观理解能力。
3. 教学内容:从基础入手,循序渐进,注重函数表示方法的学习与实际问题的结合,提高学生的应用能力。
4. 教学评价:注重过程性评价与终结性评价相结合,全面评价学生在知识、能力、素质等方面的提升。
4. 对课程学习的影响:基于以上学情分析,本节课的教学设计需要注重以下几个方面:
a. 教学内容要从基础入手,循序渐进,让学生逐步建立起对函数表示方法的认识。
b. 教学过程中要注重引导学生主动参与,激发他们的学习兴趣,提高学习积极性。
c. 针对学生的不同能力水平,设计适当难度的教学任务,让每个学生都能在课堂上找到成就感。
5. 课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对函数表示方法的认识和理解。
高中数学第二章函数第1.2节2.2函数的表示法课件北师大版必修1
(2)设 f(x)=ax2+bx+c(a≠0). ∵f(0)=-1,∴c=-1. ∵f(x+1)-f(x)=a(x+1)2+b(x+1)+c-ax2-bx-c=2ax+a+b=2x+2, ∴2aa+=b2=,2, 解得ab= =11, , ∴a=1,b=1,c=-1, ∴f(x)=x2+x-1.
(2)把已知条件代入解析式,列出含待定系数的方程或方程组. (3)解方程或方程组,得到待定系数的值. (4)将所求待定系数的值代回原式. 2.换元法: 已知 f[g(x)]是关于 x 的函数,即 f[g(x)]=F(x),求 F(x)的解析式,通常令 g(x) =t,由此能解出 x=e(t),将 x=e(t)代入 f[g(x)]=F(x)中,求得 f(t)的解析式,再 用 x 替换 t,便得 F(x)的解析式.如本例(2)的法二.
[再练一题] 3.某质点在 30 s 内运动速度 v 是时间 t 的函数,它的图像如图 2-2-3,用解 析法表示出这个函数,并求出 9 s 时质点的速度.
图 2-2-3
【解】 速度是时间的函数,解析式为
10+t,
t∈[0,5,
v(t)=33t0,,
t∈[5,10, t∈[10,20,
【提示】 当 a≤0 时,f(a)=-a. ∵f(a)=4,∴-a=4,∴a=-4. 当 a>0 时,f(a)=a2. ∵f(a)=4,∴a2=4,∴a=2,或 a=-2(舍去). 综上 a=-4 或 2.
探究 3 国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如表.
信函质量 0<m≤20 20<m≤40 40<m≤60 60<m≤80 80<m≤100
新教材高中数学第二章函数2函数 函数的表示法第1课时函数的表示法课件北师大版必修第一册
列表法
量对应的函数值
对应的函数值
基础自测
1.已知 f(x)=π(x∈R),则 f(π2)等于
A.π2
B.π
C. π
D.不确定
[解析] 因为π2∈R,所以f(π2)=π.
( B)
2.已知函数y=f(x)的图象如图,则f(x)的定
义域是
( C)
A.(-∞,1)∪(1,+∞)
B.R
C.(-∞,0)∪(0,+∞)
关键能力•攻重难
题型探究
题型一
列表法表示函数
例 1某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收 款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.
[ 分 析 ] 函 数 的 定 义 域 是 {1 , 2 , 3 , … , 10} , 值 域 是 {3 000 , 6 000 , 9 000,…,30 000},可直接列表、画图表示.分析题意得到表达y与x关系的解 析式,注意定义域.
[解析] (1)列表法:
x(台) 1 2 3 4 5 6 7 8 9 10 12 15 18 21 24 27 30
y(元) 3 000 6 000 9 000 000 000 000 000 000 000 000
(2)图象法:如图所示: (3)解析法:y=3 000x,x∈{1,2,3,…,10}.
第1课时 函数的表示法
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点 表示函数的三种方法
解析法 列表法 图象法
用__数__学__表__达__式____表示两个变量之间的对应关系 列出__表__格____来表示两个变量之间的对应关系 用__图__象____表示两个变量之间的关系
2.2函数的表示方法
§2 .2函数的表示方法【学习目标】1、了解函数的基本表示方法,分段函数;理解函数图像及解析法的意义,分段函数的意义;掌握解析式求法,描点法画出图像;2、通过函数图像的理解,体会数形结合;3、激情投入、高效学习、踊跃展示、大胆质疑。
体验自主学习的快乐和成功的愉悦。
【学习重点】:函数的图像法和解析法。
【学习难点】:求函数解析式及对分段函数的理解应用。
预习案 一、问题导学 1、函数的表示法 (1)列表法: (2)解析法: (3)图像法: 讨论:函数的三种表示方法各有什么优缺点? 2、分段函数:如果函数y=f(x),x ∈A.根据自变量x 在A 中不同的取值范围,有着不同的对应关系,那么这样的函数称为分段函数。
二、预习自测 1、已知()x f 为二次函数,且()32-=f ,()72-=-f ,()30-=f ,求()x f 并作出图像。
2、由下表给出函数()x f y =,则))1((f f 等于( ),))3((g f 等于( )。
x 12 3 4 5 ()x f 4 5 3 2 1x 12 3 ()x g3 2 1导学案装订线3、已知函数()⎩⎨⎧>-≤+=)0(,2)0(,12x x x x x f ,若()2=x f ,则x = 。
【我的疑惑】____________________________________________________________________________________________________________________________________________________________________________.探究案探究一:求函数的解析式1、 根据条件,求函数解析式(1)已知函数()x f 是一次函数,且49)]([+=x x f f ,求()x f ;(2)已知()x x x f 24122-=-,求()x f ; (3)已知x x f xf =+)()1(2)0(≠x ,求()x f 。
§2.2 函数的表示*
优例点如::s一=6是0t2简, 明、 全量A=面间r的的2, 概关括 系了 ,变 二 是S=可2 以rl 通过解析
式y=求ax2出+b任x+意c(a一0个) 自函y=变数x量值 2所. 对(应x≥的2)
例1 某种笔记本的单价是5元,买x(x∈ {1,2,3,4,5})个笔记本需要y元. 试用函数的三种表示法表示函数y=f(x).
例2:画出函数y=|x|的图像。
解:由绝对值的概念,我们有
x ,x≥0,
Y=
-x ,x<0.
y
所以,函数y=|x|的
5
4
图像如右图所示
3
2
1
-3 -2 -1 0 1 2 3 x
例3. 国内跨省市之间邮寄信函,每封信函的 质量和对应的邮资如下表:
信函质量(m)/g 0 m 20 20 m 40 40 m 60 60 m 80 80 m 100
邮资(M)/元 0.80 1.60 2.40 3.20 4.00
请画出图像,并写出函数的解析式.
解 邮资是信函质量的函数, 其图像如下:
M/元
4.0
。
3.2
。
2.4
。
。 1.6
。
0.8
O 20 40 60 80 100 m/g
函数解析式为
0.8, 0<m ≤ 20;
1.60, 20<m≤40 ;
M=
2.40, 40<m ≤60;
3.20, 60<m≤80 ;
4.00, 80<m ≤100.
这种在定义域的不同部分,有不同的对应法则的函 数称为分段函数.
注意: 1、在定义域的不同部分上,有不同的解析式.
新教材高中数学第二章函数2函数 函数的表示法第2课时分段函数课件北师大版必修第一册
[归纳提升] 求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间. (2)然后代入该段的解析式求值,直到求出值为止. 当出现f[f(x0)]的形式时,应从内到外依次求值.
【对点练习】❶ 已知 f(x)=xf[+f(x3+(x5>)]1(x0≤),10),则 f(5)的值是
(A)
A.24
4.已知 f(x)=xx+ -44((xx< >00)),则 f[f(-3)]的值为___-__3__. [解析] ∵f(x)=xx+ -44((xx< >00)), ∴f(-3)=1, ∴f[f(-3)]=f(1)=-3.
关键能力•攻重难
题型探究
题型一
分段函数的求值问题
x+2(x≤-1),
例 1 已知函数 f(x)=x2(-1<x<2), 2x(x≥2).
段函数是一个函数还是几个函数? 提示:分段函数是一个函数而不是几个函数.
基础自测
1.函数 f(x)= xx-+11的定义域为
A.[-1,1)∪(1,+∞)
B.(1,+∞)
C.(-1,+∞)
D.(-1,1)∪(1,+∞)
( A)
[解析] 由函数解析式得xx+-11≥≠00,,解得 x≥-1,且 x≠1. 故函数的定义域为[-1,1)∪(1,+∞),选 A.
[分析] 先根据绝对值的意义去掉绝对值符号,将函数转化为分段函 数,再利用描点法作出函数图象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 对函数的进一步认识
课题:2.2 函数的表示法(一)
教学目标:
1.使学生掌握函数的常用的三种表示法;
2.使学生能根据不同的需要选择恰当的方法表示函数,了解函数不同表示
法的优缺点;
3.使学生理解分段函数及其表示法,会处理某些简单的分段函数问题;
4.培养学生数形结合与分类讨论的数学思想方法,激发学生的学习热情.
教学重点:
函数的三种表示法及其相互转化,分段函数及其表示法
教学难点:
根据不同的需要选择恰当的方法表示函数,分段函数及其表示法.
教学过程:
一、 新课引入
复习提问:函数的定义及其三要素是什么?
函数的本质就是建立在自变量x的集合A上对应关系,在研究函数的过程
中,我们常用不同的方法表示函数,可以从不同的角度帮助我们理解函数的性质,是研究函数的重要手段.
请同学们回忆一下函数有哪些常用的表示法?
答:列表法是、图像法、解析法
二、新课讲解
请同学们阅读课本P28-P29例2以上部分内容,思考下列问题:
1. 列表法是、图像法、解析法的分别是怎样定义的?
2. 这三种表示法各有什么优、缺点?
体,像我们非常熟悉的一次函数、二次函数,我们都可以用列表法是、图像法、解析法来表示和研究它们.
下面我们再通过几个具体实例来研究函数的列表法是、图像法、解析法的相互转化和应用.
例1、 请画出下列函数的图像.
,0,0
x x y x x x ≥⎧==⎨-≤⎩
解:图像为第一和第二象限的角平分线,
如图2-5所示
问1.如何作出函数1y x =-的图像?
2.如何作出函数1y x =-的图像?
3. 如何作出函数23y x =+-的图像?
4.思考:如何由函数y x =的图像得到函数y x a b =++的图像?
5.试求函数y x =与函数y=1的图像围成的图形的面积.
例2、 国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如表2-5:
(多媒体课件显示)
分析:要让学生明白当信函质量020m <≤时邮资M=1.20是信函质量m 的函数,是一种典型的多对一的函数,可以通过多媒体动画演示让学生体会.
解:邮资M 是信函质量m 的函数,函数图像如图2-6所示
图2-6
函数解析式为:
1.20,020
2.40,2040
3.60
,40604.80,60806.00,80100
m m M m m m <≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪<≤⎪⎩ 注:像这样在定义域内的不同区间上对应着不同的解析式的函数叫分段函数
1. 分段函数是一个函数,而不是几个函数;
2. 分段函数的定义域是所有区间的并集,值域是各段函数值域的并集;
3. 分段函数的求解策略:分段函数分段解.
4.
例3、 某质点在30s 内运动速度v 是时间t 的函数,它的图像如图2-7.用解析法表示这个函数,并求出9s 时质点的速度.(多媒体课件显示)
解:速度是时间的函数,且在不同的区间上对应这不同的解析式,因此速度是时间的分段函数,我们应当分段处理.
1.当05t ≤≤时,可设 (0)v kt b k =+≠,将(0,10)和(5,15)代入,得
10155b k b =⎧⎨=+⎩
10v t ∴=+
请同学们拿出笔和纸算出 510t ≤≤,1020t ≤≤,2030t ≤≤时所对应的解析式.
∴ 10,053,510()30,1020
390,2030
t t t t v t t t t +≤<⎧⎪≤<⎪=⎨≤<⎪⎪-+≤≤⎩
由上式可得,t=9s 时,质点的速度是
(9)3927(/
v c m s =⨯= 问1.如何求质点在t=19s 、20s 、0.2s 时的速度呢?
2.求((9))v v 的值;
3.当()27(/)v t cm s =时,对应的时间t 是多少?
3解法1:(分段函数分段解)
①当05t ≤<时,()1027v t t =+= 解得17t =(舍)
②当510t ≤<时,()327v t t == 解得9t =
③当1020t ≤<时,()3027v t =≠ 无解
④当2030t ≤≤时,()39027v t t =-+= 解得21t =
综上可知9t =或21
解法2:(数形结合)由v 与t 图像可知只有510t ≤<和2030t ≤≤时,()27(/)v t cm s =才可能成立,故()39027v t t =-+=或 ()327v t t == 解得9t =或21
三、 思考交流
思考交流中的第1、2题.
四、课堂练习
练习题P31第1、2、3题.
五、课堂小结
师生共同归纳本节主要内容
1. 函数的三种表示法和各自的优缺点;
2. 分段函数及其解法;
3. 函数解析式的求法.
六、布置作业
P34习题2-2 A 组 第1、2题.
课题:§2.2函数表示法(二)-------函数解析式的求法
教学目标:让学生了解函数解析式的求法.
重点:对f的了解,用多种方法来求函数的解析式
难点:待定系数法、配凑法、换元法、解方程组法等方法的运用.
教学过程
例1.求函数的解析式
(1) f(x+1)= x2+x=1 , 求f (x); 答案:f (x)=x2-x+1(x≠1)
练习1:已知f( x+1)= x+2 ,求f(x) 答案:f (x)=x+1
(2) f (x) = 3x2+1, g (x) = 2x -1 , 求f[g(x)];答案:f[g(x)]=12x2-12x+4
练习2:已知:g(x)=x+1,f[g (x)]=2x2+1,求f(x-1) 答案:f(x-1)=2x2-8x+9
(3)如果函数f (x)满足af (x)+f()=ax,x∈R且x≠0,a为常数,且a≠±1,求f (x)的表达式.答案:f (x)= (x∈R且x≠0)
练习3:2f (x) - f (-x) = lg (x+1), 求 f (x).
答案:f(x)= lg(x+1)+lg(1-x) (-1<x<1)
例2.已知f (x)是一次函数,并且满足3f (x+1) - 2f (x-1)=2x+17,求f (x).
答案:f (x)=2x+7.
练习4:已知f (x)是二次函数,满足f(0)=1且f (x+1) - f (x)=2x,求f (x)
答案:f (x) = x2- x+1
例3.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y
有f(x-y)=f(x)-y(2x-y+1),求f(x) 答案:f (x) =x2+x+1
练习5:函数f(x)对任何x∈R恒有f(x1x2)=f(x1)+f(x2),已知f(8)=3,
则f(2)=
例4.已知函数y=f(x)的图像如图所示,求f(x)
练习6:已知函数f(x)的图像是由两条射线和开口向下的抛物线组成,求f(x)解析式
例5.已知定义在R上的函数y=f(x)关于直线x=2对称并且x∈[0,2]上的解析式为y=2x-1,则f(x)在x∈[2,4]上的解析式为y=7-2x
练习7:设函数y=f(x)关于直线x=1对称,若当x≤1时,y=x2+1,
则当x>1 时,f(x)= x2-4x+5
课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义.
布置作业:
1、若g(x)=1-2x , f[g(x)] =5-6x (x≠0),求f(x)的值.
2、已知f(x -1 )=x +3 , 求f(x-1)的表达式.
3、已知f(x)=9x+1,g(x)=x,则满足f[g(x)]= g[f(x)] 的x的值为多少?
4、已知f(x)为一次函数且f[f(x)] = 9x+4,求f(x).
教后反思:。