2013人教版必修四第一章三角函数简单应用例题精讲
人教A版高中数学必修4第一章 三角函数1.6 三角函数模型的简单应用课件(1)
1
I
300 sin
100 t
3
2min 629
精品PPT
例 3 某港口水深 y(米)是时间 t (0≤t≤24,单位:小 时)的函数,下面是水深数据: t(小时) 0 3 6 9 12 15 18 21 24 y(米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 据上述数据描成的曲线如图所 示,经拟合,该曲线可近似的 看成正弦函数模型 y=Asin ωt +B 的图象. (1)试根据数据表和曲线,求出
6
10
14 x
t/ h
A 30 10 10, b 30 10 20,
2
2
1 2 14 6, .
2
8
将x=6,y=10代入上式,解得 3
综上,所求解析式为y 10精s品iPnPT(
x 43
) 20, x [6,14].
84
总结:
y Asin(x ) b A 0, 0
精品PPT
解 设出厂价波动函数为 y1=6+Asin(ω1x+φ1).由题意, 知 A=2,T1=8,ω1=π4.当 x=3 时,34π+φ1=π2,∴φ1=-π4, ∴出厂价的函数关系为 y1=6+2sin(π4x-π4).设销售价波动 函数为 y2=8+Bsin(ω2x+φ2).由题意,知 B=2,T2=8, ω2=π4.当 x=5 时,有54π+φ2=π2,∴φ2=-34π,∴销售价的 函数关系为 y2=8+2sin(π4x-34π).
y=Asin ωt+B 的解析y式;3sin t 10 0 t 24
6 精品PPT
(2)一般情况下,船舶航行时船底与海底的距离不小于 4.5 米是安全的,如果某船的吃水度(船底与水面的距 离)为 7 米,那么该船在什么时间段能够安全进港?若 该船欲当天安全离港,它在港内停留的时间最多不能
高中数学必修4(人教A版)第一章三角函数1.3知识点总结含同步练习及答案
4π . 3
解:(1)sin 585 ∘ = sin(360 ∘ + 225 ∘ ) = sin(180 ∘ + 45∘ ) = − sin(45∘ ) = − (2)
√2 ; 2
已知 sin(α − A.
解:B. 因为 选B.
1 3
π 1 π ) ) = ,则 cos( + α) 的值为( 3 3 6 1 2√3 2√3 B.− C. D.− 3 3 3
π π π π π π π 1 + α = + (α − ) ,所以 cos( + α) = cos[ + (α − )] = − sin(α − ) = − ,故 6 2 3 6 2 3 3 3
高中数学必修4(人教A版)知识点总结含同步练习题及答案
第一章 三角函数 1.3 三角函数的诱导公式
一、学习任务
π 理解正弦、余弦、正切的诱导公式(2kπ + α(k ∈ Z) ,−α,π ± α , ± α),能运用这些诱导公式 2 π 将任意角的三角函数化为 [0, ] 内的角的三角函数,会运用它们进行简单的三角函数式的化简、求 2 值及恒等式证明.
13π π π = tan(4π + ) = tan = √3; 3 3 3
√2 ; 2 13π
π 13π );(2)cos(−420 ∘ );(3)tan(− ). 4 6 π π √2 解:(1)sin(− ) = − sin( ) = − ; 4 4 2 1 (2)cos(−420 ∘ ) = cos(420 ∘ ) = cos(60∘ + 360 ∘ ) = cos 60∘ = ; 2 13π 13π π π √3 (3)tan(− . ) = − tan = − tan( + 2π) = − tan = − 6 6 6 6 3
必修四-第一章-三角函数知识点及例题详解
第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
人教版高中数学必修四教材用书第一章 三角函数 1.3 三角函数的诱导公式 第一课时 三角函数的诱导公式(一
.三角函数的诱导公式第一课时三角函数的诱导公式(一)[提出问题]问题:锐角α的终边与π+α角的终边位置关系如何?它们与单位圆的交点的位置关系如何?任意角α与π+α呢?提示:无论α是锐角还是任意角,π+α与α的终边互为反向延长线,它们与单位圆的交点关于原点对称.问题:任意角α与-α的终边有怎样的位置关系?它们与单位圆的交点有怎样的位置关系?试用三角函数的定义验证-α与α的三角函数值的关系.提示:α与-α的终边关于轴对称,它们与单位圆的交点与关于轴对称,设的坐标为(,),则的坐标为(,-).(-α)=-=-α,(-α)==α,(-α)=-=-α.问题:任意角α与π-α的终边有何位置关系?它们与单位圆的交点的位置关系怎样?试用三角函数定义验证α与π-α的各三角函数值的关系.提示:α与π-α的终边关于轴对称,如图所示,设(,)是α的终边与单位圆的交点,则π-α与单位圆的交点为′(-,),,′关于轴对称,由三角函数定义知,(π-α)==α,(π-α)=-=-α,(π-α)==-α.[导入新知].诱导公式二+π角()α与角原点的终边关于α对称.如图所示.+(π公式:()α)α-=.+(π.)αα-=+π(αα).=.诱导公式三()角-α与角α的终边关于轴对称.如图所示.-(公式:.α())-α=-(α=).α)(-α.=α-.诱导公式四()角π-α与角α的终边关于轴对称.如图所示.(π公式:()-αα=.)α(π-)=α.-α-)(π.=α-[化解疑难]对诱导公式一~四的理解()公式两边的三角函数名称应一致.()符号由将α看成锐角时α所在象限的三角函数值的符号决定.但应注意,将α看成锐角只是为了公式记忆的方便,事实上α可以是任意角.[例]()(-°);() °;().[解]()(-°)=-°=-(×°+°)=-°=-(°-°)=-°=-;。
人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】
任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义;同理当()k k Z απ=∈时,y x =αcot 无意义;(4)除以上两种情况外,对于确定的值α,比值y r 、x r 、yx、x y 分别是一个确定的实数。
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
必修四第一章任意角的三角函数
任意角的三角函数知识点:一.任意角的三角函数的定义锐角三角函数的定义: ABBC A ==斜边对边sin ,AB ACA ==斜边邻边cos , ACBCA ==邻边对边tan . sin y r α=, cos x r α= , tan yx α=.ααπsin )2sin(=+k ,ααsin )360sin(=+︒⋅k ; ααπcos )2cos(=+k ,ααcos )360cos(=+︒⋅k ; ααπtan )2tan(=+k ,ααtan )360tan(=+︒⋅k .例题:求下列各三角函数值:(1)49sin π; (2))330cos(︒-; (3))323tan(π-.例题:(2010•山东模拟)已知角α的终边经过点(-3,4),则tan α=( )A. -43 B. 43 C. -34 D. 34 变式:(2005•温州一模)已知角θ的终边过点(4,-3),则co s θ=( )A.54 B. -54 C. 53 D. -53 例题:(2013•乐山一模)已知锐角θ的终边上有一点P (sin10°,1+sin80°),则锐角θ=( )A .85°B .65°C .10°D .5°变式:(2012•长春模拟)已知锐角α的终边上一点P (1+sin50°,cos50°),则锐角α=( )A .80°B .70°C .20°D .10°例题:(2012•泸州一模)已知角α的终边过点P (2,-3),则tan α的值为( )A.23 B. 23- C. -32 D. 32变式:(2011•厦门模拟)已知α的顶点在原点,始边与x 轴的非负半轴重合,终边过点(53,54),则cos α的值为( ) A. 54 B. -54 C. -43 D. -53二.三角函数线① 定义有向线段:直线规定方向→轴;线段规定方向→有向线段; ② 讨论有向线段表示:与轴正向同为正,否则为负. ③ 练习:如图,AB = BA = OC = CD = DC = ④ 画出下列角度与单位圆的交点P ,并作x 轴的垂线PM ,写出PM 、OM 的值,并与正弦、余弦值比较: 120°、240° ⑤ 定义正余弦线:设角α的终边与单位圆交点P (x ,y ),过P 作x 轴的垂线,垂足为M ,则有向线段MP 为正弦线,OM 为余弦线. ⑥ 练习:画出各象限终边角的正弦线、余弦线,并分析符号.⑦ 定义正切线:过点A (1,0)作单位圆的切线,与终边或延长线交于T ,则有向线段AT 叫角α的正切线.⑧ 练习:画出各象限终边角的正切线,并分析符号. 2. 讨论问题:① 讨论一:三角函数线为什么可以表示三角函数值? 先单位圆中计算得sin α=y ,cos α=x ; 比较MP 的长度与|y |、OM 的长度与|x |;比较MP 的符号与y 的符号,OM 的符号与x 的符号; 所以 sin α=y =MP , cos α=x =OM ,tan α=y x =MP OM =AT OA=AT (由三角形相似得) ② 讨论二:α终边在坐标轴上时的正弦线、余弦线、正切线的情况?例题:sin1、cos1、tan1的大小关系为( )A .sin1>cos1>tan1B .sin1>tan1>cos1C .tan1>sin1>cos1D .tan1>cos1>sin1变式:sin83π,cos 83π,83π的大小关系是( ) A. sin 83π <cos 83π<83π B. cos 83π< sin 83π<83πC. cos 83π< 83π sin 83πD. sin 83π<83π cos 83π例题:如果 4π<θ< 2π,那么下列各式中正确的是( )D yxA .cos θ<sin θ<tan θB .cos θ<tan θ<sin θC .tan θ<sin θ<cos θD .sin θ<cos θ<tan θ变式:若x ∈(0,2π],则使cosx <sinx <tanx <cotx 成立的x 取值范围是( ) A. (,4π 2π) B. (43π ,π) C. (π,45π ) D.(ππ2,47).三.同角三角函数的基本关系: 平方关系22sin cos 1αα+=; 商数关系sin tan cos ααα=. 例题:若tan α=43,且sin α•co t α<0,则sin α等于( ) A. 54B. -54C. 53D. -53变式:已知cos αtan α<0且tan α=− 125,则sin α=( )A. 135B. -135C. 51D. -51例题:1. 化简cos θtan θ. (化简方法:切化弦)2.变式:已知2tan =x ,(1)求x x 22cos 41sin 32+的值。
必修四第一章 三角函数解题技巧
必修四第一章 三角函数解题技巧1 例说弧度制中的扇形问题与扇形有关的问题是弧度制中的难点,我们可以应用弧长公式l =|α|r 和扇形面积公式S =12|α|r 2解决一些实际问题,这类问题既充分体现了弧度制在运算上的优越性,又能帮助我们加深对弧度制概念的理解.下面通过几例帮助同学们分析、归纳弧度制下的扇形问题. 例1 已知扇形的圆心为60°,所在圆的半径为10,求扇形的弧长及扇形中该弧所在的弓形面积.例2 扇形的半径为R ,其圆心角α(0<α≤π)为多大时,扇形内切圆面积最大,其最大值是多少?例3 已知扇形的周长为30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?针对练习:1.扇形的周长C 一定时,它的圆心角θ取何值才能使扇形面积S 最大?最大值是多少?2.在扇形AOB 中,∠AOB =90°,弧AB 的长为l ,求此扇形内切圆的面积.3.已知扇形AOB 的周长是6 cm ,该扇形的中心角是1弧度,求该扇形的面积.2 任意角三角函数问题错解辨析任意角三角函数是三角函数的基础,在学习这部分内容时,有的同学经常因为概念不清、考虑不周、观察代替推理等原因而错解题目,下面就解题中容易出现的错误进行分类讲解,供同学们参考.一、概念不清例1 已知角α的终边在直线y =2x 上,求sin α+cos α的值.二、观察代替推理例2 当α∈(0,π2)时,求证:sin α<tan α.三、估算能力差例3 若θ∈⎝⎛⎭⎫0,π2,则sin θ+cos θ的一个可能的值是( ) A.23B.27πC.4-22 D .13 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系巧应用.一、知一求二型例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、妙用“1”例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式型求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.4 单调不“单调”,应用很“奇妙”三角函数的单调性是三角函数的重要性质之一,也是高考常考的内容.利用其可以方便地进行比较值的大小、求单调区间、求解最值和解不等式等.下面举例归纳该性质在解题中的具体应用,希望能对同学们的学习有所帮助.一、信心体验——比较大小例1 比较cos5π14,sin 2π7,-cos 8π7的大小.二、重拳出击——求解最值例2 已知f (x )=2sin(2x -π4),x ∈R .求函数f (x )在区间[π8,3π4]上的最小值和最大值.三、触类旁通——解不等式例3 若0≤α<2π,sin α>33cos α,求α的取值范围.5 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列每组数的大小.(1)tan 1,tan 2,tan 3;(2)tan(-13 π4)与tan(-17 π5).6 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y = cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求:(1)函数f (x )的单调递减区间;(2)函数f (x )在[-π,0]上的单调递减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ等于( ) A.π2 B.2π3 C.3π2 D.5π37 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b 为a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为( )A .[-1,1]B.⎣⎡⎦⎤-22,1C.⎣⎡⎦⎤-1,22D.⎣⎡⎦⎤-1,-22二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________________________________________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )( ) A .在区间⎣⎡⎦⎤2π3,4π3上是增函数 B .在区间⎣⎡⎦⎤3π4,13π12上是增函数 C .在区间⎣⎡⎦⎤-π8,π4上是减函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________.六、研究方程的实根例6 已知方程2sin(2x +π3)-1=a ,x ∈[-π6,13π12]有两解,求a 的取值范围.8 三角函数学习中的“小技巧、大突破”从近几年高考数学试卷统计情况看,三角函数是高考的六大板块之一,每年考一道大题和一道小题,而一道大题里面往往又隐含了若干个小问题.所以,高中生应该注意三角函数知识里面的容易被忽略的一些小问题、小技巧.一、“已知三角函数值求角”问题在学习过程中学生们通常存在这么几个困惑:1、给出一个三角函数值可能对应着多个或无数个角,不知道该先求哪个角?2、不能准确的写出已知要求的那个范围的角.下面以四个例题说明:例1 已知sin x =22且x ∈[-π2,π2],求x 的取值集合. 例2 已知sin x =-22且x ∈[-π2,π2],求x 的取值集合. 例3 已知sin x =-22且x ∈[0,2π],求x 的取值集合. 例4 已知sin x =-22,求x 的取值集合.二、“利用三角函数的单调性比较大小”问题在教学中通常要求学生把三角函数化成同名且自变量落在一个单调区间内即可,但是学生在实际操作过程中容易混淆单调区间,不如我们把此问题中的自变量利用诱导公式负角化为正角,正角统一都化为锐角,这样就更简洁、明朗了,因为正弦、余弦、正切函数都在区间(0,π2)内的单调性依次为:单调递增、单调递减、单调递增。
高一下册数学必修四第一章 三角函数.知识点及同步练习
巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案
21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
新人教版必修4第一章第四节三角函数模型的简单应用课件
理论迁移
例 弹簧上挂的小球做上下振动时,小球离开 平衡位置的距离s(cm)随时间t(s)的变化 曲线是一个三角函数的图象,如图. s/cm (1)求这条曲线对 4 应的函数解析式; 7p (2)小球在开始振 12 动时,离开平衡位 O p t/s 置的位移是多少? 12
-4
探究 三:实际应用
如图,设地球表面某地正午太阳高度角为θ,δ 为此时太阳直射纬度, 为该地的纬度值,那么 0 这三个量之间的关系是 90 .
三角函数模型的简单 应用(1)
问题提出
1.函数 y A sin( x ) 中的参数 A, , 对图象有什么影响?三角函数的性质包 括哪些基本内容? 2.我们已经学习了三角函数的概念、图 象与性质,其中周期性是三角函数的一 个显著性质.在现实生活中,如果某种 变化着的现象具有周期性,那么它就可 以借助三角函数来描述,并利用三角函 数的图象和性质解决相应的实际问题.
思考5:一条货船的吃水深度(船底与水面 的距离)为4米,安全条例规定至少要有1.5 米的安全间隙(船底与洋底的距离),该船 何时能进入港口?在港口能呆多久?
y 8 6 4
B A C D
y 5.5
2
o 5 10 15 x
y 8
6
4 2 o 5
B
A
C
D
y 5.5
10
15
x
货船可以在0时30分左右进港,早 晨5时30分左右出港;或在中午12时30 分左右进港,下午17时30分左右出港. 每次可以在港口停留5小时左右.
实际问题
抽象概括 示意图
数学模型 推 演 理 算
实际问题的 解
还原说明
数学模型的 解
人教版数学必修4第一章1.2.1任意角的三角函数课件(共21张PPT)
设角 的终边与单位圆交于 P(x, y) ,
分别过点 P、P0 作 x轴的垂线 MP、M 0 P0 M 0 M
M0P0 4
OM x
O
x
OM0 3
MP y
OMP∽ OM0P0
Px, y P03,4
于是,sin yy|M| P M 0P 04;
1 OP O0P 5
co sxxO M O0M 3; 1 OP O 0P5
2
2cos 9 cos( 2 ) cos 2
4
4
42
3tan( 11 )
tan(
2 )
tan
3
6
6
63
归纳总结
1. 内容总结: (1)任意角三角函数的概念以及它推广的定义。 练习:确定下列三角函数值的符号:
思考5:在弧度制中,这三个三角函数的 结论:终边相同的角的同一三角函数的值相等. 例4:求下列三角函数值: 点评:若已知角α的大小,可求出角α终边与单位圆的交点,然后再利用定义求三角函数值。 函数的符号规律。 上的点的坐标或坐标的比值为函数值的函数, 函数的符号规律。 练习:确定下列三角函数值的符号: 那么① 叫做 的正弦,即 那么① 叫做 的正弦,即 ② 叫做 的余弦,即
ta nx yc sio ns3 4
定义推广:
设角是一个任意角,P(x, y) 是终边上的
任意一点,点 P与原点的距离r x2 y2 0
那么① y 叫做的正弦,即 sin y
r
② x 叫做
的余弦,即 cos rx
r
r
y
③
叫做 的正弦,即 tan y x 0
x
x
任意角 的三角函数值仅与 有关,而
y
人教版A版高中数学必修4-三角函数知识点例题
人教版A版高中数学必修4-三角函数知识点例题(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除三角函数知识点总结⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.{符号看象限,就是把α看作是某一个锐角(例如30°、45°、60°之类),然后π+α、π-α、-α就看作是π与这个锐角相加减或者相反后的角,然后根据这个角在第几象限,来判断三角函数的正负。
必修四三角函数模型的简单应用(附答案)
必修四三角函数模型的简单应用(附答案)三角函数模型的简单应用[学习目标] 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.知识点一利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化,而三角函数模型是刻画周期性问题的最优秀的数学模型.利用三角函数模型解决实际问题的具体步骤如下:(1)收集数据,画出“散点图”;(2)观察“散点图”,进行函数拟合,当散点图具有波浪形的特征时,便可考虑应用正弦函数和余弦函数模型来解决;(3)注意由第二步建立的数学模型得到的解都是近似的,需要具体情况具体分析.思考1三角函数的周期性y=A sin(ωx+φ) (ω≠0)的周期是T=2π|ω|;y=A cos(ωx+φ) (ω≠0)的周期是T=2π|ω|;y=A tan(ωx+φ) (ω≠0)的周期是T=π|ω|.思考2如图,某地一天从6~14时的温度变化曲线近似满足函数y=A sin(ωx+φ)+b.根据图象可知,一天中的温差是;这段曲线的函数解析式是y=答案 20℃ 10sin(π8x +3π4)+20,x ∈[6,14] 知识点二 三角函数模型在物理学中的应用 在物理学中,当物体做简谐运动时,可以用正弦型函数y =A sin(ωx +φ)来表示运动的位移y 随时间x 的变化规律,其中:(1)A 称为简谐运动的振幅,它表示物体运动时离开平衡位置的最大位移;(2)T =2πω称为简谐运动的周期,它表示物体往复运动一次所需的时间;(3)f =1T =ω2π称为简谐运动的频率,它表示单位时间内物体往复运动的次数.题型一 三角函数模型在物理中的应用例1 已知电流I 与时间t 的关系为I =A sin(ωt+φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?解 (1)由图知A =300,设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2⎝⎛⎭⎪⎪⎫1180+1900=175. ∴ω=2πT =150π.又当t =1180时,I =0,即sin ⎝ ⎛⎭⎪⎪⎫150π·1180+φ=0,而|φ|<π2,∴φ=π6. 故所求的解析式为I =300sin ⎝⎛⎭⎪⎪⎫150πt +π6. (2)依题意,周期T ≤1150,即2πω≤1150(ω>0), ∴ω≥300π>942,又ω∈N *,故所求最小正整数ω=943.跟踪训练1 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是:S =6sin(2πt +π6). (1)画出它的图象;(2)回答以下问题:①小球开始摆动(即t =0),离开平衡位置是多少?少?③小球来回摆动一次需要多少时间?解(1)周期T=2π2π=1(s).列表:t 01651223111212πt+π6π6π2π3π22π2π+π66sin(2πt+π6)360-60 3描点画图:(2)①小球开始摆动(t=0),离开平衡位置为3 cm.③小球来回摆动一次需要1 s(即周期).题型二三角函数模型在生活中的应用例2某港口水深y(米)是时间t (0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.13.9.97.10.13.10.17.10.据上述数据描成的曲线如图所示,经拟合,该曲线可近似的看成正弦函数模型y=A sin ωt+B的图象.(1)试根据数据表和曲线,求出y=A sin ωt+B的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13,∴A =12(y max -y min )=3, B =12(y max +y min )=10. ∴函数的解析式为y =3sin π6t +10 (0≤t ≤24). (2)由题意,得水深y ≥4.5+7,即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎢⎢⎡⎦⎥⎥⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港.若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.跟踪训练2 如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h .(1)求h 与θ之间的函数关系式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数解析式,并求缆车第一次到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的坐标系,则以Ox 为始边,OB 为终边的角为θ-π2.故B 点坐标为(4.8cos(θ-π2),4.8sin(θ-π2)).∴h =5.6+4.8sin(θ-π2),θ∈[0,+∞).(2)点A 在圆上转动的角速度是π30,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin(π30t -π2),t ∈[0,+∞).到达最高点时,h =10.4 m. 由sin(π30t -π2)=1.得π30t -π2=π2,∴t =30.∴缆车到达最高点时,用的时间最少为30秒.利用三角函数线证明三角不等式例3心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80 mmHg为标准值,设某人的血压满足方程式P(t)=115+25sin(160πt),其中P(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数P(t)的周期;(2)求此人每分钟心跳的次数;(3)画出函数P(t)的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较分析(1)利用周期公式可以求出函数P(t)的周期;(2)每分钟心跳的次数即频率;(3)用“五点法”作出函数的简图;(4)此人的收缩压、舒张分别是函数P(t)的最大值和最小值,故可求出此人的血压在血压计上的计数.解(1)由于ω=160π,代入周期公式T=2πω,可得T=2π160π=180(min),所以函数P(t)的周期为180min.(2)函数P(t)的频率f=1T=80(次/分),即此人每分钟心跳的次数为80.(3)列表:t/min0132011603320180P(t)/mmHg 11514011590115描点、连线并左右扩展得到函数P(t)的简图如图所示.(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80 mmHg 相比较,此人血压偏高.1.函数y =|sin 12x +13|的最小正周期为( )A .2πB .πC .4π D.π22.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式为s =3cos ⎝⎛⎭⎪⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l = cm.3.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎢⎢⎡⎦⎥⎥⎤π6(x -6) (x=1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式; (2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.一、选择题1.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin(100πt +π6),那么单摆来回摆一次所需的时间为( )A.150 sB.1100 s C .50 s D .100 s2.电流强度I (A)随时间t (s)变化的关系式是I =5sin(100πt +π3),则当t =1200 s 时,电流强度I为( )A .5 AB .2.5 AC .2 AD .-5 A3.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .5 3 安D .10安5.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )二、填空题6.函数y =2sin ⎝⎛⎭⎪⎪⎫m 3x +π3的最小正周期在⎝ ⎛⎭⎪⎪⎫23,34内,则正整数m 的值是 . 7.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .8.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d = ,其中t ∈[0,60].9.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω= . 三、解答题10.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b (0<φ<π2).(1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.11.如图,一个水轮的半径为4 m,水轮圆心O距离水面2 m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约需要多少时间?12.已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:t(时)03691215182124y(米)1.51.0.51.1.51.0.50.991.5经长期观测,y=f(t)的曲线可近似地看成是函数y=A cos ωt+b.(1)根据以上数据,求函数y=A cos ωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?当堂检测答案1.答案 A 2.答案 g4π2 解析 T =2πg l =1,∴g l =2π,∴l =g 4π2. 3.答案 20.5解析 由题意得⎩⎨⎧ a +A =28,a -A =18, ∴⎩⎨⎧a =23,A =5,∴y =23+5cos ⎣⎢⎢⎡⎦⎥⎥⎤π6(x -6),当x =10时,y =23+5×⎝⎛⎭⎪⎪⎫-12=20.5.4.解 (1)设在t s 时,摩天轮上某人在高h m处.这时此人所转过的角为2π30 t =π15 t ,故在t s时,此人相对于地面的高度为h =10sin π15 t +12(t ≥0).(2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.课时精练答案一、选择题 1.答案 A 2.答案 B解析当t=1200时,I=5sin(π2+π3)=5cosπ3=2.5.3.答案 C解析d=f(l)=2sin l 2.4.答案 A解析由图象知A=10,T2=4300-1300=1100,∴ω=2πT=100π,∴I=10sin(100πt+φ).(1300,10)为五点中的第二个点,∴100π×1300+φ=π2.∴φ=π6,∴I=10sin(100πt+π6),当t=1100秒时,I=-5安.5.答案 C解析∵P0(2,-2),∴∠P0Ox=π4,按逆时针转时间t后得∠POP0=t,∠POx=t-π4,此时P点纵坐标为2sin(t-π4),∴d=2|sin(t-π4)|.当t=0时,d=2,排除A、D;当t=π4时,d=0,排除B.二、填空题6.答案26,27,28解析∵T=6πm,又∵23<6πm<34,∴8π<m<9π,且m∈Z,∴m=26,27,28.7.答案3 4解析取K,L中点N,则MN=1 2,因此A=12.由T=2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f(x)=12cos πx,∴f(16)=12cosπ6=34.8.答案10sin πt 60解析将解析式可写为d=A sin(ωt+φ)的形式,由题意易知A=10,当t=0时,d=0,得φ=0;当t=30时,d=10,可得ω=π60,所以d=10sin πt 60.9.答案14 3解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin(π4·ω+π3)=-1,∴π4ω+π3=2k π+3π2(k ∈Z). ∴ω=8k +143(k ∈Z),因为f (x )在区间(π6,π3)上有最小值,无最大值,所以π3-π4<πω,即ω<12,令k =0,得ω=143.三、解答题10.解 (1)最大用电量为50万kW·h , 最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,∴A =12×(50-30)=10,b =12×(50+30)=40. ∵12×2πω=14-8, ∴ω=π6.∴y =10sin ⎝ ⎛⎭⎪⎪⎫π6x +φ+40. 将x =8,y =30代入上式,又∵0<φ<π2,∴解得φ=π6. ∴所求解析式为y =10sin ⎝⎛⎭⎪⎪⎫π6x +π6+40,x ∈[8,14].11.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎪⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在时间t (s)内所转过的角为π6t . 由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎪⎪⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6. 故所求的函数关系式为z =4sin ⎝⎛⎭⎪⎪⎫π6t -π6+2. (2)令z =4sin ⎝⎛⎭⎪⎪⎫π6t -π6+2=6, 得sin ⎝⎛⎭⎪⎪⎫π6t -π6=1, 令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s.12.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴y =12cos π6t +1. (2)由题意知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z , 即12k -3<t <12k +3,k ∈Z.①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
2013人教版必修四第一章三角函数简单应用例题精讲-推荐下载
授课教师
上课时间 2013 年 12 月 29 日
教学课题 三角函数模型的简单应用、例题精讲 1. 如下图所示:某地一天从 6~14 时的温度变化曲线
近似满足函数: f (x) Asin(x ) b , x [6,14] ,
则这段曲线的解析式为( )。
教学过程
3.函数 f (x) sin( x )( 0) 的最小正周期为 ,则该函数的图象(
A、关于点(,)0 对称 B、关于点(,)0 对称
4
3
3
。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
人教版必修四第一章三角函数简单应用例题精讲
其中正确的是______________.
19.函数 的图象为 ,如下结论中正确的是_________(写出所有正确结论的编号).
①.图象 关于直线 对称;
②:图象 关于点 对称;
③:函数 在区间 内是增函数;
④.由 的图像向右平移 个单位长度可以得到图象 .
(A)A=3,T= ,φ=- (B):A=1,T= ,φ=-
(C)A=1,T= ,φ=- (D)A=1,T= ,φ=-
5.要得到函数 的图象,只要将函数 的图象()
(A)左平移 (B):右平移 (C)左平移 (D)右平移
6.若不等式 ,对于任意 都成立,则实数 的取值范围是()
A. B. C. D.
故 。
2.函数 的单调增区间为()
A. B.
C. D.
【解析】选C。令 ,解得 ,
∴单调区间为 。
3.函数 的最小正周期为 ,则该函数的图象()
A、关于点 对称B、关于点 对称
C、关于直线 对称D、关于直线 对称
【解析】选B。 。把选项A、B代入验证。对于选项C、D把 代入后应该取得最值。
4.如图是函数y=Asin(ωx+φ)+2的图象的一部分,它的振幅、周期、初相各是( )
的一个正格点坐标。
⑵若函数 , 与函数 的图像有正格点交点,求m
的值,并写出两个函数图像的所有交点个数。
⑶对于⑵中的 值,函数 时,不等式 恒成立,
求实数 的取值范围。
【解析】(1)若取 时,正格点坐标 等(答案不唯一)
(2)作出两个函数图像,
可知函数 ,与函数 的图像有正格点交点只有一个点为 ,……………………………………………………………………5分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴当 2 x 当 2x
4
4
,即 x
4
时,函数 y 取得最小值 2 . „„„„„„7 分 „„„„„„9 分
4
2
,即 x
8
时,函数 y 取得最大值 2.
(3)由题意得, g ( x) 2 sin[2( x
] , g ( x) 2 sin(2 x ) ,„„„„10 分 4 4 4 3 3 7 由 2 x [2k ,2k ]( k Z ) 得, x [k , k ]( k Z ) 4 2 2 8 8
C. y 1 sin(2 x
4
)
D. y 2sin 2 x
13.将函数 y 3 sin 2 x 的图像向左平移
个单位得到图像的解析式为_______. 8
2 ) 的图像如图所示,则该函数的解析式为
14. 已 知 函 数 y A sin( x ),( A 0, 0,| | ____________.
3.函数 f ( x) sin( x A、关于点 ( ,) 0 对称
3
)( 0) 的最小正周期为 ,则该函数的图象(
B、关于点 ( ,) 0 对称
)
4
C、关于直线 x
3
3
对称
D、关于直线 x
4
对称
【解析】选 B。 T 值。
2
, 2 。把选项 A、B 代入验证。对于选项 C、D 把 x 代入后应该取得最
4
)
A. (0, )
4
B. ( ,1)
4
C. ( , )
4 2
D. (0,1)
0 a 1 【解析】选 B。 ,解得 a 1 。 4 log a 4 1
7.要得到函数 y
) 的图象上所有的点的( 4 1 (A) 横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度 2 8 1 (B) 横坐标缩短到原来的 倍(纵坐标不变) ,再向右平行移动 个单位长度 2 4 (C):横坐标伸长到原来的 2 倍(纵坐标不变) ,再向左平行移动 个单位长度 4 (D) 横坐标伸长到原来的 2 倍(纵坐标不变) ,再向右平行移动 个单位长度 8
学生姓名 授课教师 教学课题
唐嘉励
性别 上课时间
女
年级
高一
学科 13:00-15:00
数 学 课时:2 课时
2013 年 12 月 29 日
三角函数模型的简单应用、例题精讲 1. 如下图所示:某地一天从 6~14 时的温度变化曲线 近似满足函数: f ( x) A sin(x ) b , x [6,14] , 则这段曲线的解析式为( ) 。
经长期观测,函数 y=f(t)可近似地看成是函数 y A cos t b 。 (1)根据以上数据,求出函数 y A cos t b 的最小正周期 T 及函数表达式(其中 A>0,ω >0) ; (2)根据规定,当海浪高度不低于 0.75 米时,才对冲浪爱好者开放,请根据以上结论,判断一 天内从上午 7 时至晚上 19 时之间,该浴场有多少时间可向冲浪爱好者开放?
„„„„„„3 分
函数解析式为 f ( x) 2 sin(2 x
(2)由(1)得函数 y 2 sin(2 x 当 x
4 4
) ),
„„„„„„4 分
3 , 时, 2 x , . 4 4 4 4 4
„„„„„„5 分
3 2 5 ](k Z ) 。 ∴单调区间为 [k , k 12 12
2
2x
5 ](k Z ) 6 6 5 D. [2k , 2k ](k Z ) 6 12 , 2k
2k
,解得 k
12
x k
5 , 12
单调减区间. 【解析】 (1)∵由最高点 D(
T 3 4 8 8 ∴ A 2 , 2 8
8
,2 )运动到相邻最低点时,函数图形与 x 的交点的坐标为(
3 , ,0 ) 8
„„„„„„„2 分
从而 T ,
2 2 , T 4
答案: y 2 sin(2 x
) 6 。
15.函数 y 3sin(2 x
3 ), x , 的值域是 3 3 4
析 】 因 ), 【y 解 3sin(2 x 为 x 3
4 3 , , 所 以 2x [ , ] 。 由 正 弦 函 数 的 图 象 可 知 3 3 3 3 4
3 3 ) 12 ) 12 B. f ( x) 6 sin( x 8 4 8 4 1 3 1 3 ) 12 ) 12 C. f ( x) 6 sin( x D. f ( x) 12 sin( x 8 4 8 4 18 6 2 【解析】选 B。 b 12, A 6 , T 2(14 6) 16, 。 2 16 8 5 3 由(10,12)得 10 k , k , k Z ,令 k 2 得 。 8 4 4 3 ) 12 。 故 f ( x) 6 sin( x 8 4
由 7≤t≤19,得 8≤t≤16,知该浴场有 8 小时可向冲浪爱好者开放。
„„12 分
π 2x 3 (x∈R),有下列命题: 18.关于函数 f (x) = 4sin
π ①:函数 y f (x) )的表达式可改写为 y = 4cos(2x ); 6 ②.函数 y f (x) 是以 2π 为最小正周期的周期函数;
π 0 , 对称;
3
12
)
对称的是(
3 6
) )
B: y sin(2 x D. y sin(
6 )
)
12.将函数 y sin 2 x 的图象向左平移 的函数解析式是( A. y cos 2 x )
个单位,再向上平移 1 个单位,所得图象 4
x 2
6
B: y cos 2 x 1
3
) 的图象可由 y sin x 的图象经过怎样的变换而得到?
23.已知某海滨浴场的海浪高度 y (单位: 与时间 t 米) (0≤t≤24) (单位: 的函数关系记作 y=f(t), 时) 下表是某日各时的浪高数据: t(时) y(米) 0 1.5 3 1.0 6 0.5 9 1.0 12 1.5 15 1.0 18 0.5 21 0.99 24 1.5
x ) ,若对任意 x R 都有 f ( x1 ) f ( x) f ( x2 ) 成立,则 x1 x2 的 2 5
答案:2
π 个单位长度可以得到图象 C . 3
21.设函数 f ( x) A sin(x )( A 0, 0, | |
2
) 的最高点 D 的坐标为( 3 ; ,0 ) 8
„„„„„„„11 分 即 y g (x) 的单调减区间为 [k
)
3 7 , k ]( k Z ) . 8 8
„„„„„„„12 分
22.已知函数 y 2 sin(2 x
3
)。
(1)求它的振幅、周期和初相; (2)用五点法作出它一个周期的大致图象; (3)说明 y 2 sin(2 x
4.如图是函数 y=Asin(ω x+φ )+2 的图象的一部分,它的振幅、 周期、初相各是(
)
4 ,φ =- 3 6 2 3 (C)A=1,T= ,φ =- 3 4
(A) A=3,T=
(B) A=1,T= : (D)
4 3 ,φ =- 3 4 4 A=1,T= ,φ =- 3 6
3 3 3sin(2 x ) [ ,3] 。答案: 3 3 3 2 [ ,3] 2
16.函数 y tan(2 x ) 的周期为_________。 3
【解析】函数 y tan(2 x
3
) 加绝对值后周期不变。答案:
2
17.函数 y=sin(2x+
)的图象的一条对称轴是 4
1 y cos( t ) 1 2 6 【解析】 (1)T=12, 。 1 3 1 cos( t ) 1≥ cos( t ) ≥ 6 4, 6 2, (2) 2
„„4 分
„„6 分
2 2 2k ≤ t ≤ 2k 3 6 3 (k∈Z)即 12k 4 ≤t ≤12k 4 (k∈Z) „„10 分 ∴ ,
编号) . ①.图象 C 关于直线 x ②:图象 C 关于点
11 对称; 6
2π , 对称; 0 3
π 5π , 内是增函数; 12 12
③:函数 f ( x) 在区间
④.由 y 3sin 2 x 的图像向右平移 20.已知函数 f ( x) 2sin( 最小值是_______
③:函数 y f (x) 的图象关于点 6
π ④.函数 y f (x) 的图象关于直线 x = 对称. 6 其中正确的是______________.
19.函数 f ( x) 3 cos(2 x 56 ) 的图象为 C ,如下结论中正确的是_________(写出所有正确结论的
5.要得到函数 y cos(2 x (A)左平移