《第二章 函数与导数第1课时 函数及其表示
高考数学一轮复习第二章函数导数及其应用第一节函数及其表示课件文北师大版
[四基自测]
1.(基础点:函数的定义域)函数 f(x)= 2x-1+x-1 2的定义域为(
)
A.[0,2)
B.(2,+∞)
C.[0,2)∪(2,+∞)
D.(-∞,2)∪(2,+∞)
答案:C
2.(基础点:待定系数法求解析式)若 f(x)=x2+bx+c 且 f(1)=0,f(3)=0,则 f(x) =________. 答案:x2-4x+3
1.两种对应关系 f:A→B 表示从 A 到 B 的一个函数,即从 A 到 B 的元素是一对一或多对一,值域 为 B 的子集. 2.两个关注点 (1)分段函数是一个函数. (2)分段函数的定义域、值域是各段定义域、值域的并集.
3.函数的三要素与相等函数 函数的三要素为定义域、对应法则和值域,而值域是由定义域和对应法则确定的, 故如果两个函数的定义域、对应法则分别相同,这两个函数为相等函数.
3.(基础点:求函数值)已知函数 f(x)=log2(x2+a).若 f(3)=1,则 a=________. 解析:∵f(x)=log2(x2+a)且 f(3)=1,∴1=log2(9+a),∴9+a=2,∴a=-7.
答案:-7 4.(基础点:分段函数)已知函数 f(x)=elnx,x,x≤x>0 0,则 f(f(1e))=________. 答案:1e
[破题技法] 1.若已知函数 f(x)的定义域为[a,b],则复合函数 f(g(x))的定义域可由 不等式 a≤g(x)≤b 求出. 2.若已知函数 f(g(x))的定义域为[a,b],则 f(x)的定义域为 g(x)在 x∈[a,b]上的 值域. 提醒:(1)定义域的形式是集合或者区间; (2)混淆 f(2x+1)与 f(x)与 f(x2-1)中的 x 的意义.
第二章 第一节 函数及其表示
解答题的形式出现.
一、函数与映射的概念
函数
映射
两集合 设A、B是两个非空数集 设A、B是两个 非空集合 A、B
如果按照某种确定的对 如果按某一个确定的对
对应关 应关系f,使对于集合A 系f: 中的任意 一个数x,在 A→B 集合B中数 f(x)=1x- 2+xx2, -x2≤ ,1x, >1,
则
1 ff2
的值为
()
A.1156
B.-2176
C.89
D.18
解析:f(2)=4,f12=14, 故 ff12=f14=1-142=1156.
答案: A
[冲关锦囊] 1.函数值f(a)就是a在对应法则f下的对应值,因此由函
数关系求函数值,只需将f(x)中的x用对应的值代入计 算即可.另外,高考命题一般会与分段函数相结合, 求值时注意a的范围和对应的关系. 2.求f(f(f(a)))时,一般要遵循由里到外逐层计算的原则.
[精析考题] [例3] (2011·北京高考)根据统计,一名工人组装第x件某产品所
用的时间(单位:分钟)为f(x)=
应关系f,使对于集合A
中的 任意 一个元素x, 在集合B中有 唯一确定
数f(x)和它对应
的元素y与之对应
函数
映射
称f:A→B 为从集合 称对应f:A→B 为从集 名称
A到集合B的一个函数 合A到集合B的一个映射
记法
y=f(x),x∈A
对应f:A→B是一个映射
二、函数的有关概念 1.函数的定义域、值域
若f(a)=4,则实数a=
()
A.-4或-2
B.-4或2
C.-2或4
高考数学(理)总复习备考指导课件:第二章 函数、导数及其应用 第1节 函数及其表示
础
菜单
高三一轮总复习理科数学 ·(安徽专用)
网
典
络
例
构
探
建
究
· 览
5.(2013·浙江高考)已知函数 f(x)= x-1.若 f(a)=3,则
· 提
全
知
局 实数 a=________.
能
策
高
略
考
指 导
【解析】 因为 f(a)= a-1=3,所以 a-1=9,即 a= 体 验
·
备 10.
· 明
高
考
考
探 究
·
·
览 全
表示函数的常用方法有解析法、图象法 和 列表法 .
提 知
局
能
策
4.分段函数
高
略 指
(1)若函数在其定义域的不同子集上,因 对应关系 不同而
考 体
导
验
· 备
分别用几个不同的式子来表示,这种函数称为分段函数.
· 明
高
考
考
(2)分段函数的定义域等于各段函数的定义域的并集 ,其 情
自 主
值域等于各段函数的值域的 并集,分段函数虽由几个部分组
略
指 A)叫做函数的 定义域
;函数值的 集合{f(x)|x∈A} 叫做函
考 体
导
验
· 备
数的值域.
· 明
高
考
考
(2)如果两个函数的 定义域 相同,并且 对应关系 完全一 情
自
主 致,则这两个函数为相等函数.
落 实 · 固 基
课 时 作 业
础
菜单
高三一轮总复习理科数学 ·(安徽专用)
网
典
络
高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件
结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
高三艺术班数学复习专用资料
第二章函数、导数及其应用第1讲函数及其表示一、必记3个知识点1.函数映射的概念2(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;及x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.二、必明3个易误区1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”及“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成.三、必会4个方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的范围;(4)解方程组法:已知关于f (x )及f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).1.A .y =x -1及y =(x -1)2 B .y =x -1及y =x -1x -1C .y =4lg x 及y =2lg x 2D .y =lg x -2及y =lgx 100角度一 1.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 角度二 已知f (x )的定义域,求f (g (x ))的定义域 2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域[典例] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).[针对训练]已知f (x +1)=x +2x ,求f (x )的解析式.[典例] (1)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +3,x ≤0.若f (a )+f (1)=0,则实数a 的值为( )A .-3B .-1或3C .1D .-3或1(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. 课后作业[试一试]1.函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1]D .[0,1]2.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0[练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( ) A .-2x +1 B .2x -1 C .2x -3 D .2x +7 2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________. 做一做1.下列函数中,及函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin xx2.(2014·广州调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是( ) A .9 B.19 C .-9D .-193.函数y =(x +1)0+ln(-x )的定义域为________.4.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 5.有以下判断:(1)f (x )=|x |x 及g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)表示同一个函数.(2)f (x )=x 2-2x +1及g (t )=t 2-2t +1是同一函数.(3)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.6.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( ) A .f :x →y =18x B .f :x →y =14x C .f :x →y =12x D .f :x →y =x7.函数f (x )=2x +12x 2-x -1的定义域是( )A .{x |x ≠-12}B .{x |x >-12}C .{x |x ≠-12且x ≠1}D .{x |x >-12且x ≠1}8.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.第2讲 函数的单调性及最值一、必记3个知识点1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则有: (1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.3.函数的最值二、必明21.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性及其正负有关,切不可盲目类比. 三、必会2个方法1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数;(3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性. (4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值. (5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域.1.函数f (x )=log 5(2x +[典例] 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.角度一 1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 角度三 解函数不等式3.已知定义在R 上的函数f (x )是增函数,则满足f (x )<f (2x -3)的x 的取值范围是________. 角度四 求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝⎛⎦⎤-∞,138 C .(-∞,2] D.⎣⎡⎭⎫138,2 [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e-C .y =-x 2+1 D. y =lg|x |2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.做一做1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |2.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)3.已知函数f (x )为R 上的减函数,若m <n ,则f (m )______f (n );若f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),则实数x 的取值范围是________. 4.函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. 5.函数f (x )=ax +1x +2在区间(-2,+∞)上是递增的,求实数a 的取值范围.6.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .127.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( ) A .f (4)>f (-6) B .f (-4)<f (-6) C .f (-4)>f (-6)D .f (4)<f (-6)第二章 函数、导数及其应用 第3讲 函数的奇偶性及周期性一、必记2个知识点1.函数的奇偶性奇偶性 定 义图像特点 偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称2.周期性 (1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 二、必明3个易误区1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0).3.分段函数奇偶性判定时,f (-x 0)=f (x 0)利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的. 三、必会2个方法1.判断函数奇偶性的两个方法 (1)定义法:(2)图像法:2.周期性常用的结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f (x ),则T =2a ; (3)若f (x +a )=-1f (x ),则T =2a .(a >0)考点一函数奇偶性的判断判断下列函数的奇偶性.(1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x-3-x; (4)f (x )=4-x 2|x +3|-3;(5)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.考点二函数奇偶性的应用[典例] (1)(2013·山东高考)已知函数f (x )为奇函数,且当x >0时, f (x ) =x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2(2)已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.一题多变:本例(2)中条件在区间[-2,0]上“递减”变为“递增”,试想m 的范围改变吗?若改变,求m 的取值范围[针对训练]1.设函数f (x )=x (e x +a e -x)(x ∈R )是偶函数,则实数a 的值为________.2.已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是减函数,若f (a )≥f (2),则实数a 的取值范围是________.[典例] 定义在R 2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=( )A .335B .338C .1 678D .2 012[针对训练]设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式.课后作业[试一试]1.(2013·广东高考)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ) A .4 B .3 C .2 D .12.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-12[练一练]3已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2 014)=________. 4.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ) A .-12 B .-14 C.14 D.125.(2014·大连测试)下列函数中,及函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-16.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.8.设定义在[-2,2]上的偶函数f (x )在区间[-2,0]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.9.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)10.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x ,则:①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增; ③函数f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是________.第二章 函数、导数及其应用第4讲 函数的图像一、必记2个知识点1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性); 其次:列表(尤其注意特殊点、零点、最大值点、最小值点、及坐标轴的交点); 最后:描点,连线.2.利用图像变换法作函数的图像 (1)平移变换:y =f (x )――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . (2)伸缩变换:y =f (x ) y =f (ωx ); y =f (x )――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍y =Af (x ). (3)对称变换:y =f (x )――――――→关于x 轴对称y =-f (x ); y =f (x )――――――→关于y 轴对称y =f (-x ); y =f (x )――――――→关于原点对称 y =-f (-x ). (4)翻折变换:y =f (x )――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|. 二、必明2个易误区1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称及两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系. 三、必会2个方法1.数形结合思想借助函数图像,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图像,还可以判断方程f (x )=g (x )的解的个数、求不等式的解集等.2.分类讨论思想画函数图像时,如果解析式中含参数,还要对参数进行讨论,分别画出其图像.考点一作函数的图像分别画出下列函数的图像:(1)y =|lg x |; (2)y =2x +2; (3)y =x 2-2|x |-1.考点二识图及辨图[典例] (1)(2013·福建高考)函数f (x )=ln(x 2+1)的图像大致是( )(2)已知定义在区间[0,2]上的函数y =f (x )的图像如图所示,则y =-f (2-x )的图像为( ) [针对训练]1.函数y =x sin x 在[-π,π]上的图像是( )2.如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.考点三函数图像的应用角度一 确定方程根的个数1.已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是___.角度二 求参数的取值范围2.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图像及x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]课后作业[试一试]1.函数y =log 2(|x |+1)的图像大致是( )[练一练]2.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________. 做一做3.函数y =x |x |的图像经描点确定后的形状大致是( )4.函数f (x )的图像向右平移1个单位长度,所得图像及曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x +1 B .e x -1 C .e-x +1D .e-x -15.已知函数f (x )的图像如图所示,则函数g (x )=2f (x )的定义域是________.6.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.7.函数f (x )=2x 3的图像( ) A .关于y 轴对称 B .关于x 轴对称 C .关于直线y =x 对称D .关于原点对称8.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x -1,x ≥0的图像大致是( )9.为了得到函数y =2x -3-1的图像,只需把函数y =2x 的图像上所有的点( ) A .向右平移3个单位长度,再向下平移1个单位长度 B .向左平移3个单位长度,再向下平移1个单位长度 C .向右平移3个单位长度,再向上平移1个单位长度 D .向左平移3个单位长度,再向上平移1个单位长度 10.函数y =x 33x -1的图像大致是( )11..函数f (x )=x +1x 图像的对称中心为________.12.已知函数f (x )=2x ,x ∈R .当m 取何值时方程|f (x )-2|=m 有一个解?两个解?第二章 函数、导数及其应用 第5讲 二次函数及幂函数一、必记3个知识点1.五种常见幂函数的图像及性质函数 特征 性质y =xy =x 2y =x 3y =x 12y =x -1图像 定义域 R R R {x |x ≥0} {x |x ≠0} 值域R{y |y ≥0}R{y |y ≥0}{y |y ≠0}2.(1)一般式:f (x )=ax 2+bx +c (a ≠0);(2)顶点式:f (x )=a (x -m )2+n (a ≠0); (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 3.二次函数的图像和性质 二、必明2个易误区1.研究函数f (x )=ax 2+bx +c 的性质,易忽视a 的取值情况而盲目认为f (x )为二次函数. 2.形如y =x α(α∈R )才是幂函数,如y =3x 12不是幂函数. 三、必会3个方法1.函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图像关于x =x 1+x 22对称.(2)二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图像关于直线x =a 对称(a 为常数).2.及二次函数有关的不等式恒成立两个条件(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.3.两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴及给定区间的位置关系,讨论二次方程根的大小等.1.图中曲线是幂函数y =x α在第一象限的图像.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的α值依次为________.2.设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. [针对训练]已知y =f (x )为二次函数,且f (0)=-5,f (-1)=-4,f (2)=-5,求此二次函数的解析式.考点三二次函数的图像及性质角度一 轴定区间定求最值1.已知函数f (x )=x 2+2ax +3,x ∈[-4,6],当a =-2时,求f (x )的最值.角度二 轴动区间定求最值2.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.角度三 轴定区间动求最值3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),求g (a ).课后作业[试一试]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( )A .f (x )=x 2-1B .f (x )=5x 2C .f (x )=-x 2D .f (x )=x 2 2.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 [练一练]如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图像关于直线x =1对称,则函数f (x )的最小值为________. 做一做1.下面给出4个幂函数的图像,则图像及函数的大致对应是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1 D .①y =x 13,②y =x 12,③y =x 2,④y =x -12.已知函数h (x )=4x 2-kx -8在[5,20]上是单调函数,则k 的取值范围是( ) A .(-∞,40] B .[160,+∞) C .(-∞,40]∪[160,+∞) D .∅ 3.二次函数的图像过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为_______. 4.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 5.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x )是幂函数,且在(0,+∞)上是增函数?6.函数y =x -x 13的图像大致为( )7.“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的_______条件. 8.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于_____ .9.已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________. 10.已知幂函数f (x )=x 21()m m -+ (m ∈N *),经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.11.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围第二章 函数、导数及其应用 第6讲 指数及指数函数一、必记3个知识点1.根式的性质(1)(n a )n =a .(2)当n 为奇数时n a n =a ;当n 为偶数时n a n =⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).2.有理数指数幂 (1)幂的有关概念:①正分数指数幂:a m n=na m (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:am n -=1m na=1n a m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质:①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图像及性质二、必明1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意区分a >1或0<a <1. 三、必会2个方法1.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(a2x +b ·a x +c ≤0)的指数方程或不等式,常借助换元法解决. 2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.求值及化简:(1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫21412--(0.01)0.5; (2)56a 13·b -2·(-3a 12-b -1)÷(4a 23·b -3)12; (3)[典例] (1)(2012·四川高考)函数y =a x -a (a >0,且a ≠1)的图像可能是( )(2)已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个 [针对训练]1.在同一坐标系中,函数y =2x 及y =⎝⎛⎭⎫12x 的图像之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称D .关于直线y =x 对称2.方程2x =2-x 的解的个数是________.考点三指数函数的性质及应用[典例] 已知f (x )=a a 2-1(a x -a -x )(a >0,且a ≠1). (1)判断f (x )的奇偶性;(2)讨论f (x )的单调性.一题多变在本例条件下,当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.课后作业[试一试]1.化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .92.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. [练一练]1.函数y =1-⎝⎛⎭⎫12x的定义域为________.2.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________. 做一做1.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( )A .5B .7C .9D .112.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图像经过点(2,1),则f (x )的值域( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞) 3.函数y =8-23-x (x ≥0)的值域是________.4.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 5.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.6.函数f (x )=a x -1(a >0,a ≠1)的图像恒过点A ,下列函数中图像不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x -1D .y =log 2(2x ) 7.函数y =⎝⎛⎭⎫132x 的值域是( ) A .(0,+∞)B .(0,1)C .(0,1]D .[1,+∞)8.函数f (x )=2|x -1|的图像是( )9.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >b D .b >c >a10.计算:⎝⎛⎭⎫3213-×⎝⎛⎭⎫-760+814×42- =________. 11.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a的值.第二章 函数、导数及其应用 第7讲 对数及对数函数一、必记4个知识点1.对数的定义如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质及运算及换底公式(1)对数的性质(a >0且a ≠1): ①log a 1=0;②log a a =1;③a log a N =N .(2)对数的换底公式: 基本公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么①log a (M ·N )=log a M +log a N , ②log a MN =log a M -log a N , ③log a M n =n log a M (n ∈R ).3.对数函数的图像及性质4.反函数指数函数y =a x (a >0且a ≠1)及对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称. 二、必明2个易误区1.在运算性质log a M n =n log a M 中,易忽视M >0.2.解决及对数函数有关的问题时易漏两点: (1)函数的定义域; (2)对数底数的取值范围. 三、必会2个方法1.对数值的大小比较的基本方法(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);(4)化同真数后利用图像比较. 2.明确对数函数图像的基本点(1)当a >1时,对数函数的图像“上升”;当0<a <1时,对数函数的图像“下降”.(2)对数函数y =log a x (a >0,且a ≠1)的图像过定点(1,0),且过点(a,1)⎝⎛⎭⎫1a ,-1,函数图像只在第一、四象限.1.(2013·陕西高考)设 ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c2.计算下列各题:(1)lg 37+lg 70-lg 3-(lg 3)2-lg 9+1; (2)12lg 3249-43lg 8+lg 245典例 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2) 一题多解若本例变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________.[针对训练]若函数f (x )=log a (x +b )的大致图像如图,其中a ,b 为常数,则函数g (x )=a x +b 的大致图像是( )考点三对数函数的性质及应用[典例] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.课后作业[试一试]1.函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)2.lg 5+lg 20的值是________. [练一练]1.函数y =log a (3x -2)(a >0,a ≠1)的图像经过定点A ,则A 点坐标是( ) A.⎝⎛⎭⎫0,23 B.⎝⎛⎭⎫23,0 C .(1,0) D .(0,1) 2.设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b 做一做1.设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=( ) A .-1 B .-3 C .1 D .3 2.函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)3.函数y =lg1|x +1|的大致图像为( )4.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 5.若log 2a 1+a 21+a <0,则a 的取值范围是________.6.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.7.函数y =1-lg (x +2)的定义域为( )A .(0,8]B .(2,8]C .(-2,8]D .[8,+∞) 8.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12x D .2x -29.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c 10.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)11.计算:(log 29)·(log 34)=________.12.设2a =5b =m ,且1a +1b=2,则m =________.13.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域.(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值.第二章 函数、导数及其应用第8讲 函数及方程一、必记3个知识点1.函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0成立的实数x 叫做函数y =f (x )(x ∈D )的零点. 2.二次函数y =ax 2+bx +c (a >0)的图像及零点的关系Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的图像及x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数两个一个零个3.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.二、必明2个易误区1.函数y =f (x )的零点即方程f (x )=0的实根,易误为函数点.2.由函数y =f (x )在闭区间[a ,b ]上有零点不一定能推出f (a )·f (b )<0,如图所示. 所以f (a )·f (b )<0是y =f (x )在闭区间[a ,b ]上有零点的充分不必要条件. 三、必会3个方法1.函数零点个数的判断方法(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图像及性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图像交点的个数:画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.2.三个等价关系(三者相互转化)3.用二分法求函数零点近似值的步骤第一步:确定区间[a ,b ],验证f (a )·f (b )<0,给定精确度ε; 第二步:求区间(a ,b )的中点c . 第三步:计算f (c );①若f (c )=0,则c 就是函数的零点;②若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); ③若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).第四步:判断是否达到精确度ε:即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二、三、四步.1.函数f (x )=log 3A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)3.函数f (x )=x 2-3x -18在区间[1,8]上________(填“存在”或“不存在”)零点.[典例] (1)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1 (2)函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3[典例] 若函数f (x )=x [针对训练]若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0ln x ,x >0有两个不同的零点,则实数a 的取值范围是_______.课后作业[试一试]1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12 C .0,-12 D .2,-122.函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) [练一练]函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 做一做1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .0 2.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f ⎝⎛⎭⎫-12·f ⎝⎛⎭⎫12<0,则方程f (x )=0在[-1,1]内( ) A .可能有3个实数根 B .可能有2个实数根 C .有唯一的实数根D .没有实数根3.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).4.已知函数f (x )=⎩⎪⎨⎪⎧x -2,x >0,-x 2+bx +c ,x ≤0满足f (0)=1,且f (0)+2f (-1)=0,那么函数g (x )=f (x )+x 的零点个数为_____5.下列图像表示的函数中能用二分法求零点的是( )6.已知函数y =f (x )的图像是连续不间断的曲线,且有如下的对应值: x 1 2 3 4 5 6 y124.435-7414.5-56.7-123.6则函数y =f (x )在区间[1,6]上的零点至少有( )A .2个B .3个C .4个D .5个7.执行如图所示的程序框图,若输入如下四个函数: ①y =2x ; ②y =-2x ; ③f (x )=x +x -1;④f (x )=x -x -1. 则输出函数的序号为( )A .①B .②C .③D .④8.[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .49.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0可得其中一个零点x 0∈______,第二次应计算________.10.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x +34,x ≥2,log 2x ,0<x <2.若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是_。
高考数学一轮总复习 第2章 函数、导数及其应用 第一节 函数及其表示课件 文 新人教A版
=f(g(x))的定义域
域
若y=f(g(x))的定义域为(a,b), 已知f(g(x))的定
则求出g(x)在(a,b)上的值域即 义域,求f(x)的定
得f(x)的定义域
义域
考点二 求函数的解析式 重点保分型考点——师生共研 [典例引领]
(1)已知 f x+1x=x2+x12,求 f(x)的解析式; (2)已知 f 2x+1=lg x,求 f(x)的解析式; (3)已知 f(x)是二次函数,且 f(0)=0,f(x+1)=f(x)+x+1,求 f(x); (4)已知函数 f(x)的定义域为(0,+∞),且 f(x)=2f1x· x-1,求 f(x).
如果按某一个确定的对应关 系f,使对于集合A中的 _任__意__一个元素x,在集合B 中都有_唯__一__确__定__的元素y与 之对应
函数
映射
名称
称__f:__A__→__B_为从 集合A到集合B的 一个函数
称对应_f_:__A_→__B_为从集合A 到集合B的一个映射
记法 y=f(x),x∈A 对应f:A→B是一个映射
A.[0,2 015]
B.[0,1)∪(1,2 015]
C.(1,2 016]
D.[-1,1)∪(1,2 015]
解析
4.若函数f(x2+1)的定义域为[-1,1],则f(lg x)的定义域为
A.[-1,1]
B.[1,2]
()
C.[10,100]
D.[0,lg 2]
解析
角度三:已知定义域确定参数问题 5.(2016·合肥模拟)若函数f(x)= 2x2+2ax-a-1的定义域
D.[-2,0]∪[1,2]
解析
2.函数f(x)= 1a-x-|x-1 1|(a>0且a≠1)的定义域为__________ ____________________.
数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析
第二章函数、导数及其应用第一讲函数及其表示知识梳理·双基自测错误!错误!错误!错误!知识点一函数的概念及表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个__非空数集__设A,B是两个__非空集合__对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的__任意__一个数x,在集合B中有__唯一__的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的__任意__一个元素x在集合B中有__唯一__的元素y与之对应名称称对应__f:A→B__为从集合A到集合B的一个函数称对应__f:A→B__为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个2。
函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:__定义域、值域、对应法则__。
(3)函数的表示法:__解析法、图象法、列表法__。
(4)两个函数只有当__定义域和对应法则__都分别相同时,这两个函数才相同.知识点二分段函数及应用在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系,这样的函数叫分段函数,分段函数是一个函数而不是几个函数.错误!错误!错误!错误!1.映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射的两个特征:第一,在A中取元素的任意性;第二,在B中对应元素的唯一性;(3)映射问题允许多对一,但不允许一对多.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数虽由几个部分组成,但它表示的是一个函数.4.与x轴垂直的直线和一个函数的图象至多有1个交点.双错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)f(x)=错误!+错误!是一个函数.(×)(2)函数f(x)的图象与直线x=1的交点只有1个.(×)(3)已知f(x)=m(x∈R),则f(m3)等于m3.(×)(4)y=ln x2与y=2ln x表示同一函数.(×)(5)f(x)=错误!则f(-x)=错误!(√)题组二走进教材2.(必修P23T2改编)下列所给图象是函数图象的个数为(B)A.1 B.2C.3 D.4[解析]①中当x〉0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.3.(必修1P24T4改编)已知f(x5)=lg x,则f(2)等于(D) A.lg 2 B.lg 32C.lg 错误!D.错误!lg 2[解析]解法一:由题意知x〉0,令t=x5,则t〉0,x=t错误!,∴f(t)=lg t错误!=错误!lg t,即f(x)=错误!lg x(x>0),∴f(2)=错误!lg 2,故选D.解法二:令x5=2,则x=2错误!,∴f(2)=lg 2错误!=错误!lg 2。
高考数学一轮复习第二章函数导数及其应用第一节函数及其表示课件新人教版
与定义x 的域值 相 对 应 的 y 值 叫 做 函 数 值 , 函 数 值 的 集 合 {f(x)|x∈A} 叫 做 函 数
的
.值域
3.函数的三要素: 定义域 、 值域 和对应关系.
4.表示函数的常用方法: 列表法 、 图象法 和解析式法.
• 温馨提醒 •
函数问题允许多对一,但不允许一对多.与x轴垂直的直线和一个函数
2x,x>0, x+1,x≤0,
________.
若f(a)+f(1)=0,则实数a的值等于
答案:-3
题型一 函数的定义域 自主探究 1.已知函数y=f(x2-1)的定义域为[- 3 , 3 ],则函数y=f(x)的定义 域为________.
答案:[-1,2]
题型一 函数的定义域 自主探究 1.已知函数y=f(x2-1)的定义域为[- 3 , 3 ],则函数y=f(x)的定义 域为________.
• 温馨提醒 • 二级结论 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数 的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
必明易错 1.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要 注意函数的定义域. 2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函 数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨 论.
的图象至多有1个交点.
1.(多选题)下列图象中,能表示函数的图象的是( ABC )
解析:显然,对于选项D,当x取一个正值时,有两个y值与之对应,不 符合函数的定义.
2.函数 f(x)= 2x-1+x-1 2的定义域为( C )
A.[0,2)
B.(2,+∞)
C.[0,2)∪(2,+∞)
高考数学第二章 函数与导数第1课时 函数及其表示
解析:矩形的另一条边长为 15-x,且 x>0,15-x>0.
5. (必修 1P32 习题 7 改编)已知函数 f(x)= x
a=________.
答案:3或-1
2
1
解析:若 a≥0,则 1-2a=a,得 a=3;若 a<0,则a=a,得 a=-1.
2
1. 函数的定义 一般地,设 A、B 是两个非空的数集,如果按照某种对应法则 f,对于集合 A 中的每一 个元素 x,在集合 B 中都有唯一的一个元素 y 和它对应,这样的对应叫做从 A 到 B 的一个 函数,通常记为 y=f(x),x∈A. 2. 函数的三要素 函数的构成三要素为定义域、值域、对应法则.由于值域是由定义域和对应法则决定 的,所以如果两个函数的定义域和对应法则完全一致,我们就称这两个函数是同一函数. 3. 函数的表示方法 表示函数的常用方法有列表法、解析法、图象法. 4. 分段函数 在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函 数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集. 5. 映射的概念 一般地,设 A、B 是两个非空的集合,如果按某一个确定的对应关系 f,使对于集合 A 中的任意一个元素 x,在集合 B 中都有唯一确定的元素 y 与之对应,那么就称对应 f:A→B 为从集合 A 到集合 B 的一个映射. [备课札记]
1.
=________.
1
答案:4 -2n
考点新知
① 理解函数的概念,了解构成函数的要素. ② 在实际情境中,会根据不同的需要选择
恰当的方法(如图象法、列表法、解析法) 表示函数.
③ 了解简单的分段函数,并能简单应用
1
(必修 1P24 练习 5 改编)若 f(x)=x-x2,则 f(2)=________,f(n+1)-f(n)
2函数与导数(9课时)学生版.docx
2函数与导数(第1课时函数及其表示)【双基回顾】1、映射与函数(关键句:使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之対应) ⑴映射①“一对一或多对一”的对应;②集合/中的元素必有象且力中不同元素在B中可以有相同的象;集合B中的元素不一定有原象(即象集"・⑵一一映射①“一对一”的对应;②/中不同元素的象必不同,3中元素都有原彖.⑶函数/: A^B是特殊的映射.特殊在定义域A和值域B都是非空数集!所以函数图像与兀轴的垂线至多有一个公共点,但与尹轴垂线的公共点可能没有,也可能有任意个.2、函数的三要素:定义域,对应关系,值域.定义域和对应法则二者完全相同的函数是同一函数(用来判断函数是否为同一函数)3、定义域:(1 )使函数解析式有意义的x的取值范围(如:分母H 0 ;偶次根式被开方数非负;对数真数〉0,底数>0且H1;零指数幕的底数H0);使实际问题有意义;(2)复合函数的定义域求法规则:①定义域指的都是x的取值范围②y=f (m)与y二f (n)中m与n的取值范围一致。
4、值域:①观察法;②配方法(二次函数类);③换元法(三角与代数换元,特别注意新元的范围);④分离常数法;⑤基本不等式法;⑥单调性法;⑦导数法;⑧数形结合。
5、求解析式:(1)待定系数法;(2)换元法;(3)配凑法;(4)方程思想。
6、分段函数:(1)求值;(2)图象:(3)解析式;(4)性质。
【题型归纳】题型一、函数与映射已知映射—其+ A={-3, -2, -1, 1, 2, 3, 4},集合B屮的元素都是A中的元素在映射/下的象,且对于任意的aWA,在集合B中和它对应的元素是|a|,则B中的元素有 __________ 个题型二、函数定义域与值域(1)函数y= 加"+ 1 的定义域为 _______ :V-x2 - 3兀 + 4(2)已知函数f(2x+l)的定义域为(0,1),则f(x)的定义域为_____________(3)求下列函数的值域:③ y = x—pl—2x;① f (x) =log2(3' + l); ②y =x'+2x(xW [0, 3]);题型三、求函数的解析式(1)已知/(x)为二次函数,且/(X - 2) = f\-x - 2),且/(0) = 1,图彖在x轴上截得的线段长为2迈, 求/(兀)的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 函数与导数第1课时 函数及其表示1. (必修1P 24练习5改编)若f(x)=x -x 2,则f ⎝⎛⎭⎫12=________,f(n +1)-f(n)=________. 答案:14-2n2. (必修1P 29习题8改编)若函数f(x)和g(x)分别由下表给出:则f(g(1))=____________,满足g(f(x))=1的x 值是________. 答案:3 1解析:f(g(1))=f(2)=3;由g(f(x))=1,知f(x)=2,所以x =1.3. (必修1P 31练习4)下列图象表示函数关系y =f(x)的有________.(填序号)答案:①④解析:根据函数定义,定义域内任意的一个自变量x 的值都有唯一一个y 与之对应.4. (必修1P 31练习3改编)用长为30cm 的铁丝围成矩形,若将矩形面积S(cm 2)表示为矩形一边长x(cm)的函数,则函数解析式为____________,其函数定义域为______________.答案:S =x(15-x) x ∈(0,15)解析:矩形的另一条边长为15-x ,且x>0,15-x>0.5. (必修1P 32习题7改编)已知函数f(x)=⎩⎨⎧1-12x ,x ≥0,1x ,x<0,若f(a)=a ,则实数a =________.答案:23或-1解析:若a ≥0,则1-12a =a ,得a =23;若a<0,则1a=a ,得a =-1.1. 函数的定义一般地,设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的一个元素y 和它对应,这样的对应叫做从A 到B 的一个函数,通常记为y =f(x),x ∈A .2. 函数的三要素函数的构成三要素为定义域、值域、对应法则.由于值域是由定义域和对应法则决定的,所以如果两个函数的定义域和对应法则完全一致,我们就称这两个函数是同一函数.3. 函数的表示方法表示函数的常用方法有列表法、解析法、图象法. 4. 分段函数在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.5. 映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.[备课札记]题型1 函数的概念例1 判断下列对应是否是从集合A 到集合B 的函数. (1) A =B =N *,对应法则f :x →y =|x -3|,x ∈A ,y ∈B ;(2) A =[0,+∞),B =R ,对应法则f :x →y ,这里y 2=x ,x ∈A ,y ∈B ; (3) A =[1,8],B =[1,3],对应法则f :x →y ,这里y 3=x ,x ∈A ,y ∈B ;(4) A ={(x ,y)|x 、y ∈R },B =R ,对应法则:对任意(x ,y)∈A ,(x ,y)→z =x +3y ,z ∈B.解:(1) 对于A 中的元素3,在f 的作用下得到0,但0不属于B ,即3在B 中没有元素与之对应,所以不是函数.(2) 集合A 中的一个正数在集合B 中有两个元素与之对应,所以不是函数.(3) 由y 3=x ,即y =3x ,因为A =[1,8],B =[1,3],对应法则f :x →y ,符合函数对应.(4) 由于集合A 不是数集,所以此对应法则不是函数. 备选变式(教师专享)下列说法正确的是______________.(填序号) ① 函数是其定义域到值域的映射;② 设A =B =R ,对应法则f :x →y =x -2+1-x ,x ∈A ,y ∈B ,满足条件的对应法则f 构成从集合A 到集合B 的函数;③ 函数y =f(x)的图象与直线x =1的交点有且只有1个;④ 映射f :{1,2,3}→{1,2,3,4}满足f(x)=x ,则这样的映射f 共有1个. 答案:①④ 解析:②中满足y =x -2+1-x 的x 值不存在,故对应法则f 不能构成从集合A 到集合B 的函数;③中函数y =f(x)的定义域中若不含x =1的值,则其图象与直线x =1没有交点.题型2 函数的解析式例2 求下列各题中的函数f(x)的解析式. (1) 已知f(x +2)=x +4x ,求f(x); (2) 已知f ⎝⎛⎭⎫2x +1=lgx ,求f(x);(3) 已知函数y =f(x)满足2f(x)+f ⎝⎛⎭⎫1x =2x ,x ∈R 且x ≠0,求f(x); (4) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x). 解:(1) (解法1)设t =x +2,则x =t -2,即x =(t -2)2, ∴ f(t)=(t -2)2+4(t -2)=t 2-4, ∴ f(x)=x 2-4(x ≥2).(解法2)∵ f(x +2)=(x +2)2-4, ∴ f(x)=x 2-4(x ≥2).(2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) 由2f(x)+f ⎝⎛⎭⎫1x =2x ,① 将x 换成1x ,则1x 换成x ,得2f ⎝⎛⎭⎫1x +f ()x =2x,② ①×2-②,得3f(x)=4x -2x ,得f(x)=43x -23x.(4) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a ≠0).由f(0)=1,得c =1. 由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=(ax 2+bx +1)+2x , 整理,得(2a -2)x +(a +b)=0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⎩⎪⎨⎪⎧a =1,b =-1, ∴ f(x)=x 2-x +1.变式训练求下列函数f(x)的解析式.(1) 已知f(1-x)=2x 2-x +1,求f(x); (2) 已知f ⎝⎛⎭⎫x -1x =x 2+1x2,求f(x); (3) 已知一次函数f(x)满足f(f(x))=4x -1,求f(x);(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求f(x). 解:(1) (换元法)设t =1-x ,则x =1-t , ∴ f(t)=2(1-t)2-(1-t)+1=2t 2-3t +2, ∴ f(x)=2x 2-3x +2.(2) (配凑法)∵ f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, ∴ f(x)=x 2+2.(3) (待定系数法)∵ f(x)是一次函数, ∴ 设f(x)=ax +b(a ≠0),则f(f(x))=f(ax +b)=a(ax +b)+b =a 2x +ab +b. ∵ f(f(x))=4x -1,∴ ⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1, ∴ f(x)=2x -13或f(x)=-2x +1.(4) (消去法)当x ∈(-1,1)时,有 2f(x)-f(-x)=lg(x +1),①以-x 代替x 得2f(-x)-f(x)=lg(-x +1),② 由①②消去f(-x)得,f(x)=23lg(x +1)+13lg(1-x),x ∈(-1,1).题型3 分段函数例3 已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.(1) 若a =-3,求f(10),f(f(10))的值;(2) 若f(1-a)=f(1+a),求a 的值.解:(1) 若a =-3,则f(x)=⎩⎪⎨⎪⎧2x -3,x<1,-x +6,x ≥1.所以f(10)=-4,f(f(10))=f(-4)=-11.(2) 当a>0时,1-a<1,1+a>1,所以2(1-a)+a =-(1+a)-2a ,解得a =-32,不合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a =2(1+a)+a ,解得a =-34,符合.综上可知,a =-34.备选变式(教师专享)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B(起点)向点A(终点)运动,设点P 运动的路程为x ,△ABP 的面积为y.(1) 求y 与x 之间的函数关系式; (2) 画出y =f(x)的图象.解:(1)y =⎩⎨⎧2x ()0≤x ≤4,8()4<x ≤8,-2x +24()8<x ≤12.(2)y =f ()x 的图象如图.1. (2013·扬州期末)若函数f(x)=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x>0,则f(f(0))=________.答案:0解析:f(0)=30=1,f(f(0))=f(1)=log 21=0. 2. (2013·南通一模)定义在R 上的函数f(x),对任意x ∈R 都有f(x +2)=f(x),当x ∈(-2,0)时,f(x)=4x ,则f(2 013)=________.答案:14解析:由已知,f(x)是以2为周期的周期函数,故f(2 013)=f(-1)=4-1=14.3. (2013·连云港期末)已知函数f(x)=⎩⎪⎨⎪⎧2,x ∈[0,1],x ,x [0,1],则使f(f(x))=2成立的实数x 的集合为________.答案:{x|0≤x ≤1或x =2}解析:当x ∈[0,1]时,f(f(x))=f(2)=2成立;当x [0,1]时,f(f(x))=f(x)=x ,要使f(f(x))=2成立,只需x =2.综上,实数x 的集合为{x|0≤x ≤1或x =2}.4. (2013·苏南四市一模)已知函数f(x)=xx +1+x +1x +2+x +2x +3+x +3x +4,则f ⎝⎛⎭⎫-52+2+f ⎝⎛⎭⎫-52-2=________. 答案:8解析:因为f(x)=x x +1+x +1x +2+x +2x +3+x +3x +4=4-⎝⎛⎭⎫1x +1+1x +2+1x +3+1x +4.设g(x)=1x +1+1x +2+1x +3+1x +4, 则g(-5-x)=-⎝⎛⎭⎫1x +4+1x +3+1x +2+1x +1,所以g(x)+g(-5-x)=0,从而f(x)+f(-5-x)=8, 故f ⎝⎛⎭⎫-52+2+f ⎝⎛⎭⎫-52-2=8.1. 已知函数f(x)=alog 2x -blog 3x +2,若f ⎝⎛⎭⎫12 014=4,则f(2 014)的值为________. 答案:0解析:∵ f ⎝⎛⎭⎫12 014=alog 212 014-blog 312 014+2= -(alog 22 014-blog 32 014)+2=4,∴ f(2 014)=alog 22 014-blog 32 014+2=(-2)+2=0.2. 已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,2x ,x ≤0,则满足不等式f(f(x))>1的x 的取值范围是________.答案:(4,+∞)解析:当x ≤0时,2x ∈(0,1],f(f(x))=log 22x =x>1,不符合;当0<x ≤1时,log 2x ≤0,f(f(x))=2log 2x =x>1,不符合;当x>1时,log 2x>0,f(f(x))=log 2(log 2x)>1,解得x>4.3. 集合M ={f(x)|存在实数t 使得函数f(x)满足f(t +1)=f(t)+f(1)},则下列函数(a 、b 、c 、k 都是常数):① y =kx +b(k ≠0,b ≠0);② y =ax 2+bx +c(a ≠0);③ y =a x (0<a<1);④ y =kx(k ≠0);⑤ y =sinx.其中属于集合M 的函数是________.(填序号) 答案:②⑤解析:对于①,由k(t +1)+b =kt +b +k +b ,得b =0,矛盾,不符合;对于②,由a(t +1)2+b(t +1)+c =at 2+bt +c +a +b +c ,得t =c 2a ,符合题意;对于③,由a t +1=a t +a 1,所以a t =a a -1,由于0<a<1,a t =a a -1<0,无解;对于④,由k t +1=k t+k ,无解;对于⑤,由sin(t +1)=sint +sin1,取t =2k π,k ∈Z ,符合题意.综上,属于集合M 的函数是②⑤.4. 已知f(x)为二次函数,不等式f(x)+2<0的解集是⎝⎛⎭⎫-1,13,且对任意α、β∈R 恒有f (sinα)≤0,f(2+cosβ)≥0,求函数f(x)的解析式.解:设f(x)=a(x +1)⎝⎛⎭⎫x -13-2(a >0), ∵ 函数f(x)对任意α、β∈R 恒有f(sinα)≤0,f(2+cosβ)≥0,取si nα=1,cos β=-1,则f(1)≤0与f(1)≥0同时成立,∴ f(1)=0,∴ a =32,∴ f(x)=32x 2+x -52.1. 函数是特殊的映射,其特殊性在于集合A 与B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射;而映射不一定是函数从A 到B 的一个映射,A 、B 若不是数集,则这个映射不是函数.2. 函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;② 根据给出的对应法则,自变量在定义域中的每一个值,是否都有唯一确定的函数值.3. 函数解析式的求解方法通常有:配凑法,换元法,待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法体现的方程思想,即根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).[备课札记]。