数学思想与方法1

合集下载

国开电大数学思想与方法第一关参考答案

国开电大数学思想与方法第一关参考答案

国开电大数学思想与方法第一关参考答案题目1.巴比伦人是最早将数学应用于()的。

在现有的泥板中有复利问题及指数方程。

A.农业B.运输C.工程D.商业【答案】:商业题目2.《九章算术》成书于(),它包括了算术、代数、几何的绝大部分初等数学知识。

A.商朝B.战国时期C.西汉末年D.汉朝【答案】:西汉末年题目3.金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了()的方法。

A.几何测量B.占卜C.代数计算D.天文测量【答案】:天文测量题目 4.在丢番图时代(约250)以前的一切代数学都是用()表示的,甚至在十五世纪以前,西欧的代数学几乎都是用()表示。

A.文字,文字B.文字,符号C.符号,文字D.符号,符号【谜底】:文字,文字题目5.古埃及数学最光辉的成便可以说是()的发现。

A.球体积公式B.圆面积公式C.进位制的发明D.四棱锥台体积公式【谜底】:四棱锥台体积公式题目6.《几何原本》中的素材并不是是XXX所独创,大部分材料来自同他一起进修的()。

A.XXX大学派B.XXX学派C.XXX学派D.爱奥尼亚学派【答案】:XXX学派题目7.古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长度就是(),这个数字和现代人们计算的宇宙年龄十分接近。

A。

100亿年B。

1亿年C。

1000亿年D。

10亿年【谜底】:100亿年题目8.根据XXX的设法主意,一个完整的理论体系应该是一种演绎体系的布局,知识都是从()中演绎出的结论。

A.最终原理B.一般原理。

华罗庚的数学思想和方法论

华罗庚的数学思想和方法论

华罗庚的数学思想和方法论华罗庚的数学思想和方法论————————————华罗庚(1871-1959),清末民初著名的数学家,也是中国近代数学的奠基者。

他的数学思想和方法论,在中国乃至世界数学史上都有重要的影响力。

一、华罗庚的数学思想1. 重视实践华罗庚提出“实践出真知”的观点,他认为,只有将数学从理论上运用到实际中,才能有助于深入了解数学本质。

他曾经说过:“数学是一个可以用来推理实际问题的工具,其本质就在于实践中。

”华罗庚在《数学史》一书中重点提出了“以实践为导向”的发展历程。

2. 强调实用性华罗庚强调将数学从理论上运用到实际中,而不是仅仅在理论上研究和推理。

他认为,数学必须有实际意义,而不是仅仅是为了表明一个抽象的概念而已。

例如,他在《中国数学史》一书中强调:“数学的发展不是为了改变人们的思想,而是为了使其在实际生活中有用。

”3. 追求创新华罗庚注重实践,但他也强调要创新。

他认为,理论研究不能固步自封,必须要不断改进和发展。

他曾说过:“创新是数学的生命。

要想使数学发展,就必须要有新的理论,新的方法和新的思想。

”二、华罗庚的方法论1. 坚持实用原则华罗庚认为,在实际应用中,要遵循“实用原则”。

他说:“数学的发展不是为了表明一个抽象的概念而已,而是要找到更快更准确的方法来解决实际问题。

”这就是华罗庚对实用原则的重要思想。

2. 坚持理论服务实际华罗庚强调要将理论服务于实际,而不能将实际服务于理论。

他说:“数学不能因为它本身的复杂性而忽略实际问题;要想发展数学,就必须要根据实际来创造理论。

”3. 坚持学科交叉华罗庚强调要建立各学科之间的关系,将各学科内容相互补充。

他说:“要想发展数学,就必须要将数学与其他学科相互结合,并从多方面深入地进行研究。

”这也是华罗庚对学科交叉的重要思想。

总之,华罗庚在中国乃至世界数学史上都留下了重要的影响力。

他重视实践、强调实用性、追求创新、坚持实用原则、坚持理论服务实际、坚持学科交叉等理念都对中国近代数学的发展具有重要的意义。

《数学思想与方法》综合作业答案1

《数学思想与方法》综合作业答案1

谈谈我对我国小学数学教育的看法九年义务教育改革的核心是实施素质教育,数学作为一门基础自然学科,如何实施素质教育这正是当前广大数学教师非常关注的新课题。

实施素质教育是我国社会主义现代化建设和迎接国际竞争的迫切需要。

我们要在21世纪激烈的国际竞争中处于战略主动地位,就必须优先发展教育,必须实施素质教育,唯有如此才能实现发展教育的根本任务,提高全民整体索质,从而实现社会的快速发展。

素质教育关系着一个国家和民族的未来。

小学是义务教育的奠基工程,而小学数学则是基础教育的一门重要学科。

如何在小学数学教学中全面贯彻落实素质教育,发挥整体育人功能,这是每位教育工作者都应认真思考的问题。

本文就小学数学素质教育谈几点认识。

一、学习素质理论,统一思想认识由于我国的基础教育在“应试教育”的轨道上运行多年,人们在思想观念、政策导向、管理体制乃至教育的内容与方法等诸多方面,都形成了一整套固定的模式,因此,要实现从应试教育向素质教育的转轨,决非轻而易举的事。

随着社会的进步和发展,以及教育体制持续不断的改进,大家认识到素质教育是一种旨在谋求学生身心发展的教育,是一种承认差异,重视个性的教育,是确认学生主体,从学生个体实际出发的教育,是一种根据社会需要,给学生的素质发展以价值导向与限定的教育,同时又是一种重知识,又不唯知识,以提高民族素质为最终目的的教育。

二、素质教育是数学教学改革的主旋律围绕素质教育的实施这一主题,数学教学改革应重视如下几个方面:1.重视非智力因素,培养学生的个性品质。

一般来说,非智力因素可以转化学习动机,成为学生学习的内驱力;还可以对学生的学习起到调节、强化作用。

智力和非智力因素是学生统一的心理活动过程和不同方面,认知过程是这两方面综合作用的结果。

我们着眼于学生的素质培养,不仅能使非智力因素对智能发展起到调节、促进作用,更重要的把促进学生非智力因素的发展本身看成是数学教学的一项重要目标,发展学生的个性品质。

2.重视学法指导,培养学习能力。

1小学数学中常见的数学思想方法有哪些

1小学数学中常见的数学思想方法有哪些

1小学数学中常见的数学思想方法有哪些数学思想方法是指在解决数学问题时所运用的思维方式和方法步骤。

下面是小学数学中常见的数学思想方法:1.观察法:通过观察问题中的数据和现象,发现问题的规律和特点。

可以通过观察图形、数据表格、实物等来推测规律。

2.归纳法:通过观察若干个具体的数学问题,总结问题中的共同特点,得出一般规律。

采用归纳法可以从特例推广到一般性结论。

3.推理法:通过逻辑推理的方式,从已知的前提出发,得出结论。

可以采用直接推理法、间接推理法、逆否命题推理法等。

4.分类法:将问题中的元素或对象进行分类,找出每个类别的共性和差异性。

通过分类的方法,可以更好地理解和解决问题。

5.拆解法:将复杂的问题拆解成多个简单的小问题进行分析解决。

通过拆解问题的方法,可以更好地理清思路和解题思路。

6.类比法:将问题中的数学概念和方法与已知的类似问题进行对比,从而找到解决问题的方法和思路。

7.假设法:在解决问题时,可以先进行一定的假设,然后验证是否成立。

通过假设法可以引导学生尝试不同的解题思路。

8.反证法:通过假设问题的反面情况,证明原命题的成立。

采用反证法可以理解和解决一些反常或特殊情况下的问题。

9.逆向思维:将问题的要求逆转或倒过来思考。

逆向思维可以帮助学生从不同的角度思考问题,发现问题的本质。

10.前推法:从已知条件出发,通过按照题目要求的步骤和顺序逐步推导,最终得出结论。

11.空想法:通过想象和设想一些与实际情况不一样的情景或条件,以拓宽解决问题的思路。

12.再化归纳法:对已知的规律和经验进行归纳总结,再应用到新的问题中。

通过再化归纳法可以更好地理解和应用数学知识。

这些数学思想方法在小学数学中常常被运用。

学生通过学习和应用这些方法,可以培养出系统的数学思维和解决问题的能力。

数学思想与数学文化——第三讲_数学思想方法介绍(1,2)

数学思想与数学文化——第三讲_数学思想方法介绍(1,2)

◆数学方法具有三个基本特征:
(1)高度的抽象性和概括性; (2)精确性,即逻辑的严密性及结论的确定性; (3)应用的普遍性和可操作性。
◆数学方法在科学技术研究中具有举足轻重的地位和作用:
(1)提供简洁精确的形式化语言; (2)提供数量分析及计算的方法; (3)提供逻辑推理的工具。
二. 中学数学中常用的数学方法
数学证明的重要方法 ◆ 反证法与同一法 ◆ 数学归纳法 中学数学中几种常用的具体方法
◆ 待定系数法
◆ 配方法 ◆ 基本量法 ◆ 递推法
三. 几类常用的数学思想方法介绍
有人这样给数学思想方法分类: 1. 操作性思想方法 例如:换元法、配方法、待定系数法、割补法、构 造法等; 2. 逻辑性思想方法 例如:抽象、概括、分析、综合、演绎等; 3 .策略性思想方法 例如:方程与函数、化归、猜想、数形结合、整体 与系统等。
数学研究的基本方法 ◆ 数学抽象方法 ◆ 数学模型方法 ◆ 数学研究活动的一般方法 数学中的逻辑方法 ◆ 数学定义方法 ◆ 逻辑划分方法 ◆ 数学公理化方法
数学解题的思维方法
◆ 数学推理方法(演绎法、
归纳法、类比法) ◆ 分析法与综合法 ◆ 数学实验方法 ◆ 数形结合方法 ◆ 关系影射反演原则(换 元法、初等变换方法)
☆精彩范例:
力学:牛顿万有引力定律; 电磁学:麦克斯韦方程组; 化学:门捷列夫元素周期表; 生物学:孟德尔遗传定律…
☆数学模型应用日益广泛的原因:
a) 社会生活的各个方面日益数量化; b) 计算机的发展为精确化提供了条件; c) 很多无法试验或费用很大的试验问题,用数学模型进行研究是一 条 捷径。
附:
参考文献
[1] 王子兴.数学方法论.中南工业大学出版社.2002 [2] 徐利治.数学方法论选讲(第三版).华中理工大学 出版社.2000 [3] 姜启源等.数学模型(第三版).高等教育出版 社.2003

数学思想与方法形考作业一~十通关作业答案

数学思想与方法形考作业一~十通关作业答案

电大国开《数学思想与方法》形考作业:一至十通关作业答案第一关题目1巴比伦人是最早将数学应用于()的。

在现有的泥板中有复利问题及指数方程。

C. 商业题目2《九章算术》成书于(),它包括了算术、代数、几何的绝大部分初等数学知识。

D. 西汉末年题目3金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了()的方法。

C. 天文测量题目4在丢番图时代(约250)以前的一切代数学都是用()表示的,甚至在十五世纪以前,西欧的代数学几乎都是用()表示。

B. 文字,文字题目5古埃及数学最辉煌的成就可以说是()的发现。

A. 四棱锥台体积公式题目6《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的()。

B. 柏拉图学派题目7古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长度就是(),这个数字和现代人们计算的宇宙年龄十分接近。

D. 100亿年题目8根据亚里士多德的想法,一个完整的理论体系应该是一种演绎体系的结构,知识都是从()中演绎出的结论。

D. 初始原理题目9欧几里得的《几何原本》几乎概括了古希腊当时所有理论的(),成为近代西方数学的主要源泉。

B. 数论及几何学题目10数学在中国萌芽以后,得到较快的发展,至少在()已经形成了一些几何与数目概念。

A. 六七千年前第二关题目1欧几里得的《几何原本》是一本极具生命力的经典著作,它的著名的平行公设是( )。

C. 同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交题目2《九章算术》是我国古代的一本数学名著。

“算”是指(),“术”是指()。

A. 算筹解题方法题目3《几何原本》就是用()的链子由此及彼的展开全部几何学,它的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。

D. 逻辑题目4《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容:()。

常用的数学思想和方法

常用的数学思想和方法

不怕难题不得分,就怕每题扣点分!常用的数学思想和方法一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想;5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做!①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题);⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法.六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化.七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做!怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类.【特别提醒】1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“=”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分!5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题.7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的.8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固.⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。

四年级下册数学试题-奥数专题讲练:第4讲 数学方法与思想(一) 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:第4讲 数学方法与思想(一) 精英篇(解析版)全国通用

第四讲数学方法和思想(一)数学是一座智慧的城堡,探索则是打开城堡大门的钥匙。

在这神秘的世界里有许多的难题,应用题便是其中有趣的一族。

这节课向你介绍一些巧妙解应用题的好方法-----假设法和对应法。

它们不但能让你的思维变得灵活,而且还能提高你的正确率。

假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。

有些用一般方法能解答的应用题,用假设法解答可能更简捷。

在奥数中,典型的“鸡兔同笼”问题,可是“假设法”一手建起的大家庭!用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。

聪明的小朋友们,让我们一起用智慧来探索难题吧,相信你一定能有不小的收获!【例1】三只木筏运木板910块,第一只木筏比第二只木筏多运30块,第三只木筏比第二只木筏少运20块,三只木筏各运多少块?分析: 法1:我们可以假设这三只木筏运的一样多.假设第二、三只木筏与第一只木筏运的一样多,以第一只木筏的运量为标准,则第二只木筏要比实际多运30块,第三只木筏要比实际多运20+30块,这时总量就不是910块了,是(910+30+30+20)块。

那么,第一只木筏运木板:(910+30+30+20)÷3=990÷3=330(块);第二只木筏运木板:330-30=300(块);第三只木筏运木板:300-20=280(块)。

法2 :假设三只木筏与第二只木筏同样多。

第二只木筏运木板:(910-30+20)÷3=300(块);第一只木筏运木板:300+30=330(块);第三只木筏运木板:300-20=280(块)。

【例2】在一次登山活动中,张明上山时每分钟走50米,到达山顶后沿原路下山,每分钟走75米,张明上山下山的平均速度是多少?分析:我们要求平均速度,就必须知道上、下山共走了多少米的路,可它是个未知数,我们一点也不知道,这时我们就可以假设上、下山的总路程是150米(150是50和75的最小公倍数),那么平均速度就是用总路程除以总时间就可以了。

数学思想与方法模拟考试卷1

数学思想与方法模拟考试卷1

一、填空题(每题5分,共25分)1.算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解3.所谓数形结合方法,就是在研究数学问题时,(由数思形、见形思数、数形结合考虑问题)的一种思想方法。

5.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。

7.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合 )的趋势。

9.学生理解或掌握数学思想方法的过程一般有三个主要阶段:(潜意识阶段、明朗化阶段、深刻理解阶段)。

1.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的(《几何原本》)。

2.随机现象的特点是(在一定条件下,可能发生某种结果,也可能不发生某种结果 )。

3.演绎法与(归纳法 )被认为是理性思维中两种最重要的推理方法。

4.在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。

5.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。

6.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

7.传统数学教学只注重(形式化数学知识,)的传授, 而忽略对知识发生过程中(数学思想方法)的挖掘。

8.特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

9.分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

10.数学模型可以分为三类:(概念型、方法型、结构型)。

二、判断题(每题5分,共25分。

在括号里填上是或否)1.计算机是数学的创造物,又是数学的创造者。

(是2.抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。

(否3.一个数学理论体系内的每一个命题都必须给出证明。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些数学作为一门重要的学科,对于小学生来说,既是一种学习工具,也是一种思维方式的培养。

在学习数学的过程中,培养学生的数学思想方法至关重要。

那么,小学数学思想方法有哪些呢?下面我们来一一探讨。

首先,小学数学思想方法之一是逻辑思维。

数学是一门严谨的学科,逻辑思维是数学思维的基础。

在学习数学的过程中,学生需要培养严密的逻辑思维能力,学会分析问题、归纳规律、推理论证。

例如,在解决数学题目时,学生需要按部就班地进行思考,找出问题的关键点,进行逻辑推理,找出解题的正确方法。

这种逻辑思维方法不仅能够帮助学生解决数学问题,也能够培养学生的严谨思维能力,对学习其他学科也大有裨益。

其次,小学数学思想方法之二是抽象思维。

数学是一门抽象的学科,学生需要具备一定的抽象思维能力。

在学习数学的过程中,学生需要将具体的问题进行抽象,找出其中的共性和规律。

例如,在学习几何图形的时候,学生需要将具体的图形进行抽象,找出它们的共同特点,从而得出一般性的结论。

这种抽象思维方法不仅能够帮助学生理解数学知识,也能够培养学生的抽象思维能力,提高学生的综合分析问题的能力。

再次,小学数学思想方法之三是直观思维。

数学是一门具有直观性的学科,学生需要具备一定的直观思维能力。

在学习数学的过程中,学生需要通过观察、感觉、想象等方式来理解数学概念和规律。

例如,在学习数学几何的时候,学生需要通过观察图形、感受形状、想象变化等方式来理解几何概念。

这种直观思维方法不仅能够帮助学生理解数学知识,也能够培养学生的直观思维能力,提高学生的空间想象能力。

最后,小学数学思想方法之四是创新思维。

数学是一门富有创造性的学科,学生需要具备一定的创新思维能力。

在学习数学的过程中,学生需要通过灵活的思维方式来解决问题,发现新的方法和规律。

例如,在解决数学问题的时候,学生可以通过不同的思路,找出不同的解题方法,培养自己的创新思维能力。

这种创新思维方法不仅能够帮助学生提高解决问题的能力,也能够培养学生的创新意识,激发学生对数学的兴趣和热情。

电大形考三1:《数学思想与方法》数学教学案例理论分析答案

电大形考三1:《数学思想与方法》数学教学案例理论分析答案

电大形考三1:《数学思想与方法》数学
教学案例理论分析答案
引言
本文对《数学思想与方法》课程中的数学教学案例进行理论分析,旨在探讨案例中所涉及的数学思想与方法,并提供相应的解答
策略。

案例分析
案例一
案例描述:小明在做一道数学题时遇到了困难,他不知道如何
使用二项式定理来求解。

请根据数学思想与方法,给出解答策略。

解答策略:首先,我们需要理解二项式定理的基本概念和公式。

然后,将题目中给出的具体情境与二项式定理相联系,分析题目的
要求和条件。

接下来,利用二项式定理的公式,将问题转化为求解
系数的问题。

最后,根据题目中给出的具体数值,带入公式计算,
得出最终的答案。

案例二
案例描述:小红在解一道平面几何题时,不清楚如何应用勾股定理。

请根据数学思想与方法,给出解答策略。

解答策略:首先,我们需要理解勾股定理的基本概念和公式。

然后,将题目中给出的具体情境与勾股定理相联系,分析题目的要求和条件。

接下来,根据勾股定理,建立方程或关系式。

最后,通过求解方程或关系式,得出最终的答案。

总结
通过对数学教学案例的理论分析,我们可以发现数学思想与方法在解题过程中起到了重要的作用。

理解基本概念和公式、联系具体情境、分析要求和条件、建立方程或关系式以及求解方程或关系式是解答数学问题的关键步骤。

在教学中,我们应该注重培养学生的数学思维能力,帮助他们掌握正确的解题方法,从而提高数学研究的效果。

数学思想系列方法(1)

数学思想系列方法(1)

(想一想:方程 x

x2 的解是什么?) 3x 2
c n 成等差数列时:
1
则 an1 an
(1) 若 b
c n ,用“累加法”即可求出 an .
A B 3 Bn1 对 n 2 恒成立,得 A 1, B 2 知 an 2 n 成等
1 ,且 b 0 时呢?
c n 是等差数列 c n p n q , 故 c n 也可以像 c 一样分
类型三: an
(1) .若 c
b an1 c d an1 e b an 1 1 e 1 d ,取倒数得 d an1 e an b an1 b
设 bn
an 1 ,则 bn
4bn1 ,归结为上面的情形. 3bn1 1
即 an = (2) 若 b 探究: 解: 设 an
an an1 an1 an2 a2 a1 a1
比数列.
练习
1.数列{an}满足 a1=1 且 an+1+2an=1,求其通项公式。
1, n 2 时, an
an 1 2 ,求 a . 3an 1 2
n
n 一
, 且
k
c 1 b
故 {an

c } 成等差数列. 1 b
定可像 c 一样分解: 设 , 则
解:设 an
k
m (an 1 k ) ,则 3an 1 2
(想一想:方程 例 1.已知 a1

2 2S n (n 2) 2S n 1
1 为等差数列 } Sn
(2)求{an}的通项公式
10.数列{an}满足 a1=a2=5 且 an+1=an+6an-1(n≥2) ,求 an 5.已知数列{an}满足 a1=1 且 an+1= 2an ,求 an。 an+2

高考数学思想-方法-技巧-规律1.doc

高考数学思想-方法-技巧-规律1.doc

高考数学思想-方法-技巧-规律第一章高中数学解题基本方法一、配方法 (4)二、换元法 (12)三、待定系数法 (27)四、定义法 (38)五、数学归纳法 (49)六、参数法 (59)七、反证法 (68)八、消去法………………………………………九、分析与综合法………………………………十、特殊与一般法………………………………十一、类比与归纳法…………………………十二、观察与实验法…………………………第二章高中数学常用的数学思想一、数形结合思想 (76)二、分类讨论思想 (89)三、函数与方程思想 (103)四、转化(化归)思想 (120)第三章高考热点问题和解题策略一、应用问题 (135)二、探索性问题 (147)三、选择题解答策略 (160)四、填空题解答策略 (174)附录………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。

而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对“数学思想、数学方法”理解透彻及融会贯通时,才能提出“新看法、巧解法”。

高考试题十分重视对于“数学思想方法”的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。

我们要有意识地“应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光”。

高考试题主要从以下几个方面对数学思想方法进行考查:①.常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②.数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③.数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④.常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学中的思想方法

数学中的思想方法

数学中的思想方法强调数学思想方法的重要性,它是数学的灵魂和精髓。

同时很多人也常常感慨,在学习数学过程中,很难感受到数学思想的存在,更不要说运用数学思想方法去解决问题了。

因此,如何才干感受到数学思想,如何才干学会运用数学思想解决实际问题,自然成了很多人非常关怀的话题。

2方法一:化归与转化的思想将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变幻,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。

化归与转化思想的实质是显示联系,实现转化。

转化有等价转化和非等价转化。

等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的状况下,进行不等价转化,应附加限制条件,以坚持等价性,或对所得结论进行必要的验证。

除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。

从这个意义上讲,解决数学问题就是从未知向已知转化的过程。

化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转达化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,函数与方程的转化等,都是转化思想的体现。

3方法二:对应的思想方法对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。

小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向同学渗透了事物间的对应关系,为同学解决问题提供了思想方法。

4方法三:分析法和综合法有时候我们经常会碰到很多问题无从下手,此时我们应该可以利用此种方法。

从要证实的结论出发,或者从已知条件出发,进行提炼,可能会有意想不到的结果。

数学思想与方法

数学思想与方法

数学思想与方法数学是一门古老而又现代的学科,它不仅是一种知识体系,更是一种思维方式和方法论。

数学思想与方法在人类文明的发展中起着举足轻重的作用,它的影响深远而持久。

在本文中,我们将探讨数学思想与方法的重要性及其在现代社会中的应用。

首先,数学思想是指人们在解决问题时所采用的一种思维方式。

这种思维方式包括抽象思维、逻辑思维和推理思维等,它们使人们能够更好地理解和解决问题。

数学方法则是指人们在实际问题中所采用的一种解决途径和技术手段。

这些方法包括数学模型、数学定理、数学公式等,它们使人们能够更加有效地应对现实生活中的各种挑战。

其次,数学思想与方法在现代社会中发挥着重要的作用。

首先,数学思想与方法为科学技术的发展提供了重要支持。

在物理学、化学、生物学等自然科学领域,数学思想与方法被广泛应用,为科学研究提供了重要的理论基础和技术手段。

其次,数学思想与方法在经济建设和社会管理中也发挥着重要作用。

在经济学、管理学、统计学等社会科学领域,数学思想与方法被广泛应用,为经济建设和社会管理提供了重要的决策支持和管理手段。

再次,数学思想与方法对个人的发展也具有重要意义。

数学思想的抽象思维和逻辑思维能力有助于提高个人的分析和解决问题的能力,数学方法的应用能力有助于提高个人的实际工作能力。

因此,学习和掌握数学思想与方法对于个人的综合素质提高具有重要意义。

综上所述,数学思想与方法在现代社会中发挥着重要作用,它不仅是一种学科,更是一种思维方式和方法论。

学习和掌握数学思想与方法对于科学技术的发展、经济建设和社会管理、个人的发展都具有重要意义。

因此,我们应该重视数学思想与方法的学习和应用,努力提高自己的数学素养,为社会的发展和个人的成功做出更大的贡献。

高中数学数学思想方法

高中数学数学思想方法

高中数学数学思想方法数学是一门精密而有挑战性的科学,它在高中阶段发挥着重要的作用。

在高中数学学习的过程中,我们需要掌握各种数学思想和方法,以便有效地解决问题。

本文将介绍一些高中数学中常用的数学思想方法,帮助学生更好地理解和应用数学知识。

一、归纳法归纳法是一种通过观察事实或数据,总结规律的推理方法。

在高中数学中,我们经常使用归纳法来发现数学问题中的规律,并推广到更一般的情况。

例如,在解决数列问题时,我们可以通过观察数列的前几项,找出数列的通项公式,然后利用归纳法证明。

二、逆向思维逆向思维是指从结果出发,逆向推导问题的解决办法。

在高中数学中,有时我们需要从问题的解决方法出发,推导出问题的条件或规律。

例如,在解决逆向问题时,我们可能需要先假设问题的解,然后通过逆推的方法,找出满足这个解的条件或规律。

三、类比思维类比思维是指将一个问题与已知的类似问题进行比较和类比,从而找到解决方法。

在高中数学中,我们经常使用类比思维来解决几何问题。

例如,在解决证明几何问题时,我们可以将给定的问题与已知的几何定理进行类比,找到问题解决的思路。

四、分析与综合分析与综合是指将一个复杂的问题拆解成若干个简单的子问题进行分析,然后将分析结果综合起来解决原来的问题。

在高中数学中,这种思想方法常常用于解决函数与方程的问题。

例如,在解决复杂的函数方程时,我们可以将整个问题拆解成若干个简单的方程,分别解决这些方程,然后将结果综合起来得到原问题的解。

五、抽象与具体抽象与具体是指将具体问题抽象成一般性的形式,从而更好地理解和解决问题。

在高中数学中,我们经常使用抽象与具体的思维方法来解决数学证明问题。

例如,在证明几何定理时,我们可以将具体的图形抽象成一般性的几何形状,从而用更一般的方法证明定理的正确性。

六、推理与演绎推理与演绎是指通过逻辑推理和演绎推断出问题的解决办法。

在高中数学中,我们常常使用推理与演绎的思想方法来解决数学证明问题。

例如,在解决集合论证明问题时,我们可以通过逻辑推理和演绎推断出问题的结论。

数学思想方法一整体思想(解析)(自己整理)

数学思想方法一整体思想(解析)(自己整理)

数学思想方法一整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想例1.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27-分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解.解:112242b 6112272(4)72()7a ab b a a b ab b a------===-+⨯-+-+说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.例2.已知代数式25342()2x ax bx cx x dx++++,当1x =时,值为3,则当1x =-时,代数式的值为解:因为当1x =时,值为3,所以231a b c d +++=+,即11a b cd++=+,从而,当1x =-时,原式()21211a b c d-++=+=-+=+例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ⎡⎤=-+-+-⎣⎦,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232⎡⎤=-+-+=⎣⎦ 说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化. 二.方程(组)与不等式(组)中的整体思想例4.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133k <+<,解得3655k -<<例5. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为分析:如果把56x y =⎧⎨=⎩代入3511x ay x by -=⎧⎨+=⎩,解出a ,b 的值,再代入3()()()11x y a x y x y b x y +--=⎧⎨++-=⎩进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐. 若采用整体思想,在方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩中令x y mx y n+=⎧⎨-=⎩,则此方程组变形为3511m an m bn -=⎧⎨+=⎩,对照第一个方程组即知56m n =⎧⎨=⎩,从而56x y x y +=⎧⎨-=⎩,容易得到第二个方程组的解为11212x y ⎧=⎪⎪⎨⎪=-⎪⎩,这样就避免了求a ,b 的值,又简化了方程组,简便易操作.解:11212x y ⎧=⎪⎪⎨⎪=-⎪⎩说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.例6.解方程 22523423x x x x+-=+分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.解:设223x x y +=,则原方程变形为54y y-=,即2450y y --=,解得15y =,21y =-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41x =-,经检验1x ,2x ,3x ,4x 都是原方程的解.说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54y y =+来解. (2)利用整体换元,我们还可以解决形如22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322y y +=,再转化为一元二次方程来求解. 例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.依题意,得37315410420x y z x y z ++=++=⎧⎨⎩..,即2331533420()().()().x y x y z x y x y z ++++=++++=⎧⎨⎩解关于x y +3,x y z ++的二元一次方程组,可得x y z ++=105.(元) 答:购甲、乙、丙各1件共需1.05元.第9题YXO 1-14321I HEDBA说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以目标明确,直奔主题,收到了事半功倍的效果. 三.函数与图象中的整体思想例8.已知y m +和x n -成正比例(其中m 、n 是常数) (1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式. 解:(1)因y m +与x n -成正比例,故可设y m k x n k +=-≠()()0 整理可得y k x k n m =-+()因k ≠0,k 、-+()k n m 为常数,所以y 是x 的一次函数.(2)由题意可得方程组-=--+=-+⎧⎨⎩1517k k n m k k n m ()()解得k =2,k n m +=13. 故所求的函数解析式为y x =-213. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.例9. 若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.分析:此题如果运用根的判别式和韦达定理,解答此题较为困难.整体考虑,把一元二次方程22(1)20x a x a +-+-=与二次函数22(1)2y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即2220a a a a ⎧+-<⎨-<⎩,∴20a -<<. 说明:(1)由于当1x =,1x =-时,0y <, 所以解答过程中不必再考虑0∆>了.(2)利用函数与图象,整体考察,是解决涉及方程(不等式)有关根的问题最有效的方法第11题OP FEDCBA在之一,在数学教学中应当引起足够的重视. 四.几何与图形中的整体思想例10.如图,123456∠+∠+∠+∠+∠+∠=分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分别与ABC ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三 角形外角定理,得360DAB IBA GCB ∠+∠+∠=°, 所以123456∠+∠+∠+∠+∠+∠=360°.说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键. 例11.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .解:不难看出,四边形AEPF 为平行四边形, 从而△OAF 的面积等于△OAE 的面积, 故图中阴影部分的面积等于△ABC 的面积, 又因为12ABC ABCD S S ∆=1134322=⨯⨯⨯=,所以图中阴影部分的面积为3. 说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.解:AF 与BC CF +的大小关系为AF BC CF =+.分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.练习一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.52. (2011,台湾省,26,5分)计算(250+0.9+0.8+0.7)2﹣(250﹣0.9﹣0.8﹣0.7)2之值为何?( ) A 、11.52 B 、23.04C 、1200D 、24003. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---错误!未找到引用源。

整式乘法中蕴含的五个数学思想和方法

整式乘法中蕴含的五个数学思想和方法

整式乘法中蕴含的五个数学思想和方法整式乘法是高中数学中的一种基本运算,它不仅是后续学习中的基础,也是解决实际问题中常见的数学手段之一、在整式乘法中,蕴含以下五个数学思想和方法。

一、代数思想:整式乘法是代数运算的一种形式,通过特定的规则和性质,将多项式相乘得到新的整式。

代数思想要求我们用字母和符号代表数,通过运算规则进行计算,从而解决实际问题和推导出结论。

代数思想在整式乘法中的体现是将多项式分解成乘积的形式,以便于进行计算和运算的简化。

例如,将一个多项式分解为两个因式相乘的形式,可以利用公式进行整式的乘法,避免了繁琐的运算。

二、分配律:整式乘法中的分配律是将一个因式与另一个因式中的每一项相乘,并将这些乘积相加得到最终的结果。

分配律可以将复杂的乘法运算简化为一系列简单的加法和乘法运算,使整式的乘法计算更加高效。

分配律在整式乘法中的体现是将多项式中的每一项都分别与另一个多项式中的每一项相乘,并将这些乘积相加得到最终结果。

通过应用分配律,可以将整式乘法分解成一系列简单的乘法和加法运算,从而简化整式乘法的计算过程。

三、合并同类项:合并同类项是整式乘法中的一个重要步骤,它要求将多个相同的项合并为一个项,并合并系数。

合并同类项的操作可以简化整式的形式,方便进行进一步的化简和计算。

合并同类项在整式乘法中的体现是将多个相同的项合并为一个项,并合并系数。

例如,将多项式2x+3x化简为5x,将多项式3a^2b+2a^2b合并为5a^2b。

四、乘法公式:乘法公式是整式乘法中的重要工具,它是特定形式的整式相乘的结果。

通过使用乘法公式,可以简化整式的计算过程,减少错误和避免重复的计算。

常见的乘法公式包括平方差公式、平方和公式、差积公式等。

平方差公式用于计算两个不同项的平方差,平方和公式用于计算两个不同项的平方和,差积公式用于计算两个不同项的差的平方。

通过合理应用乘法公式,可以在整式乘法中简化计算过程,提高计算效率。

五、结构问题:在整式乘法中,结构问题是指如何合理地组织和安排整式的各个因式,以便于进行快速和准确的计算。

初中数学解题常用的数学思想方法

初中数学解题常用的数学思想方法

初中数学解题常用的数学思想方法数学学习分为好多个环节,比如预习、上课、作业、复习、考试等等,而上课的部分是非常关键的环节。

小编整理了初中数学解题常用的数学思想方法,欢迎参考借鉴。

初中数学解题常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学思想与方法》平时作业讲评一
一、简答题
1.分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。

解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。

代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。

它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。

2.比较决定性现象和随机现象的特点,简单叙说确定数学的局限。

解答:确定性现象的特点是:在一定的条件下,其结果可以唯一确定。

因此确定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。

对于这类现象,由于条件和结果之间不存在必然性联系。

在数学学科中,人们常常把研究确定性现象数量规律的那些数学分支称为确定数学。

用这些分支来定量地描述某些确定性现象的运动和变化过程,从而确定结果。

但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。

同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。

这就是确定数学的局限所在。

二、论述题
1.论述社会科学数字化的主要原因。

解答:第一,社会管理需要精确化的定量依据,这是促使社会科学数字化的最根本的因素;
第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化;
第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。

这些新的数学分支使社会科学数字化成为可能;
第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

2.论述数学的三次危机对数学发展的作用。

解答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。

第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。

第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。

由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。

整个数学的发展史就是矛盾斗争的
历史,斗争的结果就是数学领域的发展。

三、分析题
1. 分析《几何原本》思想方法的特点。

解答:(1)封闭的演绎体系
《几何原本》就是一个最早的标准的演绎体系:由少数不定义的概念,如点、直线、平面等等,和不证明的命题——公理与公设——出发,在需要的地方,定义出相应的概念,按着一定的逻辑规则,演绎出所有其他命题来。

在《几何原本》的演绎体系中,公理是最一般的命题,它们是一系列演绎推理的前提,这个体系的所有其他命题,都是从公理(通过适当的定义)推导出来的。

《几何原本》是一个比较完整的、相对封闭的数学理论体系。

(2)抽象化的内容
《几何原本》中研究的对象都是抽象的概念和命题,它所探讨的是这些概念和命题之间的逻辑关系.不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型。

因此《几何原本》的内容是抽象的。

(3)公理化的方法
《几何原本》的第一篇中开头5个公设和5个公理.是全书其它命题证明的基本前提,接着给出23个定义,然后再逐步引入和证明定理。

定理的引入是有序的,在一个定理的证明中,允许采用的论据只有公设和公理与前面已经证明过的定理。

以后各篇除了不再给出公设和公理外也都照此办理。

这种处理知识体系与表述方法就是公理化方法。

2. 分析《九章算术》思想方法的特点。

解答:(1)开放的归纳体系
从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。

在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综合起来,就得到整个《九章算术》。

另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。

因此,《九章算术》是一个开放的归纳体系。

(2)算法化的内容
《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。

因此,内容的算法化是《九章算术》思想方法上的特点之一。

(3)模型化的方法
《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。

当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

相关文档
最新文档