2011年湖北省襄阳市中考数学试题(WORD解析版)

合集下载

湖北省襄阳市中考数学试卷及答案Word剖析版

湖北省襄阳市中考数学试卷及答案Word剖析版

A . 4a﹣a=3
B.a•a2=a3
考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 3801346
分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不 变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计
奈曼四中 2013 年中考数学备考资料
故选 A. 点评:
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相
反数是负数,一个负数的相反数是正数,0 的相反数是 0.
2.(3 分)(2013•襄阳)四川芦山发生 7.0 级地震后,一周内,通过铁路部门已运送救灾物资
15810 吨,将 15810 吨,将 15180 用科学记数法表示为( )
-1-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

湖北省襄阳市中考数学真题试题(解析版)

湖北省襄阳市中考数学真题试题(解析版)

2013年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)2.(3分)(2013•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物4.(3分)(2013•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()5.(3分)(2013•襄阳)不等式组的解集在数轴上表示正确的是()B C,6.(3分)(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()7.(3分)(2013•襄阳)分式方程的解为( )8.(3分)(2013•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )9.(3分)(2013•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()10.(3分)(2013•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()11.(3分)(2013•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节平均数为:(12.(3分)(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()的长为π=∴AB=ADcos30°=2AB=,=3=××3===.二、填空题(3*5=15分)13.(3分)(2013•襄阳)计算:|﹣3|+= 4 .14.(3分)(2013•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.x≥且15.(3分)(2013•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.AC=BC=AB=0.4mOC==16.(3分)(2013•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.=故答案为:.17.(3分)(2013•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.=,∴AB=2CD=2,=3,∴AB=2EF=6或.三、解答题(69分)18.(6分)(2013•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.÷÷×,a=1+﹣﹣.19.(6分)(2013•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号),tan∠BCD=,∴tan30°=,=m,∴tan45°=,+9+920.(6分)(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?21.(6分)(2013•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?,=0.222.(6分)(2013•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.,求出D′O=CO==2×的图象上,,y=∴D′O=CO=D′C,AO•CE=2××4×3=12,23.(7分)(2013•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60 度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,24.(9分)(2013•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.25.(10分)(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B 作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.=5AE=CE=,DE=4CD=7=== PA=PD=10=5∴AE=CE==3,DE==,+4=7==PD PC=PDPD+6=PD.26.(13分)(2013•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E 向上运动.设点P运动的时间为t秒.①当t为 2 秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△P AD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(.或秒时,△PAD==或.。

2011年中考数学试题及解析171套试题试卷_121

2011年中考数学试题及解析171套试题试卷_121

湖北省黄石市2011年初中毕业生学业考试一、仔细选一选(每小题3分,共30分)的值为( )A.2B. -2C. 2±D. 不存在2.黄石市2011年6月份某日一天的温差为11℃,最高气温为t ℃,则最低气温可表示为( )A. (11+t)℃B. (11-t)℃C. (t-11)℃D. (-t-11)℃ 3.双曲线21k y x -=的图像经过第二、四象限,则k 的取值范围是( ) A.12k > B. 12k < C. 12k = D. 不存在4. 有如下图形:①函数1y x =+的图形;②函数1y x=的图像;③一段弧;④平行四边形,其中一定是轴对称图形的有( )A.1个B.2个C.3个D.4个 5.如图(1)所示的几何体的俯视图是( )6.2010年12月份,某市总工会组织该市各单位参加“迎新春长跑活动”,将报名的男运动员分成3组:青年组,中年组,老年组。

各组人数所占比例如图(2)所示,已知青年组有120人,则中年组与老年组人数分别是( )A.30,10B.60,20C.50,30D.60,107.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为( ) A. 3cm B. 6cmC.cmD. cm8.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线,则n 的值为( )A. 5B. 6C. 7D. 89.设一元二次方程(1)(2)(0)x x m m --=>的两根分别为,αβ,且αβ<,则,αβ满足( )A. 12αβ<<<B. 12αβ<<<C. 12αβ<<<D. 1α<且 2β>10.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( ) A. 23-B.29-C. 47-D. 27- 二、认真填一填(每小题3分,共18分) 228x -A B CD 图(1) 中年人 30%老年人 10%青年人 60%30° 图(3) 图(2)12.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x表(一)根据表(一)提供的信息得到n = .13.有甲、乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4)。

2011年中考数学试题及答案(Word版)

2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置! 1. 2-的倒数是 A .2- B .2C .12-D .122. 下列运算正确的是 A .2a a a -=B .236()a a -=-C .632x x x ÷= D .222()x y x y +=+3. 若x y 、为实数,且10x +=,则2011()xy的值是A .0B .1C .1-D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是 A .40° B .60°C .80° D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B .3是有理数 C D7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有 A .3块 B .4块 C .6块 D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 A .茭形 B .对角线互相垂直的四边形 C .矩形 D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况. 在某小区随机抽查了l0户家庭的月用水量.结果如下表;则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是 A .k<4 B .k ≤4 C .k<4且k ≠3 D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年襄阳市初中毕业、升学统一考试数学试题一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置!1. 2-的倒数是A .2-B .2C .12-D .122. 下列运算正确的是 A .2a a a -= B .236()a a -=-C .632x x x ÷=D .222()x y x y +=+3. 若x y 、为实数,且110x y ++-=,则2011()x y的值是 A .0 B .1 C .1- D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是A .40°B .60°C .80°D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B .33是有理数 C .4是无理数 D .38-是有理数7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有A .3块B .4块C .6块D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是A .茭形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况. 在某小区随机抽查了l0户家庭的月用水量.结果如下表;月用水量(吨)5 6 7 户数 2 6 2则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

湖北省襄阳市中考数学试题(word版)(2)

湖北省襄阳市中考数学试题(word版)(2)

A.40°
B.100°
C.40°或 140° D.40°或 100°
10.由若干个相同的小正方体组合而成的一个几何体的三视图如图
所示,则组成这个几何体的小正方体的个数是( ▲ ).
A.4
B.5
C.6
D.9
11.二次函数 y=ax2+bx+c 的图象在平面直角坐标系中的位置
y
如图所示,则一次函数 y=ax+b 与反比例函数 y = c 在同
A. 3
B.1
C. 2
D.2
8. 下列说法中正确的是( ▲ ).
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件
B.“任意画出一个平行四边形,它是中心对称图形”是必然事件
C.“概率为 0.0001 的事件”是不可能事件
D.任意掷一枚质地均匀的硬币 10 次,正面向上的一定是 5 次
9.点 O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( ▲ ).
3 若 AD=3,求△ABC 的面积. 26.(本小题满分 12 分)
A
O
BP
边长为 2 的正方形 OABC 在平面直角坐标系中的位置如图所示,点 D 是边 OA 的中点,连接
CD,点 E 在第一象限,且 DE⊥DC,DE=DC. 以直线 AB 为对称轴的抛物线过
C,E 两点.
第 25 题图
(1)求抛物线的解析式;
是符合题目要求的,请将其序号在答题卡上涂黑作答.
1.- 2 的绝对值是( ▲ ).
A.2
B.- 2
1 C.
2
D.- 1 2
2. 中国人口众多,地大物博,仅领水面积就约为 370 000km2,将“370 000”这个数用科学记数法表

湖北省襄阳市中考数学真题试卷(含详解)

湖北省襄阳市中考数学真题试卷(含详解)

湖北省襄阳市中考数学真题试卷(含详解)湖北省襄阳市中考数学真题试卷(含详解)说明:本文为湖北省襄阳市中考数学真题试卷,供考生参考和复习使用。

一、选择题1. 设集合A={x∣x^2<7,x是整数},则A中的元素个数为()A. 4B. 5C. 6D. 7【解析】对不等式x^2<7进行求解,得到-√7<x<√7,由于x是整数,故-2、-1、0、1、2可以满足条件,因此A中的元素个数为5,选B。

2. 若图中两个相同角所对的弧长之比为2:3,则该图的圆心角的大小为()[图略]【解析】由已知可知∠BAC对应的弧长为2x,∠BDC对应的弧长为3x。

根据圆心角的定义,圆心角的度数是对应的弧长占整个圆周的比例,故得到2x:3x=2:5。

因此,该圆心角的大小为2/5 × 360° = 144°,选C。

3. 三角形ABC中,AB=AC,角BAC=38°,弧BC上的点D在弧BC的延长线上,使得∠BDC=90°。

若∠BDC的度数等于AB的边长,求三角形ABC的面积。

【解析】根据题意可知,∠BDC=90°,BD=AB。

通过观察可知,∠BAC的度数较小,说明∠BAC对应的弧长较短。

由于∠ADC为圆心角,所以AD=DC。

根据题意可得:∠BAC=38°,∠ADC= 360°-(2×90°+38°)=142°,进而得到∠ADC对应的弧长AE=CB=BC。

由于∠ABC和∠ADC对应的弧长相等,所以∠ABC=∠ADC。

根据正弦定理可得:AC/CD=sin∠ADC/sin∠ACD=1/sin∠ACD,于是sin∠ACD=sin∠ADC= 1/2。

代入三角形ABC的面积公式1/2×AB^2×sin∠ACB,即可计算出三角形ABC的面积。

二、填空题1. 已知函数f(x)=3x^2-2x-5,则f(-2)的值为(______)。

湖北省襄阳市2011年普通高中推荐招生考试数学试题(含答案)

湖北省襄阳市2011年普通高中推荐招生考试数学试题(含答案)

2011年普通高中推荐招生考试数 学 试 题——————————————————————————————————————— 说明:1.本卷由卷Ⅰ、卷Ⅱ组成.卷Ⅰ为选择题,卷Ⅱ为非选择题.卷Ⅰ在答题卡上涂黑作答,不在卡上作答无效;卷Ⅱ在试卷上作答.2.答题前考生应在试卷及答题卡的指定位置填写姓名及报名号、考试号. 3.考试结束后,由监考教师将答题卡、卷Ⅰ、卷Ⅱ按要求回收.———————————————————————————————————————卷 Ⅰ(选择题)一、选择题(本大题共10个小题,每小题3分,共30分.在给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.)1.︳-5︳的相反数是:A .-5B .5C .51 D .-51 2.在实数0、4、38-、2、2π中,无理数有:A .1个B .2个C .3个D .4个3.关于x 的一元二次方程(m -2)x 2+4x -1=0有两个不相等的实数根,则m 的取值范围是:A .m >-2B .m≥-2C .m >-2且m≠2D .m≥-2且m≠24.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F , 且EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,∠BEP =40°,则∠EPF 等于:A .40°B .50°C .60°D .65°5.在直角坐标系中,点A (-2,1)与点B 关于y 轴对称,点B 与点C 关于坐标原点对称,则点C 的坐标为:A .(-2,1)B .(2,1)C .(2,-1)D .(-2,-1)6.如图所示的半圆中,AD 是直径,且AD =3,AC =2,则cos ∠B 的值是:C A BD FEPA .32 B .23C .35D .257.甲、乙两人5次射击命中的环数如下: 甲 7 9 8 6 10 乙 7 8 9 8 8则关于两人5次射击命中环数的平均数x 甲,x 乙和方差S 2甲,S 2乙的结论正确的是: A .x 甲=x 乙,S 2甲=S 2乙 B .x 甲<x 乙,S 2甲<S 2乙 C .x 甲=x 乙,S 2甲<S 2乙 D .x 甲=x 乙, S 2甲>S 2乙8.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工恰好同时完成任务,甲队比乙队每天多安装2台,则甲、乙两队每天安装的台数分别为:A .32台,30台B .22台,20台C .12台,10台D .16台,14台 9.如图,在△ABC 中,∠CAB =70°,在同一平面内, 将△ABC 绕点A 逆时针旋转到△AB′C′的位置, 使CC′∥AB ,则∠BAB′等于:A .30°B .35°C .40°D .50°10.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误的是:A .b 2-4ac >0B .a -b +c <0C .abc <0D .2a +b >0ABB′C′C2(x-1)-5x <1331(3-2x )>3 卷 Ⅱ(非选择题)二、填空题(本大题共有5个小题,每小题4分,共20分)11.计算:(π-2011)0+(sin30°)-1+︱tan30°-3︱=______________. 12.已知ab=-1,a+b=2,则式子a b+ba=__________. 13.如图,是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最多为______个.14.如图,半圆直径AB =2,P 为AB 上一点,点C 、D 为半圆的三等分点.则阴影部分的面积为_________.15.如图,□ABCD中,E 是CD 延长线上一点,BE 与AD 交于点F ,DE =21CD .若△DEF 的面积为1cm 2,则□ABCD 的面积为__________ cm 2.三、解答题(本大题共有5个小题,共50分.每题要写出计算、解答及推理过程)16.(本小题满分8分)先化简,再求值:(2252++-x x x +1)÷44422++-x x x ;其中x 满足不等式组 且为整数.左视图 俯视图 第13题 E第15题17.(本小题满分8分)现有甲乙两个不透明的盒子,甲盒里装有四张大小、形状都相同的卡片,卡片上分别标有数字1、2、3、4,乙盒里也装有四张大小、形状都相同的卡片,卡片上分别标有数字 -1、-2、-3、-4,先从甲盒里面摸出一张卡片,这张卡片上的数字作为点的横坐标x ,再y ,试求出点(x ,y )刚好在反比例函数y=-x4图象上的概率.18.(本小题满分10分)我国是世界上能源紧缺的国家之一.为了增强居民节能意识,某市燃气公司对居民用气采用以户为单位收费改革. 2010年12月底以前按原收费标准收费:即每月用气每立方米收费a 元;从2011年元月1日起采用以户为单位分段计费办法收费:即每月用气10立方米以内(包括10立方米)的用户,每立方米收费b 元;每月用气超过10立方米的用户,其中10立方米燃气仍按每立方米b 元收费,超过10立方米的部分,按每立方米c 元(c >b )收费.设一户居民月用气x 立方米,2010年12月应收燃气费为y 1元,2011年1月应收燃气费为y 2元,y 1、y 2与x 之间的函数关系如下图所示. (1)观察图象填空:a=_____,b=_____,c=______.(2)写出y 1、y 2与x 之间的函数关系式,并写出自变量x 的取值范围;(3)已知居民甲2011年1月比2010年12月多用气6立方米,两个月共交燃气费63元,求居民甲这两月分别用气各多少立方米?B GCE图1B CE图219. (本小题满分11分)如图1,四边形ABCD是正方形,G在BC的延长线上,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=EF,连接CF.(1)求证:∠FCG=45°;(2)如图2,当四边形ABCD是矩形,且AB=2AD时,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=2EF,连接CF,求tan∠FCG的值.和x轴交于A、B两点,和y轴交于C、D两点且CD=4,抛物线y=ax2+bx+c经过A、B、C三点,顶点为N﹒(1)求经过A、B、C三点的抛物线解析式;(2)直线NC与x轴交于点E,试判断直线CN与⊙M的位置关系并说明理由;(3)设点Q是(1)中所求抛物线对称轴上的一点,试问在(1)中所求抛物线上是否存在点P使以点A、B、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由﹒参考答案及评分说明一、选择题1.A2.B3.C4.D5.D6.C7.D8.B9.C 10.D二、填空题11.332+3 12.-6 13.7 14.6π15. 12三、解答题16.解:原式=22252++++-x x x x ·44422-++x x x ……(1分)=2)2(2+-x x ·)2)(2()2(2-++x x x ……(2分) =x -2 ……(3分) 解不等式2(x -1)-5x <13得解集为x >-5 ……(4分)解不等式31(3-2x )>3 得解集为x <-3 ……(5分)所以原不等式的解集为 -5<x <-3 ……(6分) 又因为x 是整数 所以x =-4 ……(7分)此时 原式=-4-2=-6 ……(8分)17.5分)以上共有16种情况,并且每种可能性相同, ……(6分) 其中点的坐标刚好在y=-x4图象上(记为事件A )有(1,-4),(2,-2),(4,-1)三种,所以 P (A )=163答:点的坐标刚好在y=-x 4图象上的概率为 P (A )=163……(8分)18. 解:(1)观察图象填空:a= 2 ,b=_1.5_____,c=__3_____.……(3分) (2)解:y 1=2x (x≥0) ……(4分)2y =1.5x (0≤x ≤10) …(5分) 3x -15 (x >10) …(6分)(3)设居民甲2011年1月用气x 立方米,则2010年12月用气(16-x )立方米. 当0≤x≤10时有 2(x -6)+1.5x =63 .解得 x =2173>10 不合题意应该舍去. ……(7分) 当x >10时,,63)6(2153=-+-x x解得 x =18>10 符合题意 此时126=-x ……(9分)答:居民甲2010年12月用气12立方米,2011年1月用气18立方米. ……(10分) 说明:第(3)问解答也可先确定用气范围,然后求解,也可用二元一次方程组求解.可参考上面评分标准给分。

2011年湖北省襄阳市中考数学试题及答案(word版)

2011年湖北省襄阳市中考数学试题及答案(word版)

图2俯视图左视图主视图2011年襄阳市初中毕业、升学统一考试数学试题一、选择题:(每小题3分,共36分) 1.-2的倒数是( )A .-2B .2C .-12 D. 122.下列运算正确的是( )A .a -2 a =aB .(-a 2)3 =-a 6C .x 6÷x 3=x 2D .(x +y )2=x 2+y 2 3.若x ,y 为实数,且x +1+y -1=0,则﹙ x y)2011 的值是( ) A .0 B .1 C .-1 D .-20114.如图1,CD∥AB,∠1=120°,∠2=80°,则∠E 的度数是( ) A .40° B .60° C .80° D .120°5.下列图形是中心对称图形而不是轴对称图形的是( )6.下列说法正确的是( )A . (π2)0 是无理数B .33是有理数C .4是无理数D .3-8是有理数7.下列事件中,属于必然事件的是( )A .抛掷一枚1元硬币落地后,有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条线段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是10%,则购买该种彩票100张一定中奖 8.由一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有( ) A .3块 B .4块 C .6块 D .9块9.在△ABC 中,∠C=90°,AC =3cm ,BC =4cm . 若⊙A,⊙B 的半径分别为1cm ,4cm ,则⊙A 与⊙B 的位置关系是( )A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 是( ) A .菱形 B .对角线互相垂直的四边形 C .矩形 D .对角线相等的四边形11.2011年春我市发生了严重干旱,市政府号召居民节约用水. 为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是( ) A .众数是6 B .极差是2 C .平均数是6 D .方差是412.已知函数 y =(k -3)x 2+2x +1 的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4 C .k <4且k ≠3 D .k ≤4且k ≠3月用水量(吨) 5 6 7户数 2 6 2A B C D二、填空题:(每小题3分,共15分)13.为了推进全民医疗保险工作,截止2011年5月31日,今年中央财政已累计下拨医疗卫生补助金1346亿元 . 这个金额用科学记数法表示为 元. 14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工. 从AC 上的一点B 取∠ABD=140°,BD =1000m ,∠D=50°. 为了使开挖点E 在直线AC 上,那么DE = m .(供选用的三角函数值:sin 50°=0.7660,cos 50°=0.6428,tan 50°=1.192)15.我国从2011年5月1日起在公众场所实行“禁烟”,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题. 答对一题记10分,答错(或不答)一题记-5分. 小明参加本次竞赛得分要超过100分,他至少要答对 道题 . 16.关于x 的分式方程mx -1+31-x=1 的解为正数,则m 的取值范围是 . 17.如图4,在梯形ABCD 中,AD∥BC,AD =6 ,BC=16,E 是BC 的中点. 点P 以每秒1个单位长度的速度从点A 出发,沿 AD 向点D 运动; 点Q 同时以每秒2个单位长度的速度从点C 出发, 沿CB 向点B 运动. 点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 三、解答题:(本大题共9个小题,共69分) 18.(本小题满分5分)已知直线y =-3x 与双曲线 y =m -5x交于点P (-1,n ). (1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线 y =m -5x上,且x 1<x 2<0,试比较 y 1,y 2 的大小.图3图6E DCB A先化简再求值:(1x +2-1)÷x 2+2x +1x 2-4,其中x =tan 60°-1.20.(本小题满分6分)为了庆祝中国共产党建党九十周年,襄阳市各单位都举行了“红歌大赛”. 某中学将参加本校预赛选手的成绩(满分为100分,得分为整数,最低分为80分,且无满分)分成四组,并绘制了如下的统计图(图5),请根据统计图的信息解答下列问题 . (1)参加本校预赛选手共 人;(2)参加预赛选手成绩的中位数所在组的范围是 ; (3)成绩在94.5分以上的预赛选手中,男生和女生各 占一半. 学校从中随机确定2名参加市“红歌大赛”, 则恰好是一名男生和一名女生的概率为 . 21.(本小题满分6分)如图6,点D ,E 在△ABC 的边BC 上,连接AD ,AE. ①AB=AC ;②AD=AE ; ③BD=CE. 以此三个等式中的两个作为命题的题设,另一个作为 命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①. (1)以上三个命题是真命题的为(直接作答) ; (2)请选择一个真命题进行证明(先写出所选命题,然后证明).图5图7汽车产业是我市支柱产业之一,产量和效益逐年增加. 据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆. 若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?23.(本小题满分7分)如图7,在⊙O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧BC ︵上一点,连接BD ,AD ,OC ,∠ADB=30°.(1)求∠AOC 的度数;(2)若弦BC =6cm ,求图中阴影部分的面积.24.(本小题满分10分)为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客. 门票定价为50元/人,非节假日打a 折售票,节假日按团队人数分段定价售票,即m 人以下(含m 人)的团队按原价售票;超过m 人的团队,其中m 人仍按原价售票,超过m 人部分的游客打b 折售票. 设某旅游团人数为x为y 2(元). y 1,y 2与x 之间的函数图象如图8所示. (1)观察图象可知:a =______;b =______;m = ; (2)直接写出y 1,y 2与x 之间的函数关系式;(3)某旅行社导游王娜于5月1日带A 团,5月20日(非节假日)带B 团都到该景区旅游,共付门票款1900元,A ,B 两个团队合计50人,求A ,B 两个团队各有多少人?图8图9ABCD E PF 25.(本小题满分10分)如图9,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF.(1)求证:∠ADP=∠EPB; (2)求∠CBE 的度数;(3)当AP AB 的值等于多少时,△PFD∽△BFP?并说明理由.26.(本小题满分13分)如图10,在平面直角坐标系xoy 中,AB 在x 轴上,AB =10,以AB 为直径的⊙O ′与y 轴正半轴交于点C ,连接BC ,AC . CD 是⊙O ′的切线,AD⊥CD 于点D ,tan ∠CAD=12,抛物线 y =ax 2+bx +c 过A ,B ,C 三点. (1) 求证:∠CAD=∠CAB; (2) ①求抛物线的解析式;②判断抛物线的顶点E 是否在直线CD 上,并说 明理由;(3) 在抛物线上是否存在一点P ,使四边形PBCA 是 直角梯形. 若存在,直接写出点P 的坐标(不写 求解过程);若不存在,请说明理由.2011年襄阳市初中毕业、升学统一考试数学试题参考答案及评分标准评分说明:1.若有与参考答案不同的解法而解答正确者,请参照本评分标准分步给分.2.考生在解答过程中省略某些非关键性步骤,可不扣分;考生在解答过程中省略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分数,不影响后面评分.一、选择题:(共12个小题,每小题3分,共36分)1.C2.B3.C4.A5.A6.D7.C 8.B 9.A 10.D 11.D 12.B 二、填空题:(共5个小题,每小题3分,共15分)13. 1.346×101114. 642.8 15. 14 16. m >2且m ≠3 17. 2或143三、解答题:(本大题共9个小题,共69分)18.解:(1)∵点P (-1,n )在直线y =-3x 上,∴n =-3×(-1)=3 .(1分)∵点P (-1, 3)在双曲线y =m -5x上,∴m -5=-3,即m =2 .(3分)(2)∵m -5=-3<0,∴当x <0时,y 随x 的增大而增大. 又∵点A (x 1,y 1),B(x 2,y 2)在函数y =m -5x的图象上,且x 1<x 2<0, ∴y 1<y 2 .(5分)19.解:原式=-x -1x +2·(x +2)(x -2)(x +1)2(2分)=-x -2x +1.(4分) 当x =tan 60°-1=3-1时, 原式=-3-1-23-1+1(5分)=-3-33=3-1 .…(6分) 20.(1)60 .(1分) (2)84.5~89.5 .(3分) (3)23 .(6分)21.(1) ①②⇒③;①③⇒②;②③⇒① .(3分) (2)选择①③⇒② .证明:∵AB=AC ,∴∠B=∠C .(4分)在△ABD 和△ACE 中∵⎩⎪⎨⎪⎧AB=AC∠B=∠C BD=CE, ∴△ABD≌△ACE . (5分)∴A D =AE .(6分)22.设该品牌汽车年产量的年平均增长率为x ,由题意得6.4(1+x )2=10 .(2分)解之,得x 1=0.25,x 2=-2.25 .(4分)∵x 2=-2.25<0, 故舍去,∴x =0.25=25% .(5分) 10×(1+25%)=12.5.答:2011年的年产量为12.5万辆 .(6分)23.(1)∵弦BC 垂直于半径OA ,∴BE=CE ,AB ︵=AC ︵.(1分) 又∵∠ADB=30°,∴∠AOC=60°.(2分)(2)∵BC=6,∴CE=21BC=3. 在Rt△OCE 中,OC =CE sin 60°=2 3 .(3分)∴OE=22CE OC -=934-⨯=3. (4分)连接OB ,∵AB ︵=AC ︵,∴∠BOC=2∠AOC=120° .(5分)∴S 阴影=S 扇形OBC -S △OBC=120360×π×(23)2-12×6× 3 =4π-3 3 .(7分)24.(1)a =6;b =8;m =10 .(填对一个记1分)(3分)(2)y 1=30x .(4分)y 2=⎩⎨⎧50x (0≤x ≤10)40x +100 (x >10) . (6分)(3)设A 团有n 人,则B 团有(50-n )人.当0≤n ≤10时,50n +30(50-n )=1900. 解之,得 n =20,这与n ≤10矛盾 .(7分) 当n >10时,40n +100+30(50-n )=1900 .(8分) 解之,得 n =30 .(9分)50-30=20.答:A 团有30人,B 团有20人。

襄阳市2011年中考模拟考试数学试题(含答案)

襄阳市2011年中考模拟考试数学试题(含答案)

枣阳市2011中考模拟考试数学试题枣阳市2011中考模拟考试数学答案一.选择题:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C A C B B B B A B B A二.填空题:(每小题3分,共15分)13.1 14.8 15.34040+ 16.4 17.25或512 三、解答题:(共69分) 18.解:原式=)2(23--x x ÷292--x x =621+x (5分) 当33-=x ,原式=63(6分). 19.(1)50;(1分)(2)补图略;(3分)(3)80-100;(4分);(4)2520人(5分). 答:大约有2520名学生每天完成课外作业时间在80分钟以上.(6分)20.解:(1)∵A (1,2)在反比例函数的图象上,∴m=2,∵x y 2=.(2分) ∴B (-2,-1).将A (1,2)、B (-2,-1)代入b kx y +=中,得⎩⎨⎧-=+-=+.12,2b k b k 解得⎩⎨⎧==.1,1b k ∴1+=x y .(4分)(2)从图象可知一次函数的值大于反比例函数的值的x 的取值范围是-2<x <0或x >1.21.解:设该社区共有x 个街道,据题意,得4≤4x+78-8(x-1) <8(3 分),解得239<x ≤241.(5分) 因为x 是整数,所以x 等于20,4x+78=158(人).(6分)答:这个学校共选派发放传单的学生有158人,共有20个街道.22.(1)证明:∵AC=CD ,∴弧AC 与弧CD 相等,∴∠ABC=∠CBD.又∵OC=OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBD ,∴OC ∥BD.(3分)(2)∵OC ∥BD ,不妨设平行线OC 与BD 间的距离为h,又S △OBC =21OC ×h, S △DBC =21BD ×h. 因为BC 将四边形OBDC 分成面积相等的两个三角形,即S △OBC = S △DBC ,∴OC=BD ,(5分) ∴四边形OBDC 为平行四边形.又∵OC=OB ,∴四边形OBDC 为菱形.(7分)23. (1)∵△ABG 是由是△ADE 旋转而得,∴△ADE ≌△ABG ,∴∠DAE=∠BAG.(2分)又∵∠DAB=90°,∠EAF=45°,∴∠DAE+∠BAF=45°,∴∠BAG+∠BAF=45°,即∠GAF=45°.(3分)(2)∵△ADE ≌△ABG ,∴∠ABG=∠D=90°.又∵∠ABF=90°,∴G 、B 、F 三点共线,且AG=AE ,AF=EF.(4分)由(1)知∠GAF=∠EAF=45°,∴△AGF ≌△AEF ,∴GF=EF.(5分)(3)△AEF 与△AGF 关于直线AF 对称.(6分)24. (1)由题图可知,星期天当日注入了10000-2 000=8000立方米的天然气. (2分)(2)当x ≥0.5时,设储气罐中的储气量为y(立方米)与时间x(小时)的函数解析式为:b kx y +=(k ,b 为常数,且k ≠0).∵它的图象过点(0.5,10 000),(10.5,8 000),(3分)∴⎩⎨⎧=+=+,80005.10,100005.0b k b k 解得⎩⎨⎧=-=.10100,200b k .故所求函数解析式为y=-200x+10100.(5分) (3)可以.∵给18辆车加气需18×20=360(立方米),储气量为10 000-360=9 640(立方米).(7分) 于是有9 640=-200x+10 100,解得x=2.3.而从8:00到10:30相差2.5小时,显然有2.3<2.5.故第18辆车在当天10:30之前可以加完气.25.(1)由题意,有△BEF ≌△DEF. ∴BF=DF.(1分)如图,过点A 作AG ⊥BC 于点G ,则四边形AGFD 是矩形.∴AG=DF ,GF=AD=4.在Rt △ABG 和Rt △DCF 中,∵AB=DC ,AG=DC ,∴Rt △ABG ≌Rt △DCF (HL ),∴BG=CF.(3分)∴BG=2. ∴DF=BF=BG+GF=6.(5分)∴S 梯形ABCD =36.(6分)(2)猜想:CG=k ·BE (或BE=k1·CG ). 证明:如图,过点E 作EH ∥CG ,交BC 于点H.则∠FEH=∠FGC. 又∠EFH=∠GFC ,∴△EFH ∽△GFC. ∴GF EF =GC EH . 而FG=k ·EF ,即k EF GF =, ∴kGC EH 1=,即CG=k ·EH.(9分) ∵EH ∥CG ,∴∠EHB=∠DCB.而ABCD 是等腰梯形,∴∠B=∠DCB.∴∠B=∠EHB ,∴BE=EH ,∴CG=k ·BE.(10分)26.(1)解:A (6,0),B (0,6).连接OC ,由于∠AOB=90°,C 为AB 的中点,则OC=21AB ,所以点O 在⊙C 上.(1分) 过C 作CE ⊥OA ,垂足为E ,则E 为OA 中点,故点C 的横坐标为3.又点C 在直线6+-=x y 上,故C (3,3).(2分)抛物线过点O ,所以c=0,又抛物线过点A 、C ,所以⎩⎨⎧+=+=,6360,393b a b a 解得⎪⎩⎪⎨⎧=-=.2,31b a (4分) 所以抛物线解析式为x x y 2212+-=.(5分) (2)证明:把OA=OB=6代入OB 2=OA ·OD ,得OD=6(6分),所以OD=OB=OA ,所以∠DBA=90°.(7分)又点B 在圆上,故DB 为⊙O 的切线.(8分)(通过证相似三角形得出亦可)(3)解:假设存在点P 满足题意,因为C 为AB 中点,O 在圆上,故∠OCA=90°, 要使以P 、O 、C 、A 为顶点的四边形为直角梯形,则∠CAP=90°或∠COP=90°.(9分)若∠CAP=90°,则OC ∥AP.因为OC 的方程为x y =,设AP 方程为b x y +=.又AP 过点A (6,0),则b=-6. 由题意,得x x x 23162+-=-,解之,得 x 1=6,x 2=-3 当x=6时,y=0,x=-3时,y=-9.故点P 1坐标为(-3,-9).(9分)若∠COP=90°,则OP ∥AC ,同理可求得点P 2(9,-9).(11分)(用抛物线的对称性求出亦可)故存在点P 1(-3,-9)和P 2(9,-9)满足题意.(12分)。

2011年湖北省襄阳市中考数学试题(WORD解析版)

2011年湖北省襄阳市中考数学试题(WORD解析版)

2011年湖北省襄阳市中考数学试卷—解析版一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1、(2011•襄阳)﹣2的倒数是()A、﹣2B、2C、﹣D、考点:倒数。

专题:计算题。

分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.解答:解:﹣2的倒数是﹣,故选C.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•襄阳)下列运算正确的是()A、a﹣2a=aB、(﹣a2)3=﹣a6C、x6÷x3=x2D、(x+y)2=x2+y2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式。

专题:计算题。

分析:A选项中应该是﹣a,不对;B,幂指数的幂指数的乘法,正确;C中同底数幂的除法,底数不变指数相减;D中应为完全平方,错误.解答:解:A,应该得﹣a,故本选项错误;B,幂指数的幂,指数相乘,故本答案正确;C,同底数幂的除法底数不变指数相减,故本选项错误;D,应该是完全平方式,故本选项错误.故选B.点评:本题考查了同底数幂的除法,A选项中应该是﹣a,B,幂指数的幂指数的乘法,C中同底数幂的除法,底数不变指数相减,故错误,D中应为完全平方,错误.本题比较简单.3、(2011•襄阳)若x,y为实数,且|x+1|+=0,则()2011的值是()A、0B、1C、﹣1D、﹣2011考点:非负数的性质:算术平方根;非负数的性质:绝对值;有理数的乘方。

专题:计算题;存在型。

分析:先根据非负数的性质求出x、y的值,再代入()2011进行计算即可.解答:解:∵|x+1|+=0,∴x+1=0,解得x=﹣1;y﹣1=0,解得y=1.∴()2011=(﹣1)2011=﹣1.故选C.点评:本题考查的是非负数的性质,即几个非负数的和为0时,这几个非负数都为0.4、(2011•襄阳)如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是()A、40°B、60°C、80°D、120°考点:平行线的性质;三角形的外角性质。

湖北省襄阳市中考数学试卷及答案(Word解析版)

湖北省襄阳市中考数学试卷及答案(Word解析版)

湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)1.(3分)(•襄阳)2的相反数是()A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:2的相反数是﹣2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:15180=1.581×104,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(•襄阳)下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、4a﹣a=3a,选项错误;B、正确;C、(﹣a3)2=a6,选项错误;D、a6÷a2=a4,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.5.(3分)(•襄阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.解答:解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选D.点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.6.(3分)(•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°,∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.7.(3分)(•襄阳)分式方程的解为()A.x=3 B.x=2 C.x=1 D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分)(•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.考点:简单组合体的三视图.分析:判断出组合体的左视图、主视图及俯视图,即可作出判断.解答:解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.点评:本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.9.(3分)(•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)(•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<0的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11.(3分)(•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则中位数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.12.(3分)(•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.二、填空题(3*5=15分)13.(3分)(•襄阳)计算:|﹣3|+=4.考点:实数的运算;零指数幂.分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案.解答:解:原式=3+1=4.故答案为:4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键.14.(3分)(•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(3分)(•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.(3分)(•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.考点:列表法与树状图法.专题:图表型.分析:可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.解答:解:李老师先选择,然后儿子选择,画出树状图如下:一共有9种情况,都选择古隆中为第一站的有1种情况,所以,P(都选择古隆中为第一站)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.三、解答题(69分)18.(6分)(•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可解答:解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.(6分)(•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用.分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.21.(6分)(•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.分析:(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.解答:解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.(6分)(•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.考点:反比例函数综合题.分析:(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AO•CE求出面积的值.解答:解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE,DF=CE,∵A(﹣4,0),B(2,0),C(3,3),∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA﹣AF=OA﹣BE=OA﹣(OE﹣OB)=4﹣(3﹣2)=3,∴D(﹣3,3),∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3),把x=﹣3代入y=得,y=﹣3,∴点D′在双曲线上;(3)∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称,∴D′O=CO=D′C,∴S△AD′C=2S△AOC=2×AO•CE=2××4×3=12,即S△AD′C=12.点评:本题主要考查反比例函数综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及点的对称性等知识点,此题难度不大,是一道不错的中考试题.23.(7分)(•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.考点:全等三角形的判定与性质;等边三角形的性质;旋转的性质.专题:几何综合题.分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°﹣60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.24.(9分)(•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.考点:一次函数的应用.分析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解答:解:(1)由题意,得y A=(10×30+3x)×0.9=2.7x+270,y B=10×30+3(x﹣20)=3x+240,(2)当y A=y B时,2.7x+270=3x+240,得x=100;当y A>y B时,2.7x+270>3x+240,得x<100;当y A<y B时,2.7x+270=3x+240,得x>100∴当2≤x<100时,到B超市购买划算,当x=100时,两家超市一样划算,当x>100时在A 超市购买划算.(3)由题意知x=15×10=150>100,∴选择A超市,y A=2.7×150+270=675元,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球(10×15﹣20)×30.9=351元,共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.点评:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.25.(10分)(•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.解答:(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD==5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵AB∥PD,∴∠PDA=∠DAB=45°,∴∠PAD=∠PCD,而∠DPA=∠CPD,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.26.(13分)(•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值;②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标.解答:解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+.点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称﹣最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.。

湖北省襄阳市中考数学真题试题(含扫描答案)

湖北省襄阳市中考数学真题试题(含扫描答案)

1机密★启用前2015年襄阳市初中毕业生学业水平考试数 学 试 题(本试卷共4页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置。

2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或0.5毫米的黑色签字笔。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.2-的绝对值是( ▲ ).A .2B .2-C .12D .12-2.中国人口众多,地大物博,仅领水面积就约为370 000km 2,将“370 000”这个数用科学记数法表示为( ▲ ).A .3.7×106B .3.7×105C .37×104D .3.7×1043.在数轴上表示不等式2(1-x )<4的解集,正确的是( ▲ ).AB .CD 4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变 化的关系,观察图象得到下列信息,其中错误的是( ▲ ). A .凌晨4时气温最低为-3°C B .14时气温最高为8°CC .从0时至14时,气温随时间增长而上升D .从14时至24时,气温随时间增长而下降 5.下列运算中正确的是( ▲ ).A .a 3-a 2=aB .a 3·a 4=a 12C .a 6÷a 2=a 3D .(-a 2)3=-a 66.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( ▲ ).A .60°B .50°C .40°D .30°7.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为( ▲ ).0T /°C t /时24144-38第4题图2130°第6题图E A DCB第7题图0-10-1102A . 3B .1C . 2D .28.下列说法中正确的是( ▲ ).A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( ▲ ). A .40°B .100°C .40°或140°D .40°或100°10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( ▲ ). A .4 B .5 C .6D .911.二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数cy x=在同一平面直角坐标系中的图象可能是( ▲ ).12.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ▲ ). A .AF =AE B .△ABE ≌△AGF C .EF =2 5D .AF =EF二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上.13.计算:13128--= ▲ .14.分式方程211051025x x x -=--+的解是 ▲ . 15.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ . 16.如图,P 为⊙O 外一点,PA ,PB 是⊙O 的切线,A ,B 为切点,PA =3,∠P=60°,则图中阴影部分的面积为 ▲ .17.在□ ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 ▲ . 三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)GFE DCB A第12题图xyO第11题图第10题图主视图俯视图左视图第16题图OB APxOyxOxy OyxxyOA . B. C. D.xx x x3先化简,再求值:2222225321x y x x y y x x y xy 骣+÷ç÷+?ç÷÷ç---桫,其中x =3+2,y =3- 2. 19.(本小题满分6分)如图,已知反比例函数my x=的图象与一次函数y =ax +b 的 图象相交于点A (1,4)和点B (n ,-2). (1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的 取值范围.20.(本小题满分6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.分数段(分数为x 分) 频数百分比 60≤x <70 820% 70≤x <80 a30%80≤x <90 16 b %90≤x <100410%请根据图表提供的信息,解答下列问题:(1)表中的a = ▲ ,b = ▲ ;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的圆心角的度数是 ▲ ;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 ▲ .21.(本小题满分6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出, 在垂直于住房墙的一边留一个1m 宽的门. 所围矩形猪舍的长、 宽分别为多少时,猪舍面积为80m 2? 22.(本小题满分6分)如图,AD 是△ABC 的中线,13tanB =,22cosC =,AC = 2. 求:(1)BC 的长;(2)sin ∠ADC 的值.23.(本小题满分7分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是 由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D . (1)求证:BE =CF ;第22题图第20题图第19题图yA (1,4)O xB (n ,-2)45°FED CBA第21题图1m住房墙4(2)当四边形ACDE 为菱形时,求BD 的长.24.(本小题满分10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元. 根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒. (1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少? (3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元. 如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(本小题满分10分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB ∶PC =1∶2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积. 26.(本小题满分12分)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点 E 在第一象限,且DE ⊥DC ,DE =DC . 以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 以每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF ⊥CD 于点F . 当t 为何值时,以点P ,F ,D 为顶点的三角形与△COD 相似?(3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的 点的坐标;若不存在,请说明理由.第23题图第25题图APB O CE D第26题图56789。

2011年湖北省武汉市中考数学试题(word版含答案)

2011年湖北省武汉市中考数学试题(word版含答案)

2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是 A.3. B.-3. C.31 D.31-.2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是 A.x+1>0,x-3>0. B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0. 4.下列事件中,为必然事件的是 A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥D C ,AD =D C=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QO N=30°.公路P Q 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿O N 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与D E 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DF B ; ②S四边形 BC D G=43 CG 2;③若AF=2DF ,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 13.sin 30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B(0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCD E的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx xx x -÷-,其中x=3.19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口. (1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7). (1)试说明如何平移线段AC ,使其与线段ED 重合; (2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为D E ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△D EF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作O P 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点 E.(1)求证:P B 为⊙O 的切线; (2)若ta n ∠ABE=21,求s in E 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且D E ∥BC ,AQ 交D E 于点P.求证:QCPE BQDP .(2) 如图,在△ABC 中,∠BAC=90°,正方形D EFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交D E 于M ,N 两点. ①如图2,若A B=AC=1,直接写出MN 的长; ②如图3,求证MN 2=D M·EN.25.(本题满分12分)如图1,抛物线y =ax 2+bx +3经过A (-3,0),B (-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线O M 交于点 D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△P EF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D 二、填空题 13.1/214.105;105;100 15.8 16.12 三、解答题17.(本题6分)解:∵a =1,b=3,c=1∴△=b 2-4ac=9-4³1³1=5>0∴x=-3±25∴x 1=-3+25,x 2=-3-2518.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x -2)/x² x/(x+2)(x-2)= x /(x +2) ∴当x =3时,原式=3/5 19.(本题6分)解:证明:在△AB E 和△ACD 中,AB =A C ∠A =∠A AE =AD ∴△AB E≌△A CD ∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”: ∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格: 左 直右左 (左,左) (左,直) (左,右)直 (直,左) (直,直) (直,右)右(右,左)(右,直) (右,右)以下同解法1(略)21.(本题7分)(1)将线段AC先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F(-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵P A为⊙O的切线,∴∠PA O=90°∵O A=OB,OP⊥A B于C∴B C=CA,PB=P A∴△PB O≌△P AO∴∠PB O=∠P AO=90°∴P B为⊙O的切线(2)解法1:连接AD,∵B D是直径,∠B AD=90°由(1)知∠B CO=90°∴A D∥OP∴△AD E∽△P OE∴E A/E P=AD/OP 由AD∥OC得A D=2OC ∵t an∠AB E=1/2∴OC/BC=1/2,设O C=t,则BC=2t,A D=2t由△PBC∽△BO C,得P C=2BC=4t,OP=5t∴E A/E P=A D/O P=2/5,可设EA=2m,EP=5m,则PA=3m∵P A=P B∴PB=3m∴s inE=PB/EP=3/5(2)解法2:连接AD,则∠B AD=90°由(1)知∠BCO=90°∵由AD∥OC,∴A D=2OC ∵ta n∠ABE=1/2,∴O C/B C=1/2,设OC=t,B C=2t,A B=4t由△PB C∽△B OC,得PC=2BC=4t,∴P A=PB=25t 过A作A F⊥PB于F,则A F²P B=A B²P C∴A F=558t 进而由勾股定理得P F=556t∴s inE=si n∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△AB Q中,由于DP∥BQ,∴△ADP ∽△AB Q, ∴DP /BQ =AP /AQ. 同理在△A CQ 中,EP /CQ =A P/A Q. ∴D P /B Q =EP/CQ.(2)929.(3)证明:∵∠B +∠C=90°,∠CEF +∠C=90°.∴∠B=∠C EF ,又∵∠BGD =∠EF C ,∴△BGD ∽△EF C.……3分∴D G /CF =BG/EF ,∴DG²EF =CF²B G又∵DG =GF =E F ,∴G F 2=CF²BG由(1)得DM /BG =M N/G F =EN/CF ∴(MN/GF )2=(D M/B G)²(EN /CF ) ∴M N 2=DM ²EN25.(1)抛物线y=a x 2+b x+3经过A (-3,0),B (-1,0)两点 ∴9a -3b+3=0 且a -b+3=0 解得a =1b =4∴抛物线的解析式为y =x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y =21x于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y =(x-h )2+21h.①当抛物线经过点C 时,∵C (0,9),∴h 2+21h=9,解得h =41451-±. ∴ 当 4145-1-≤h <41451-+时,平移的抛物线与射线C D 只有一个公共点. ②当抛物线与直线C D 只有一个公共点时, 由方程组y=(x-h )2+21h,y=-2x+9.得 x 2+(-2h+2)x +h 2+21h-9=0,∴△=(-2h +2)2-4(h 2+21h-9)=0,解得h =4.此时抛物线y=(x -4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h =4或4145-1-≤h <41451-+.(3)方法1将抛物线平移,当顶点至原点时,其解析式为y =x 2, 设E F 的解析式为y=k x+3(k ≠0).假设存在满足题设条件的点P (0,t ),如图,过P作G H∥x 轴,分别过E ,F 作G H 的垂线,垂足为G ,H.∵△PEF 的内心在y 轴上,∴∠G EP=∠E PQ=∠Q PF=∠H FP ,∴△GEP ∽△HF P,...............9分∴GP /PH=GE/HF,∴-xE /xF=(yE-t)/(yF-t)=(k xE+3-t)/(k xF+3-t)∴2kxE ²xF=(t-3)(xE+xF)由y=x2,y=-k x+3.得x2-k x-3=0.∴xE +xF=k,xE²xF=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PE F的内心在y轴上.方法2 设E F的解析式为y=k x+3(k≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR 交y轴于点P,由对称性知∠E PQ=∠F PQ,∴点P就是所求的点.由F,R的坐标,可得直线F R的解析式为y=(n-m)x+m n.当x=0,y=m n=-3,∴P(0,-3).∴y 轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.武汉市光谷三初冉瑞洪整理。

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置! 1. 2-的倒数是 A .2- B .2C .12-D .122. 下列运算正确的是 A .2a a a -=B .236()a a -=-C .632x x x ÷= D .222()x y x y +=+3. 若x y 、为实数,且10x +=,则2011()xy的值是A .0B .1C .1-D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是 A .40° B .60°C .80° D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B 是有理数 C D7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有 A .3块 B .4块 C .6块 D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 A .茭形 B .对角线互相垂直的四边形 C .矩形 D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况.在某小区随机抽查了l0户家庭的月用水量.结果如下表;则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是 A .k<4 B .k ≤4 C .k<4且k ≠3 D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年湖北省襄阳市中考数学试卷—解析版一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1、(2011•襄阳)﹣2的倒数是()A、﹣2B、2C、﹣D、考点:倒数。

专题:计算题。

分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.解答:解:﹣2的倒数是﹣,故选C.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•襄阳)下列运算正确的是()A、a﹣2a=aB、(﹣a2)3=﹣a6C、x6÷x3=x2D、(x+y)2=x2+y2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式。

专题:计算题。

分析:A选项中应该是﹣a,不对;B,幂指数的幂指数的乘法,正确;C中同底数幂的除法,底数不变指数相减;D中应为完全平方,错误.解答:解:A,应该得﹣a,故本选项错误;B,幂指数的幂,指数相乘,故本答案正确;C,同底数幂的除法底数不变指数相减,故本选项错误;D,应该是完全平方式,故本选项错误.故选B.点评:本题考查了同底数幂的除法,A选项中应该是﹣a,B,幂指数的幂指数的乘法,C中同底数幂的除法,底数不变指数相减,故错误,D中应为完全平方,错误.本题比较简单.3、(2011•襄阳)若x,y为实数,且|x+1|+=0,则()2011的值是()A、0B、1C、﹣1D、﹣2011考点:非负数的性质:算术平方根;非负数的性质:绝对值;有理数的乘方。

专题:计算题;存在型。

分析:先根据非负数的性质求出x、y的值,再代入()2011进行计算即可.解答:解:∵|x+1|+=0,∴x+1=0,解得x=﹣1;y﹣1=0,解得y=1.∴()2011=(﹣1)2011=﹣1.故选C.点评:本题考查的是非负数的性质,即几个非负数的和为0时,这几个非负数都为0.4、(2011•襄阳)如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是()A、40°B、60°C、80°D、120°考点:平行线的性质;三角形的外角性质。

专题:几何综合题。

分析:首先由平行线的性质得出∠1等于三角形CDE的外角,再由三角形的外角性质求出∠E.解答:解:∵CD∥AB,∴∠1=∠EDF=120°,∴∠E=∠EDF﹣∠2=120°﹣80°=40°.故选:A.点评:此题考查的知识点是平行线的性质及三角形的外角性质,关键是由平行线的性质得出三角形CED的外角.5、(2011•襄阳)下列图形是中心对称图形而不是轴对称图形的是()A、B、C、D、考点:中心对称图形;轴对称图形。

专题:图表型。

分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、(2011•襄阳)下列说法正确的是()A、()0是无理数B、是有理数C、是无理数D、是有理数考点:实数。

专题:应用题。

分析:先对各选项进行化简,然后根据有理数和无理数的定义即可判断.解答:解:A、()0=1是有理数,故本选项错误,B、是无理数,故本选项错误,C、=2是有理数,故本选项错误,D、=﹣2是有理数,故本选项正确.故选D.点评:本题主要考查了有理数和无理数的定义,比较简单.7、(2011•襄阳)下列事件中,属于必然事件的是()A、抛掷一枚1元硬币落地后,有国徽的一面向上B、打开电视任选一频道,正在播放襄阳新闻C、到一条线段两端点距离相等的点在该线段的垂直平分线上D、某种彩票的中奖率是10%,则购买该种彩票100张一定中奖考点:随机事件。

分析:必然事件就是一定发生的事件,根据定义即可作出判断.解答:解:A、不一定发生,是随机事件,故选项错误,B、不一定发生,是随机事件,故选项错误,C、是必然事件,故正确,D、不一定发生,是随机事件,故选项错误,故选C.点评:本题考查了必然事件、不可能事件、随机事件的概念,用到的知识点为:确定事件包括必然事件和不可能事件,必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.8、(2011•襄阳)由一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有()A、3块B、4块C、6块D、9块考点:由三视图判断几何体。

分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.点评:此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.9、(2011•襄阳)在△ABC中,∠C=90°,AC=3cm,BC=4cm.若⊙A,⊙B 的半径分别为1cm,4cm,则⊙A与⊙B的位置关系是()A、外切B、内切C、相交D、外离考点:圆与圆的位置关系;勾股定理。

专题:数形结合。

分析:由∠C=90°,AC=3cm,BC=4cm,根据勾股定理,即可求得AB的长,然后根据圆与圆的位置关系判断条件,确定两圆之间的位置关系.解答:解:∵∠C=90°,AC=3cm,BC=4cm,∴AB==5cm,∵⊙A,⊙B 的半径分别为1cm,4cm,又∵1+4=5,∴⊙A与⊙B的位置关系是外切.故选A.点评:此题考查了圆与圆的位置关系与勾股定理逆定理的应用.注意外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).10、(2011•襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD 一定是()A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形考点:三角形中位线定理;平行四边形的判定;菱形的判定。

专题:证明题。

分析:根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.解答:解:∵E F G H分别是边AD DC CB AB 的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,∵平行四边形EFGH是菱形,∴EF=EH,即对角线相等的四边形,故选D.点评:本题主要考查对菱形的判定,三角形的中位线定理,平行四边形的判定等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.11、(2011•襄阳)2011年春我市发生了严重干旱,市政府号召居民节约用水.为了解居民用)A、众数是6B、极差是2C、平均数是6D、方差是4考点:方差;加权平均数;众数;极差。

专题:计算题。

分析:众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.解答:解:这组数据6出现了6次,最多,所以这组数据的众数为6;这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;这组数据的平均数=(5×2+6×6+7×2)=6;这组数据的方差S2=[2•(5﹣6)2+6•(6﹣6)2+7•(7﹣6)2]=0.9;所以四个选项中,A、B、C正确,D错误.故选D.点评:本题考查了方差的定义和意义:数据x1,x2,…x n,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.12、(2011•襄阳)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A、k<4B、k≤4C、k<4且k≠3D、k≤4且k≠3考点:抛物线与x轴的交点;根的判别式;一次函数的性质。

专题:计算题。

分析:分为两种情况::①当k﹣3≠0时,(k﹣3)x2+2x+1=0,求出△=b2﹣4ac=﹣4k+16≥0的解集即可;②当k﹣3=0时,得到一次函数y=2x+1,与X轴有交点;即可得到答案.解答:解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与X轴有交点.故选B.点评:本题主要考查对抛物线与X轴的交点,根的判别式,一次函数的性质等知识点的理解和掌握,能进行分类求出每种情况的k是解此题的关键.二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13、(2011•襄阳)为了推进全民医疗保险工作,截止2011年5月31日,今年中央财政已累计下拨医疗卫生补助金1346亿元.这个金额用科学记数法表示为 1.346×1011元.考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1346亿用科学记数法表示为1.346×1011.故答案为:1.346×1011.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、(2011•襄阳)在207国道襄阳段改造工程中,需沿AC方向开山修路(如图所示),为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B取∠ABD=140°,BD=1000m,∠D=50°.为了使开挖点E在直线AC上,那么DE=642.8m.(供选用的三角函数值:sin50°=0.7660,cos50°=0.6428,tan50°=1.192)考点:解直角三角形的应用。

相关文档
最新文档