第10次课 材料力学性能
材料的力学性能最新课件
举例:一些塑性较好的金属材料及高分子材料在室温 下的静拉伸断裂具有典型的韧性断裂特征。
脆性断裂定义:是材料断裂前基本上不产生明显的宏观塑性变 形,没有明显预兆,往往表现为突然发生的快速断裂过程,因 而具有很大的危险性。
图 3.21 压痕相似原理图
F1 D12
D F222
D F2
常数
材料物理与性能
洛氏硬度试验
HR k h 0.002
HRA、HRB、 HRC
图 3.22 洛氏硬度试验过程示意图 a) 加初始实验力 b) 加主实验力 c) 卸除试验力
材料物理与性能
0.20F4 s in 136
HV 0.10F2
20.189 F1
(6)应变速率与应力状态:应变速率对金属材料的屈服强 度有明显的影响。应变速率高,金属材料的屈服应力显著提高; 应力状态对金属材料屈服强度的影响规律是:切应力分量越大, 越有利于塑性变形,屈服强度就越低。
应变硬化应变硬化源自变硬化应变硬化抗拉强度
抗拉强度:拉伸实验时,试样拉断过程中最大实验力所对应的 应力。其值等于最大拉力Fb除以试样的原始横截面面积A0, 抗拉强度用σb表示,即 σb=Fb/A0
剪切断裂与解理断裂是两种不同的微观断裂方式,是材料 断裂的两种重要微观机理。
剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离 而造成的断裂。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起 的沿特定晶面发生的脆性穿晶断裂称为解理断裂。
材料物理与性能
剪切断裂的另一种形式为微孔 聚集型断裂,微孔聚集型断裂 是材料韧性断裂的普通方式, 其断口在宏观上常呈现暗灰色、 纤维状,微观断口特征花样则 是断口上分布大量“韧窝”, 如图1-26所示,微孔聚集断裂 过程包括微孔形核、长大、聚 合直至断裂。
材料力学性能课件
温度与环境因素
应变速率与加载路径
应变速率和加载路径对材料的力学响 应具有重要影响,特别是在动态加载 条件下。
温度、湿度、腐蚀等环境因素对材料 的强度和塑性也有影响。
03 材料的硬度与韧性
硬度定义与分类
硬度定义
硬度是指材料抵抗被压入或刻划的能力。它是材料表面局部区域抵抗变形或破裂 的能力。
硬度分类
塑性ห้องสมุดไป่ตู้类
根据塑性变形的性质,可分为延性、 展性、韧性等。
强度与塑性的关系
01
强度与塑性相互关联,塑性好的 材料通常强度也较高,但两者之 间并非完全正相关。
02
在一定条件下,材料的强度和塑 性可能存在此消彼长的关系。
强度与塑性的影响因素
材料成分与组织结构
材料的化学成分和微观组织结构对其 力学性能有显著影响。
冲击试验
通过冲击试样来测定材料的冲击韧性、断裂 韧性等参数,适用于评估材料的韧性和脆性 断裂行为。
D
02 材料的强度与塑性
强度定义与分类
强度定义
材料抵抗外力而不发生失效的能力。
强度分类
根据外力类型,可分为抗拉强度、抗压强度、抗剪强度等。
塑性定义与分类
塑性定义
材料在外力作用下发生不可逆变形的 能力。
材料力学性能的测试方法
A
拉伸试验
通过拉伸试样来测定材料的弹性模量、屈服强 度、抗拉强度等参数,是最常用的力学性能测 试方法之一。
压缩试验
通过压缩试样来测定材料的抗压强度、弹 性模量等参数,适用于脆性材料和塑性材 料的测试。
B
C
弯曲试验
通过弯曲试样来测定材料的抗弯强度、挠度 等参数,适用于评估材料的弯曲性能和稳定 性。
材料力学性能
材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括材料的强度、韧性、硬度、塑性等。
这些性能直接影响着材料在工程领域的应用,因此对材料力学性能的研究和评价显得尤为重要。
首先,强度是材料力学性能中的重要指标之一。
材料的强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等来表示。
不同材料的强度差异很大,例如金属材料的强度通常较高,而塑料和橡胶等材料的强度相对较低。
材料的强度直接影响着材料在工程中的承载能力和使用寿命。
其次,韧性是衡量材料抵抗断裂的能力。
韧性高的材料在受到外力作用时能够延展变形而不易断裂,这对于一些需要承受冲击或振动载荷的工程结构来说尤为重要。
例如,航空航天领域对材料的韧性要求较高,以确保飞行器在受到外部冲击时能够保持结构完整。
此外,硬度是材料力学性能中的重要参数之一。
材料的硬度是指材料抵抗划痕和压痕的能力,通常用洛氏硬度、巴氏硬度等来表示。
硬度高的材料通常具有较好的耐磨性和耐腐蚀性,适用于一些对材料表面要求较高的工程领域,例如汽车制造、船舶建造等。
最后,塑性是材料力学性能中的重要特性之一。
材料的塑性是指材料在受到外力作用时能够发生塑性变形而不断裂,这对于一些需要进行成形加工的工程材料来说尤为重要。
例如,金属材料的塑性使其能够通过锻造、轧制等工艺进行成形,从而制备出各种复杂的零部件。
综上所述,材料力学性能是材料工程领域中的重要研究内容,不同的材料力学性能对材料的应用具有重要的影响。
因此,对材料力学性能的研究和评价具有重要的意义,可以为工程领域的材料选择和设计提供重要的参考依据。
材料力学性能课后习题答案
材料力学性能课后习题答案1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.xx效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材料的力学性能课件
A0 − A1 ψ = × 100% A0
断面收缩率
δ 10
l1 − l 0 = × 100% l0
都表示材料直到拉断时其塑性变形能达到的 最大程度值愈大说明材料的塑性愈好。
δ 在工程上将δ 10 >5%称为塑性材料,10 <5%称为 5%称为塑性材料, <5%称为 脆性材料。
2.铸铁在拉伸时的力学性能 • 灰铸铁在拉伸时,从开始到试件拉断, 应力和应变都很小,没有屈服阶段和缩 颈现象,没有明显的直线段,在工程实 际中,应力应变曲线图的曲率很小,常 以直线代替曲线,近似地认为材料服从 胡克定律,直线的斜率 E=tanɑ,称为 弹性模量,拉断时的最大应力为材料的 强度极限,由于脆性材料的抗拉强度很 低,不易用作受拉杆件的材料。
低碳钢试棒
应力应力-应变图
拉伸曲线图
变形发展的四个阶段:
1)弹性阶段
分为两段:直线段和微弯段。直线段表示应力与应变 成正比关系,直线最高点所对应的应力值成为材料的比例极限。 低碳钢的比例极限约等于200MPa。ab段图线微弯,不再成正比 关系,而与产生的变形仍为弹性变形,b点所对应的应力值称为材 料的弹性极限。 2) 屈服阶段 当由b点逐渐发展到e点,然后再由c点至c’点,表明应 力几乎不增加而变形急剧增加,这种现象称为屈服或流动,cc’段 称为屈服阶段。对应c点的应力值称为屈服点 屈服阶段。 屈服点。材料屈服时,所产 屈服阶段 屈服点 生的变形是塑性变形,当材料屈服时,在试件光滑表面上可以看 到与杆轴线成45°的暗纹,这是由于材料内部晶格间沿最大剪应 力作用所产滑移造成的,故称为滑移线 滑移线。 滑移线 3)强化阶段 经过屈服后图线由c’上升到d点,这说明材料又恢复了对线相比,其抗压 强度极限远远大于抗拉强度极限(3~4倍)。压坏时, 其断口与曲线约成45°,表明铸铁压缩时沿斜截面相 对错动而断裂。由于脆性材料抗压强度很高,常用于 受压件。
材料力学性能教学课件
05
材料的强度性能
抗拉强度与抗压强度
抗拉强度
材料在拉伸载荷作用下抵抗破坏的能力。
抗压强度
材料在压缩载荷作用下抵抗破坏的能力。
抗剪强度与抗扭强度
抗剪强度
材料在剪切载荷作用下抵抗破坏的能力。
抗扭强度
材料在扭转载荷作用下抵抗破坏的能力。
疲劳强度与持久强度
疲劳强度
材料在交变载荷作用下抵抗破坏的能力。
材料力学性能教学课件
目录
• 材料力学性能概述 • 材料力学性能的测试方法 • 材料的弹性性能 • 材料的塑性性能 • 材料的强度性能 • 材料力学性能的应用
01
材料力学性能概述
材料力学性能的定义
01
02
材料力学性能是指材料在一定条件下,对外界施加的力或应力、应变 和时间等物理量的响应。
这些物理量包括弹性模量、屈服强度、抗拉强度、抗压强度、抗弯强 度、疲劳强度等。
广泛应用。
高分子材料
根据高分子材料的可加工性、轻 量化和易加工等特点,在汽车、 建筑、航空航天和医疗等领域得
到广泛应用。
功能材料的设计与优化
电学性能
通过添加导电或半导体材料,改 善材料的导电性、电阻率和介电 性能等电学性能,用于制造电子
器件和集成电路等。
光学性能
通过添加光学材料或采用表面处理 技术,改善材料的光学性能,用于 制造光学仪器和显示器等。
02
设备
硬度计,主要有布氏硬度计、洛氏硬 度计、维氏硬度计等类型。
01
03
试样制备
选取所需材质的试样,一般采用圆形 或方形截面,表面应平整、光滑。
数据分析
根据压痕深度或压痕直径,可以计算 出材料的硬度值。
材料力学性能
材料力学性能-CAL-FENGHAI.-(YICAI)-Company One1第一章一.静载拉伸实验拉伸试样一般为光滑圆柱试样或板状试样。
若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。
二.工程应力:载荷除以试件的原始截面积。
σ=F/A0工程应变:伸长量除以原始标距长度。
ε=ΔL/L0低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。
三.低碳钢拉伸力学性能1.弹性阶段(Ob)(1)直线段(Oa):线弹性阶段,E=σ/ε(弹性模量,比例常数)σp—比例极限(2)非直线段(ab):非线弹性阶段σe—弹性极限2. 屈服阶段(bc)屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。
σs—屈服强度(下屈服点),屈服强度为重要的强度指标。
3.强化阶段(ce)材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。
σb—抗拉强度,材料断裂前能承受的最大应力4.局部变形阶段(颈缩)(ef)试件局部范围横向尺寸急剧缩小,称为颈缩。
四.主要力学性能指标弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力2E 21a 2e e e e σεσ==屈服强度(σs ):抵抗微量塑性变形的应力五.铸铁拉伸力学性能特点:(1)较低应力下被拉断(2)无屈服,无颈缩(3)延伸率低(4)σb —强度极限(5)抗压不抗拉讨论1:σs 、σr0.2、σb 都是机械设计和选材的重要论据。
实际使用时怎么办?塑性材料:σs 、σr0.2脆性材料:σb屈强比:σs /σb 讨论2:屈强比σs /σb 有何意义?屈强比 s / b 值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。
六.弹性变形及其实质定义:当外力去除后,能恢复到原来形状和尺寸的变形。
特点:单调、可逆、变形量很小 (<0.5~1.0%)七.弹性模量1、物理意义:材料对弹性变形的抗力。
材料力学性能参考答案
填空:1.影响材料弹性模数的因素有键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件和负荷持续时间等。
2.提供材料弹性比功的途径有二,提高材料的弹性极限,或降低弹性模量。
3.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。
4.金属材料常见的塑性变形机理为晶体的滑移和孪生两种。
5.多晶体金属材料由于各晶粒位向不同和晶界的存在,其塑性变形更加复杂,主要有各晶粒变形的不同时性和不均匀性及各晶粒变形的相互协调性的特点。
6.影响金属材料屈服强度的因素主要有晶体结构、晶界与亚结构、溶质元素、第二相、温度等。
7.产生超塑性的条件是(1)超细晶粒;(2)合适的条件,变形温度≥0.4Tm,应变速率ε≤ 10-3s-1 ;(3)应变速率敏感指数较高0.3≤m≤1 。
8.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为韧性断裂与脆性断裂;按照晶体材料断裂时裂纹扩展的途径,分为穿晶断裂和沿晶断裂;按照微观断裂机理分为剪切断裂和解理断裂;按作用力的性质可分为正断和切断。
9.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力增加;卸载时降低的的现象。
10.剪切断裂的两种主要形式为滑断(纯剪切断裂)和微孔聚集性断裂。
11.解理断口的基本微观特征为解理台阶、河流花样和舌状花样。
12.韧性断裂的断口一般呈杯锥状,由纤维区、放射区和剪切唇三个区域组成。
13.韧度是衡量材料韧性大小的力学性能指标,其中又分为静力韧度、断裂韧度和冲击韧度。
14. 材料在受到三向等拉伸应力作用时压力状态最硬,其最大切应力分量分量为零,材料最易发生脆性断裂,适用于揭示塑性较好的金属材料的脆性倾向。
单向拉伸时,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;弯曲、扭转时应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;材料的硬度试验属于三向压缩状态,应力状态非常软,可在各种材料上进行。
材料力学性能课后题,参考看下
第七章1、磨损:机件表面相接处并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象。
2、粘着:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
(实际上就是原子间的键合作用)3、磨屑:松散的尺寸与形状均不相同的碎屑????4、跑合:摩擦表面逐渐被磨平,实际接触面积增大,磨损速率迅速减小。
5、咬死:当接触压应力超过材料硬度H的1/3时,粘着磨损量急剧增加,增加到一定程度就出现咬死现象。
6、犁皱:指表面材料沿硬粒子运动方向被横推而形成沟槽。
7、耐磨性:材料在一定摩擦条件下抵抗磨损的能力8、冲蚀:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击。
9、接触疲劳:机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而是材料流失的现象。
10、是比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响?⑴凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。
韧性材料——连续屑,脆性材料——断屑。
⑵高应力碾碎性磨粒磨损:磨粒与摩擦面接触处的最大压应力超过磨粒的破坏强度,磨粒不断被碾碎,使材料被拉伤,韧性金属产生塑性变形或疲劳,脆性金属则形成碎裂式剥落。
⑶低应力擦伤性磨粒磨损:作用于磨粒上的应力不超过其破坏强度,摩擦表面仅产生轻微擦伤。
11、试述粘着磨损产生的条件、机理及其防止措施?条件:在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。
机理:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
全套课件 材料力学性能(第2版)时海芳
e l dL ln L ln L0 L ln(1 )
l0 L
L0
L0
e
F dA
A
ln
F0 A
A0
ln A0 A ln(1 )
2.试样:
K= 11.3
比例试样 l 0 K F 0
K=5.65 非比例试样
3. 加载速度: (形变速率10-2~10-4)
dP dt
屈服前 1kg/mm2·s
屈服后: 生产检验 1~3 kg/mm2·s
夹头 0.5l 0 /min
4. 环境条件:20±10℃
第一章 材料在单向静拉伸载荷下的力学性能 单向静拉伸实验演示
第一章 材料在单向静拉伸载荷下的力学性能
二、拉伸力-伸长曲线的类型 a. 脆性材料:
弹性变形
断裂
b. 有色金属:
弹性变形
u
c.高锰钢、铁青铜:
弹性变形
u
d.加工硬化不明显:
弹性变形
b
e. 纯铜、纯铝:
u
断裂
b 断裂
断裂 断裂
第一章 材料在单向静拉伸载荷下的力学性能
三、应力-应变曲线(σ-ε) 将拉伸力-伸长曲线的纵、横坐标分别用拉
绪论
3. 材料力学性能的微观机制
4. 材料力学性能的测试技术
四、研究目的和意义
1.正确地使用材料。 2. 评价材料合成与加工工艺的有效性,并通过控制材料的加工 工艺提高材料的力学性能。
3. 可在材料力学性能理论的指导下,采用新的材料成分和结 构,或新的加工和合成工艺,设计和开发出 新材料,以满足 对材料的更高需求。
第一章
材料在单向静拉伸载荷下 的力学性能
第一章 材料在单向静拉伸载荷下的力学性能
材料力学性能重点总结
材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。
强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。
2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。
具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。
韧性材料通常具有较高的延展性和断裂韧性。
3.硬度:硬度是材料抵抗刮擦或压痕的能力。
硬度高的材料具有较强的抗刮擦能力和耐磨损性能。
常用的硬度测试方法有洛氏硬度和布氏硬度等。
4.延展性:延展性是指材料在受力时的塑性变形程度。
延展性高的材料能够在受力后产生大的形变而不发生断裂。
材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。
5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。
材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。
6.温度效应:材料在高温或低温环境下的性能表现。
高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。
温度效应的了解对于材料的设计和应用非常重要。
除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。
因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。
综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。
材料力学性能实验报告
实验报告(一)院系:机械与材料工程学院课程名称:材料力学性能日期:实验报告(一)院系:机械与材料工程学院课程名称:材料力学性能日期:企业安全生产费用提取和使用管理办法(全文)关于印发《企业安全生产费用提取和使用管理办法》的通知财企〔2012〕16号各省、自治区、直辖市、计划单列市财政厅(局)、安全生产监督管理局,新疆生产建设兵团财务局、安全生产监督管理局,有关中央管理企业:为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,根据《中华人民共和国安全生产法》等有关法律法规和国务院有关决定,财政部、国家安全生产监督管理总局联合制定了《企业安全生产费用提取和使用管理办法》。
现印发给你们,请遵照执行。
附件:企业安全生产费用提取和使用管理办法财政部安全监管总局二○一二年二月十四日附件:企业安全生产费用提取和使用管理办法第一章总则第一条为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,依据《中华人民共和国安全生产法》等有关法律法规和《国务院关于加强安全生产工作的决定》(国发〔2004〕2号)和《国务院关于进一步加强企业安全生产工作的通知》(国发〔2010〕23号),制定本办法。
第二条在中华人民共和国境内直接从事煤炭生产、非煤矿山开采、建设工程施工、危险品生产与储存、交通运输、烟花爆竹生产、冶金、机械制造、武器装备研制生产与试验(含民用航空及核燃料)的企业以及其他经济组织(以下简称企业)适用本办法。
第三条本办法所称安全生产费用(以下简称安全费用)是指企业按照规定标准提取在成本中列支,专门用于完善和改进企业或者项目安全生产条件的资金。
安全费用按照“企业提取、政府监管、确保需要、规范使用”的原则进行管理。
第四条本办法下列用语的含义是:煤炭生产是指煤炭资源开采作业有关活动。
非煤矿山开采是指石油和天然气、煤层气(地面开采)、金属矿、非金属矿及其他矿产资源的勘探作业和生产、选矿、闭坑及尾矿库运行、闭库等有关活动。
《材料力学性能》教学大纲
《材料力学性能》教学大纲材料力学性能是材料科学与工程学科的一个重要分支,涉及到材料的结构、力学行为和性能的研究与分析。
本教学大纲旨在引导学生全面了解和掌握材料力学性能的基本理论与方法,培养学生分析和评价材料性能的能力,以及解决实际工程问题的能力。
一、课程概述1.课程名称:材料力学性能2.学分:3学分3.先修课程:材料力学、材料科学基础4.开设单位:材料科学与工程学院二、教学目标1.理论目标:了解材料力学性能的基本理论和方法。
2.实践目标:掌握材料力学性能的测试与分析方法,并能够应用于实际工程问题的解决。
三、教学大纲1.引论1.1材料力学性能的概念和研究内容1.2材料力学性能测试的意义和方法2.结构与组织分析2.1材料的结构和组织对力学性能的影响2.2显微组织分析方法2.3物相组成分析方法3.弹性力学性能3.1弹性力学基本概念和理论模型3.2材料的弹性行为测试与分析方法3.3应力-应变曲线及其分析3.4弹性与刚性的区别与应用4.塑性力学性能4.1塑性力学基本概念和理论模型4.2材料的塑性行为测试与分析方法4.3屈服强度、塑性延展性等力学性能参数的测定与应用4.4晶体塑性的基本原理和行为5.破断力学性能5.1破断力学基本概念和理论模型5.2材料的破断行为测试与分析方法5.3断裂强度、韧性等力学性能参数的测定与应用5.4破断形态和机理的分析与评价6.疲劳和蠕变力学性能6.1疲劳和蠕变力学基本概念和理论模型6.2材料的疲劳和蠕变行为测试与分析方法6.3疲劳寿命、蠕变速率等力学性能参数的测定与应用6.4疲劳和蠕变的机理和预测四、教学方法1.理论授课:通过讲授基本理论和原理,引导学生建立相关概念和模型。
2.实验操作:组织学生进行材料力学性能测试实验,并进行数据分析和结果讨论。
3.讨论与案例分析:组织学生进行讨论,解析和评价材料力学性能测试结果,并根据实际工程情况进行案例分析。
五、评价与考核1.平时成绩:包括课堂表现、作业完成情况。
材料力学性能课件
在弹性范围内快速加 载或卸载后,随着时 间延长产生的附加弹 性应变的现象,称为 滞弹性。
由于实际金属具有滞弹性,金属在弹性区快速加载卸载时,由于应变落 后于应力,使加载线与卸载线不重合而形成一封闭回线,称为弹性滞后 环(图a)。
如果施加交变载荷,且最大应力低于宏观弹性极限,加载速率比较大, 则也得到弹性滞后环(图b) 。
消除包申格效应的方法:
(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶
温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。
第三节 塑性变形阶段
一、塑性变形方式和特点
变形方式: (1) 滑移 (2) 孪生
多晶金属中每一晶粒滑移变形的规律 与单晶金属相同,但是多晶金属中存 在晶界,各晶粒的取向也不相同,因 而其塑性变形有如下特点:
2. 准解理
在淬火回火钢中,当裂纹在晶粒内部扩展时, 难于严格的沿一定晶体学平面扩展,
断裂路径不再与晶粒位向有关,而主要与细 小的碳化物质点有关,其微观形态,与解理 河流相似,但又不是真正的解理,所以称为 准解理。
三、微孔聚集断裂的微观断口特征
如果使微孔在垂直于正应力 的平面上各方向长大倾向相 同,则在正应力垂直于微孔 的平面上便形成等轴韧窝。
如果断裂面取向与最大切应力方向一致,而 与最大正应力方向成45度角,为切断型断裂。
二、解理断裂的微观断口特征
关于断裂机理的三种理论:
1. 甄纳-斯特罗位错塞积理论 2. 柯垂耳位错反应理论 3. 史密斯理论
1. 解理断裂
解理断裂是沿特定界面发生的脆性穿晶断裂,断裂断口 是由许多大致相当于晶粒大小的解理面集合而成;
如果交变载荷中最大应力超过宏观弹性极限,就会得到塑性滞后环(图 c) 。
材料科学中的材料力学性能
材料科学中的材料力学性能材料科学是一门研究材料的结构、性能、制备和应用的学科,而材料力学性能则是其中一个重要的研究方向。
材料力学性能是指材料在外部力作用下的变形和破坏行为,它直接关系到材料的使用寿命和安全性。
本文将从材料力学性能的定义、影响因素和测试方法等方面进行探讨。
首先,我们来定义材料力学性能。
材料力学性能包括强度、韧性、硬度和耐磨性等指标。
强度是指材料在外部力作用下抵抗破坏的能力,常用的强度指标有屈服强度、抗拉强度和抗压强度等。
韧性是指材料在外部力作用下发生塑性变形的能力,它与材料的延展性和断裂韧性有关。
硬度是指材料抵抗外界硬物压入的能力,它反映了材料的抗划伤和耐磨性。
耐磨性是指材料在摩擦、磨损和磨料冲击等作用下的抗磨损性能。
其次,材料力学性能受到多种因素的影响。
首先是材料的组织结构。
材料的晶体结构、晶界、晶粒大小和相变等因素都会对材料的力学性能产生影响。
例如,晶粒尺寸越小,材料的强度和硬度就越高,而晶界的存在会对材料的韧性产生影响。
其次是材料的化学成分。
不同的化学成分会导致材料的力学性能差异,例如含碳量高的钢材具有较高的硬度和强度,而含硫量高的钢材则易于产生脆性断裂。
此外,材料的热处理和加工工艺也会对其力学性能产生重要影响。
然后,我们来讨论材料力学性能的测试方法。
常用的测试方法包括拉伸试验、冲击试验、硬度测试和磨损试验等。
拉伸试验是一种常用的测试方法,通过施加拉力来测量材料的强度和韧性。
冲击试验则是通过施加冲击力来评估材料的抗冲击性能。
硬度测试用于评估材料的抗划伤和耐磨性能,常用的硬度测试方法包括洛氏硬度和布氏硬度。
磨损试验则是通过模拟实际使用条件下的磨损过程来评估材料的耐磨性能。
最后,我们来探讨材料力学性能在实际应用中的意义。
材料力学性能的好坏直接关系到材料的使用寿命和安全性。
例如,在航空航天领域,需要使用具有高强度和韧性的材料来保证飞机和航天器的安全性能。
在汽车制造领域,需要使用具有高硬度和耐磨性的材料来提高汽车的使用寿命。
《材料的力学性能》课程笔记
《材料的力学性能》课程笔记第一章:材料在拉伸下的力学性能1.1 拉伸试验与应力应变曲线拉伸试验是评估材料在拉伸载荷下的力学性能的基本方法。
在拉伸试验中,将材料试样固定在拉伸试验机上,然后对试样施加拉伸载荷,直至试样断裂。
通过记录拉伸过程中载荷与试样长度变化的关系,可以得到应力应变曲线。
应力应变曲线是描述材料在拉伸过程中应力与应变之间关系的曲线。
它通常包括弹性变形阶段、塑性变形阶段和断裂阶段。
通过应力应变曲线,可以获得材料的弹性模量、屈服强度、断裂强度等力学性能参数。
在弹性变形阶段,应力与应变呈线性关系,符合胡克定律。
弹性模量是描述材料在弹性变形阶段刚度的指标,它定义为应力与应变的比值。
弹性模量越大,材料的刚度越高。
在塑性变形阶段,应力与应变不再呈线性关系,材料发生永久形变。
屈服强度是描述材料开始发生塑性变形的应力水平。
屈服强度越大,材料的抗变形能力越强。
在断裂阶段,应力达到最大值,材料发生断裂。
断裂强度是描述材料在断裂时的应力水平。
断裂强度越大,材料的抗断裂能力越强。
1.2 工程应力指标工程应力是描述材料在拉伸过程中承受的应力的一种指标。
它定义为拉伸载荷与原始横截面积的比值。
工程应力的单位通常是Pa(帕斯卡)或MPa(兆帕斯卡)。
工程应力可以用来评估材料在拉伸过程中的承载能力。
在工程设计中,通常使用工程应力来计算和确定材料的尺寸和结构的安全性。
1.3 工程应变指标与典型的拉伸应力-应变曲线工程应变是描述材料在拉伸过程中发生的形变的一种指标。
它定义为试样长度变化与原始长度的比值。
工程应变的无量纲,通常以百分比表示。
典型的拉伸应力-应变曲线展示了材料在拉伸过程中的力学行为。
在弹性变形阶段,应力与应变呈线性关系,符合胡克定律。
在塑性变形阶段,应力与应变不再呈线性关系,材料发生永久形变。
在断裂阶段,应力达到最大值,材料发生断裂。
通过分析拉伸应力-应变曲线,可以获得材料的弹性模量、屈服强度、断裂强度等重要力学性能参数,为材料的选择和应用提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-5-17
18
2013-5-17
19
低碳钢拉伸的颈缩(断裂)阶段 (b f 段)
2013-5-17
20
2、伸长率和断面收缩率
l1 l 100% l
——伸长率 δ ≥5%——塑性材料 δ <5%——脆性材料
A A1 100 % A
2013-5-17
——断面收缩率
21
5
7.3 轴向拉伸与压缩时的变形
三、横向变形系数(泊松比)
ε ε
或:ε νε
2013-5-17
6
7.3 轴向拉伸与压缩时的变形
• 一等截面直杆如图所示,固定在两刚性墙 壁之间,若杆的横截面积为A,材料的弹性 模量为E,试求墙对杆的反力。
2013-5-17
7
7.3 轴向拉伸与压缩时的变形
11
1)、弹性阶段
E
——拉伸或压缩 的胡克定律
E——弹性模量
比例极限 σP 弹性极限 σe
2013-5-17
Байду номын сангаас
12
1、op -- 比例段:
p -- 比例极限
E E tg
2、pe --曲线段:
e -- 弹性极限
f ( n )
2013-5-17
13
2)、屈服阶段 s 屈服应力
3、卸载定律及冷作硬化 韧性金属材料 E不变
e
d
f
σP 及σe增大 冷作硬化
d g
2013-5-17
22
4、铸铁拉伸时的力学性能
铸铁拉伸的 脆 性 材 料
应力—应变曲线
铸铁的抗压强度σbc远 大于抗拉强度σb ,所 以脆性材料宜做受压构 件
2013-5-17
23
5、其他塑性材料拉伸时的力学性能
杆在承受拉(压)力时,纵向与横向尺寸均会发生改变。
F
L L1
F
b1 b
纵向变形
1、纵向绝对变形
L L1 L
2、纵向相对变形(纵向线应变)
L L1 L L L
2013-5-17
3
7.3 轴向拉伸与压缩时的变形
横向变形 1、横向绝对变形
Δb b1 b
2、横向相对变形(横向线应变)
如图所示,阶梯杆受拉力作用。AB段及BC 段的横截面积,各段杆长度均已知,材料 的弹性模量为E。则阶梯杆的总变形长度为
2013-5-17
8
7.5 材料在拉伸与压缩时的力学性能 力学性能:材料在外力作用下,在强度与变形方面 表现出的特性。 选取两种代表材料,共进行4个试验: 低碳钢(塑性材料代表):1、拉伸试验
2013-5-17
1
7.3 轴向拉伸与压缩时的变形
一、线应变
当杆受轴向力作用时,杆的长度发生纵向伸长 或缩短,即产生纵向变形;同时杆的横向尺寸 也随之缩小或增大,即产生横向变形。 这两种变形程度的度量分别称为纵向线应变 和横向线应变,分别用 和 '表示。
2013-5-17
2
7.3 轴向拉伸与压缩时的变形
Δb b1 b ε b b
'
2013-5-17
4
7.3 轴向拉伸与压缩时的变形 二、 胡克定律 (弹性范围内)
1、拉压杆的胡克定律 FL ΔL EA
E—拉压弹性模量 EA—称为杆的抗拉(压)刚度 胡克定律的另一种表达方式:
ΔL 1 F σ ε L E A E
σ Eε
2013-5-17
2、压缩试验
铸铁(脆性材料代表):3、拉伸试验 4、压缩试验
2013-5-17
9
一、拉伸时的力学性能
1.低碳钢的拉伸试验 韧性金属材料
低碳钢拉伸的
应力—应变曲线
2013-5-17
10
拉 伸 曲 线 的 四 个 阶 段 :
弹性阶段 屈服阶段
强化阶段
断裂阶段 强化阶段 弹性阶段
屈服阶段
颈缩阶段
2013-5-17
29
• 三、材料塑性与脆性性能讨论
1. 低碳钢受力后,产生很大的塑性变形时才断裂,铸 铁很小的变形下就会破坏。 2. 低碳钢的抗拉能力强,铸铁压缩强度高。 3. 低碳钢由于有屈服阶段存在,对应力集中不敏感,起 到缓和作用。
2013-5-17
30
2013-5-17
31
2013-5-17
14
低碳钢拉伸的屈服(流动)阶段 (es 段)
e s --屈服段: s ---屈服极限
塑性材料的失效应力:s 。
2013-5-17
15
3)、强化阶段 强化阶段 强度极限σb
2013-5-17
16
低碳钢拉伸的强化阶段 (sb 段)
b---强度极限
2013-5-17
17
4)、颈缩阶段
聚合物 塑料拉伸的 应力—应变曲线
2013-5-17
24
锰钢、强铝、
退火球墨铸铁
的拉伸应力
——应变曲线
2013-5-17
25
0.2 条件屈服应力
0.2
2013-5-17
26
二、单向压缩时材料的力学性能
2013-5-17
27
2013-5-17
28
木材压缩的应力—应变曲线
2013-5-17