海洋遥感概述

合集下载

海洋遥感

海洋遥感
2015-5-10
卫星遥感不但为全球海洋和气候的物理研 究提供了可靠的数据,还为全球海洋初级
生产力的估计提供了充足的资料。
全球海洋初级生产力与全球碳循环有密切 联系。
全球碳循环与二氧化碳引起的全球变暖有
直接联系。 全球变暖可能导致全球海平面上升。 NASA(National Aeronautics and Space Administration)使用MODIS在2000年11月 对全球海洋叶绿素浓度(mg/m3)分布的观 测。
海洋遥感
学号:1434923 姓名:姚亚会
海洋遥感(ocean remote sensing)利用传感器对海
洋进行远距离非接触观测 ,
以获取海洋景观和海洋要 素的图像或数据资料。
2015-5-10
01 简介
海洋不仅不断向环境辐射电磁波能量,而且还会反射或散射太阳和人造辐射源(如
雷达)射来的电磁波能量,故可设计一些专门的传感器,把它装载在人造卫星、宇
全球海洋的年平均海表面温度(SST:Sea Surface Temperature)的等温线图像; 图中色标(colour bar)的单位是℃(摄氏度)。
该图清晰显示了西太平洋赤道暖水区
的范围和温度大小。 西太平洋赤道暖水区向大气输运的热 通量对于全球海洋大气热循环有举足 轻重的影响,它的范围和温度变化与
宙飞船、飞机、火箭和气球等工作平台上,接收并记录这些电磁辐射能,再经过传 输、加工和处理,得到海洋图像或数据资料。
遥感方式有主动式和被动式两种:①主动式遥感:传感器先向海面发射电磁波,再
由接收到的回波提取海洋信息或成像。这种传感器包括侧视雷达、微波散射计、雷 达高度计、激光雷达和激光荧光计等。②被动式遥感:传感器只接收海面热辐射能

(完整版)海洋遥感总结

(完整版)海洋遥感总结

1. 狭义广义遥感狭义遥感:主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。

(利用电磁波进行遥感)广义遥感:利用仪器设备从远处获得被测物体的电磁波辐射特征(光,热),力场特征(重力、磁力)和机械波特征(声,地震),据此识别物体。

(除电磁波外,还包括对电磁场、力场、机械波等的探测)两者探测手段不一样2. 遥感技术系统信息源-信息获取-信息纪录和传输-信息处理信息应用3. 遥感的分类(1)按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等(2)按照传感器工作方式分类:主动遥感、被动遥感4. 遥感的应用内容上可概括:资源调查与应用、环境监测评价、区域分析规划、全球宏观研究5. 海洋遥感的意义(1)海洋气候环境监测的需要海洋占全球面积约71%,海洋是全球气候环境变化系统中不可分割的重要部分厄尔尼诺、拉尼娜、热带气旋、大洋涡流、上升流、海冰等现象都与海洋密切相关。

厄尔尼诺是热带大气和海洋相互作用的产物,它原是指赤道海面的一种异常增温,现在其定义为在全球范围内,海气相互作用下造成的气候异常。

(2)海洋资源调查的需要海洋是人类最大的资源宝库,是全球生命支持系统的基本组成部分,海洋资源的重要性促使人们采用各种手段对其进行调查研究海岸带是人类赖以生存和进行生产活动的重要场所,海岸带资源的相关调查对于沿海资源的合理开发与利用非常重要(3)海洋遥感在海洋研究中的重要性海洋遥感具有大范围、实时同步、全天时、全天候多波段成像技术的优势可以快速地探测海洋表面各物理量的时空变化规律。

它是20 世纪后期海洋科学取得重大进展的关键学科之一。

重要性体现在:是海洋科学的一个新的分支学科;为海洋观测和研究提供了一个崭新的数据集,并开辟了新的考虑问题的视角;多传感器资料可推动海洋科学交叉学科研究的发展1. 海洋遥感的概念(重点)、研究内容海洋遥感:指以海洋及海岸带作为监测、研究对象,利用电磁波与大气和海洋的相互作用原理来观测和研究海洋的遥感技术。

海洋遥感技术在海洋环境监测中的应用

海洋遥感技术在海洋环境监测中的应用

海洋遥感技术在海洋环境监测中的应用海洋环境监测是指对海洋生态系统、海洋污染、海洋气候等方面的变化进行持续观测和分析。

而海洋遥感技术,作为一种高效、快速的监测手段,已经被广泛应用于海洋环境监测中。

本文将介绍海洋遥感技术在海洋环境监测中的应用,并探讨其在提高监测效率和准确度方面的优势。

一、海洋遥感技术概述海洋遥感技术是利用卫星、飞机或无人机等载具获取远距离、非接触式的海洋信息,其原理是利用电磁波与海洋环境之间的相互作用。

通过对电磁波的反射、散射、吸收等特性进行观测和分析,可以获取海洋表面温度、色素浓度、浮游植物分布、海洋气溶胶等大量海洋环境信息。

二、1. 海洋表面温度监测海洋表面温度对于气候变化、海洋环流以及生物活动等具有重要影响,因此准确监测海洋表面温度至关重要。

海洋遥感技术可以通过遥感卫星对海洋表面进行观测,并获取全球范围内的海洋表面温度分布,从而了解海洋的热力结构,并预测海洋环境变化趋势。

2. 海洋色素浓度监测海洋色素浓度是反映海洋生态系统健康状况的重要指标之一。

利用海洋遥感技术,可以获取海洋中的色素浓度信息,如叶绿素浓度等。

这些信息可以帮助科研人员监测海洋生物群落的分布变化,预测赤潮爆发,评估水体富营养化程度等。

3. 浮游植物分布监测浮游植物在海洋生态系统中起着重要的作用,影响着海洋食物链的结构和生态系统的稳定性。

海洋遥感技术可以通过测量浮游植物所吸收和散射的光信号,获得浮游植物的种类、分布和密度等信息。

这些数据不仅有助于科学家了解海洋生物多样性,还对渔业资源管理、海洋生态保护等方面具有指导意义。

4. 海洋气溶胶监测海洋气溶胶是指悬浮在海洋大气层中的固体或液体微小颗粒物质,对气候变化和大气污染具有重要影响。

海洋遥感技术可以定量测量海洋气溶胶的浓度、粒径分布、组分等参数,对气候模型和大气环境监测提供重要数据支持。

三、海洋遥感技术的优势与挑战海洋遥感技术在海洋环境监测中具有一系列优势。

首先,它能够提供大范围、高分辨率的数据,满足对海洋环境变化进行全面监测的需求。

海洋遥感知识点总结

海洋遥感知识点总结

海洋遥感知识点总结本文将从海洋遥感技术的基本原理、常用遥感技术和海洋遥感的应用领域等方面进行详细的介绍,并结合一些实际案例,希望可以为读者对海洋遥感技术有一个更全面的了解。

一、海洋遥感技术的基本原理海洋遥感技术是通过传感器对海洋进行观测和测量,然后将获取到的数据传输到地面处理系统进行分析,从而得到关于海洋的信息。

传感器可以是搭载在卫星上的遥感仪器,也可以是在飞机、船只等平台上安装的探测设备。

遥感技术主要依靠电磁波在大气和海洋中的传播和反射特性来获取海洋信息。

具体而言,通过用不同波段的电磁波对目标进行监测和探测,再利用电磁波与目标反射或散射作用时的特性来获取目标物体的信息。

遥感技术主要包括被动遥感和主动遥感两种方式。

被动遥感是指通过接收目标物体所发出的自然辐射或反射的电磁波,比较常用的是太阳辐射。

而主动遥感是指通过发送特定频率的电磁波到目标物体上,然后将目标物体发射的辐射或反射返回的信号进行分析。

被动遥感和主动遥感一般配合使用,可以获取更加全面的目标物体信息。

二、常用的海洋遥感技术1. 被动微波遥感被动微波遥感是通过接收海洋表面微波辐射来获取海洋信息的一种遥感技术。

微波辐射可以在大气中穿透,因此即使在云层遮挡的情况下,也可以对海洋进行探测。

被动微波遥感技术可以用来测量海洋表面温度、海洋表面风速、盐度等信息,对海洋动力学和大气海洋相互作用研究有着重要的意义。

2. 被动光学遥感被动光学遥感是通过接收海洋表面反射的太阳光来获取海洋信息的一种遥感技术。

光学遥感可以测量海洋表面的叶绿素浓度、海水透明度、沉积物含量等信息,可以用于海洋生态系统监测和海洋污染监测等方面。

3. 合成孔径雷达遥感合成孔径雷达(SAR)是一种主动遥感技术,通过发送微波信号到海洋表面,然后接收被海洋表面物体反射的信号,来获取海洋表面的信息。

SAR可以用来监测海洋表面风场、海洋表面粗糙度、海洋污染等信息,对海上风暴预警、海洋污染监测等具有重要的应用价值。

海洋遥感

海洋遥感

1.它不受地表、海面、天气和人为件 的限制,可以探测地理位置偏远、环 境条件恶劣等不能直接进入的地区 2.其宏观特性使它能进行大范围海洋 资源普查、海洋制图以及海冰、海洋 污染监测 3.能周期性地监测大洋环流、海面温 度场的变化、鱼群的迁移、污染物的 运移 4.多波段、高光谱海洋遥感可以提供 海量海洋遥感信息 5.能达到同步观测风、流、污染、海 气相互作用,并获取能量收支信息
物理海洋学遥感,如对海面温度、
海浪谱、海风矢量、 全球海平面变化等的遥感
海洋 遥感
生物海洋学和化学海洋学遥感,
如对海洋水色、黄色物体、 叶绿素浓度等的遥感 海冰监测,如监测海冰类型、 分布和动态变化;
海洋污染监测,如油膜污染等。
海洋遥感发展
•海洋遥感始于第二次世界大战期间。发展最早的是在 河口海岸制图和近海水深测量中利用航空遥感技术。 •1950年美国使用飞机与多艘海洋调查船协同进行了 一次系统的大规模湾流考察,这是第一次在物理海洋 学研究中利用航空遥感技术。 •此后,航空遥感技术更多地应用于海洋环境监测、近 海海洋调查、海岸带制图与资源勘测方面 •从航天高度上探测海洋始于1960年。这一年美国成 功地发射了世界第一颗气象卫星"泰罗斯-1”号。卫星 在获取气象资料的同时,还获得了无云海区的海面温 度场资料,从而开始把卫星资料应用于海洋学研究。
NASA使用MODIS在2000年11月对全球 海洋叶绿素浓度(mg/m3)分布的观测 图中红色代表高浓度,绿色代表中等浓度, 蓝色代表低浓度。图中显示蓝色的热带海洋 只有很低的叶绿素浓度,故被称为海中沙漠
南海四季叶绿素分布
南海春季叶绿素a分布图(1998年4月)
南海夏季叶绿素a分布图(1998年7月)
NOAA国家海洋资料中心提供的卫星数据制作的2001年全球海洋的年平均海表 面温度(SST:Sea Surface Temperature)的等温线图像; 图中色标(colour bar)的单位是℃(摄氏度)。 该图清晰显示了西太平洋赤道暖水区的范围和温度大小。 西太平洋赤道暖水区向大气输运的热通量对于全球海洋大气热循环有举足轻重的 影响,它的范围和温度变化与厄尔尼诺(El Niñ o)事件有密切关联,因而是科 学家监测的重要目标。

海洋遥感(OceanicRemoteSensing)

海洋遥感(OceanicRemoteSensing)

海洋遥感(OceanicRemoteSensing)第十一章海洋遥感(OceanicRemoteSensing)概述(Summary)一、海洋遥感及空间海洋观测历史背景(Backgroundofremotesensingandspatialoceanobservation):1.1957年苏联发射第一颗人造卫星(man-madesatellite)。

1960年NASA (NationalAeronauticsandSpaceAdministration,美国宇航局)发射了第一颗电视与红外(infrared)观测卫星。

1961年美国水星(Aqua)计划。

1973年Skylab证实了可见光(visiblelight)和近红外(nearinfrared)遥感对地球连续观测的能力。

1975年GEOS-3卫星高度计(SatelliteAltimeter)。

2.NOAA(NationalOceanicandAtmosphericAdministration,美国海洋大气局)1972-1976发射NOAA-1,2,3,4,5卫星,装载了红外扫描辐射计(infraredscatteringradiometer)和微波辐射计(microwaveradiometer),估计海表温度(seasurfacetemperature)、大气温度(atmospheretemperature)、湿度剖面(moistureprofile)。

1978NASA发射了三颗卫星,喷气动力实验室(JPL)研制的SeasatAGoddard空间飞行中心(GSFC)研制的TIROS-N和Nimbus-7卫星3.SeasatA海洋实验卫星装载了微波辐射计SMMR微波高度计(MicrowaveAltimeter)RA、微波散射计(MicrowaveScatterometer)SASS、合成孔径雷达(SyntheticApertureRadar)SAR、可见红外辐射计VIRR5种传感器,提供的海洋信息:SST、海面高度、海面风场、海浪(seawave)、海冰、海底地形、风暴潮(stormsurges)、水汽(vapour)和降雨(precipitation)等。

水体和海洋遥感

水体和海洋遥感

海洋遥感的历史Leabharlann 发展01历史回顾自20世纪70年代以来,随着卫星遥感技术的发展,海洋遥感逐渐成为
研究热点。早期的海洋遥感主要关注单一要素的探测,而随着技术的发
展,逐渐发展为多要素、多角度的综合探测。
02
技术进步
随着传感器技术的不断发展,海洋遥感的探测精度和覆盖范围不断提高。
新型传感器如高光谱、多光谱、合成孔径雷达等的应用,使得遥感数据
遥感测量可以获取海洋表面温度分布, 对于研究气候变化、海洋生态系统等 方面具有重要意义。
潮汐
遥感技术可以用于监测潮汐的涨落, 有助于研究海洋环流、河口治理等方 面的问题。
04
水体和海洋遥感的应用
水体遥感的应用
1 2 3
监测水体污染
通过遥感技术可以快速获取大面积水体的水质参 数,如浊度、叶绿素含量、溶解氧等,从而监测 水体污染状况。
水体和海洋遥感
• 水体遥感概述 • 海洋遥感概述 • 水体和海洋的物理特性与遥感测量 • 水体和海洋遥感的应用 • 水体和海洋遥感的未来发展
01
水体遥感概述
定义与特点
定义
水体遥感是指利用卫星、飞机、无人机等平台搭载的传感器,对地球表面水体 进行信息采集、处理和应用的技术。
特点
水体遥感具有大范围、快速、无损、动态监测等优势,能够提供水体分布、水 质状况、水生态等信息,为水资源管理、环境保护、灾害预警等领域提供重要 支持。
洪水预警
遥感技术可以实时监测河流水位变化,结合地理 信息系统(GIS)技术,可以预测洪水趋势,为 防洪减灾提供决策支持。
农业灌溉管理
遥感技术可以监测土壤湿度、作物生长状况等信 息,帮助农民合理安排灌溉时间和水量,提高农 业灌溉效率。

海洋遥感技术的原理和应用

海洋遥感技术的原理和应用

海洋遥感技术的原理和应用1. 原理海洋遥感技术是通过使用卫星、飞机等遥感平台获取海洋相关数据的一种技术。

其原理主要包括:1.1 电磁波与海洋反射海洋遥感技术主要利用电磁波与海洋物理特性的相互作用,获取海洋信息。

不同频段的电磁波与海洋的相互作用方式不同,常用的频段包括可见光、红外线、微波等。

当电磁波照射到海洋表面时,会发生反射、散射、折射等现象,进而表现出不同的物理特性,如海表面温度、叶绿素浓度、海洋生物量等。

1.2 传感器和接收系统海洋遥感技术需要使用专门的传感器和接收系统来接收和记录海洋反射的电磁波。

传感器的种类多种多样,包括光学传感器、红外传感器、微波传感器等。

不同的传感器可用于不同的海洋参数获取,如可见光传感器用于获取海洋表面温度,红外传感器用于获取云烟信息,微波传感器用于获取海洋风场信息等。

1.3 数据处理与分析获取到的海洋遥感数据需要经过一系列的数据处理和分析才能得到有用的海洋信息。

常用的数据处理方法包括校正、去噪、滤波、投影等。

而数据分析方法则包括分类、监测、模拟和预测等。

通过对海洋数据进行处理和分析,可以了解海洋的动态变化、变量间的相互关系等。

2. 应用海洋遥感技术在海洋研究和海洋资源开发中有着广泛的应用,主要包括以下几个方面:2.1 海洋环境监测海洋遥感技术可以监测海洋的物理环境、化学环境和生物环境。

通过获取海洋表面温度、悬浮物浓度、叶绿素浓度等参数,可以监测海洋的温度分布、水质状况、藻华分布等。

这些监测数据对于海洋环境保护、海洋污染监测等方面具有重要意义。

2.2 海洋资源开发海洋遥感技术可以对海洋资源进行调查和开发。

通过获取海洋底质、海底地形、海底矿产等参数,可以评估海洋资源潜力,指导海洋矿产资源的勘探和开发。

此外,海洋遥感技术还可以用于渔业资源调查、海洋能源开发等方面。

2.3 海洋灾害监测海洋遥感技术可以用于海洋灾害的监测和预警。

通过获取海浪高度、风场信息等参数,可以监测海洋风暴、海洋涌浪等灾害情况,并进行预警和预测。

海洋遥感监测技术

海洋遥感监测技术
温气象因素和海洋生物进行深入的研究,从宏
观上了解海洋生态系统的动态变化,为海洋研
究提供了新的技术手段,开拓了新的研究领域。
14.2.2 光学遥感在海洋环境监测中应用技术
光学遥感信息在赤潮、溢油监测等方面有突破性进展。
赤潮监测
•从可见光遥感机理出发找到了最佳监测可见光遥感波 段,利用卫星探测到的离水辐射率与水色水温等要素 尝试了离水辐射率多波段差值法,多波段差值比值法, 水色水温综合法和纵向比较法等多种赤潮信息的提取 模式。
“泰罗斯”气 象卫星
海洋卫星类别
海洋水色 卫星 海洋地形 卫星
海洋动力环境 卫星
海洋水色卫星
主要用于探测海洋水色要素,如叶绿素浓度、悬 浮泥沙含量、有色可溶有机物等,此外也可获得浅 海水下地形、海冰、海水污染以及海流等有价值的
信息。美国于1997年8月发射的SeaStar卫星是一
例,此外,还有其他多颗这样的卫星。
14 海洋遥感监测技术
任何物体都有不同的电磁波反射或辐射特征。 60年代在航空摄影和判读的基础上随航天 技术和电子计算机技术的发展,逐渐形成了一 种综合性感测技术——遥感技术。
14.1 海洋遥感概述
1. 遥感技术
遥感技术是20世纪60年代兴起的一种不直接与目
标物接触而感知其性质和状态的探测技术,是根据电磁
波的理论,应用各种传感仪器对远距离目标,从而 对地面各种景物进行探测和识别的一种综合技术。
遥感是一种远离目标,通过非直接接触而判定、 测量并分析目标性质的技术。
遥感技术是从人造卫星、飞机或其他飞行器上收集 地物目标的电磁辐射信息,判认地球环境和资源的技
海洋地形卫星
主要用于探测海表面拓扑,即海平面高度的空间
分布。此外,还可探测海冰、有效波高、海面风速和

海洋遥感的基本原理

海洋遥感的基本原理

海洋遥感的基本原理海洋遥感是利用航天器、舰艇、气象雷达等遥感手段从空间获取海洋地球物理参数的一种技术。

其基本原理是通过对电磁波在海洋中传播过程的监测与分析,推测海洋的地球物理变量。

海洋遥感在海洋科学研究、海洋资源开发利用、环境监测与保护等方面有着广泛的应用。

海洋遥感主要靠接收和解译海洋反射和发射的电磁波信号,其中包括主动辐射和被动辐射两种方式。

主动辐射是通过向海洋表面发射电磁波,然后测量反射回来的波束来获取海洋信息。

其中,合成孔径雷达(SAR)是最常用的主动辐射海洋遥感技术之一,其通过分析海洋场景中反射回来的电磁波,可以获取到海洋的海浪、表面风速、水温、海流、海洋气象、海洋污染等信息。

被动辐射是指通过接收地球表面自然辐射出的电磁波来获取海洋信息。

其中,微波遥感被广泛用于海洋测温、海洋色素、悬浮物、海洋生态系统的研究等。

海洋遥感技术的工作原理基于光谱、辐射传输和物理反演的原理。

首先,海洋中的表面、水体和底床等物体对电磁波有不同的散射、吸收和发射特性。

通过选择适当的光谱波段(如可见光、红外光、微波等),可以更好地观测到不同物体的特征。

其次,电磁波在海洋中的传播过程受到气体和水分子的散射、吸收和发射的影响,同时还受到海洋中悬浮物和溶解物质的影响。

这些影响可通过光谱的遥感数据进行辐射传输模型的建立和验证来研究。

最后,基于光谱数据和辐射传输模型的物理反演方法,可以根据已知的物理规律和数学算法来计算和估计地球物理参数,如海表面温度、色素浓度、悬浮物浓度等。

海洋遥感技术还可以通过多光谱、高光谱和超光谱等数据融合应用,从而提高对海洋环境的监测和推测能力。

同时,海洋遥感技术还可以结合地球物理数据和模型进行数据同化,以提高海洋数值模式的预报精度和可靠性。

总之,海洋遥感技术的基本原理是通过观测和分析海洋中反射和发射的电磁波信号,来推测和估计海洋的物理参数。

海洋遥感技术在海洋科学研究、资源利用与环境保护等方面发挥着重要的作用,为海洋领域的研究和应用提供了重要的数据支持。

海洋遥感技术与应用

海洋遥感技术与应用

海洋遥感技术与应用海洋遥感技术是一种通过卫星、飞机等远距离传感器获取海洋信息的技术手段,通过对海洋表面、海洋底部以及海洋大气等不同要素的监测和分析,可以为海洋科研、资源开发利用、环境监测等提供重要数据支持。

海洋遥感技术的应用领域涵盖广泛,涉及海洋资源调查、海洋环境监测、海洋灾害预警等多个方面,对于推动海洋事业的发展具有重要意义。

一、海洋遥感技术的原理和方法海洋遥感技术是利用卫星、飞机等平台搭载的传感器对海洋区域进行观测和监测,通过接收、记录和解译传感器所获取的电磁波信号,获取海洋表面、海洋底部以及海洋大气等不同要素的信息。

海洋遥感技术主要包括微波遥感、红外遥感、激光遥感等多种手段,其中微波遥感在海洋遥感中具有重要地位,可以实现对海洋表面风场、海温、海冰、海洋色彩等参数的监测。

二、海洋遥感技术在海洋资源调查中的应用海洋遥感技术在海洋资源调查中发挥着重要作用,可以实现对海洋渔业资源、海洋能源资源、海洋矿产资源等的监测和评估。

通过遥感技术,可以实现对海洋渔业资源的动态监测,及时掌握渔业资源的分布和数量,为渔业生产提供科学依据。

同时,海洋遥感技术还可以用于海洋油气资源的勘探和开发,通过对海洋地质构造和沉积物的遥感监测,为海洋油气资源的勘探提供数据支持。

三、海洋遥感技术在海洋环境监测中的应用海洋遥感技术在海洋环境监测中也具有重要意义,可以实现对海洋水质、海洋生态环境、海洋污染等方面的监测和评估。

通过遥感技术,可以实现对海洋水质参数如叶绿素浓度、浮游植物种类等的监测,及时发现海洋环境变化和异常情况。

此外,海洋遥感技术还可以用于监测海洋生态系统的变化,保护海洋生物多样性,维护海洋生态平衡。

四、海洋遥感技术在海洋灾害预警中的应用海洋遥感技术在海洋灾害预警中扮演着重要角色,可以实现对海洋台风、海啸、赤潮等灾害事件的监测和预警。

通过遥感技术,可以实现对海洋气象要素如风速、风向、海浪高度等的监测,及时预警海洋台风等极端天气事件。

测绘技术中的海洋遥感与海洋地理信息

测绘技术中的海洋遥感与海洋地理信息

测绘技术中的海洋遥感与海洋地理信息海洋遥感和海洋地理信息是测绘技术中的两个重要领域,它们对于海洋资源开发、环境保护以及海上安全等方面具有重要意义。

本文将对海洋遥感和海洋地理信息的概念、应用以及发展趋势进行探讨。

一、海洋遥感的概念和应用海洋遥感是利用航空器、船舶和卫星等遥远距离的传感器获取海洋空间参数和地物信息的技术。

它通过对海洋表面温度、色彩、海浪高度、悬浮物浓度等参数的观测,并结合数学模型和算法进行数据处理,获得海洋环境的空间分布图像。

海洋遥感在海洋资源开发和环境管理中具有广泛应用。

首先,海洋遥感可以用于海洋资源的开发和管理。

通过遥感技术的应用,可以实现对海洋油气、矿产资源和渔业资源的勘探和监测。

利用遥感数据可以提取海底地形、海底底质类型、水下植被等信息,为海底资源勘探和开发提供重要的参考依据。

其次,海洋遥感可以用于海洋环境的监测和保护。

海洋遥感技术可以实时监测海洋表面温度、浮游植物浓度、沉积物悬浮物浓度等参数,并实现对海水污染、赤潮等海洋环境问题的提前预警和监测。

同时,利用遥感技术还可以对海岸线的演变、海洋生态系统的状态进行评估,为海洋环境保护和管理提供科学依据。

最后,海洋遥感还可以用于海上交通安全和海洋灾害监测。

通过对海洋表面风速、风向、浪高以及海冰覆盖等参数的监测,可以为海事部门提供重要的海上交通安全信息。

同时,利用遥感技术还可以实现对海洋气象和海洋灾害(如台风、海啸等)的实时监测和预警,为相关部门和公众提供及时的信息支持。

二、海洋地理信息的概念和应用海洋地理信息是以海洋为研究对象,通过收集、整理、分析和展示相关数据,反映和描述海洋地理现象和规律的信息系统。

海洋地理信息主要包括海洋地图、海洋地理数据库、海洋地理信息系统等。

海洋地理信息在海洋资源管理、海洋环境保护以及海洋国土空间规划等方面具有重要应用。

首先,海洋地理信息可以用于海洋资源管理。

通过建立海洋地理信息系统,可以实现对海洋资源的全面监测和管理。

海洋科学中的遥感技术应用

海洋科学中的遥感技术应用

海洋科学中的遥感技术应用遥感技术是现代海洋科学中一项重要的应用技术,通过对海洋进行遥感观测和数据分析,可以了解海洋的动态变化、生态环境以及资源分布情况。

本文将从海洋遥感技术的原理、应用领域和前景等方面进行论述。

一、遥感技术在海洋科学中的原理遥感技术利用卫星或飞机等遥感平台,通过传感器获取海洋表面的辐射能量信息,进而进行数据分析与解译,获得有关海洋的各种参数和特征。

海洋遥感技术的主要原理包括电磁波辐射、传感器接收与测量、数据解译和处理等过程。

海洋遥感技术利用传感器对海洋的辐射能量进行探测,其中包括可见光、红外线、微波等电磁波的感知与测量。

通过分析不同波段的能量特征,可以获取海洋的温度、盐度、海表高度、浮游植物浓度、海洋溢油等信息。

二、海洋遥感技术的应用领域1. 海洋环境监测:利用遥感技术可以实时获取大范围内的海洋环境信息,如海洋水体温度、盐度、浮游植物种类和分布、水色等。

这些信息对于海洋生态环境评估、海洋生物资源调查、海洋环境保护等方面具有重要意义。

2. 海洋灾害监测与预测:遥感技术可以对海洋灾害(如台风、海洋风暴等)进行实时监测和预测。

通过对海洋表面风场、海浪高度等因素的监测,可以提前预警海洋灾害,为相关部门和航海人员提供决策支持。

3. 海洋资源勘探与利用:遥感技术可以对海洋资源进行快速、准确的勘探与评估。

例如,通过遥感技术,可以探测到海洋底部的矿产资源、海洋生物资源的分布情况等。

这为海洋资源的开发利用提供了重要依据。

4. 气候变化研究:海洋遥感技术可以对海洋表面温度、海流速度、海洋环流等进行长时间序列观测,揭示海洋对气候变化的响应及其反馈机制。

这对于推动气候变化研究及全球变暖等问题有着重要的意义。

三、海洋遥感技术的前景随着遥感技术的不断发展和卫星观测能力的提升,海洋遥感技术在海洋科学中的应用前景十分广阔。

未来,海洋遥感技术将在海洋环境监测、资源调查、灾害预警等方面发挥更加重要的作用。

此外,随着人工智能、大数据等技术的快速发展,海洋遥感技术在数据分析与处理方面也将有更多突破和创新。

海洋遥感的基本原理

海洋遥感的基本原理

海洋遥感的基本原理海洋遥感是利用卫星、飞机等遥感技术对海洋进行观测和监测的一种方法。

其基本原理包括:电磁波传播、反射、吸收和散射等过程。

电磁波可以在真空中传播,而在大气和海洋等各种介质中传播时会发生各种相互作用,因此海洋遥感关注的是电磁波与海洋介质之间的相互作用。

在海洋遥感中,主要使用可见光、红外线和微波等不同波长的电磁波进行观测。

这些电磁波在海洋中的传播和与海洋介质的相互作用过程中,会发生反射、吸收和散射。

反射是指电磁波从一个介质的边界上反射回原来的介质中。

当电磁波从大气进入海洋时,海洋的表面会发生反射,部分电磁波被反射回大气中。

这部分反射的电磁波可以被遥感仪器接收,从中获取海洋表面的信息。

吸收是指电磁波在海洋介质中被吸收,转化为其他形式的能量。

不同波长的电磁波在海洋中的吸收程度各不相同,这使得通过测量反射和吸收的电磁波能够推断出海洋的物理、化学、生物等特性。

例如,测量红外线波段的电磁波吸收情况可以获取海洋表层温度的信息。

散射是指电磁波在介质中的微小颗粒、气泡或其它不均匀区域上发生反射和折射的过程。

海洋中存在各种微小的颗粒,如悬浮物、浮游生物、盐粒等,它们会对电磁波产生散射现象。

通过测量反射和散射的电磁波的强度和频率等信息,可以推断出海洋的浊度、浮游生物的分布和浓度等。

除了反射、吸收和散射,海洋遥感还包括电磁波在大气中的传输、大气中的吸收和散射等过程。

这些过程也会对遥感观测结果产生影响。

因此,在进行海洋遥感时,需要考虑并消除大气对电磁波传播和遥感观测的干扰。

基于以上原理,海洋遥感通过获取和分析电磁波的反射、吸收和散射等信息,可以实现对海洋的遥感观测和监测。

这种方法在海洋资源开发、海洋环境保护和海洋灾害预警等方面具有重要应用价值。

同时,随着遥感技术的不断发展,海洋遥感在海洋科学研究和海洋经济发展中的作用也将进一步扩大和深化。

海洋遥感基础及应用

海洋遥感基础及应用

海洋遥感基础及应用一、引言海洋遥感是利用卫星、飞机等遥感技术获取海洋信息的一种方法。

随着科技的发展,海洋遥感在海洋资源开发、环境保护、气候变化等方面发挥着越来越重要的作用。

本文将介绍海洋遥感的基础原理以及其在海洋科学、渔业、海洋环境监测等方面的具体应用。

二、海洋遥感基础1. 电磁波与海洋信息获取海洋遥感利用电磁波与海洋中的物质相互作用的原理来获取海洋信息。

不同波段的电磁波与海洋中不同的物质有着不同的相互作用方式,从而可获取到海洋中的温度、盐度、叶绿素含量等信息。

2. 遥感传感器与数据获取遥感传感器是获取海洋遥感数据的核心设备。

常用的遥感传感器包括微波辐射计、红外线辐射计、可见光辐射计等。

这些传感器通过接收海洋反射或辐射出的电磁波,将其转化为数字信号,进而获取到海洋遥感数据。

三、海洋遥感的应用1. 海洋科学研究海洋遥感技术在海洋科学领域发挥着重要作用。

通过获取海洋表面温度、叶绿素含量等信息,科学家可以了解海洋的动态变化,研究海洋生态系统的结构和功能,探索海洋生物多样性等问题。

2. 渔业资源管理海洋遥感技术可用于监测海洋中的浮游生物分布、海洋温度等信息,从而为渔业资源管理提供科学依据。

通过分析海洋遥感数据,可以确定适宜的渔场位置、预测渔业资源的分布和变化趋势,帮助渔民提高渔业生产效益。

3. 海洋环境监测海洋遥感技术在海洋环境监测中也发挥着重要作用。

通过监测海洋表面温度、叶绿素含量、海洋溶解氧等指标的变化,可以实时监测海洋环境的状况,及时发现和预警海洋污染事件,保护海洋生态环境。

4. 气候变化研究海洋是地球上重要的热交换介质,对气候变化有着重要的影响。

海洋遥感技术可用于监测海洋表面温度、海洋风场等信息,为气候变化研究提供数据支持。

通过分析海洋遥感数据,科学家可以了解海洋对气候变化的响应过程,预测未来的气候变化趋势。

5. 海洋灾害预警海洋遥感技术在海洋灾害预警中起到了重要作用。

通过监测海洋表面风场、海浪高度等信息,可以及时预警台风、海啸等海洋灾害事件,为海洋沿线地区的居民提供重要的安全保障。

海洋遥感技术在海洋温度监测中的应用

海洋遥感技术在海洋温度监测中的应用

海洋遥感技术在海洋温度监测中的应用在广袤无垠的海洋世界中,了解海洋温度的变化对于我们认识地球气候系统、预测海洋环境演变以及合理开发利用海洋资源都具有至关重要的意义。

海洋遥感技术的出现,为海洋温度的监测提供了高效、全面且精确的手段,开启了我们探索海洋温度奥秘的新篇章。

海洋遥感技术是一种非接触式的观测手段,它通过传感器接收来自海洋表面或内部的电磁辐射信息,并对这些信息进行处理和分析,从而获取有关海洋物理、化学和生物等方面的参数。

在海洋温度监测中,常用的海洋遥感技术包括卫星遥感、航空遥感以及船载遥感等。

卫星遥感是海洋温度监测中应用最为广泛的技术之一。

卫星搭载的各种传感器能够大面积、长时间地对海洋进行观测,获取海洋表面温度的分布情况。

例如,美国的 NOAA 系列卫星上的 AVHRR 传感器,能够提供全球范围内的海洋表面温度数据。

这些数据对于研究全球气候变化、海洋环流模式以及厄尔尼诺和拉尼娜等气候现象具有重要价值。

卫星遥感测量海洋表面温度的原理主要基于热红外辐射。

海洋表面的温度不同,其向外发射的热红外辐射能量也不同。

传感器接收到这些辐射能量后,通过特定的算法和反演模型,就可以计算出海洋表面的温度。

然而,卫星遥感也存在一定的局限性。

例如,受到云层的遮挡,卫星可能无法准确获取某些区域的海洋表面温度信息。

此外,卫星遥感测量的是海洋表面的温度,对于海洋次表层和深层的温度变化则无法直接探测。

为了弥补卫星遥感的不足,航空遥感和船载遥感技术应运而生。

航空遥感具有较高的空间分辨率和灵活性,可以针对特定的区域进行精细化的观测。

船载遥感则能够在航行过程中实时获取海洋温度等参数,并且可以结合其他现场观测设备,对海洋温度的垂直分布进行测量。

海洋遥感技术在海洋温度监测中的应用领域十分广泛。

在气候研究方面,通过长期监测海洋温度的变化,可以了解全球气候的演变趋势,为气候模型的建立和验证提供数据支持。

在海洋生态系统研究中,海洋温度是影响海洋生物分布、生长和繁殖的重要因素。

海洋遥感在海洋气候监测中的作用如何

海洋遥感在海洋气候监测中的作用如何

海洋遥感在海洋气候监测中的作用如何关键信息项:1、海洋遥感技术的定义与分类定义:____________________________分类:____________________________2、海洋气候监测的目标与重要性目标:____________________________重要性:____________________________3、海洋遥感在海洋气候监测中的具体应用应用领域 1:____________________________应用领域 2:____________________________应用领域 3:____________________________4、海洋遥感数据的获取与处理方法获取途径:____________________________处理流程:____________________________5、海洋遥感技术的优势与局限性优势:____________________________局限性:____________________________6、海洋遥感在海洋气候监测中的未来发展趋势技术发展方向:____________________________应用拓展前景:____________________________11 海洋遥感技术概述111 海洋遥感技术是指利用传感器从卫星、飞机、船只等平台对海洋表面和内部的物理、化学和生物等参数进行非接触式测量和监测的技术。

112 其分类主要包括可见光遥感、红外遥感、微波遥感等。

可见光遥感主要用于监测海洋的水色、透明度等;红外遥感可用于测量海表温度;微波遥感则能够穿透云层,获取海表风速、风向等信息。

12 海洋气候监测的意义121 海洋气候监测的目标在于准确获取海洋气候的各项参数,如温度、盐度、海流、海浪等,以及它们的时空变化规律。

122 海洋气候对于全球气候系统有着至关重要的影响。

它不仅调节着全球的热量分布和水循环,还对极端天气事件的发生和发展有着重要的作用。

6.5.海洋遥感

6.5.海洋遥感

三、海洋卫星系列
1. 海洋遥感的特点:
1) 需要高空和空间的遥感平台,以进行大面积同步覆
盖的观测; 2) 以微波遥感为主; 3) 电磁波与激光、声波的结合是扩大 海洋遥感探测手 段的一条新路。 4) 海面实测资料的校正。
四、海洋卫星系列
1、海洋遥感的特点 1)大面积同步观测 2)以微波为主 3)电磁波与激光、声波结合 4)海面实测资料的校正 2、海洋卫星简介 Seasat1、 “雨云”7号、日本海洋观测卫星、 ERS(欧空局)、加拿大雷达卫星
海的海洋数据。
欧洲海洋卫星系列(ERS): 欧洲海洋卫星系列(ERS):主要用于海洋学、海冰
学、海洋污染监测等领域。
加拿大的雷达卫星(RADARSAT) 加拿大的雷达卫星(RADARSAT):加、美、德、英共
同设计,1995年发射。 同设计,1995年发射。
海洋卫星
ERSERS-1
European remote sensing satellite
1991年发射,主要安装了微波遥感器,进行海洋、海冰、海风、环流观测。使 用高分辨率雷达对地观测。
ADEOS
Advanced Earth Observation Satellite
1996年发射,主要进行全球变暖,臭氧层、热带雨林破坏, 气候异常,为下一代地球观测系统铺路。装备有海洋水色 仪,高级可见光-近红外辐射计等
2、主要的海洋卫星 简介
美国的海洋卫星(SEASAT):1978年发射;近极地太阳 1978年发射;近极地太阳 美国的海洋卫星(
同步轨道;扫描覆盖海洋的宽度1900km;五种传感器,以微波为 同步轨道;扫描覆盖海洋的宽度1900km;五种传感器,以微波为 主。
日本的海洋观测卫星系列(MOS-1):获取大陆架浅 日本的海洋观测卫星系列(MOS-1):

《海洋遥感技术》PPT课件

《海洋遥感技术》PPT课件
➢ 遥感在地理学中的应用,进一步推动和促进了地理学的研 究和发展,使地理学进入到一个新的发展阶段。
精选ppt
3
Hale Waihona Puke 遥感有如下主要特点:1.感测范围大,具有综合、宏观的特点
➢ 遥感从飞机上或人造地球卫星上,居高临下获取的航空像 片或卫星图像,比在地面上观察视域范围大得多。又不受地 形地物阻隔的影响,景观一览无余,为人们研究地面各种自 然、社会现象及其分布规律提供了便利的条件。
➢ 例如,微波具有穿透云层、冰层和植被的能力;红外线 则能探测地表温度的变化等。因而遥感使人们对地球的监 测和对地物的观测达到多方位和全天候。
精选ppt
5
3.获取信息快,更新周期短,具有动态监测特点
➢ 遥感通常为瞬时成像,可获得同一瞬间大面积区域的景 观实况,现实性好;而且可通过不同时相取得的资料及像 片进行对比、分析和研究地物动态变化的情况(版图3), 为环境监测以及研究分析地物发展演化规律提供了基础。
精选ppt
7
按照记录信息的表现形式
➢ 成像方式(或称图像方式)就是将所探测到的强 弱不同的地物电磁波辐射(反射或发射),转换 成深浅不同的(黑白)色调构成直观图像的遥感 资料形式,如航空像片、卫星图像等。
➢ 非成像方式(或非图像方式)则是将探测到的电 磁辐射(反射或发射),转换成相应的模拟信号 (如电压或电流信号)或数字化输出,或记录在 磁带上而构成非成像方式的遥感资料。如陆地卫 星CCT数字磁带等。
精选ppt
24
➢ 遥感通常是指通过某种传感器装置,在不与被研 究对象直接接触的情况下,获取其特征信息(一 般是电磁波的反射辐射和发射辐射),并对这些 信息进行 提取、加工、表达和应用的一门科学和 技术。
第三节 海洋遥感 技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海洋遥感基础
什么是海洋遥感?



海洋遥感(ocean remote sensing)利用传感器对海洋 进行远距离非接触观测,以获取海洋景观和海洋要素的 图像或数据资料。 遥感主要有三个应用方面: 陆地遥感 海洋遥感(难度最大) 气象遥感 海洋遥感是一门交叉学科。 涉及海洋学、物理学和信息科学等多种学科,并与空间 技术、光电子技术、微波技术、计算机技术、通讯技术 密切相关。 是2O世纪后期海洋科学取得重大进展的关键学科之一。 形成了从海洋渡谱分析到海洋现象自动识别等一套完整 的理论与方法。
研究内容



海面风场 海表温度(SST)、海表盐度、海色 海洋动力要素:海浪、海面高度、内波 海冰、海底地形、油膜及其它海洋污染物 鱼群监测
SST
对于海洋研究的重要性


海洋观测难度大,因此更依赖于卫星遥感观测 在全球气候变化、大洋环流、赤潮监测等多个 领域具有重要作用 发展前景看好,对于考研以及今后的个人发展 具有重要意义。



然而,卫星遥感数据并不能完全取代传统的海洋学观测。例如,海洋内部垂直
断面的测量必须依靠浮标或其他传统海洋学观测技术。 卫星遥感数据与传统海洋学现场观测数据是互补的关系。

2001年全球海表 面温度(SST: Sea Surface Temperature)年 平均等温线
NOAA国家海洋资料中心提供的卫星数据制作的2001年全球海洋的年平均海表 面温度(SST:Sea Surface Temperature)的等温线图像;图中色标(colour bar)的单位是℃(摄氏度)。
1957年苏联发射第一颗人造卫星 1960年NASA发射了第一颗电视与红外(infrared)观测卫星,开始从航天
高度上探测海洋
1961年美国水星(Aqua)计划。 1973年Skylab证实了可见光(visiblelight)和近红外(nearinfrared)遥 感对地球连续观测的能力。 1975年GEOS-3卫星高度计(SatelliteAltimeter)。
3.SeasatA海洋实验卫星装载:

微波辐射计SMMR、微波高度计(MicrowaveAltimeter)RA、微波散射计 (MicrowaveScatterometer)SASS、合成孔径雷达 (SyntheticApertureRadar)SAR、可见红外辐射计VIRR5种传感器
提供的海洋信息:SST、海面高度、海面风场、海浪(seawave)、海冰、海 底地形、风暴潮(stormsurges)、水汽(vapour)和降雨(precipitation)等。寿命 108天,被称为卫星海洋遥感的里程碑。 TIROS-N上装载了AVHRR(高级甚高分辨率辐射计)和TIROS业务化垂直 探测器TOVS.奠定了卫星海表温度进入气象、海洋业务化预报的基础。 Nimbus-7装载了7台传感器,其中多通道扫描微波辐射计SMMR和沿岸带 海色扫描仪CZCS与海洋观测有关,奠定了海色卫星遥感的基础。 1978-86CZCS提供了8年的全球海色(seacolor)图像以及海洋次表层叶绿素 浓度参数(parametersofoceansubsurface'schlorophyllconcentration)。




发展简史

1985年以来,海洋卫星遥感全面进入应用阶段。
发展简史

1985年以来发射的主要卫星
发展简史

主要传感器类型
我国的海洋遥感

2002年才发射了第一海洋卫星 HY-1A。 2007年4月11日发射了HY-1B。
我国的海洋遥感

发展目标



建立起一整套海洋卫星应用体系,包括: 以可见光、红外探测水色水温为主的海洋水色卫星系列(HY-1) 以微波探测海面风场、海面高度和海温为主的海洋动力环境卫星系 列(HY-2) 以多光谱成像仪、合成孔径雷达、微波散射计、辐射计、雷达高度 计等多种遥感器为主载荷的海洋环境综合卫星系列(HY-3) 希望到2015年,形成以我国海洋系列卫星为主导的立体海洋监测网, 使我国的海洋卫星及其应用水平达到国际先进水平,并进入世界海 洋遥感先进行列。
2.NOAA(美国海洋大气局) 1972-1976发射NOAA-1,2,3,4,5卫星,装载了红外扫描辐射 计(infraredscatteringradiometer)和微波辐射计 (microwaveradiometer),估计海表温度 (seasurfacetemperature)、大气温度 (atmospheretemperature)、湿度剖面(moistureprofile)。 1978NASA发射了三颗卫星,喷气动力实验室(JPL)研制的 SeasatAGoddard空间飞行中心(GSFC)研制的TIROS-N和 Nimbus-7卫星
EOS计划概况



全球环境变化、全球气候变化和自然灾害增多 等全球性问题。 从1991年起,NASA正式启动了把地球作为一个 整体环境系统进行综合观测的地球观测系统 (EOS)计划。 最终目标是根据EOS卫星系统长达15年的连续 观测,获得确切的地球系统变化数据和信息, 最终增强人类预报天气/气候变化和自然灾害 监测的能力。
卫星海洋遥感的应用
卫星遥感为海洋科学、地球科学、环境科学、气象科学、物理科学、地理科 学、电子工程和光学等学科提供了广阔的应用和发展空间。 卫星海洋学(satellite oceanography)是随着人造地球卫星的诞生而发展 起来的海洋科学的新分支,它包括两个方面的研究,即遥感的海洋学解释和 遥感的海洋学应用。





首次提供覆盖全球的拍照,开始为期15年的对地球表面和大气参 数的全面的基本测量; 通过观测试图发现人类活动对气候影响的证据,改进探测人类活 动对气候影响的能力,提供全球的数据,并利用先进的计算机系 统建立模型,有助于预测气候的变化; 通过提供观测资料,提高对灾害天气如干旱、洪涝在时间和地理 分布上的预报能力; 利用TERRA数据,改进季节性和年度天气预报; 进一步开发对森林火灾、洪水及干旱等灾害的监测和预报,灾害 的特征确定及减灾技术的研究; 开始对全球气候及环境变化进行长期的监测和数据的积累。
遥感的海洋学解释涉及到对各种海洋环境参量的反演机制和信息提取方法研 究;
遥感的海洋学应用涉及到各个具体研究领域的目标和研究手段。
海面反射、散射或自发辐射的各个波段的电磁波携带着海表面温度、海平面 高度、海表面粗糙度以及海水所含各种物质浓度的信息。 传感器能够测量在各个不同波段的海面反射、散射或自发辐射的电磁波能量, 通过对携带信息的电磁波能量的分析,人们可以反演某些海洋物理量。传感 器的遥感精度随着卫星遥感技术的发展在不断地提高,目前正在接近、达到 甚至超过现场观测数据的精度。 海洋表面是一个非常重要的界面 海洋与大气的能量及其它交换过程都是通过这个界面进行的;
该图清晰显示了西太平洋赤 道暖水区海平面的降低和赤 道东太平洋海平面的增高。 这是西太平洋赤道暖水区的 海水沿赤道向东倒流的结果, 属于在厄尔尼诺(El Niñ o) 事件中发生的典型现象。
海洋遥感的优势

具备全天时(昼夜)、全天候工作能力和穿云透雾的能力 有一定的透视海水能力,以便取得海水较深部的信息。 因为能够获取长时间、大范围、近实时和近同步监测资料,卫星遥感在海洋监
测和研究中正在发挥越来越大的作用。

利用卫星数据传输设备,浮标数据和许多其他现场海洋学观测数据可以实现近 实时获取。 通过卫星遥感手段达到对全球范围的海洋进行实时、全方位和立体监测,能够 获得稳定可靠的多种长期观测资料。 海洋观测资料是人类开发、利用和保护海洋的重要基础。卫星遥感技术作为获 取海洋观测资料的重要手段,已经得到广泛的应用。
目前,运用卫星、航天飞机和普通飞机遥感技术,人们实现了对
海表面温度(sea surface temperature) 海表面盐度(sea surface salinity) 海平面异常(sea level anomaly) 海流(ocean current) 海表面风(sea surface wind) 海浪(sea waves) 海洋内波(ocean internal waves) 悬浮物浓度(suspended matter concentration) 叶绿素浓度(chlorophyll concentration) 色素浓度(pigment concentration) 水色(ocean color) 大气剖面温度和湿度(atmosphere profile temperature and humidity) 垂程水汽含量(vertical water vapor column thickness) 可降雨量(total column precipitable water vapor) 气溶胶光学厚度(aerosol optical thickness)
该图清晰显示了西太平洋赤道暖水区的范围和温度大小。
西太平洋赤道暖水区向大气输运的热通量对于全球海洋大气热循环有举足轻重的 影响,它的范围和温度变化与厄尔尼诺(El Niñ o)事件有密切关联,因而是科 学家监测的重要目标。
美国宇航局喷气推进实验室 提 供 的 TOPEX/POSEIDON 卫星高度计观测资料制作的 1998年1月的 月平均 全球 海 表面异常图像;图中色标 (colour bar)的单位是cm。
海洋内部的变化也会部分地透过这一表面表现出来。
运用计算机三维数值模拟和卫星遥感数据同化技术,人们就可以通过获得 的海洋表面遥感信息,了解海洋内部的海洋学特征和物理变化过程
因为遥感监测在海面的空间分辨率与波长成正比,所以接收波长较短的可 见光与红外电磁波的传感器获得的遥感图像具有更好的空间分辨率。
云的覆盖阻挡了可见光波段电磁波的透过,微波遥感弥补了不足。 总之,可见光和红外遥感提供了人们对较高的空间分辨率监测的需求,微波 遥感满足了人们对全天候监测的愿望。
相关文档
最新文档