最新VOCs常见废气处理工艺方案
常见的VOCS废气处理工艺
常见的废气处理工艺是什么?由于废气的种类比较多,处理的方法也各不相同,燃烧法、催化法、吸附法、光氧催化发等是国内比较常用的方法;生物法、低温等离子法等是近几年国外研发出来的一种新技术、新工艺,以下是深圳环保公司技术人员对常见的废气处理工艺作的简要介绍。
一.蓄热燃烧法:蓄热式热氧化(简称RTO)回收热量采用一种新的非稳态热传递方式。
主要原理是:有机废气和净化后的排放气交替循环,通过多次不断地改变流向,来最大限度地捕获热量,蓄热系统提供了极高的热能回收。
通过燃烧来消除有机物的,其操作温度高达700℃-1,000℃,这样不可避免地具有高的燃料费用;为降低燃料费用,需要回收热量,有两种方式:传统的间壁式换热,新型非稳态蓄热换热技术。
二.催化燃烧法:本法是把废气加热到200~300℃经过催化床催化燃烧转化成无害无臭的二氧化碳和水,达到净化目的。
该法适用于高温、中高浓度的有机废气治理,国内外已有广泛使用的经验,效果良好。
该法是治理有机废气的有效方法之一,但对于低浓度、大风量的有机废气治理存在设备投资大、运行成本较高的缺点。
三.活性炭吸附法:利用吸附剂(粒状活性炭和活性炭纤维)的多孔结构,将废气中的VOC捕获。
将含VOC的有机废气通过活性炭床,其中的VOC被吸附剂吸附,废气得到净化,而排入大气。
活性炭吸附法主要用于脂肪和芳香族碳氢化合物、大部分含氯溶剂、常用醇类、部分酮类和酯类等的回收。
对于水溶性VOC气体,用精馏将液体混合物提纯;水不溶性VOC气体,用沉析器直接回收VOC。
比如,涂料中所用的“三苯”与水互不相溶,故可以直接回收。
四、低温等离子技术:低温等离子技术比较适用于低浓度、小分子废气物的处理,它是继固、液、气这三者之后的第四态,当外加电压至气体着火点电压时,气体击穿,产生一新混合体。
之所以成为低温等离子是由于,在放电的过程中虽然电子的温度达到很高,但重粒子温度缺很低,致使整个体系呈现低温状态。
五、光催化技术:光催化技术是适用于低浓度废气物的处理方式之一,它是将TiO2作为催化剂,反应条件比较温和,光解速度较快,光催化的产物:CO2、H2O或其它,它的应用范围比较广,包括醛、酮、氨等有机物废气物,都可利用TiO2进行光催化清除。
voc处理方案
voc处理方案
VOCs废气处理常见方案:
方案1:过滤+活性炭吸附
此类组合处理工艺适用于喷涂量少且连续喷涂时间较短的小微企业。
活性炭吸附箱前端加装过滤棉,防止活性炭箱吸入粉尘或悬浮物影响吸附效率。
活性炭需要定期再生或更换。
方案2:喷淋+活性炭吸附
喷淋洗涤即可以降低废气温度又可以吸收部分易溶于水的废气和粉尘,利于活性炭吸附。
必须定期检查洗涤液及活性炭质效,及时更换废液、废活性炭,保证清洗及吸附效果。
方案3:活性炭/沸石分子筛吸附+燃烧(co)
该工艺的废气处理效率较高,适用于VOCs原辅料使用量大的工业涂装企业。
方案4:吸附浓缩+催化氧化技术工艺流程
采用的处理方法是吸附法和催化法的组合,充分发挥两者的优点净化效率高,把它们的弊端进行可利用的转化,对吸附物的再生处理利用其本身催化燃烧的热量来进行脱附,恢复吸附体的活性,省去了二次能源,从而补偿了催化剂的价格问题。
对于有机废气的净化这是目前比较先进的治理方法。
完整版VOC废气处理工艺
完整版VOC废气处理工艺一、引言挥发性有机化合物(VOCs)是指在常温下易挥发的有机化合物,它们广泛存在于各个行业的生产过程中,如化工、印刷、油漆、涂料等。
VOCs的排放对环境和人体健康造成严重影响,因此,对VOC废气进行有效处理是保护环境、维护人类健康的重要任务。
二、VOC废气处理工艺原理VOC废气处理工艺的目标是将VOCs转化为无害物质或者将其浓度降低到符合排放标准。
常用的VOC废气处理工艺包括吸附、燃烧、催化氧化和生物处理等。
1. 吸附吸附是将VOCs通过物理吸附或者化学吸附的方式从废气中去除的工艺。
常用的吸附剂包括活性炭、份子筛等。
废气经过吸附剂床层时,VOCs被吸附在吸附剂表面上,从而实现废气净化的目的。
吸附剂饱和后,可以通过热解或者蒸汽再生方式进行再生,使吸附剂重新恢复吸附性能。
2. 燃烧燃烧是将VOCs转化为二氧化碳和水的工艺。
常见的燃烧设备包括焚烧炉、直接燃烧炉等。
废气经过燃烧设备时,VOCs在高温条件下与氧气发生氧化反应,生成CO2和H2O。
燃烧工艺具有高效、彻底的优点,但需要消耗大量的能源。
3. 催化氧化催化氧化是利用催化剂催化VOCs氧化为无害物质的工艺。
常用的催化剂有铂、钯、铁等。
废气经过催化剂床层时,VOCs与氧气在催化剂表面上发生氧化反应,转化为CO2和H2O。
催化氧化工艺具有高效、低温、低能耗的优点。
4. 生物处理生物处理是利用微生物将VOCs降解为无害物质的工艺。
常见的生物处理方法包括生物滤床、生物膜反应器等。
废气经过生物处理设备时,VOCs被微生物降解为CO2和H2O。
生物处理工艺具有低能耗、无二次污染的优点,但对温度、湿度等环境条件有一定要求。
三、完整版VOC废气处理工艺流程根据废气特性和处理要求的不同,完整版VOC废气处理工艺可以采用以下流程:1. 废气预处理废气预处理是指对废气进行除尘、除湿等处理,以保证后续处理设备的正常运行。
常用的废气预处理设备有除尘器、除湿器等。
VOCs废气处理工艺
VOCs 废气处理工艺
VOCs 污染物
MEA、DMSO 高沸 点有机废气
IPA、AC、PGMEA 等溶剂、清洗剂 有机物废气 NMP 等有机废气
甲醛、苯类
汽油等燃料类有 机废气
丁酮、环己酮、 DM
苯乙烯等
氯仿、乙醇、乙 酸乙酯等混合废
气 H2S、NH3、甲硫 醇、三甲胺等混
合废气 油烟、淬火油等
燃料回收利用
浓度较高,制程为高 温烤箱,处理后的热
风可回收 低浓度、大风量
混合物有机废气,二 次污染处理
恶臭污染物
烟气易凝结成可见 液态油污物来自单一,挥发物回 收可直接进入储槽
技术方向 回收 消除 回收 消除 回收 消除 消除 消除 消除 回收 回收
废气处理工艺 说明
泠凝回收+洗 涤塔尾气处理 浓缩转轮+高 温等离子焚烧
浓缩转轮+高 温等离子焚烧 高温等离子焚
烧 冷凝回收+活 性炭尾气处理 浓缩轮转+高 温等离子焚烧
喷淋+低温等 离子体
RTO+二次污染 物洗涤塔处理
生物法或低温 等离子除臭味
多级滤网捕集 90%+活性炭
尾气吸附 冷凝回收+活 性炭尾气处理
1
油性废气
有机物单一组分
行业
半导体 TFT
半导体 TFT
电池、印 刷
喷漆、油 漆
喷漆、油 漆
人造革
合成树脂 及固化过
程 制药
污水处理 厂
热处理、 切削
储槽
污染物特性
高沸点、低温回归液 态
清洗剂,清洗过程随 气流挥发,中低浓度
大风量 物质单一、一定浓度
回收利用有价值 含颗粒物及胶类添 加剂,低浓度大风量
最新VOCs常见废气处理工艺方案
最新VOCs常见废气处理工艺方案近年来,VOCs(挥发性有机物)污染问题日益突出,对环境和人体健康造成严重影响。
为了有效减少VOCs的排放量,采取适当的废气处理工艺方案是必要的。
以下是目前常见的一些最新VOCs废气处理工艺方案。
1.热氧化法(TO)热氧化法是一种将废气加热至高温,并与大量氧气接触使其氧化分解的方法。
这种方法适用于高浓度VOCs废气的处理,可以有效地将挥发性有机物氧化为无害的二氧化碳和水。
然而,这种方法通常需要高能耗和高投资成本。
2.低温等离子体催化氧化法(LEPCO)低温等离子体催化氧化法是一种结合了低温等离子体和催化氧化的废气处理技术。
该方法可以在较低温度下高效氧化降解VOCs,降低能耗和操作成本。
此外,该方法还可以通过更换催化剂来适应不同种类的VOCs 废气。
3.常温等离子体催化氧化法(REPCO)常温等离子体催化氧化法是一种在常温下通过等离子体和催化剂的协同作用进行VOCs氧化降解的废气处理技术。
该方法具有低温度、高效率和低维护成本等优点,适用于处理低浓度VOCs废气。
4.生物滤床生物滤床是一种利用生物膜附着微生物去除VOCs的废气处理方法。
该方法通过将废气通过滤床,使废气中的VOCs被微生物吸附、降解和转化为无害物质,如CO2和H2O。
生物滤床具有操作简单、运行稳定、能耗低等优势,适用于中低浓度VOCs废气的处理。
5.纳米材料吸附法纳米材料吸附法是一种利用纳米材料吸附VOCs的废气处理技术。
该方法通过使用具有高表面积和吸附性能的纳米材料,将废气中的VOCs吸附在纳米材料表面,实现废气净化。
这种方法具有高效、可再生和低维护成本等优点。
6.综合处理技术为了更加有效地处理VOCs废气,综合处理技术也被广泛应用。
常见的综合处理技术包括热电联产技术、吸附-解吸技术、低温等离子体氧化-吸附技术等。
这些综合处理技术能够结合各种废气处理工艺的优点,以实现高效、低能耗和低成本的VOCs废气处理。
涂装VOCs废气处理解决方案
涂装VOCs废气处理解决方案涂装VOCs(挥发性有机化合物)废气处理是一个重要的环保问题。
VOCs废气主要来自涂装过程中使用的有机溶剂,这些溶剂通常含有各种有机化合物,其中包括有害物质,如苯、甲苯、二甲苯等。
这些有机溶剂在涂装过程中挥发到空气中,形成VOCs废气。
针对VOCs废气处理问题,可以采取以下解决方案:1.改进涂装工艺:通过改进涂装工艺,减少或替代有机溶剂的使用,以降低VOCs废气的排放。
比如可以使用水性涂料替代有机溶剂型涂料,水性涂料中的VOCs含量通常较低。
2.采用高效的废气处理设备:可以采用高效的废气处理设备来处理VOCs废气。
常见的废气处理设备包括活性炭吸附、低温等离子体催化氧化、光催化氧化、湿法吸收等。
这些设备可以有效地去除VOCs废气中的有机化合物,达到排放标准。
3.排放控制和监测:在涂装过程中,可以采取控制措施,如封闭式涂装或局部排风,以减少VOCs废气的排放量。
同时,对排放进行监测和监控,确保达到排放标准。
4.废气回收和资源化利用:在废气处理过程中,可以采用废气回收技术,将废气中的有机化合物回收利用。
这样不仅可以减少废气排放,还可以实现资源的利用,提高经济效益。
5.加强法规和政策支持:相关的法规和政策起到了重要的引导和推动作用。
政府可以出台相关的环境法律法规,规范VOCs废气的排放和处理。
同时,通过提供财政和税收支持,鼓励企业投入VOCs废气处理设备,推动技术和市场的发展。
综上所述,涂装VOCs废气处理是一个重要的环保问题,需要采取综合的解决方案。
通过改进涂装工艺、采用高效的废气处理设备、排放控制和监测、废气回收和资源化利用,并加强法规和政策支持,可以有效地解决VOCs废气处理问题,保护环境和人类健康。
VOCS废气处理10大工艺技术
VOCS废气处理10大工艺技术VOC是挥发性有机化合物(volatile organic compounds)的英文缩写。
普通意义上的VOC就是指挥发性有机物;但是环保意义上的定义是指活泼的一类挥发性有机物,即会产生危害的那一类挥发性有机物。
本文详细介绍了七种VOC废气处理的主要技术。
一、VOC废气处理技术——热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。
热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。
这种方法主要分为两种,即直接火焰燃烧和催化燃烧。
直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到 99%。
而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。
这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。
二、VOC废气处理技术——吸附法有机废气中的吸附法主要适用于低浓度、高通量有机废气。
现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。
实践证明,这种处理方法值得推广应用。
但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。
所以,使用此方法处理废气的关键在于吸附剂。
当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。
此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。
三、VOC废气处理技术——生物处理法生物法净化voc废气是近年发展起来的空气污染控制技术,它比传统工艺投资少,运行费用低,操作简单,应用范围广,是最有望替代燃烧法和吸附净化法的新技术。
从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O 和其它简单无机物等。
VOCs常见废气处理工艺方案
VOCs常见废气处理工艺方案VOCs(挥发性有机物)是一类能在常温下挥发和蒸发的有机化合物,常用的VOCs废气处理工艺方案包括吸附、燃烧和催化氧化等。
1.吸附:吸附是通过一种吸附剂将VOCs从废气中吸附出来。
常用的吸附剂有活性炭、分子筛和活性氧化铝等。
废气经过吸附剂床时,VOCs 被吸附在吸附剂表面上,纯化后的气体可以排放或进一步处理。
吸附过程中的吸附剂可以周期性再生,通过热解、气流冲洗等方法将吸附的VOCs 释放出来,然后重新使用。
2.燃烧:燃烧是将VOCs直接氧化为无害物质的一种方法。
常用的燃烧设备有催化燃烧器、直燃式燃烧器和稳焰燃烧器等。
废气经过燃烧设备时,VOCs与氧气进行充分反应,生成二氧化碳和水等无害物质。
燃烧法对VOCs去除效率高,但需要高温和足够的氧气才能实现充分燃烧,对能源和氧气资源消耗较大。
3.催化氧化:催化氧化是利用催化剂加速VOCs与氧气反应,将其转化为无害物质的方法。
常用的催化剂有贵金属催化剂、活性炭催化剂和金属氧化物催化剂等。
废气经过催化剂反应床时,VOCs与催化剂表面发生化学吸附和反应,生成二氧化碳和水等无害物质。
催化氧化法需要较低的温度和氧气浓度,并且可以实现低温催化氧化,对能源消耗较小。
4.生物处理:生物处理是利用微生物降解VOCs的一种方法。
常见的生物处理方法有生物滤池、生物膜反应器和生物脱附等。
废气经过生物反应器时,微生物降解VOCs成为无害物质,通常需要设立氧气供应系统和调控合适的温度、湿度和pH值等条件。
生物处理法在处理VOCs中具有较好的适应性和低能耗的优势,但对于一些高浓度或复杂组成的废气可能效果较差。
5.膜分离:膜分离是利用不同挥发性有机物在膜上的选择性渗透分离的方法。
常见的膜分离包括多孔性膜、渗透膜和化学选择性膜等。
废气经过膜分离设备时,VOCs通过膜和废气分离,纯化后的气体可以排放或进一步处理。
膜分离法适用于VOCs浓度较低的情况,具有设备结构简单、操作成本较低的特点。
工业vocs废气治理方案
工业vocs废气治理方案随着工业的发展,大量的挥发性有机化合物(VOCs)排放已经成为环境污染的主要源头之一。
VOCs不仅对空气质量和生态系统造成威胁,还可能对人体健康产生严重影响。
因此,寻找合适的工业VOCs废气治理方案迫在眉睫。
工业VOCs废气治理方案的核心目标是减少VOCs的排放量以及将其转化为对环境无害的物质。
以下是几种常见的技术方案:1. 喷淋吸附技术喷淋吸附技术利用活性吸附剂来吸附废气中的VOCs。
这种技术具有高效、成本低廉和操作简单等优点。
在该技术中,废气通过喷雾装置与吸附剂接触,VOCs被吸附剂吸附降解,从而达到净化效果。
随后,吸附剂可以通过再生或其他方式来回收。
2. 燃烧技术燃烧技术是一种常用的VOCs废气治理技术。
它通过将VOCs与氧气在高温条件下进行充分燃烧,将其转化为二氧化碳和水。
这种技术具有高效、彻底和全面排放控制的优势。
然而,燃烧技术在实际应用中也存在能源浪费和生成二氧化碳等问题,因此需要综合考虑其适用性和环境影响。
3. 膜分离技术膜分离技术利用特殊材料的过滤作用,将废气中的VOCs分离出来。
该技术具有高效、节能、无二次污染和可连续操作的优点。
通过选择合适的膜材料和操作条件,可以实现对VOCs的有效分离。
此外,膜分离技术还可以与其他技术相结合,提高废气治理效果。
4. 生物处理技术生物处理技术是一种环保、可持续的废气治理技术。
通过利用微生物对废气中的VOCs进行降解,将其转化为二氧化碳和水。
该技术适用于低浓度、大流量的VOCs废气处理。
尽管生物处理技术需要一定的专业知识和管理措施,但其环境友好和经济性使其成为可行的废气治理选择之一。
综合考虑不同的工业VOCs废气治理方案,决策者应根据实际情况选择合适的技术。
评估技术的能力、成本效益、运行稳定性和环境影响等因素是决策的关键。
此外,政府、企业和社会各方应加强合作,共同推动工业VOCs废气治理工作。
除了技术方案,有效的工业VOCs废气治理还需要政策法规的支持。
vocs废气处理工艺流程
vocs废气处理工艺流程
1.废气污染源控制:
废气污染源控制是废气处理的第一步,要从源头进行控制。
如果可能,可以采用替代材料、机械和技术等控制措施,减少污染物的排放量。
2.废气预处理:
废气预处理技术是废气处理的重要环节,其目的是减少污染物浓度,从而减少下一步处理中的负荷。
常见的废气预处理技术有:冷却法,加热法,湿法、电场法和化学方法等。
3.废气继续处理:
废气继续处理技术是指在废气减量预处理后,采取细化处理技术,进一步减少废气中污染物含量的技术。
常见的废气继续处理技术有:氧化法、络合法、催化法、吸附法、热处理等。
4.废气净化处理和尾气处理:
废气净化处理技术是指可以有效减少废气中污染物含量,使其达到国家和地方的排放标准要求,这是废气处理的最终目的。
常见的废气净化处理技术有:活性炭吸附法、电沉降法、催化氧化法、净化塔等。
尾气处理技术是指为废气再生利用等过程,处理净化后的废气中污染物的技术。
常见的尾气处理技术有:洗涤、再循环、吸收等技术。
- 1 -。
最新VOCs常见废气处理工艺设计方案
最新VOCs常见废气处理工艺设计方案VOCs(挥发性有机化合物)是指在环境条件下具有挥发性的有机物质。
它们主要来自于石化、化工、油漆、印刷、制药等行业的生产和使用过程中的废气排放。
由于VOCs的挥发性和毒性,长期暴露于VOCs废气可能对人体健康和环境造成严重危害。
因此,必须对VOCs废气进行处理,以减少其对环境的影响。
以下是最新VOCs常见废气处理工艺设计方案:1.填充式吸附剂处理:填充式吸附剂处理是一种常见的VOCs废气处理技术,通过吸附剂将VOCs从废气中吸附出来。
常用的填充吸附剂有活性炭、分子筛等。
该技术有较高的废气处理效率和较低的运行成本,适用于废气流量较小的情况。
2.活性炭吸附-热解技术:活性炭吸附-热解技术是一种将废气中的VOCs通过活性炭吸附后进行热解分解的方法。
废气经过活性炭床层后,再通过加热方式使活性炭中的VOCs释放出来,然后通过燃烧等方式将其处理。
该技术对废气中的VOCs有较高的去除效率,适用于废气流量较大,VOCs浓度较高的情况。
3.低温等离子体处理技术:低温等离子体处理技术是通过产生低温等离子体来将VOCs进行分解降解的方法。
该技术无需添加任何化学品,并且不会产生二次污染物。
它适用于特殊的废气处理要求,如高温敏感物质和高湿度废气。
4.催化燃烧技术:催化燃烧技术是一种将废气中的VOCs通过催化剂进行氧化燃烧的方法。
催化剂能够降低燃烧温度,提高废气处理效率。
该技术适用于废气流量较大、VOCs浓度较高的情况。
5.生物氧化处理技术:生物氧化处理技术是通过在废气处理系统中引入微生物来降解VOCs的方法。
微生物通过吸附、吸附解吸和微生物降解等过程将VOCs转化为无害物质。
该技术对废气的处理效果稳定,且不会产生二次污染。
根据实际情况选择适合的VOCs废气处理技术是至关重要的。
废气的VOCs浓度、流量、温度和湿度等因素都会影响废气处理技术的选择和设计。
在选择和设计过程中,还需要考虑到处理设备的投资成本、运行成本以及对环境的影响。
vocs废气治理工艺
vocs废气治理工艺
VOCs(挥发性有机化合物)废气治理工艺是指针对挥发性有
机化合物废气进行处理的工艺方法。
挥发性有机化合物是一类易挥发的有机化合物,它们在常温下具有较高的蒸汽压和易挥发的性质,对环境和人体健康造成潜在的风险。
VOCs废气治理工艺的选择通常根据废气的成分、浓度、排放
量以及治理要求来确定。
以下是一些常见的VOCs废气治理工艺:
1. 吸附:利用吸附剂将废气中的VOCs吸附到表面,达到净化的目的。
常见的吸附剂有活性炭、分子筛等。
2. 燃烧:将废气中的VOCs通过高温进行燃烧,将其转化为二氧化碳和水。
常见的燃烧设备有直燃炉、催化燃烧炉等。
3. 催化氧化:利用催化剂将废气中的VOCs与氧气反应,将其转化为二氧化碳和水。
催化氧化工艺常常结合燃烧工艺使用,可以降低燃烧温度。
4. 生物处理:利用特定的微生物菌种将废气中的VOCs降解为无害的物质。
生物处理工艺通常用于低浓度、大体积的废气处理。
5. 膜分离:利用膜的选择性透过性将废气中的VOCs分离出来,达到净化目的。
常见的膜分离工艺有吸收膜、渗透膜等。
除了上述的主要工艺,还可以结合多种工艺进行组合处理,以更好地适应不同废气的特征和治理要求。
在选择和设计VOCs 废气治理工艺时,需要综合考虑治理效率、能耗、设备成本、操作维护等因素。
vocs废气处理工程施工方案
VOCs废气处理工程施工方案一、项目背景VOCs是挥发性有机化合物的缩写,是指在常温下易挥发的有机物质。
工业生产中常常会产生大量的VOCs废气,如果随意排放,不仅会损害环境,还可能对人体健康产生影响。
因此,需要对VOCs废气进行处理。
本项目旨在设计和建造一座VOCs废气处理工程,使其能够实现废气的收集和处理,同时保证废气排放符合国家环保标准。
二、施工方案2.1 工程范围本工程范围包括VOCs废气处理设施的设计、采购、施工、调试、运行维护等一系列工作,具体包括以下内容:•VOCs废气采集系统:包括废气收集管道、集气罐、废气冷却装置等设施。
•VOCs废气处理系统:包括含氧燃烧器、废气焚烧设施、催化氧化设施等设施。
•控制系统:包括自动化控制系统、监测系统等设施。
•辅助设施:包括通风系统、电力系统、水处理系统等。
•监测和排放系统:包括废气排放标准检测设施、在线监测系统等。
2.2 设计方案根据VOCs废气的特性和国家环保标准要求,本工程选用含氧燃烧和催化氧化两种技术进行处理。
具体设计方案如下:1.VOCs废气采集废气采集系统采用集中式采集。
将废气源通过管道连接到集气罐,并经过冷却装置,在集气罐中进行初步的分离和净化。
2.VOCs废气处理含氧燃烧技术VOCs废气采集到含氧燃烧器进行处理,利用高温氧环境进行氧化反应,将VOCs废气燃烧成CO2和水。
设备选用不锈钢制作,内部隔板采用陶瓷材质,有一定的防腐蚀性。
催化氧化技术对于难以利用含氧燃烧技术处理的VOCs废气,采用催化氧化技术进行处理。
经过废气初始净化后,经催化剂的催化下,VOCs废气分子发生氧化反应,最终生成CO2和水。
3.控制系统自动化控制系统自动化控制系统采用PLC作为控制核心,通过数码管显示屏观察各状态参数,实现自动化控制,规范废气处理流程。
监测系统利用联网技术,连接在线监测系统、实时监测VOCs废气浓度、温度、湿度等环境参数数据,并将数据上传至云端数据库。
voc废气处理技术方案
VOC废气处理技术方案1. 引言挥发性有机化合物(VOCs)是一类容易挥发的有机化合物,在工业生产和日常生活中广泛存在。
然而,VOCs的排放对环境和人类健康造成严重影响,因此需要进行有效的VOC废气处理。
本文将介绍一种VOC废气处理技术方案,旨在降低VOCs的排放浓度,保护环境和人类健康。
2. 技术原理该VOC废气处理技术方案基于活性炭吸附和热解两个主要步骤:2.1 活性炭吸附活性炭是一种具有大表面积和良好吸附性能的材料。
废气首先经过预处理系统,除去颗粒物和其他固体颗粒。
然后,废气进入活性炭吸附器,废气中的VOCs被活性炭表面吸附。
吸附过程是一个物理吸附过程,通过建立高浓度VOCs与活性炭之间的浓度梯度,使VOCs从废气中转移到活性炭孔隙中。
2.2 热解当活性炭吸附饱和后,需要进行再生。
通过加热活性炭,VOCs被热解分解为较小的分子,同时释放出大量热量。
热解产生的热量被回收利用,用于加热新鲜的废气。
经过热解处理的活性炭重新获得吸附能力,可以再次用于废气处理。
3. 设备组成该VOC废气处理技术方案主要由以下设备组成:3.1 预处理系统预处理系统用于去除废气中的颗粒物和其他固体颗粒,以保护后续设备的正常运行。
预处理系统通常包括过滤器、除尘器等设备。
3.2 活性炭吸附器活性炭吸附器是整个系统的核心设备,用于吸附废气中的VOCs。
活性炭通常填充在吸附器中,形成一层吸附床。
吸附器还包括进气口、出气口和温度控制系统等部分。
3.3 加热系统加热系统用于热解吸附饱和的活性炭,将VOCs分解为较小的分子。
加热系统通常由加热器和热交换器组成,可以有效回收产生的热量。
3.4 冷却系统冷却系统用于冷却热解后的废气,以降低温度并净化废气。
冷却系统通常包括冷却器和净化器等设备。
3.5 控制系统控制系统用于监控和控制整个废气处理系统的运行,包括温度控制、流量控制、压力控制等功能。
4. 工艺流程该VOC废气处理技术方案的工艺流程如下:1.废气经过预处理系统,去除颗粒物和其他固体颗粒。
工业废气处理工程方案(3篇)
第1篇一、前言随着工业的快速发展,工业废气排放问题日益严重,对环境和人类健康造成了极大的危害。
为了减少工业废气对环境的影响,保障人民群众的生活质量,我国政府高度重视工业废气处理工作。
本方案针对某工业废气排放企业,提出一套科学、合理、可行的工业废气处理工程方案,以实现废气达标排放,降低对环境的影响。
二、工程背景1. 企业简介某工业废气排放企业,主要从事化工产品的生产,年产量达到100万吨。
企业生产工艺过程中,会产生大量有机废气,主要包括苯、甲苯、二甲苯等有机污染物。
这些废气若未经处理直接排放,将对周围环境造成严重污染。
2. 废气排放现状根据企业环评报告,该企业废气排放总量约为50000立方米/小时,其中有机废气排放量为30000立方米/小时。
目前,企业采用的传统废气处理方法为简单的高空排放,废气排放浓度严重超标,对周围环境造成严重影响。
三、工程目标1. 达到国家及地方相关环保标准要求,确保废气达标排放;2. 降低废气排放总量,减少对周围环境的影响;3. 提高企业生产效率,降低生产成本;4. 增强企业环保意识,提高社会责任感。
四、工程方案1. 废气来源及成分分析根据企业生产工艺,废气主要来源于以下几个环节:(1)反应釜废气:反应釜在生产过程中,会产生一定量的有机废气,主要成分为苯、甲苯、二甲苯等。
(2)冷凝器废气:冷凝器在冷却过程中,会产生一定量的有机废气,主要成分为苯、甲苯、二甲苯等。
(3)干燥塔废气:干燥塔在干燥过程中,会产生一定量的有机废气,主要成分为苯、甲苯、二甲苯等。
2. 废气处理工艺流程针对企业废气来源及成分,本方案采用以下废气处理工艺流程:(1)预处理:将废气进行除尘、除湿等预处理,降低废气中的固体颗粒物和水分含量。
(2)吸附脱附:采用活性炭吸附脱附技术,将废气中的苯、甲苯、二甲苯等有机污染物去除。
(3)燃烧法:将吸附后的废气进行燃烧处理,将有机污染物转化为无害物质。
(4)排放:将处理后的废气进行高空排放,确保废气达标排放。
七大VOCs废气处理技术工艺详解
七大VOCs废气处理技术工艺详解当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。
一、VOC废气处理技术——热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。
热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。
这种方法主要分为两种,即直接火焰燃烧和催化燃烧。
直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。
而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。
这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。
二、VOC废气处理技术——吸附法有机废气中的吸附法主要适用于低浓度、高通量有机废气。
现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。
实践证明,这种处理方法值得推广应用。
但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。
所以,使用此方法处理废气的关键在于吸附剂。
当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。
此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。
三、VOC废气处理技术——生物处理法从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。
这是一种无害的有机废气处理方式。
一般情况下,一个完整的生物处理有机废气过程包括3个基本步骤:a) 有机废气中的有机污染物首先与水接触,在水中可以迅速溶解;b) 在液膜中溶解的有机物,在液态浓度低的情况下,可以逐步扩散到生物膜中,进而被附着在生物膜上的微生物吸收;c) 被微生物吸收的有机废气,在其自身生理代谢过程中,将会被降解,最终转化为对环境没有损害的化合物质。
工业vocs废气治理方案
工业vocs废气治理方案工业 VOCs 废气治理方案随着工业化进程的加速,工业废气的排放成为了环境污染的重要来源之一,其中挥发性有机化合物(VOCs)废气更是备受关注。
VOCs废气不仅对环境造成严重危害,还会对人类健康产生不良影响。
因此,制定有效的工业 VOCs 废气治理方案至关重要。
一、VOCs 废气的来源及危害VOCs 废气主要来源于石油化工、制药、印刷、涂装、电子等行业。
在生产过程中,有机溶剂的使用、原材料的挥发、化学反应的副产物等都会产生 VOCs 废气。
VOCs 废气对环境的危害主要体现在以下几个方面:1、参与光化学反应,形成臭氧和二次有机气溶胶,是导致雾霾天气的重要因素之一。
2、对大气中的氮氧化物、二氧化硫等污染物的转化和迁移产生影响,加剧酸雨的形成。
对人体健康的危害同样不容忽视:1、长期接触 VOCs 废气可能导致呼吸道疾病、过敏反应、神经系统损伤等。
2、部分 VOCs 物质具有致癌、致畸、致突变的作用。
二、工业 VOCs 废气治理技术目前,常见的工业 VOCs 废气治理技术主要包括以下几种:(一)吸附法利用吸附剂(如活性炭、沸石等)对 VOCs 废气进行吸附,从而达到净化的目的。
吸附剂达到饱和后,通过脱附再生恢复吸附能力。
优点:操作简单、处理效率高。
缺点:吸附剂需要定期更换,运行成本较高。
(二)吸收法通过选用合适的吸收剂(如水、有机溶剂等),使 VOCs 废气与吸收剂充分接触,从而将废气中的污染物转移到吸收剂中。
优点:适用于处理高浓度废气,设备投资相对较低。
缺点:吸收剂需要后续处理,可能产生二次污染。
(三)冷凝法将 VOCs 废气冷却至露点以下,使其凝结成液体,从而实现分离和回收。
优点:对于高浓度、高沸点的 VOCs 废气有较好的回收效果。
缺点:对于低浓度废气处理效果不佳,能耗较高。
(四)燃烧法包括直接燃烧法和催化燃烧法。
直接燃烧法是将废气直接引入燃烧炉中进行燃烧;催化燃烧法则是在催化剂的作用下,降低废气的燃烧温度,提高燃烧效率。
塑料VOCS废气处理方案
塑料VOCS废气处理方案塑料VOCs(挥发性有机化合物)废气处理是一项重要的环境保护工作,因为VOCs是一种对大气和环境具有潜在危害的化学物质。
在塑料制造和加工过程中,许多VOCs会被释放到大气中,对空气质量和人体健康造成危害。
因此,需要采取措施来处理和减少这些废气的排放。
以下是几种常见的塑料VOCs废气处理方案:1.燃烧处理(焚烧):将VOCs废气直接燃烧掉,通过高温氧化分解为二氧化碳和水蒸气。
燃烧处理是一种有效的方式,能够将VOCs彻底分解,但同时也会产生CO2和其他污染物,对环境造成一定的影响。
2.吸附处理:利用吸附剂将VOCs吸附到表面,然后再进行脱附。
常见的吸附剂包括活性炭、分子筛等。
吸附处理可以高效地去除VOCs,但需要定期更换和处理吸附剂,以防止二次污染。
3.催化氧化处理:通过氧化剂和催化剂的作用,将VOCs氧化为无害物质。
催化氧化处理能够在较低温度下实现VOCs的降解,避免能源浪费和污染的产生。
4.生物处理:利用微生物的代谢能力将VOCs降解为水和二氧化碳等无害物质。
生物处理相对于其他处理方式而言,成本较低,对环境影响也较小,但需要对微生物的生长环境进行控制和监测。
除了以上几种处理方案外,还可以考虑采取以下措施来减少VOCs的产生和排放:1.优化生产过程:采用低VOCs含量的原料和溶剂,通过控制温度、压力和操作方式等因素,减少VOCs的挥发和损失。
2.改善设备和排放系统:采用封闭式设备以及高效的排放系统,减少VOCs的泄漏和排放。
3.做好管理和监测:建立有效的监测系统和废气处理设施,定期检测VOCs的排放浓度,并做好记录和报告工作。
总结来说,塑料VOCs废气处理方案需要根据具体情况选择,并结合优化生产过程和设备改善等措施,以确保废气排放符合环境标准,保护空气质量和人体健康。
同时,还需要加强技术研究和创新,寻找更加高效、低成本和环保的处理方案。
VOC废气处理工艺详解
VOC废气处理工艺详解:技术原理、应用与优化策略一、引言挥发性有机化合物(VOCs)是工业生产过程中产生的主要废气之一,对环境和人类健康造成了严重威胁。
因此,VOC废气处理成为环境保护的重要环节。
本文将详细介绍VOC废气处理工艺的技术原理、应用领域及优化策略,帮助读者全面了解该领域的知识。
二、VOC废气处理工艺技术原理1.吸附法:吸附法是利用吸附剂的吸附作用将VOCs从废气中分离出来。
常用的吸附剂有活性炭、沸石等。
该方法适用于低浓度、风量较小的废气处理。
2.吸收法:吸收法是利用吸收剂与VOCs进行物理或化学反应,将其从废气中吸收。
常用的吸收剂有水、碱性溶液等。
该方法适用于高浓度、风量较大的废气处理。
3.冷凝法:冷凝法是通过降低温度使VOCs冷凝成液体,进而分离出来。
该方法适用于高浓度、低风量的废气处理。
光催化氧化法:光催化氧化法是利用光照射催化剂,产生强氧化剂,将VOCs氧化分解为无害物质。
该方法适用于低浓度、中等风量的废气处理。
4.生物法:生物法是利用微生物的降解作用将VOCs分解为无害物质。
该方法适用于低浓度、大风量的废气处理。
三、VOC废气处理工艺应用领域1.工业生产:工业生产过程中会产生大量的VOCs废气,如石油化工、印刷、制药等行业。
这些废气若未经处理直接排放,会对环境和人类健康造成严重影响。
因此,采用合适的VOC废气处理工艺对工业生产过程中的废气进行处理至关重要。
2.汽车尾气:汽车尾气中含有大量的有害物质,如苯、甲苯等VOCs。
采用合适的VOC废气处理工艺对汽车尾气进行处理,可以有效降低有害物质的排放,改善空气质量。
3.室内空气:室内空气中的VOCs主要来源于装修材料、家具、家用电器等。
采用合适的VOC废气处理工艺对室内空气进行处理,可以创造一个健康、舒适的居住环境。
四、VOC废气处理工艺优化策略1.选择合适的处理工艺:针对不同的废气来源和浓度,选择合适的VOC废气处理工艺至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 生物除臭工艺BCE 系列生物除臭设备适用行业皮革厂污水厂氓十海德利尔HB 系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站八 石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等 生产行业的恶臭控制。
生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、 氨、甲烷、三 甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成 分主要是水中有机物在缺氧条件下的产物。
后段过滤床根据废气源条件可选配, 以强化处理。
(如活性炭吸附除臭、植物液除臭等)。
生物净化工艺介绍各臭气源点的臭气经集气系统负压收集后, 通过离心风机的抽送,被直接导入洗 涤一生物滤床除臭设备。
前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰 值浓度冲击、去除部分水溶性物质等功能。
在后段的多级生物过滤床内,通过气 液、液固传质由多种微生物将致臭物质降解。
含硫系列臭气被氧化分解成S 、S03—、S04—。
硫黄氧化菌的作用是清除硫化 氢、甲硫醇、甲基化硫等硫黄化合物。
含氮系列臭气被氧化分解成 NH4+ NO —、 NO —,消化菌等氮化菌的作用是清除恶臭成分中的氮。
当恶臭气体为 H2S 时, 专性的自养型硫氧化菌会在一定的条件下将 H2S 氧化成硫酸根;当恶臭气体为有 机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成 H2S 然后H2S 再由 自养型微生物氧化成硫酸根。
H2S+O2自养硫化细菌+C03合成细胞物质+SO42-+H20CH3SH> CH4+H2&CO2+H2O+SO —2当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细 菌和硝酸细菌的硝化作用转为硝酸, 在兼性厌氧条件下,硝酸盐还原细菌将硝酸 盐还原为氮气。
硝化:NH3+gHNO2+H2O HNO2+O ^HNO3+H2O反硝化:HNgHNgHNO> N2O> N2后段过滤床根据废气源条件可选配,以强化处理。
(如活性炭吸附除臭、植物液 除臭等)BCE 系列生物净化装置性能特点 微生物活性强生物填料寿命长|表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小 及良好的布气布水等特性,使用寿命可达 8-10年。
纺织厂制药食品广设备操作简单实现自动控制工艺运行按PLC 设置实现完全自动、运行稳定、无人管理,可24小时连续运行, 也适合于间断运行。
运行能耗少由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。
填料本身耐生物 腐蚀,填料本身没有损耗,可长期稳定运行。
除臭工艺先进、合理无二次污染有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95鸠上,任何季节、 气候条件下都能满足各地最严格的除臭环保要求。
排放产物人畜无害,属环境友 好性技术,无二次污染。
2. 低温等离子体技术低温等离子体除臭设备适用行业制药、印染、制造、化工、化纤等行业在运作过程中会产生大量挥发性有机污染 物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧法等(详见:有机废气处理 组合工艺),对于低浓度的VOCS 很难实现,而光催化降解 VOCs 又存在催化剂容 易失活的问题,利用低温等离子体处理 VOCs 可以不受上述条件的限制,具有潜 在的优势。
低温等离子废气处理设备已经还广泛的应用于环境保护、 包装、纺织、塑料制品、 汽车制造、电子设备制造、家电制造、计算机制造、手机制造、生物材料、卫生 材料、医疗器皿、杀菌消毒、环保设备、石油天然气管道、供暖管道、化工子、 半导体、航空航天等行业中。
低温等离子废气处理工艺概述低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的 放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合 体。
放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态, 所以称为低温等离子体。
低温等离子体降解污染物是利用这些高能电子、 自由基 等活性粒子和废气中的污染物作用, 使污染物分子在极短的时间内发生分解, 并 发生后续的各种反应以达到降解污染物的目的。
DBD 等离子体反应区富含极高的物质,如高能电子、离子、自由基和激发态分子 等,废气中的污染物质可与这些具有较高能量的物质发生反应, 使污染物质在极 短的时间内发生分解,并发生后续的各种反应以达到讲解污染物的目的。
与传统 的电晕放电形势产生的低温等离子技术相比较, DBD 等离子体技术放电量是电晕 放电的50倍,放电密度是电晕放电的130倍。
所以,传统低温等离子体技术只能 用于室内空气异味治理,与其他低温等离子体技术相比较,DBD等离子体技术是电子制遗剖药印刷化工化纤唯一用于工业化工艺废气治理的技术。
放皑间I餵图1DBD等离子体双介质阻挡放电示意图等离子体去除污染物的基本过程过程一:高能电子的直接轰击过程二:0原子或臭氧的氧化02+录20过程三:0H自由基的氧化H20+4 0H+HH20+® 20HH+02> 0H+0过程四:分子碎片+氧气的反应低温等离子技术特点1、技术高端,工艺简洁:开机后,即自行运转,受工况限制非常少,无需专人操作,除臭率最咼可达99%2、节能:无机械设备,空气阻力小,耗电量约为0.003kw/m3废气。
3、适应工况范围宽:设备启动、停止十分迅速,随用随开,不受气温的影响。
在250°C以下和在雾态工况环境中均可正常运转。
-50 °C至+50°C的环境温度仍可正常运转。
4、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂等材料组成,抗氧化,采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。
5、结构简单:只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。
6无机械设备:故障率低,维修容易。
7、应用范围广:介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以将所有的异味气体分子降解。
低温等离子体技术工艺路线示意图异味气体从气体收集系统收集后进入等离子体反应区,在高能电子的作用下,使异味分子受激发,带电粒子或分子间的化学键被打断,同时空气中的水和氧气在高能电子轰击下也会产生0H自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。
净化后的气体经排气筒高空排放。
图为废气处理工艺路线示意图和处理工艺主处理工壬®s^«sxs入□•隊涵等• 1■达封0帕itSTM 亠反底*・+If低聊放淞厦.消1$翼麋痒H.通过規天审鸭的nr 抵*慣术*口在化工、制药厂正常运作的低温等离子废气处理设备:3.有机废气处理工艺有机废气处理方法概述炭氢化合物(HC是污染大气的重要污染物之一,其中包括简单的有机化合物。
目前对于气态有机物污染物种类繁多,采用的治理的方法也有多种,常用的有:吸收法、吸附法、催化燃烧法、燃烧法、冷凝法等。
这些方法应用中各有特点和利弊,需要根据污染程度、使用环境与条件来权衡。
对于环保检查机构和污染治理方所共同关心的是:初次投资费、运行费用、二次污染、处理效果、维护等方面的问题。
简而言之这些方法均能满足一定条件下气态污染物的处理。
对于以上各种方法的适用范围以及特点叙述入如下:呱收剂湛行删取郞備常温心…淨化效塞吕、但吸酣剂有喙盼咨服收法物理吸收,利含颗粒物的廣呱收制本身性质不理想、嘅收割5 再土姓理不好采用低温,是有机组分洽却至露点下,赢化哪土一螯求组分单纯、設备和損作筒卅3 单’但经济上不合耳有机废气吸附-脱附-冷凝回收技术工艺有机废气净化装置采用的是吸附法和冷凝法组合的方式净化有机废气。
充分发挥两者的优点净化效率高,把它们的弊端进行可利用的转化,对吸附物的再生处理利用低温水蒸气脱附,恢复吸附体的活性,对脱附下来的有机物回收利用。
对于有机废气的净化这是目前比较先进的治理方法。
应用范围有机废气净化装置适用于净化处理常温、中低风量、中高浓度的有机废气,可处理的有机溶剂包括苯类、酮类、脂类、醇类、醛类、醚类、烷类和其混合类。
该装置可应用于家具行业、石油化工、煤化工、人造革、纺织印染、油漆涂料、橡胶、塑料、制鞋、制药、电子、化纤、酿造等行业。
工作原理处理过程可分为三个阶段:1、用颗粒状或者纤维状的活性炭来充分吸附废气中有机成分的分子,当吸附到一定的饱和度时即停止吸附;2、开始时是利用饱和低压水蒸气去加热吸附饱和的活性炭,将被吸附的有机成分激活气化而从活性炭中脱附逸出。
恢复活性的活性炭即可以重新吸附有机成分的气体分子;|3、最后阶段就是对脱附出来的有机成分的气体进行冷凝,使其液化,与水自动分层后回用。
技术特点操作简便,节能省力;技术成熟可靠,设备运行稳定;高性能吸附剂,比表面积大,吸-脱附性能好净化效率高;设备运行安全,系统出现气流温度超过正常温度达120C时,系统配备有排空阀门,可以根据系统的自动安全程序进行工作,实现气流的排空,直至切断吸附床连接,终止吸附-脱附流程。
吸附浓缩+催化氧化技术工艺流程采用的处理方法是吸附法和催化法的组合,充分发挥两者的优点净化效率高,把它们的弊端进行可利用的转化,对吸附物的再生处理利用其本身催化燃烧的热量来进行脱附,恢复吸附体的活性,省去了二次能源,从而补偿了催化剂的价格问题。
对于有机废气的净化这是目前比较先进的治理方法。
」—应用范围有机废气净化装置适用于净化处理常温、大风量、中、低浓度的有机废气,可处理的有机溶剂包括苯类、酮类、脂类、醇类、醛类、醚类、烷类和其混合类。
该装置可广泛应用于汽车、造船、摩托车、自行车、家用电器、钢琴、集装箱生产厂的喷漆、涂装车间的有机废气净化,也可与制鞋粘胶、印铁制罐、化工塑料、印刷油墨、电缆、漆包线等流水线配套使用。
工作原理处理过程可分为三个阶段:11、用特殊成型的活性炭来充分吸附废气中有机成分的分子,当吸附到一定的饱和度时即停止吸附;2、第二阶段开始时是用附加的加热器加热一股气流,利用热气流去加热吸附饱和的活性炭,将被吸附的有机成分激活气化而从活性炭中脱附逸出。
恢复活性的活性炭即可以重新吸附有机成分的气体分子;3、对脱被附出来的有机成分的气体进行加热,使其达到催化燃烧所需要的温度进入催化燃烧床,这里说燃烧,实质是在催化剂的作用下进行快速激烈的氧化,将有机成分的炭氢分子氧化成C02和H2O再通过脱附风机,将其送入吸附床,直到脱附出来的有机成分的分子均被氧化为止,脱附过程即将进行完成。
由于在其氧化反应同时能释放相当多的热量,就在装置中设置了换热器,利用这个热量来加热被脱附出来的有机成分气体,并最终替代加热器工作。
技术特点全自动化控制,操作简便,节能省力;无火焰氧化,净化效率高,设备运行安全,安全高效;催化活性高,性能稳定、阻力小;高性能活性炭吸附剂,比表面积大,吸-脱附性能好,过风阻力小;4. 高能离子技术高能离子净化工艺离子发生装置发射出高能正、负离子,它与空气中的有机挥发性气体分子(VOC 接触,打开VOC分子化学键,分解成二氧化碳和水;对硫化氢、氨具有分解作用,分解后的物质与空气中尘埃粒子及固体颗粒碰撞,使颗粒荷电产生聚合作用,形成较大颗粒靠自身重力沉降下来;同时有效地破坏空气中细菌生存的环境,降低空气中细菌浓度,并将其完全消除,从而使气体达到净化的目的。