计量经济学·多元线性回归模型
第三章多元线性回归模型(计量经济学,南京审计学院)
Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I
由
可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt
计量经济学-多元线性回归模型
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
第3章 多元线性回归模型10301(计量经济学)PPT课件
第四节 多元线性回归模型检验
一、常用的检验方法
1. R(复相关系数)检验法
TSS (Yi Y)2 (Y (i Y ˆi)(Y ˆi Y))2 (Yi Y ˆi)22(Yi Y ˆi)Y (ˆi Y)(Y ˆi Y)2
5
总体回归模型n个随机方程的矩阵表达式为
Y 1 1 2 X 2 1 3 X 3 1 . .k . X k 1 u 1 Y 2 1 2 X 2 2 3 X 3 2 . .k . X k 2 u 2 . . . . . . . Y n 1 2 X 2 n 3 X 3 n . .k . X k n u n
一、多元线性回归模型的定义
设所研究的对象(因变量Y)受多个因素X1,X2,…,Xk和随机 干扰项u的影响,假设各因素与Y的关系是线性的,这样就 可把一元线性回归模型自然推广到多元的情形。
Y i X 1 i1 2 X 2 i 3 X 3 i . .k . X k i u i (i1,,n)
ei
ei称为残差或剩余项(residuals),可看成是总体回归函数
中随机扰动项i的近似替代。
样本回归函数的矩阵表达:
Yˆ XBˆ
或
Y XBˆ E
其中:
ˆ 1
ˆ
Bˆ
2
e1
E
e2
ˆ
en
k
8
二、多元线性回归模型的基本假设条件
⑴Y与X之间的关系是线性的; ⑵所有观测值的随机干扰向量期望值为0:E(u)=0 ⑶所有观测值的随机干扰项具有同方差:D (u)= E (uuT)=σu2I u ; ⑷不同观测值的随机干扰项之间相互独立: Cov(ui, uj) =0 (i≠j); ⑸随机干扰项ui与解释变量xk不相关:Cov(ui, xj) = 0 (j=1,2,.....k); ⑹ X不是随机变量,为确定矩阵,且在两个或多个自变量之间没有
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
计量经济学 第5章 多元线性回归模型
有
Y X
(3-3)
多元线性总体回归模型的矩阵形式
多元线性总体回归函数可用矩阵形式表示为
E (Y/X) X
(3-4)
二、多元线性回归模型的基本假设
包括对解释变量的假设、对随机误差项的假设、对模型设定的假设 几个方面,主要如下: 1)解释变量是确定性变量,不是随机变量,解释变量之间不相关; 2)随机误差项具有0均值、同方差,且在不同样本点相互独立, 不存在序列相关性 3)解释变量与随机误差项不相关
(3-2)
记
Y1 Y Y 2 Yn
1 1 X 1 X 11 X 12 X 1n X 21 X 22 X 2n X k1 Xk2 X kn
0 1 k
1 2 n
ˆ X Y X Y
因为
可得多元线性回归模型的普通最小二乘估计为
ˆ ˆ X Y
所以
-1 ˆ (X X) X Y
(3-11)
ˆ X Y X X
(3-10)
对于只含有两个解释变量的多元线性回归模型
Yi 0 1 X1i 2 X 2i i
由式(3-8)可直接求得普通最小二乘估计量为
1.样本回归线通过样本均值点,即点(Y ,X ,X , 1 2 , X k ) 满足
。
ˆ ˆ X ˆX ˆ 样本回归函数 Y i 0 1 1i 2 2i
ˆ X。 k ki
2.被解释变量的估计的均值等于被解释变量的均值,即 3.残差和为零,即
ˆ 。 Y Y
e
i 1
n
i
售后服务支出X2 (万元)
12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 11 10 15 12
《计量经济学》第三章 多元线性回归模型
Yi 1 2 X 2i 3 X 3i ... k X ki ui
7
多元样本回归函数
Y 的样本条件均值表示为多个解释变量的函数
ˆ ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki
或
ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki ei
22
ˆ ˆ 因 2 是未知的,可用 2代替 2 去估计参数 β 的标
准误差:
ˆ ● 当为大样本时,用估计的参数标准误差对 β 作标 准化变换,所得Z统计量仍可视为服从正态分布 ˆ ●当为小样本时,用估计的参数标准误差对 β 作标
准化变换,所得的t统计量服从t分布: ˆ βk - βk t ~ t (n - k ) ^ ˆ SE( βk )
i i
i
e e 0 4.残差 ei 与 X 和
3.
i
e X
i
3i
ei X 2i 0
2i
X 3i 都不相关,即
ˆ 5.残差 ei 与 Yi 不相关,即
e Yˆ 0
i i
18
二、OLS估计式的性质-统计性质
OLS估计式(用矩阵表式) 1.线性特征:
ˆ = (X X)-1 X Y β
2 i
ˆ ei2 (Yi - Yi )2
ˆ X X ... X )]2 ˆ min e [Yi -(1 ˆ2 2i ˆ3 3i k ki
求偏导,令其为0:
( ei2 ) 0 ˆ
j
13
即 ˆ ˆ ˆ ˆ -2 Yi - (1 2 X 2i 3 X 3i ... ki X ki ) 0
计量经济学多元线性回归
Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X Ki
i=1,2…n
• 根据最 小二乘原 理,参数 估计值应
该是右列
方程组的 解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
n
n
其
Q ei2 (Yi Yˆi )2
i 1
i 1
中n
2
(Yi (ˆ0 ˆ1 X1i ˆ2 X 2i ˆk X ki ))
可以证明,随机误差项u的方差的无偏估 计量为:
ˆ 2
e
2 i
e e
n k 1 n k 1
2、极大似然估计
• 对于多元线性回归模型
易知 Yi ~ N (Xiβ , 2 )
• Y的随机抽取的n组样本观测值的联合概率
L(βˆ , 2 ) Y1,Y2 ,,Yn )
1
e
1 2
2
(Yi
(
ˆ0
ˆ1
i1
• 于是得到关于待估参数估计值的正规方程组:
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1i X1ˆiˆ22i XXˆ222ii
X 2i ˆk ˆk X ki ˆk X ki
X ki) ) X 1i )X 2i
Yi Yi Yi
X 1i X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
ei称为残差或剩余项(residuals),可看成是 总体回归函数中随机扰动项ui的近似替代。
样本回归函数的矩阵表达:
Yˆ Xβˆ
其中:
ˆ0
βˆ
ˆ1
ˆ k
多元线性回归模型
多元线性回归模型多元线性回归模型是一种广泛应用于统计学和机器学习领域的预测模型。
它通过使用多个自变量来建立与因变量之间的线性关系,从而进行预测和分析。
在本文中,我们将介绍多元线性回归模型的基本概念、应用场景以及建模过程。
【第一部分:多元线性回归模型的基本概念】多元线性回归模型是基于自变量与因变量之间的线性关系进行建模和预测的模型。
它假设自变量之间相互独立,并且与因变量之间存在线性关系。
多元线性回归模型的数学表达式如下:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。
回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。
【第二部分:多元线性回归模型的应用场景】多元线性回归模型可以应用于各种预测和分析场景。
以下是一些常见的应用场景:1. 经济学:多元线性回归模型可以用于预测GDP增长率、失业率等经济指标,揭示不同自变量对经济变量的影响。
2. 医学研究:多元线性回归模型可以用于预测患者的生存时间、治疗效果等医学相关指标,帮助医生做出决策。
3. 市场研究:多元线性回归模型可以用于预测产品销量、市场份额等市场相关指标,帮助企业制定营销策略。
4. 社会科学:多元线性回归模型可以用于研究教育水平对收入的影响、家庭背景对孩子成绩的影响等社会科学问题。
【第三部分:多元线性回归模型的建模过程】建立多元线性回归模型的过程包括以下几个步骤:1. 数据收集:收集自变量和因变量的数据,确保数据的准确性和完整性。
2. 数据清洗:处理缺失值、异常值和离群点,保证数据的可靠性和一致性。
3. 特征选择:根据自变量与因变量之间的相关性,选择最相关的自变量作为模型的输入特征。
4. 模型训练:使用收集到的数据,利用最小二乘法等统计方法估计回归系数。
5. 模型评估:使用误差指标(如均方误差、决定系数等)评估模型的拟合程度和预测性能。
多元线性回归模型计量经济学
多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。
《计量经济学》第五章最新完整知识
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学-多元线性回归模型
e e ˆ n k 1 n k 12e i2 3-21
*二、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
易知
Yi ~ N ( X i β , 2 )
Y的随机抽取的n组样本观测值的联合概率 ˆ, L (β 2 ) P (Y1 , Y2 , , Yn )
解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
3-14
正规方程组的矩阵形式
n X 1i X ki
X X
1i 2 1i
X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
ˆ 1 ˆ ˆ 2 β ˆ k
在离差形式下,参数的最小二乘估计结果为
ˆ β ( x x) 1 x Y
ˆ ˆ ˆ 0 Y 1 X 1 k X k
3-20
随机误差项的方差2的无偏估计
可以证明:随机误差项 的方差的无偏估计量为:
第三章
多元线性回归模型
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
3-1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
多元线性回归模型
多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。
它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。
本文旨在介绍多元线性回归模型的原理、假设条件和应用。
一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。
多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。
二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。
最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。
具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。
三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。
主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。
在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。
四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。
在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。
多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。
五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。
然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。
计量经济学(2012B)(第二章多元线性回归)详解
2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2
(ˆ
n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受
,
0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551
高级计量经济学 第二章 多元线性回归模型
E[e1e1 X] E[e1e2 X] ... E[e1en X] E[e2e1 X] E[e2e2 X] ... E[e2en X]
...
E[ene1 X] E[ene2 X] ... E[enen X]
利用方差分解公式可以得到: V a r [ e ] E [ V a r [ e X ] ] V a r [ E [ e X ] ]2 I
( X ' X )1 X '[ 2I ]X ( X ' X )1 2 ( X ' X )1
19
对多元回归方程估计结果的解释
多元回归方程估计结果可以表达为
y ˆˆ1 x 1ˆ2 x 2 .. .ˆK x K
由方程可知:
y ˆ ˆ 1 x 1 ˆ 2 x 2 . .ˆ .K x K
E ˆ S 2SY iˆ0ˆ1X 1 iˆ2X 2 i 0
0
E ˆ S 2S Y iˆ0ˆ1 X 1 iˆ2 X 2 iX 1 i 0
1
E ˆ S 2S Y iˆ0ˆ1 X 1 iˆ2 X 2 iX 2 i 0
ˆˆ1 0
N X1i
ˆ2 X2i
X1i X12i X1iX2i
XX 1iX 2i2i1 XY 1iiYi X2 2i X2iYi
思考:如果X1=2X2会出现什么情况?
最小二乘法估计
X' Xˆ X'Y
如果 X'X存在逆矩阵(这是满秩假定所要求的),
那么其解为: ˆ(X'X)1X'Y
最小二乘法估计
(多元回归模型)
计量经济学课件:第三章 多元线性回归模型
第三章 多元线性回归模型第一节 多元线性回归模型及基本假定问题:只有一个解释变量的线性回归模型能否满足分析经济问题的需要?简单线性回归模型的主要缺陷是:把被解释变量Y 看成是解释变量X 的函数是前提是,在其它条件不变的情况下,并且,所有其它影响Y 的因素都应与X 不相关,但这在实际情况中很难满足。
怎样在一元线性回归的基础上引入多元变量的回归? 看教科书第72—73页关于汽车销售量的影响因素的讨论。
一、多元线性回归模型的意义1、建立多元线性回归模型的意义,即一元线性回归模型的缺陷,多个主要影响因素的缺失对模型的不利影响。
在一元线性回归模型中,如果总体回归函数的设定是正确的,那么,根据样本数据得到的样本回归模型就应该有较好的拟合效果,这时,可决系数就应该较大。
相反,如果在模型设定时忽略了影响被解释变量的某些重要因素,拟合效果可能就会较差,此时可决系数会偏低,并且由于忽略了一些重要变量而对误差项的影响会加大,这时误差项会表现出一些违背假定的情况。
2、从一个解释变量到多个解释变量的演变。
一个生产函数的例子,一个商品需求函数的例子,(教材第74页)。
二、多元线性回归模型及其矩阵表示1、一般线性回归模型的数学表达式。
设 12233i ii k k ii Y XXXu ββββ=+++++i=1,2,3,…,n在模型表达式里,1β仍是截距项,它反映的是当所有解释变量取值为零时,被解释变量Y 的取值;j β(j=2,3,…,k )为斜率系数,它的经济含义:在其它变量不变的情况下,第j 个解释变量每变动一个单位,Y 平均增加(或减少)j β个单位,这就是所谓的运用边际分析法对多元变量意义下回归参数的解释。
因此,称j β为偏回归系数,它反映了第j 个解释变量对Y 的边际影响程度。
4、2、总体回归函数,即12233(|)i i i k ki E Y X X X X ββββ=++++3、样本回归函数,即12233ˆˆˆˆˆi i k k iY X X Xββββ=++++ 4、将n 个样本观测值代入上述表达式,可得到从形式上看,像似方程组的形式。
计量经济学第三章
多元线性回归模型及其古典假设 参数估计 最小二乘估计量的统计特性 统计显著性检验 解释变量的选择 中心化和标准化回归方程 利用多元线性回归方程进行预测
山东经济学院统计与数学学院计量经济教研室
第一节 多元线性回归模型 及其古典假设
一、多元线性回归模型的一般形式 二、多元线性回归模型的基本假定
山东经济学院统计与数学学院计量经济教研室
一、多元线性回归模型的一般形式
如果被解释变量(因变量)y与k个解释变量( 自变量)x1, x2, … , xk 之间有线性相关关系,那么 他们之间的多元线性总体回归模型可以表示为:
y 0 1x1 2 x2 k xk u
(3.1)
(
k
1)1
en
n1
对样本回归模型的系统分量的系数进行估计可得样本回归
方程:
yˆi ˆ0 ˆ1x1i ˆ2x2i ˆk xki
yˆ i
其中, 是y的系统分量,即由自变量决定的理论值, ˆ0,ˆ1,ˆ2,,ˆk
分别是0 ,1 ,…,k的无偏估计量。
方程表示:各变量x值固定时y的平均响应。
j也被称为偏回归系数,表示在其他解释变量
保持不变的情况下,xj每变化1个单位时,y的均 值E(y)的变化;
或者说j给出了xj的单位变化对y均值的“直
接”或“净”(不含其他变量)影响。
山东经济学院统计与数学学院计量经济教研室
总体回归模型n个随机方程的为:
y1 0 1x11 2 x21 k xk1 u1 y2 01x12 2x22 kxk2 u2 yn 0 1x1n 2 x2n k xkn un
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学·多元线性回归模型2006年 217656.6 77597.2 63376.86 2007年 268019.4 93563.6 73300.1 2008年 316751.7 100394.94 79526.53 2009年 345629.2 82029.69 68618.37 2010年 408903 107022.84 94699.3 2011年 484123.5 123240.56 113161.392012年 534123 129359.3 114801 2013年 588018.8 137131.4 121037.5 2014年636138.7143911.66120422.84数据来源:国家统计局三、模型的检验及结果的解释、评价 (一)OLS 法的检验 相关系数:Y X1 X2 Y 10.97999191759670260.983524229450628 X1 0.9799919175967026 1 0.9975652794446187X20.9835242294506280.99756527944461871线性图:100,000200,000300,000400,000500,000600,000700,000YX1X2估计参数:Dependent Variable: YMethod: Least SquaresDate: 12/14/15 Time: 14:47Sample: 1985 2014Included observations: 30Variable Coefficient Std. Error t-Statistic Prob.C 3775.3193593260248769.92804671830.43048464471025450.6702600664360232X1 -0.91272630855511891.938518631883585-0.47083700591944140.6415389475333828X2 5.522785592511612.2548570541426052.4492841275083020.021087030146243R-squared 0.9675860494429319 Mean dependent var173871.8233333334Adjusted R-squared 0.9651850160683343 S.D. dependent var187698.4414104575S.E. of regression 35022.22758863741 Akaike info criterion23.8599929764685Sum squared resid 33117023482.29852 Schwarz criterion24.00011271463471Log likelihood -354.8998946470274 Hannan-Quinn criter.23.90481848460881F-statistic 402.9873385683694 Durbin-Watson stat0.5432849836158895Prob(F-statistic) 7.850214650 723685e-21统计检验:(1)拟合优度:从上表可以得到R2=0.9675860494429319,修正后的可决系数R2=0.9651850160683343,这说明模型对样本的拟合很好。
(2)F检验:针对H0:(二)多重共线性的检验及修正相关系数矩阵:X1 X2X1 1 0.9975652794446187X2 0.9975652794446187 1辅助回归的R2值Dependent Variable: X1Method: Least SquaresDate: 12/14/15 Time: 15:13Sample: 1985 2014Included observations: 30Variable Coefficient Std. Error t-Statistic Prob.C -236.1503079858336853.796869002943-0.27658839773166180.7841276813528842X2 1.1603536176166710.015330102952961675.691182321284056.205455045312624e-34R-squared 0.9951364867534203 Mean dependent var43924.96633333334Adjusted R-squared 0.9949627898517566 S.D. dependent var48106.05415975261S.E. of regression 3414.245696799649 Akaike info criterion19.17364126464171Sum squared resid 326398062.9872178 Schwarz criterion19.26705442341918Log likelihood -285.6046189696256 Hannan-Quinn criter.19.20352493673524F-statistic 5729.155081193856 Durbin-Watson stat0.730903182658975Prob(F-statistic) 6.205455045 312711e-34因为方差扩大因子VIF大于等于10 为204.081,所以存在严重的多重共线性。
对多重共线性的处理:Dependent Variable: LOG(Y)Method: Least SquaresDate: 12/14/15 Time: 15:35Sample: 1985 2014Included observations: 30Variable Coefficient Std. Error t-Statistic Prob.C 3.2221181949992160.233348310985516513.808191631604349.378486825750091e-14LOG(X1) 0.29961479256469490.23109796252290661.2964839209043080.2057807637271318LOG(X2) 0.53925469393756130.24855479727493982.169560595288220.03901090355174436R-squared 0.9877359836279073 Mean dependent var11.38310574067848Adjusted R-squared 0.9868275379707153 S.D. dependent var1.306196606830758S.E. of regression 0.1499139436548128 Akaike info criterion-0.8628711662239941Sum squared resid 0.6068031435577368 Schwarz criterion-0.7227514280577785Log likelihood 15.94306749335991 Hannan-Quinn criter.-0.8180456580836856F-statistic 1087.28130935309 Durbin-Watson stat0.4125950217515378Prob(F-statistic) 1.572322907 613123e-26检验模型的异方差:(一)图形法.00.01.02.03.04.05.06.07.08X1E 2.00.01.02.03.04.05.06.07.08X2E 2(goldfeld-Quandt 检验) Dependent Variable: Y Method: Least Squares Date: 12/14/15 Time: 16:04 Sample: 1 11Included observations: 11VariableCoefficientStd. Error t-StatisticProb.C5479.8790801364.28929584.01665475000.00385909682394 68848 41509 8436432651X1 1.4331353437969051.7592030257396050.81465034042582160.4388484070935154X2 3.2482294959499731.9835618267750021.6375741114312250.1401455299675676R-squared 0.9848299439189845 Mean dependent var25135.82727272728Adjusted R-squared 0.9810374298987306 S.D. dependent var16782.16114325512S.E. of regression 2310.981594158292 Akaike info criterion18.55573317233263Sum squared resid 42725087.42830722 Schwarz criterion18.664250064914Log likelihood -99.05653244782944 Hannan-Quinn criter.18.48732847210918F-statistic 259.6773376866937 Durbin-Watson stat2.590461609402877Prob(F-statistic) 5.296009374 728331e-08Dependent Variable: YMethod: Least SquaresDate: 12/14/15 Time: 16:05Sample: 20 30Included observations: 11Variable Coefficient Std. Error t-Statistic Prob.C -131209.061546085344951.25277685769-2.9189189052732220.01932324601265213X1 0.90801015214794812.5137156596208070.36122230001340770.7272868120760894X2 4.8280901698092332.8182139453930281.713173755917920.1250330211123522R-squared 0.9492597452885157 Mean dependent var376906.7363636364Adjusted R-squared 0.9365746816106446 S.D. dependent var165542.7249904584S.E. of regression 41690.91509980208 Akaike info criterion24.34095492221962Sum squared resid 1390505921 Schwarz criterion 24.44947184.87124 14801Log likelihood -130.8752520722079 Hannan-Quinn criter.24.27255022199618F-statistic 74.8328719030782 Durbin-Watson stat2.016741299693539Prob(F-statistic) 6.628428440 105899e-06(三)WHITE检验Heteroskedasticity Test: WhiteF-statistic 8.065639360788028 Prob. F(5,24)0.0001401031747031907Obs*R-squared 18.80739651082681 Prob. Chi-Square(5)0.002087524503307292Scaled explained SS 24.48540340808745 Prob. Chi-Square(5)0.0001751046944911128Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/14/15 Time: 16:18Sample: 1 30Included observations: 30Variable Coefficient Std. Error t-Statistic Prob.C -172076058.1206036441097474.8325652-0.39010891682370530.6998968080763495X1 -434816.1859048981264665.0535233542-1.6428923279307430.1134443283056973X1^2 -14.0260807141404617.43640515048546-0.80441355847652770.4290549805564741X1*X2 41.0314734815675239.804889285300281.0308149128986580.3129044598250328X2 532589.0240447041306551.76908160161.7373542669164410.09514332316116304X2^2 -28.6178784222710922.88697651710863-1.2504001304356840.2232078922692591R-squared0.6269132170275604 Mean dependent var 1103900782.743284 Adjusted R-squared 0.5491868039083021 S.D. dependent var 2013044843.410424 S.E. of regression 1351611130.658886 Akaike info criterion 45.06385981098074 Sum squared resid 4.384446356450382e+19 Schwarz criterion 45.34409928731318 Log likelihood -669.9578971647112 Hannan-Quinn criter. 45.15351082726136 F-statistic 8.065639360788028 Durbin-Watson stat 1.62042765626833Prob(F-statistic) 0.0001401031747031907所以存在异方差 异方差修正: 自相关的检验与修正: 一 图示检验法-80,000-40,000040,00080,000120,0000200,000400,000600,000800,000Residual ActualFittedDW 检验DW 0.54328498 对样本容量为30、两个解释变量的模型,5%的显著水平,查DW 统计表可知,d=1.567 l d=1.284 模型中DW<l d,显然模型u中有自相关。