八年级下册期末数学试题-普通用卷

合集下载

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

八年级下册数学期末考试卷及答案【含答案】

八年级下册数学期末考试卷及答案【含答案】

八年级下册数学期末考试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 37C. 39D. 492. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 一个长方体的长、宽、高分别是6cm、4cm、3cm,那么这个长方体的对角线长度是多少cm?()A. 3cmB. 5cmC. 7cmD. 9cm4. 下列哪个数是偶数?()A. 101B. 102C. 103D. 1045. 一个等边三角形的边长为6cm,那么这个三角形的面积是多少cm²?()A. 9cm²B. 12cm²C. 15cm²D. 18cm²二、判断题1. 两个质数的和一定是偶数。

()2. 一个等腰三角形的底角一定是锐角。

()3. 一个长方体的对角线长度一定大于它的长、宽、高中的任意一个。

()4. 两个奇数的积一定是奇数。

()5. 一个等边三角形的面积一定是其边长的平方的三分之一。

()三、填空题1. 一个质数除了1和它本身以外,没有其他正因数。

最小的质数是______。

2. 一个等腰三角形的底角相等,顶角是______。

3. 一个长方体的长、宽、高分别是6cm、4cm、3cm,那么这个长方体的体积是______cm³。

4. 两个偶数的和一定是______。

5. 一个等边三角形的边长为6cm,那么这个三角形的面积是______cm²。

四、简答题1. 请列举出前五个质数。

2. 请说明等腰三角形的特点。

3. 请说明长方体的体积公式。

4. 请说明偶数和奇数的定义。

5. 请说明等边三角形的特点。

五、应用题1. 一个长方体的长、宽、高分别是8cm、6cm、4cm,请计算这个长方体的对角线长度。

2. 一个等腰三角形的底边长为10cm,腰长为12cm,请计算这个三角形的周长。

【精选】人教版八年级下册数学期末测试卷(含答案)

【精选】人教版八年级下册数学期末测试卷(含答案)

【精选】人教版八年级下册数学期末测试卷(含答案)一、选择题(每题1分,共5分)1.若一个正方形的对角线长为10厘米,则其边长为多少厘米?A.5√2厘米B.10√2厘米C.5厘米D.10厘米2.下列函数中,哪一个不是二次函数?A.y=2x^2+3x+1B.y=x^24x+4C.y=3/xD.y=x^2+2x33.已知等腰三角形的底边长为8厘米,腰长为10厘米,则该三角形的周长为多少厘米?A.16厘米B.26厘米C.28厘米D.36厘米4.下列哪个数是无理数?A.√9B.√16C.√3D.√15.若一个圆的半径为r,则其面积是多少?A.2πrB.πr^2C.2r^2D.r^2/2二、判断题(每题1分,共5分)1.任何两个全等三角形都是相似的。

()2.一次函数的图像是一条直线。

()3.对角线相等的四边形一定是矩形。

()4.菱形的对角线互相垂直平分。

()5.一元二次方程的解一定是实数。

()三、填空题(每题1分,共5分)1.若一个正方形的边长为a,则其对角线长为______。

2.一次函数y=kx+b的图像是一条______。

3.若一个圆的周长为C,则其半径为______。

4.若一个等腰三角形的底边长为b,腰长为l,则其周长为______。

5.若一个一元二次方程的判别式为0,则该方程有两个相等的实数根,这两个根的和为______。

四、简答题(每题2分,共10分)1.请简要说明矩形的性质。

2.请简要说明菱形的性质。

3.请简要说明一元二次方程的求解方法。

4.请简要说明相似三角形的性质。

5.请简要说明一次函数的性质。

五、应用题(每题2分,共10分)1.已知一个正方形的边长为10厘米,求其对角线长。

2.已知一次函数y=2x+3,求当x=4时,y的值。

3.已知一个圆的半径为5厘米,求其面积。

4.已知等腰三角形的底边长为8厘米,腰长为10厘米,求其周长。

5.已知一元二次方程x^25x+6=0,求其解。

六、分析题(每题5分,共10分)1.请分析并说明如何求解一个一元二次方程。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、单选题1合并的二次根式是()AB C D2.下列各式中,运算正确的是()A =﹣2B C 4D .2=3.下列函数中,正比例函数是()A .y =4xB .y =4x C .y =x+4D .y =x 24.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数,中位数分别为()考试分数(分)2016128人数241853A .24,18B .20,16C .20,12D .24,55.如图,四边形ABCD 是菱形,DH ⊥AB 于点H ,若AC=8cm ,BD=6cm ,则DH=()A .B .C .245cm D .485cm 6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A .①②B .②③C .①③D .②④7.如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C 在直线y=x 上.若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是A .2B .3C .4D .58.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。

其中正确的结论有()A .1个B .2个C .3个D .4个9.E 为正方形ABCD 内一点,且EBC 是等边三角形,求AEB 的度数是()A .55B .60C .65D .7510.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.修车时间为15分钟二、填空题11()25x-=x-5,则x的取值范围是__________.12.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.13.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是_____分.14.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.15.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是___________16.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为_______.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图的方式放置,A1,A2,A3…和点C1,C2,C3…分别在直线y=x+2和x轴上,则点C2020的横坐标是__________.18.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.三、解答题19.计算:(1-;(2)+2+20.某校全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整:(2)捐款金额的众数是元,中位数是元;(3)若该校共有2000名学生参加捐款,根据样本平均数估计该校大约可捐款多少元?21.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.22.如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为6,OE =EM ,求MN 的长.23.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y 与上市时间x 的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?24.如图,在矩形纸片ABCD 中,3,9AB AD ==,将其折叠,使点D 与点B 重合,折痕为EF .(1)求证:BE BF =;(2)求BE 的长.25.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由.26.如图,△ABC 为等腰直角三角形,∠ACB =90°,D ,E 分别是AC 、AB 的中点,P 为直线DE 上的一点,PQ ⊥PC 交直线AB 于Q .(1)如图1,当P 在ED 延长线上时,求证:EC+EQ ;(2)当P在射线DE上时,请直接写出EC,EQ,EP三条线段之间的数量关系.参考答案1.D【详解】解:A不是同类二次根式,不能合并,故A不合题意;B不是同类二次根式,不能合并,故B不合题意;CC不合题意;D2D符合题意;故选:D2.C【详解】解:A=2,故原题计算错误;B=C4,故原题计算正确;D、2和故选:C 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.3.B 【解析】【分析】根据正比例函数定义对各选项进行逐一分析即可.【详解】A 、4y x=是反比例函数,故本选项错误;B 、4xy =是正比例函数,故本选项正确;C 、y=x+4是一次函数,故本选项错误;D 、y=x 2是二次函数,故本选项错误.故选B .【点睛】考查的是正比例函数的定义,熟知一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数是解答此题的关键.4.B 【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:B .【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.5.C【解析】【分析】根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=12×6×8=24,即可求DH长.【详解】由已知可得菱形的面积为12×6×8=24.∵四边形ABCD是菱形,∴∠AOB=90°,AO=4cm,BO=3cm.∴AB=5cm.所以AB×DH=24,即5DH=24,解得DH=245 cm.故选C.【点睛】主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.6.B【解析】【详解】A、∵四边形ABCD是平行四边形,∴当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当③AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,∴当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选B.7.B【解析】【详解】解:如图,AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,∵OB=6,∴点B到直线y=x的距离为6×2∵3,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,AB的垂直平分线与直线的交点有一个所以,点C的个数是1+2=3.故选B.8.A【解析】【详解】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 9.D【解析】【分析】由E为正方形ABCD内一点,且△EBC是等边三角形,易证得△ABE是等腰三角形,且AB=BE,易求得∠ABE=∠ABC-∠EBC=30°,继而求得答案.【详解】解:∵E为正方形ABCD内一点,且△EBC是等边三角形,∴∠ABC=90°,∠EBC=60°,AB=CB=EB,∴∠ABE=∠ABC-∠EBC=30°,∴∠EAB=∠AEB=1802ABE︒-∠=75°.故答案为:75°.【点睛】此题考查了正方形的性质以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.10.D【解析】【分析】观察图象,明确每一段小明行驶的路程、时间,作出判断.【详解】A、自行车发生故障时离家距离为1000米,正确;B、学校离家的距离为2000米,正确;C、到达学校时共用时间20分钟,正确;-=分钟,可知D错误.D、由图可知,修车时间为15105故选:D.【点睛】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.x≥5【解析】【分析】=- ,由此性质求得答案即可.(0)a a【详解】x=-,解:5∴5-x≤0∴x≥5.故答案为:x≥5.【点睛】在化简中的应用,熟练运用==-(0),(0)a a a a有关的性质是解题的关键.12.小李【解析】【分析】根据方差的意义知,波动越大,成绩越不稳定.观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,【详解】观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定13.88【解析】【详解】解:∵笔试按60%、面试按40%计算,∴总成绩是:90×60%+85×40%=88(分),故答案为:88.14.1cm【解析】【分析】根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中=,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【点睛】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.15.6.5【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=AB.90°,根据线段垂直平分线的性质得到DC=BD=12【详解】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∵AC ∥DE ,∴∠DEB =90°,又∵E 是BC 的中点,∴直线DE 是线段BC 的垂直平分线,∴DC =BD =12AB =6.5,故答案是:6.5.【点睛】本题考查的是三角形中位线定理,掌握线段垂直平分线的判定和性质,三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.2或【解析】【分析】本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.【详解】解:当∠APB=90°时(如图1),∵AO=BO ,∴PO=BO ,∵∠AOC=60°,∴∠BOP=60°,∴△BOP 为等边三角形,∵AB=BC=4,∴sin 604AP AB ︒==⨯当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴tan303OBBP︒===,在直角三角形ABP中,AP==,如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为或2.【点睛】考点:勾股定理.17.22021-2【解析】【分析】根据直线解析式先求出A1(0,2),OC1=OA1=2,得出C1的横坐标是2=21,再求出C2的横坐标是6=21+22,C3的纵坐标是14=21+22+23,得出规律,即可得出结果【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1(0,2),OC1=OA1=2∴C1(2,0),其中2=21∴A2(2,4),OC2=2+4=6∴C2(6,0),其中6=21+22∴A3(6,8),OC3=6+8=14∴C3(14,0),其中14=21+22+23…∴点C n的坐标是(21+22+23+…+2n,0)∴C n的坐标是(2n+1-2,0)∴点C n的横坐标是2n+1-2,故当n=2020时,点C2020的横坐标是22021-2,故答案为22021-2【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出C1、C2、C3的坐标得出规律是解决问题的关键.18.x<1【解析】【分析】写出直线y=kx在直线y=﹣x+3下方所对应的自变量的范围即可.【详解】观察图象即可得不等式kx<-x+3的解集是x<1.【点睛】本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.19.(1)(2)5+.【解析】【分析】(1)根据二次根式的性质进行化简,然后计算即可;(2)根据完全平方公式,二次根式的性质进行化简,然后计算即可.【详解】解:(1)原式=-6×3+==(2)原式=3++=5++=5+.【点睛】本题考查了二次根式的混合运算,二次根式的化简,完全平方公式,掌握运算法则是解题关键.20.(1)50,见解析;(2)10,12.5;(3)根据样本平均数估计该校大约可捐款26200元.【解析】【分析】(1)由捐款15元的人数及其所占百分比可得总人数,再减去其它捐款数的人数求出捐款10元的人数,从而补全图形;(2)根据众数和中位数的概念求解可得;(3)先求出这50个人捐款的平均数,再乘以总人数即可得.【详解】(1)本次抽查的学生总人数为14÷28%=50(人)则捐款10元的人数为50﹣(9+14+7+4)=16(人)补全图形如下:(2)捐款的众数为10元,中位数为10152=12.5(元)故答案为10、12.5;(3)951610141572042550⨯+⨯+⨯+⨯+⨯=13.1(元)则根据样本平均数估计该校大约可捐款2000×13.1=26200(元).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)见解析;(2)96【解析】【分析】(1)根据菱形的性质结合已知条件即可得证;(2)由(1)所得结合菱形的性质计算出AC 、BD 的长度,再计算面积即可.【详解】解:(1)证明:∵//BE AC ,//AE BD ,∴四边形AEBO 为平行四边形,又∵四边形ABCD 为菱形,∴BD AC ⊥,∴90AOB ∠=︒,∴平行四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形,∴AB =OE =10,又∵四边形ABCD 为菱形,∴AO =12AC =8,∴90AOB ∠=︒,∴6BO =,∴BD =2BO =12,∴菱形ABCD 的面积=12121696⨯⨯=.【点睛】本题考查了矩形的判定,菱形的性质,勾股定理;掌握好相关的基础知识是解决本题的关键.22.(1)见解析;(2)MN=【解析】【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.【详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则=,∴==【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.23.解:(1)日销售量的最大值为120千克.(2)()()y 10x 0x 12{y 15x 300 12x 20=≤≤=-+<≤(3)第10天的销售金额多.【解析】【详解】试题分析:(1)观察图象,即可求得日销售量的最大值;(2)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y 与上市时间x 的函数解析式;(3)第10天和第12天在第5天和第15天之间,当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b ,由点(5,32),(15,12)在z=kx+b 的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额.试题解析:(1)由图象得:120千克,(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k 1x ,∵直线y=k 1x 过点(12,120),∴k 1=10,∴函数解析式为y=10x ,当12<x≤20,设日销售量与上市时间的函数解析式为y=k 2x+b ,∵点(12,120),(20,0)在y=k 2x+b 的图象上,∴2212k b=120{20k b=0++,解得:2k 15{b 300=-=∴函数解析式为y=-15x+300,∴小明家樱桃的日销售量y 与上市时间x 的函数解析式为:;(3)∵第10天和第12天在第5天和第15天之间,∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=mx+n ,∵点(5,32),(15,12)在z=mx+n 的图象上,∴532{1512 m nm n+=+=,解得:2 {42mn=-=,∴函数解析式为z=-2x+42,当x=10时,y=10×10=100,z=-2×10+42=22,销售金额为:100×22=2200(元),当x=12时,y=120,z=-2×12+42=18,销售金额为:120×18=2160(元),∵2200>2160,∴第10天的销售金额多.考点:一次函数的应用.24.(1)见解析;(2)BE=5.【解析】【分析】(1)根据翻折变换的性质可知∠BEF=∠DEF,BE=DE,而四边形ABCDE是矩形,那么AD//BC,于是∠DEF=∠BFE,则有∠BEF=∠BFE,可得BF=BE;(2)设AE=x,那么BE=9-x,在Rt△BAE中,利用勾股定理可求AE,进而可求BE=5.【详解】(1)∵四边形ABCD是矩形∴AD//BC,∴∠DEF=∠EFB由折叠可知∠BEF=∠DEF∴∠BEF=∠EFB.∴BE=BF.(2)在矩形ABCD中,∠A=90°,由折叠知BE=ED,设AE=x,那么DE=BE=9-x,在Rt△BAE中,AB2+AE2=BE2,即32+x2=(9-x)2,解得x=4,即AE=4,∴BE=9-4=5.【点睛】本题考查了翻折变换、勾股定理、矩形的性质.解题的关键是注意翻折前后的对应线段和对应角分别相等.25.(1)见解析;(2)四边形BECD是菱形,理由见解析.【解析】【分析】(1)利用平行四边形对边平行可解答.(2)利用证明菱形的条件即可解答.【详解】证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.【点睛】本题考查平行四边形的综合运用,掌握证明平行四边形和菱形的条件是解题关键. 26.(1)见详解;(2)EP+CE【解析】【分析】(1)过P点作PG⊥AE于点G,PH⊥CE于H,先证明△PGE≌△PHE,再证明△PCH≌△PQG,可得CH=GQ,可得EC+EQ=EH+CH+EG-QG=2EG,即可得证;(2)作PG⊥DE交AB于G,连接CP,由(1)可知∠CEB=90°,∠AED=∠CED=45°,得出∠CEP=135°,证明△ECP≌△GQP,可得GQ=EC,可推出EP+CE,即得出答案.【详解】证明:(1)过P点作PG⊥AE于点G,PH⊥CE于H,∵∠ACB=90°,AC=BC,E为AB中点,∴AE=CE,∠AEC=90°,∵D为AC中点,∴∠DEA=∠DEC=45°,∵PG⊥GE,PH⊥CE,∴∠PGE=∠PHE=90°,又∵PE=PE,∴△PGE≌△PHE(AAS),∴PG=PH,EG=EH,又∵∠GPE=180°-∠PGE-∠PEG=45°=∠PEG,∴PG=GE,∴EG,又∵∠CPQ=∠CEQ=90°,∠CPQ+∠QEC+∠PQE+∠PCE=360°,∴∠PCH十∠PQE=180°,又∵∠PQE+∠PQG=180°,∴∠PCH=∠PQE,∴△PCH≌△PQG(AAS),∴CH=GQ,∴EC+EQ=EH+CH+EG-QG=2EG,又∵,∴EP;(2)作PG⊥DE交AB于G,,连接CP,由(1)可知∠CEB=90°,∠AED=∠CED=45°,∴∠CEP=180°-∠CED=135°,又∵∠PEG=∠AED=45°,∠EPG=90°,∴∠PEG=∠PGE=45°,∴EP=PE,,∴∠PGQ=180°-∠PGE=135°,∴∠PEC=∠PGQ=135°,∵∠CEO=∠OPQ=90°,∠EOC=∠POQ,∴∠ECP=∠PQG,在△ECP和△GQP中==PEC PGQECP GQP EP PG⎧⎪⎨⎪=⎩∠∠∠∠,∴△ECP≌△GQP(AAS),∴GQ=EC,∴.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,灵活运用知识点是解题关键.。

八年级数学下册期末考试卷-附带参考答案

八年级数学下册期末考试卷-附带参考答案

八年级数学下册期末考试卷-附带参考答案学校:___________姓名:___________班级:___________考号:___________一、选择题:(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的) 1.下列式子中,与2是同类二次根式的是A.12B.18C.27D.44 2.下列各式2a 与11-+a a 与a 4和mn mn 7-中分式有 A.1个 B.2个 C.3个 D.4个 3.下列事件中是确定事件的是A.锐角三角形都相似B.等腰三角形都相似C.等边三角形都相似D.直角三角形都相似 4.下列各式中,最简二次根式的是A.2.0B.21C.28D.21 5.右图为农村一古老的捣碎器,已知支撑柱AB 的高为0.5米,踏 板DE 长为1.8米,支撑点A 到踏脚点D 的距离为1米,原来捣头 点E 着地,现在踏脚D 着地,则捣头点E 上升了A.1.5米B.1.2米C.1米D.0.9米 6.已知点A(x 1,x 2)、B(y 1,y 2)在反比例函数y =xk(k >0)的图象上,若x 1<x 2<0,则下列关于y 1、y 2 大小关系正确的是A.y 1>y 2B.y 1<y 2C.y 1=y 2D.无法确定 7.关于x 的方程2142-=--x xx k 的解为正数,则k 的取值范围是 A.k >-4 B.k <4 C.k >-4且k ≠4 D.k <4且k ≠48.定义一种新运算“&”如下:对于任意的实数a 、b ,若a ≥b ,则a &b =b a -;若a <b ,a &b =3b a -。

下列结论:①当a ≥b ,a &b ≥0;②(18)&9= -3;③(2022&2023)+2023&2022)=0;④(a 2+1)&(a 2-3)的值是无理数.其中一定成立的是A.①②B.②③C.①②③D.①②③④二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.若二次根3-x 有意义,实数x 的取值范围为______________________。

最新人教版八年级数学下册期末测试卷及答案-八年级下人教版期末试卷

最新人教版八年级数学下册期末测试卷及答案-八年级下人教版期末试卷

八年级第二学期数学期末模拟一 一、选择题(每小题2分,共16分)1.若正比例函数y =kx 的图象经过点(2,-1),则该正比例函数的图象在(A ) 第一、二象限. (B )第一、三象限.(C ) 第二、三象限.(D )第二、四象限.2.与2是同类二次根式的是(A )24. (B )32. (C )12. (D )27.3.在班级组织的知识竞赛中,小悦所在的小组8名同学的成绩(单位:分)分别为:73,81,81,81,83,85,87,89.则8名同学成绩的中位数、众数分别是(A )80,81. (B )81,89. (C )82,81. (D )73,81.4.若二次根式62+x 有意义,则实数x 的取值范围是(A )x ≥-2. (B )x ≤-2. (C )x ≥-3. (D )x ≤-3.5.如图,在菱形ABCD 中, 边AB 的垂直平分线交对角线AC 于点F ,垂足为点E ,连结DF .若∠BAD =80°,则∠CDF 的度数为(A )80°. (B )70°. (C )65°. (D )60°..6.如图,在Rt △ABC 中,∠B =90°,AB =BC ,AC =210.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上).则此正方形的面积为(A )25. (B )25 . (C )5. (D )10.7.若点M (x 1,y 1)与点N (x 2,y 2)是一次函数y =kx +b 图象上的两点.当x 1<x 2时,y 1>y 2,则k 、b 的取值范围是(A )k >0,b 任意值. (B )k <0,b >0. (C )k <0,b <0. (D )k <0,b 取任意值.(第5题) (第6题)8.如图,在平面直角坐标系中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,点B 在第一象限,直线223y x =-+与边AB 、BC 分别交于点D 、E .若点B 的坐标为(m ,1),则m 的值可能是(A )4.(B )2. (C )1. (D )-1.二、填空题(每小题3分,共21分) 9.直角三角形的两条直角边长分别为2cm 和6cm ,则这个直角三角形的周长为_ 错误!未找到引用源。

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、单选题1.下列各式中,是最简二次根式的是()AB C D2的值等于()A .4B .2C .±2D .±43.若直角三角形中,斜边的长为13,一条直角边长为5.则另一条直角边为()A .8B .12C .20D .654.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A .60°B .90°C .120°D .45°5.下列各点在直线23y x =+的图象上是()A .(3,3)--B .(3,2)--C .(3,3)D .(3,2)6.下列计算结果正确的是()AB .-=C=D=7.下列说法中,错误的是()A .平行四边形的对角线互相平分B .菱形的对角线互相垂直C .矩形的对角线相等D .正方形的对角线不一定互相平分8.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A .18岁B .19岁C .20岁D .21岁9.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为()A .3:1B .4:1C .5:1D .6:110.一天早上小明步行上学,他离开家后不远便发现有东西忘在了家里,马上以相同的速度回家去,到家后因事收误一会,忙完后才离开,为了不迟到,小明跑步到了学校,则小明离学校的距离y 与离家的时间t 之间的函数关系的大致图象是()AB C D二、填空题111x -x 的取值范围是____.12.甲、乙、丙、丁四人进行100m 短跑训练,统计近期10次测试的平均成绩都是13.2s ,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.选手甲乙丙丁方差(S 2)0.0200.0190.0210.02213.将直线2y x =向下平移3个单位得到的直线为______.14.小明向东走80m 后,沿另一个方向又走了60m ,再沿第三个方向走100m 回到原点.小明向东走80m 后的方向是____.15.如图,已知在长方形ABCD 中,将△ABE 沿着AE 折叠至△AEF 的位置,点F 在对角线AC 上,若BE=3,EC=5,则线段CD 的长是__________.16.已知一次函数y=x+2与一次函数y=mx+n 的图象交于点P (a ,-2),则关于x 的方程x+2=mx+n 的解是__________.三、解答题17.计算:(1)(52)(52)(2)2(86)4818.已知一次函数y kx b =+,当2x =时y 的值为4,当2x =-时y 的值为2-,求一次函数解析式,并画出函数的图象.19.如图,四边形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,O 是AC 的中点.求证:四边形ABCD 是平行四边形.20.某人买来1000只小鸡,经过一段时间精心饲养,可以出售了.下表是这些鸡出售时质量的统计数据质量/kg 1.0 1.21.51.82.0频数111226320241102(1)求出售时这些鸡的平均质量;(2)质量在多少kg 的鸡最多?中间的鸡质量是多少kg ?(3)分析上表中的数据,写出一条你能得出的结论.21.某小组要求每两名同学之间都要写评语,小组所有同学一共写了42份评语,这个小组共有学生多少人?22.现有下面两种移动电话计费方式:方式一方式二月租费/(元/月)300本地通话费/(元/min )0.300.40(1)以x (单位:分钟)表示通话时间,y 单位:元)表示通话费用,分别就两种移动电话计费方式写出y 关于x 的函数解析式;(2)何时两种计费方式费用相等;(3)直接写出如何选择这两种计费方式更省钱.23.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,4CE =,F 为DE 的中点,若CEF △的周长为16.(1)求CF 的长;(2)求OF 的长.24.如图,在Rt ABC 中,90C = ∠,20AC BC ==,D 为BC 上一点,5BD =.点P 以每秒2个单位从点A 出发滑AC 向终点C 运动,同时点Q 以秒1个单位从点D 出发,沿BC 运动,当点P 到达终点时,P 、Q 同时停止运动.当点P 不与点A 重合时,过点P 作PE AB ⊥于点E ,连结PQ ,以PE 、PO 为邻边作PEFQ .设PEFQ 与ABC 重叠部分图形的而积为S ,点P 的运动时间为t /秒.(1)填空:AB 的长为.(2)当//PQ AB 时,求t 的值;(3)求S 与t 之间的函数关系式.25.如图,90B C CDF ∠=∠=∠= ,AE EF =,AE EF ⊥.G 为AB 上一点,DG 交EF 于点O ,45DOF ∠= .(1)求FEC BAE ∠=∠;(2)在图中找到与BE 相等的线段,并加以证明;(3)若4BE =,E F =,1AG =,求DF的长.26.已知函数()()22nx n x n y n nx x n +≥⎧⎪=⎨--<⎪⎩(n 为常数).(1)当2n =-时,①点(5)P a ,在此函数图象上,求a 的值;②求此函数的最大值;(2)已知线段AB 的两个端点坐标分别为(22)A ,、(42)B ,,当此函数的图象与线段AB 只有一个交点时,求n的取值范围.参考答案1.B【详解】解:=B.,是最简二次根式,选项正确;C.=D.=,选项错误.故选:B.2.B【详解】=2.故选B.【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键,正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3.B【解析】【分析】根据勾股定理解答即可.【详解】∵直角三角形中,斜边的长为13,一条直角边长为5,12,故选:B.【点睛】此题主要考查了勾股定理,正确把握勾股定理是解题关键.4.A【解析】【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【详解】设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故选A.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.5.A【解析】【分析】分别代入x=-3和x=3,求出与之对应的y值,再对照四个选项即可得出结论.【详解】当x=-3时,y=2x+3=-3,∴点(-3,-3)在函数y=2x+3的图象上,点(-3,-2)不在函数y=2x+3的图象上;当x=3时,y=2x+3=9,∴点(3,3)和点(3,2)不在函数y=2x+3的图象上;故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.6.B【解析】【分析】根据二次根式的乘、除法公式、合并同类二次根式法则和最简二次根式的定义逐一判断即可.【详解】÷=,本选项的结果不是最简,故本选项错误;解:A.B.-C.=D.=,故本选项错误.故选B.【点睛】此题考查的是二次根式的运算,掌握二次根式的乘、除法公式、合并同类二次根式法则和最简二次根式的定义是解决此题的关键.7.D【解析】【分析】用平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等进行判断即可.【详解】解:A.平行四边形的对角线互相平分,本选项正确;B.菱形的对角线互相垂直,本选项正确;C.矩形的对角线相等,本选项正确;D.正方形的对角线一定互相平分,故该选项错误.故选D.【点睛】本题考查特殊平行四边形的性质,掌握平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等的性质进行判断是解题关键.8.C【解析】【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.9.C【解析】【详解】如图所示,∵菱形的周长为8cm,∴菱形的边长为2cm,∵菱形的高为1cm,∴sinB=12 AE AB∴∠B=30°,∴∠C=150°,则该菱形两邻角度数比为5:1,故选C.10.B【解析】【分析】根据题意和各个选项中函数图象即可判断哪个选项是正确的.【详解】解:由题意可得,小明步行上学时小明离学校的距离在逐渐减小,而后离开家后不远便发现有东西忘在了家里,于是以相同的速度回家去拿时小明离学校的距离增大,到家后因事耽误一会,忙完后才离开,可知此时距离不变,小明跑步到学校时小明离学校的距离减小并且变化趋势较快.故选:B .【点睛】此题考查了函数的图象,根据题意分析图象是解题的关键.11.1≥x 【解析】【分析】根据二次根式的被开方数的非负性即可得.【详解】由二次根式的被开方数的非负性得:10x -≥,解得1≥x ,故答案为:1≥x .【点睛】本题考查了二次根式的定义,掌握理解二次根式的被开方数的非负性是解题关键.12.乙【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵2222S S S S >>>丁丙甲乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故答案为:乙.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.13.y =2x-3.【解析】【分析】根据平移后解析式的规律“左加右减自变量,上加下减常数项”进行求解即可.【详解】解:直线y=2x向下平移3个单位长度后得到的直线解析式为y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,明确图象的平移变化规律是解题关键.14.向北或向南【解析】【分析】根据勾股定理的逆定理可得小明向东走80m后的方向与东西方向垂直【详解】解:∵802+602=1002∴小明走的路线构成直角三角形∴小明向东走80m后的方向与东西方向垂直∴小明向东走80m后的方向是向北或向南故答案为:向北或向南.【点睛】此题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解决此题的关键.15.6【解析】【分析】由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF=4.设AB=x,则AF=x,AC=x+4,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+4)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF==4.设AB=x,则AF=x,AC=x+4.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2,解得:x=6,∴AB=6.∵ABCD是矩形,∴CD=AB=6.故答案为6.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.x=-4【解析】【分析】先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.【详解】∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),a+=-,∴22a=-,解得4P--.∴(4,2)∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,x=-,∴关于x的方程x+2=mx+n的解是4x=-.故答案为:4【点睛】本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.17.(1)3;(2)16-【解析】【分析】(1)利用平方差公式计算二次根式的乘法即可得;(2)先计算二次根式的乘法、化简二次根式,再计算二次根式的加减法即可得.【详解】=-,(1)原式223=;(2)原式=16=-16=-【点睛】本题考查了二次根式的乘法与加减法,熟记二次根式的运算法则是解题关键.18.312y x =+,画出函数图像见解析.【解析】【分析】根据待定系数法求解析式,再描点画出函数图象即可.【详解】解:由题意得:4222k bk b =+⎧⎨-=-+⎩,解得:321k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为:312y x =+,由题可知,一次函数图象经过点(2,4),(-2,-2),由此画出图象如下.本题考查一次函数解析式的求法及图象画法,熟练掌握利用待定系数法求表达式的方法及一次函数图象的画法是解题的关键.19.见解析【解析】【分析】证明△AOD ≌△COB (AAS ),得OD=OB ,即可得出结论.【详解】解:证明:∵O 是AC 的中点,∴OA=OC ,∵AD ∥BC ,∴∠ADO=∠CBO ,在△AOD 和△COB 中,ADO CBO AOD COB OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COB (AAS ),∴OD=OB ,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定方法,证明△AOD ≌△COB 是解题的关键.20.(1)这些鸡的平均质量为1.5kg ;(2)质量在1.5kg 的鸡最多,中间的质量是1.5kg ;(3)答案见解析.【解析】【分析】(1)平均质量=总质量÷总只数;(2)根据众数的定义,出现次数最多的是1.5kg ;依据中位数的定义,把数据按照从小到大的顺序排列后,求出第500位和第501位数的平均数;(3)由极差的定义,鸡的最大质量与最小值之差为1kg .【详解】解:(1) 鸡的平均质量1111 1.2226 1.5320 1.8241 2.010210001.5⨯+⨯+⨯+⨯+⨯==,∴这些鸡的平均质量为1.5kg ,(2)质量在1.5kg 的鸡最多,把数据按照从小到大的顺序排列后,第500个数和第501个数都是1.5,因此中间的质量是1.5kg ,(3)鸡的最大质量与最小值之差为1kg (答案合理即可).【点睛】本题要理解并区分平均数、众数、中位数、极差、方差等的定义以及计算公式.21.7.【解析】【分析】设这个小组有学x 生人,每人要写评语(-1)x 份,则评语共有(-1)x x 份,再与总共42份评语建立等量关系,列出一元二次方程.【详解】解:设这个小组有学x 生人,由题意得:(1)42x x -=,整理的得:2420x x --=,解得17x =,26x =-(舍).答:这个小组共有学生7人.【点睛】本题是一元二次方程的应用,注意找准等量关系,另外注意与“握手原理”对比理解.22.(1)方式一:300.3y x =+;方式二:0.4y x =;(2)通话时间为分钟300时,两种计费方式一样;(3)当0300x ≤<时,选择方式二;当300x >时,选择方式一;当300x =时,两种方式都可以.【解析】【分析】(1)根据表格可知:通话费用=月租费+每分钟通话费×通话时间,即可求出结论;(2)令(1)中两种方式的通话费用相等,求出x 的值即可;(3)根据两种通话费用的大小关系分类讨论,列出不等式即可求出结论.【详解】解:(1)方式一:300.3y x=+方式二:0.4y x=(2)由题意得:300.30.4x x+=300x ∴=答:通话时间为300分钟时,两种计费方式一样.(3)当300.30.40x x x +>⎧⎨≥⎩,即0300x ≤<时,选择方式二更省钱;当300.30.4x x +<,即300x >时,选择方式一更省钱;当300x =时,两种方式都可以【点睛】此题考查的是一次函数的应用,掌握实际问题中的等量关系是解决此题的关键.23.(1)6;(2)2OF =.【解析】【分析】(1)由“直角三角形斜边上的中线等于斜边的一半”可知CF=EF ,再由CEF △的周长及第三边CE 的长度可以得到CF 的长;(2)由勾股定理可以求得正方形的边长BC ,进一步可以求得BE 长,再根据三角形中位线定理得到OF 的长.【详解】解:(1) 四边形ABCD 为正方形90BCD ∴∠= ,BC CD =,OB OD=F 为DE 的中点CF EF FD∴==4CE = ,CEF ∆的周长为1616462CF EF -∴===(2)90BCD ∠=CD ∴==4BE ∴=-F 为DE 的中点,OB OD=122OF BE ∴==.【点睛】本题考查正方形的应用,综合应用三角形和正方形知识是解题关键.24.(1)(2)t=5;(3)22353(05)945175(520)424t t x S t t x ⎧-≤<⎪=⎨-++≤≤⎪⎩.【解析】【分析】(1)在Rt ABC 中,利用勾股定理即可求得AB 的长;(2)Rt ABC ∆中,由等边对等角得到45B ∠= A=∠,由平行线的性质,得到45CPQ CQP ∠=∠= ,由等角对等边得到C P C Q =,从而AP QB =,找到等量关系即可求解;(3)分PEFQ 在Rt ABC 内部和PEFQ 与Rt ABC 部分相交两种情况讨论即可.【详解】(1)在Rt ABC 中,90C = ∠,20AC BC ==,AB =,故答案为:(2)经过t 秒,AP=2t ,BQ=t+5,Rt ABC ∆ 中,90C = ∠,20AC BC ==,45A B ∴∠=∠= ,//PQ AB ,45CPQ CQP ∴∠=∠= ,CP CQ ∴=,AP QB ∴=,25t t ∴=+,5t ∴=;(3)当05x <≤时,如图1,延长QF 交AB 于点H ,由(2)得222AE PE AP t ===,22(5)22QH HB t ===+,2220225)(353)EH AB AE BH t t ∴=--=-+=-,2222)3532S PE EH t t t t ∴=⨯=⨯-=-,当520x ≤≤时,如图2:25)QH t =+ ,2PE t =,23)EH t =-21()212522(2)(353)2222325223)42945175424S PE QH EH t t t t t t ∴=+⨯=++-+=⨯-=-++【点睛】此题考查了函数关系式的求法、三角形和梯形的面积的求法,也考查了分类讨论思想的应用,数形结合思想的应用,要熟练掌握.25.(1)证明见解析;(2)CD BE =,证明见解析;(3)3【解析】【分析】(1)根据题中的直角,利用两锐角的互余关系即可得到答案;(2)过点F 作FH BC ⊥交BC 于点H ,FH 与GD 交于点M ,可证EHF ABE ∆≅∆,从而得到答案;(3)分别延长BA 、DF 交于点N ,通过条件可知四边形BHFN 为矩形,四边形AGMF 为平行四边形,可求出AF GM ==Rt NGD ∆中,利用勾股定理即可得到答案.【详解】解:(1)AE EF⊥Q 90AEF ∠=90CEF AEB ∴∠+∠=90AEB EAB ∠+∠=CEF EAB∴∠+∠(2)CD BE=过点F 作FH BC ⊥交BC 于点H ,FH 与GD 交于点M90CHF ∴∠=又90C CDF ∠=∠=∴四边形HCDF 为矩形FH CD ∴=,90HFN ∠=在Rt EHF ∆和Rt ABE ∆中CEF EAB ∠=∠ ,AE EF=Rt EHF Rt ABE∴∆≅∆BE FH ∴=,EH AB=CD BE∴=(3)分别延长BA 、DF 交于点N90B BHF HFN ∠=∠=∠=∴四边形BHFN 为矩形4NB FH ∴==,6NF BH ==90EHF ∠= ,4FH =,E F =2EH AB∴===2NA BN AB ∴=-=1AG =3NG∴=AE EF=,AE EF⊥45AFE∴∠= ,210AF=45DOF∠=//AF GM∴∴四边形AGMF为平行四边形210AF GM∴==设DF x=21DM x∴=+6ND x∴=+,22101GD x=++在Rt NGD∆中222NG ND DG+=22223(6)(2101)x x∴++=++3x∴=即3DF=【点睛】本题考查了全等三角形的性质与判定,矩形的性质与判定,勾股定理,正确做出辅助线,熟练掌握判定定理是解题的关键.26.(1)①a=-12;②2;(2)22 53n≤≤.【解析】【分析】(1)①把n=-2带入求解即可得到a的值;②根据x的取值分类计算,求出此函数的最大值21即可;(2)将A ,B 代入函数求出n ,即可求出n 的取值范围;【详解】解:(1)①当2n =-时,22(2)1(2)--≥-⎧=⎨-+<-⎩x x y x x ,52>- ,∴点(5)P a ,在22y x =--上,25212a ∴=-⨯-=-;②当2x ≥-时,可得2x =-有最大值为()-2-2-2=2⨯,当2x -<时,1<2x -+,∴此函数的最大值为2,(2)将(22)A ,代入y nx n =+,得23n =,将(42)B ,代入y nx n =+,得25n =,2253n ∴≤≤,当0n <时,()()22nx n x n y nnx x n +≥⎧⎪=⎨--<⎪⎩(n 为常数),不过点A 、B ,综上,2253n ≤≤.【点睛】本题主要考查了一次函数的综合,准确求解是解题的关键.。

八年级下册数学期末试卷及答案一

八年级下册数学期末试卷及答案一

八年级下期末考试数学试题(考试时间:120分钟试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式x-11有意义,那么x 的取值范围是 A 、x >1B 、x <1 C 、x ≠1D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为ABCD6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考 A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为 A 、120cmB 、360cmC 、60cmD 、cm 320第7题图第8题图第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、30010、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、单选题1.下列式子中,属于最简二次根式的是AB C D2.下列各组数中,不能构成直角三角形的一组是()A .3,4,5B .1,2C .5,12,13D .6,8,123.下列计算正确的是()AB .3C 2=-D2÷=4.数据3、4、6、7、x 的平均数是5,这组数据的中位数是()A .4B .4.5C .5D .65.如图在▱ABCD 中,已知AC=4cm ,若△ACD 的周长为13cm ,则▱ABCD 的周长为()A .26cmB .24cmC .20cmD .18cm6.对于函数34y x =-+,下列结论正确的是()A .它的图象必经过点(-1,1)B .它的图象不经过第三象限C .当0x >时,0y >D .y 的值随x 值的增大而增大7.菱形具有而一般平行四边形不具有的性质是()A .对边相等B .对角相等C .对角线互相平分D .对角线互相垂直8.如图,▱ABCD 的对角线AC 、BD 相交于点O ,已知AD =10,BD =14,AC =8,则△OBC 的周长为()A .16B .19C .21D .289.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长等于()A .2B .5C .10D .410.若一个三角形三个内角度数的比为1:2:3,且最大的边长为23那么最小的边长为()A .1B 3C .2D .43二、填空题113x -x 的取值范围是___.12.如图,在四边形ABCD 中,已知AB=CD ,再添加一个条件_________(写出一个即可,图形中不再添加助线),则四边形ABCD 是平行四边形.13.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______.14.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别为2s 甲=0.51,2s 乙=0.35,那么两个队中队员的身高较整齐的是___________队.(填“甲”、“乙”中的一个)15.如图,已知直线y =ax+b 和直线y =kx 交于点P ,若二元一次方程组y kx y ax b =⎧⎨=+⎩的解为x 、y ,则关于x+y =__.16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图象,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3,……依此类推,则正方形A 2B 2C 2D 2的面积为___________;正方形AnBnCnDn 的面积为__________.17.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处向正东方向行了100米到达B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC =_____米.三、解答题1802020((1)π+-.19.如图,在平行四边形ABCD 中,E ,F 分别是AD ,BC 的中点.求证:BE =DF .20.已知一次函数的图像经过点(2,1)和(0,-2).(1)求该函数的解析式;(2)判断点(-4,6)是否在该函数图像上.21.在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.22.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.23.某工厂计划生产A、B两种产品共50件,已知A产品成本2000元/件,售价2300元/件;B种产品成本3000元/件,售价3500元/件,设该厂每天生产A种产品x件,两种产品全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?26.如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.(1)求证:四边形DBCE是平行四边形;(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.27.如图,在平面直角坐标系中,函数y=-x+2的图象与x轴,y轴分别交于点A,B,与函数y=13x+b的图象交于点C(-2,m).(1)求m和b的值;(2)函数y=-x+b的图象与x轴交于点D,点E从点D出发沿DA向,以每秒2个单位长度匀速运动到点M(到A停止运动),设点E的运动时间为t秒.①当ΔACE的面积为12时,求t的值;②在点E运动过程中,是否存在t的值,使ΔACE为直角三角形?若存在,请求出t的值;若不存在,请说明理由.参考答案1.B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,同时满足的就是最简二次根式,否则就不是.【详解】==,属于最简二次根式.故选B2.D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、32+42=52,能构成直角三角形;B 、122=22,能构成直角三角形;C 、52+122=132,能构成直角三角形;D 、62+82≠122,不能构成直角三角形.故选D .3.D 【解析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的性质对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A A 选项错误;B 、原式=B 选项错误;C 、原式=2,所以C 选项错误;D 、原式,所以D 选项正确.故选D .4.C 【解析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x 得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C 5.D 【解析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【详解】解:∵AC=4cm,若△ADC的周长为13cm,∴AD+DC=13﹣4=9(cm).又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选D.6.B【解析】将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.【详解】A、令y=-3x+4中x=-1,则y=8,∴该函数的图象不经过点(-1,1),即A错误;B、∵在y=-3x+4中k=-3<0,b=4>0,∴该函数图象经过第一、二、四象限,即B正确;C、令y=-3x+4中y=0,则-3x+4=0,解得:x=4 3,∴该函数的图象与x轴的交点坐标为(43,0),∴当x<43时,y>0,故C错误;D、∵在y=-3x+4中k=-3<0,∴y的值随x的值的增大而减小,即D不正确.故选:B.7.D【解析】试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:菱形的性质;平行四边形的性质.8.C【解析】由平行四边形的性质得出OA=OC=4,OB=OD=7,BC=AD=10,即可求出△OBC的周长.【详解】∵四边形ABCD是平行四边形,∴OA=OC=4,OB=OD=7,BC=AD=10,∴△OBC的周长=OB+OC+AD=4+7+10=21.故选C.【点睛】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.9.A【解析】根据等腰三角形的性质得到AD⊥BC,BD=12BC=2,根据勾股定理计算即可.【详解】∵AB=AC,D是BC的中点,∴AD⊥BC,BD=12BC=2,∴AD故选A.【点睛】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.B【解析】【分析】先求出三角形是直角三角形,再根据含30°角的直角三角形的性质得出即可.【详解】∵三角形三个内角度数的比为1:2:3,三角形的内角和等于180°,∴此三角形的三个角的度数是30°,60°,90°,即此三角形是直角三角形,∵三角形的最大的边长为∴三角形的最小的边长为12故选B .【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能求出三角形是直角三角形是解此题的关键.11.x 3≤【解析】【详解】必须3x 0-≥解得:x 3≤故答案为:x 3≤.12.AD=BC (答案不唯一)【解析】【分析】可再添加一个条件AD=BC ,根据两组对边分别相等的四边形是平行四边形,四边形ABCD 是平行四边形.【详解】解:根据平行四边形的判定,可再添加一个条件:AD=BC 故答案为:AD=BC (答案不唯一).【点睛】本题考查了平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.13.m<-1【解析】【分析】根据y与x的关系,判断出k的符号,进而求得m的取值范围.【详解】∵y随x的增大而减小∴一次函数的比例系数k<0,即m+1<0解得:m<-1故答案为:m<-1.【点睛】本题考查一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,则反之.14.乙【解析】【分析】根据方差的定义,方差越小数据越稳定,进而即可得到答案.【详解】解:∵2s甲=0.51>2s乙=0.35,∴两个队中队员的身高较整齐的是乙队.故答案是:乙【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.3【解析】【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】∵直线y=ax+b和直线y=kx交点P的坐标为(1,2),∴二元一次方程组y kxy ax b=⎧⎨=+⎩的解为12xy=⎧⎨=⎩,∴x+y=1+2=3.故答案为:3.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于理解两直线交点与两解析式组成的方程组之间的联系.16.92(92)n−1,【解析】【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律,进而即可解答.【详解】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=(92)1−1,由勾股定理得,OD1,D1A2=2,∴A2B2=A2O=2,∴正方形A2B2C2D2的面积=92=(92)2−1,同理,A3D3=OA3=92,∴正方形A3B3C3D3的面积=814=(92)3−1,…由规律可知,正方形AnBnCnDn的面积=(92)n−1,故答案是:92,(92)n−1.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.17.【解析】【分析】在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.【详解】,由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°在Rt△APC中,∠PAC=30°,AC解得,BC=50,∴PC=,答:灯塔P到环海路的距离PC等于故答案为【点睛】此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18.【解析】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=-【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.19.见详解【解析】【分析】要证明BE=DF,通过证明四边形BEDF是平行四边形,再根据平行四边形的对边相等进行证明.【详解】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E、F分别是AD、BC的中点,∴DE=12AD,BF=12BC,∴DE=BF,DE∥BF,∴四边形BFDE是平行四边形,∴BE=DF.【点睛】本题考查了平行四边形的判定与性质,通过此题可以发现:证明两条线段相等,除了通过证明全等三角形的方法,也可通过特殊四边形的性质进行证明.20.(1)y=32x-2;(2)见解析.【解析】【分析】(1)利用待定系数法进行求解即可;(2)将x=-4代入函数解析式,求出y的值,看是否等于6,由此即可作出判断.【详解】(1)设该函数解析式为y=kx+b,把点(2,1)和(0,-2)代入解析式得212k bb+=⎧⎨=-⎩,解得k=32,b=-2,∴该函数解析式为y=32x-2;(2)当x=-4时,y=32×(-4)-2=-8≠6,∴点(-4,6)不在该函数图象上.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.21.(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【解析】【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.(2)根据加权平均数的公式可以计算出平均数;(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,332+=3次,∴这组数据的中位数是3次;故答案为:3,4.(2)观察条形统计图,可知这组样本数据的平均数:13273174185550⨯+⨯+⨯+⨯+⨯=3.3次,则这组样本数据的平均数是3.3次.(3)1000×1850=360(人)∴该校学生共参加4次活动约为360人.【点睛】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解题的关键.22.(1)见详解;(2)3 2【解析】【分析】(1)在矩形ABCD中,O为对角线AC的中点,可得AD∥BC,AO=CO,可以证明△AOM≌△CON可得AM=CN,进而证明四边形ANCM为平行四边形;(2)根据MN⊥AC,可得四边形ANCM为菱形;根据AD=4,AB=2,AM=AN=NC=AD−DM,即可在Rt△ABN中,根据勾股定理,求DM的长.【详解】(1)证明:∵在矩形ABCD 中,O 为对角线AC 的中点,∴AD ∥BC ,AO =CO ,∴∠OAM =∠OCN ,∠OMA =∠ONC ,在△AOM 和△CON 中,OAM OCN AMO CNO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△CON (AAS ),∴AM =CN ,∵AM ∥CN ,∴四边形ANCM 为平行四边形;(2)解:∵在矩形ABCD 中,AD =BC ,由(1)知:AM =CN ,∴DM =BN ,∵四边形ANCM 为平行四边形,MN ⊥AC ,∴平行四边形ANCM 为菱形,∴AM =AN =NC =AD−DM ,∴在Rt △ABN 中,根据勾股定理,得AN 2=AB 2+BN 2,∴(4−DM )2=22+DM 2,解得:DM =32.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定与性质,菱形的判定和性质,勾股定理,解决本题的关键是综合运用以上知识.23.(1)y=﹣200x+25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【解析】【分析】(1)根据题意,可以写出y 与x 的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y=(2300﹣2000)x+(3500﹣3000)(50﹣x)=﹣200x+25000,即y与x的函数表达式为y=﹣200x+25000;(2)∵该厂每天最多投入成本140000元,∴2000x+3000(50﹣x)≤140000,解得:x≥10.∵y=﹣200x+25000,∴当x=10时,y取得最大值,此时y=23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.24.(1)证明详见解析;(2)证明详见解析;(3)10.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC ,∴四边形ADCF 是菱形;(3)解:连接DF,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF=12AC▪DF=12×4×5=10.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.25.(1)购进A 型台灯75盏,B 型台灯25盏;(2)当商场购进A 型台灯25盏时,商场获利最大,此时获利为1875元.【解析】【分析】(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【点睛】考点:1.一元一次方程的应用;2.一次函数的应用.26.(1)见解析;(2)△ABC满足AB=BC时,四边形DBEA是矩形【解析】【分析】(1)根据EC=BD,EC∥BD即可证明;(2)根据等腰三角形三线合一的性质得出∠BEA=90°,根据有一个角是直角的平行四边形是矩形推出即可.【详解】(1)∵E是AC中点,∴AE=EC,∵DB=AE,∴EC=BD又∵DB∥AC,∴四边形DECB是平行四边形;(2)△ABC满足AB=BC时,四边形DBEA是矩形,理由如下:∵DB=AE,又∵DB∥AC,∴四边形DBEA是平行四边形(一组对边平行且相等的四边形是平行四边形),∵AB=BC,E为AC中点,∴∠AEB=90°,∴平行四边形DBEA是矩形,即△ABC满足AB=BC时,四边形DBEA是矩形.【点睛】本题考查了矩形的判定,平行四边形的判定与性质,等腰三角形三线合一的性质,题目难度不大,熟练掌握平行四边形的判定与性质以及平行四边形与矩形的联系是解题的关键.27.(1)m=4,b=143;(2)①t=5;②t=4或t=6【解析】【分析】(1)根据点C(−2,m)在直线y=−x+2上,可以求得m的值,从而可以得到点C的坐标,再根据点C在函数y=13x+b的图象上,可以得到b的值;(2)①根据(1)中的结果可以求得点A、点B、点C、点D的坐标,然后用含t的代数式表示出AE的长度,然后根据△ACE的面积为12,即可得到t的值;②先写出使得△ACE 为直角三角形时t的值,然后利用分类讨论的方法分别求得当∠ACE=90°和∠CEA=90°对应的t的值即可解答本题.【详解】解:(1)∵点C(−2,m)在直线y=−x+2上,∴m=−(−2)+2=2+2=4,∴点C(−2,4),∵函数y=13x+b的图象过点C(−2,4),∴4=13×(−2)+b,得b=143,即m的值是4,b的值是14 3;(2)①∵函数y=−x+2的图象与x轴,y轴分别交于点A,B,∴点A(2,0),点B(0,2),∵函数y=13x+143的图象与x轴交于点D,∴点D的坐标为(−14,0),∴AD=16,∵△ACE的面积为12,∴(16−2t)×4÷2=12,解得,t=5.即当△ACE的面积为12时,t的值是5;②当t=4或t=6时,△ACE是直角三角形,理由:当∠ACE=90°时,AC⊥CE,∵点A(2,0),点B(0,2),点C(−2,4),点D(−14,0),∴OA=OB,AC=,∴∠BAO=45°,∴∠CAE=45°,∴∠CEA=45°,∴CA=CE=∴AE=8,∵AE=16−2t,∴8=16−2t,解得,t=4;当∠CEA=90°时,∵AC=,∠CAE=45°,∴AE=4,∵AE=16−2t,∴4=16−2t,解得,t=6;由上可得,当t=4或t=6时,△ACE是直角三角形.【点睛】本题是一道一次函数综合题,主要考查一次函数的性质、三角形的面积、直角三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和分类讨论的数学思想解答.。

初二数学下册期末考试试卷及答案

初二数学下册期末考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。

()7. 两个等腰直角三角形的面积一定相等。

()8. 一次函数的图像是一条直线。

()9. 二次函数的图像是一个抛物线。

()10. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。

12. 一次函数y = 3x 5的图像与y轴的交点是______。

13. 二次函数y = x² 4x + 4的顶点坐标是______。

14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。

15. 两个相同的数相乘,结果是这个数的______。

四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。

17. 什么是等腰三角形?请给出一个例子。

18. 请解释一次函数的图像是一条直线的原理。

19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.下列二次根式中属于最简二次根式的是()A BCD 2.一直角三角形的三边分别为2、3、x ,那么x 为()A B C D .无法确定3.下列计算中,正确的是()AB .=C 3=D 3=-4.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为()A .1B .2CD .15.一次函数y=kx+b ,当k >0,b <0时,它的图象是()A .B .C .D .6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A .①②B .②③C .①③D .①②③7.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于()A .245B .125C .5D .48.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是()A .2x -≤B .2x ≥-C .2x <-D .2x >-9.如图,在矩形ABCD 中,AB =8,4BC =,将矩形沿AC 折叠,点D 落在点D'处,则重叠部分AFC △的面积为()A .6B .8C .10D .1210.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A .1个B .2个C .3个D .4个二、填空题11.函数1y x =--中自变量x 的取值范围是:___________.12.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是_____.13.如图,在平行四边形ABCD 中,BC=8cm ,AB=6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为_____.14.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为s 甲2=2.5,s 乙2=1.2,则两人成绩比较稳定的是___(填“甲”或“乙”).15.在Rt ABC △中,若两直角边a ,b 120b -=,则斜边c 的长度是______.16.已知点A(-5,a),B(4,b)在直线y=-3x+2上,则a________b.(填“>”“<”或“=”号)17.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是_______.18.下列用同样大小的黑色棋子按如图所示的规律摆放,则第2021个图共有___枚棋子.三、解答题19.计算.(1)(4820)125+-(-).(2)0313(2018)64π+-.20.先化简,再求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =.21.如图,四边形ABCD 是矩形.(1)用尺规作线段AC 的垂直平分线,交AB 于点E ,交CD 于点F (不写作法,保留作图痕迹);(2)若4BC =,30BAC ∠=︒,求BE 的长.22.一次函数的图象经过点A (0,2)且与正比例函数y =﹣x 的图象交于点B ,且B 点的横坐标是﹣1.(1)写出点B 的坐标:(﹣1,).(2)求一次函数的解析式;(3)求△AOB 的面积.23.为丰富学生的在校学习生活,激发学生的学习兴趣,提高对学科知识的深入理解,某校对本校学生进行了百科知识的测试,测试后随机抽取了部分学生的测试成绩,按“优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成两幅不完整的统计图.(1)求抽取的学生总人数;(2)抽取的学生中,等级为“优秀”的人数为;扇形统计图中等级为“不及格”部分的圆心角的度数为;(3)若该校有学生2500人,请根据以上统计结果估计成绩为“良好”及以上等级的学生共有多少人?24.如图所示的一块地,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.25.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF AB ∥,交BC 于点F .(1)求证:四边形DBFE 是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.26.如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.27.如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.①根据图象,写出当x≥3时该图象的函数关系式;②某人乘坐13km,应付多少钱?③若某人付车费30.8元,出租车行驶了多少千米?28.某景区的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张以上),每张门票价格在散客门票价格的基础上打8折,某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元(1)如果每人分别买票,求y与x之间的函数关系式:(2)如果购买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方式.参考答案1.B【详解】解:A=BC=不是最简二次根式,不符合题意;2D=不是最简二次根式,不符合题意;故选:B.2.C【详解】解:当3为斜边时,32=22+x2,解得:当x为斜边时,x2=32+22,解得:∴x故选C.3.C【详解】解:A+≠A错误;B、=≠,故选项B错误;C3=,故选项C正确;D33==≠-,故选项D错误.故选择:C.【点睛】本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则.4.A【解析】【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=12AB=1故选:A【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5.C【解析】【详解】试题解析:根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.6.D【解析】【详解】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A【解析】【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD =12AC BD AB DE⨯⨯=⨯,∴18652DH ⨯⨯=⨯,∴DH=24 5,故选:A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.8.A 【解析】【详解】当2x -≤时,直线11y k x b =+都在直线22y k x =的上方,即12y y ≥.故选A .【点睛】本题考查根据两直线交点确定不等式的解集.掌握一次函数与一元一次不等式的关系是解题关键.9.C 【解析】【分析】因为BC 为AF 边上的高,要求△AFC 的面积,求得AF 即可,求证△AFD′≌△CFB ,得BF =D′F ,设D′F =x ,则在Rt △AFD′中,根据勾股定理求x ,于是得到AF =AB−BF ,即可得到结果.【详解】解:在△AFD′和△CFB 中,D B AFD CFB AD CB ∠=∠⎧⎪∠=∠⎪⎨⎪=''⎩'⎪,∴△AFD′≌△CFB ,∴D′F =BF ,设D′F =x ,则AF =8−x ,在Rt △AFD′中,(8−x )2=x 2+42,解得:x =3,∴AF =AB−FB =8−3=5,∴S △AFC =12•AF•BC =10.故选:C .【点睛】本题考查了翻折变换−折叠问题,勾股定理的正确运用,本题中设D′F =x ,根据直角三角形AFD′中运用勾股定理求x 是解题的关键.10.C【解析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .11.0x ≥且1x ≠【解析】【分析】根据二次根式有意义的条件和分母不为零计算即可;【详解】解:∵函数y =∴0x ≥,10x -≠,∴0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题主要考查了函数自变量取值范围,解题的关键是结合二次根式的非负性计算.12.m <3【解析】【详解】解:∵一次函数y=(2m-6)x+5中,y 随x 的增大而减小,∴2m-6<0,解得,m <3.故答案为:m<3.【点睛】本题主要考查了一次函数图象的性质,熟知一次函数增减性与比例系数的关系是解题的关键.13.2cm.【解析】【详解】试题解析:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).14.乙【解析】【分析】根据方差的意义求解即可.【详解】解:∵s甲2=2.5,s乙2=1.2,∴s乙2<s甲2,∴两人成绩比较稳定的是乙,故答案为:乙.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15.13【解析】【分析】利用非负数的和为0,求出a 与b 的值,再利用勾股定理求即可.【详解】120b -=0120b ≥-≥,,∴102=012=0a b --,,∴=5=12a b ,,在Rt ABC ∆中,由勾股定理得.故答案为:13.【点睛】本题考查非负数的性质,勾股定理,掌握非负数的性质,勾股定理是解题关键.16.>【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再比较出-5与4的大小即可解答.【详解】∵直线y=-3x+2中,k=-3<0,∴此函数是减函数,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据题意判断出一次函数的增减性是解答此题的关键.一次函数y =kx+b ,如果k>0,直线就从左往右上升,y 随x 的增大而增大,如果k<0,直线就从左往右下降,y 随x 的增大而减小.17【解析】【分析】要求PE+PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.【详解】解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴=18.6064【解析】【分析】根据图形的变化规律,寻找第n个图的一般形式,然后代入数值计算即可.【详解】解:观察图形可知:第1个图形的棋子个数为1×3+1=4,第2个图形的棋子个数为2×3+1=7,第3个图形的棋子个数为3×3+1=10,第4个图形的棋子个数为4×3+1=13,…第n个图形的棋子个数为3n+1.当n=2021时,3×2021+1=6064个,故答案为:6064.【点睛】本题考查了图形的变化规律,解决本题的关键是通过观察图形的变化写出一般形式.19.(1)(24.【解析】【分析】(1)直接化简二次根式,进而合并同类二次根式得出答案;(2)直接利用绝对值的性质以及零指数幂的性质、立方根的性质分别化简得出答案.【详解】解:(1)原式===(21+1﹣44.【点睛】考核知识点:二次根式混合运算,0指数幂运算,绝对值和立方根的运算.理解运算法则是关键.20.11x +【解析】【分析】根据异分母分式加减法先计算括号里的式子,再利用分式除法法则进行运算求出化简结果,然后将1x =-代入计算即可.【详解】解:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,2112(1)1x x x x -+-=÷++,211(1)1x x x x -+=⋅+-,11x =+;当1x =时,原式=【点睛】本题考查了分式的化简求值,掌握分式混合运算的运算顺序和运算法则是解题的关键.21.(1)见解析;(2)3BE =.【解析】【分析】(1)根据线段的垂直平分线的作图解答即可;(2)利用解直角三角形的知识进行解答即可.【详解】(1)如图所示:(2)∵四边形ABCD 是矩形,EF 是线段AC 的垂直平分线,∴AE EC =,30CAB ACE ∠=∠=︒,∴60ECB ∠=︒,∴30CEB ∠=︒,∵4BC =,∴tan 433BE BC CEB =∠=⨯=g .【点睛】本题考查了基本作图,矩形的性质,解直角三角形等,关键是根据线段的垂直平分线的作图和性质解答.22.(1)1;(2)y =x+2;(3)1.【解析】【分析】(1)根据点B 在函数y =﹣x 上,点B 的横坐标为﹣1,可以求得点B 的坐标;(2)根据A 、B 的坐标运用待定系数法即可求得一次函数的解析式;(3)根据A 、B 的坐标求出OA 的长度以及△AOB 中OA 边上的高,然后根据三角形面积即可求得.【详解】解:(1)∵点B 在函数y =﹣x 上,点B 的横坐标为﹣1,∴y=1,∴点B的坐标是(﹣1,1);故答案为:1;(2)设这个一次函数的解析式为y=kx+b(k≠0)把A(0,2),B(﹣1,1)代入,得:21bk b=⎧⎨-+=⎩解得:12 kb=⎧⎨=⎩,∴这个一次函数的解析式为y=x+2.(3)∵A(0,2),B(﹣1,1),∴OA=2,OA边上的高为1,∴△AOB的面积=1211 2⨯⨯=.【点睛】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)100;(2)20,7.2°;(3)1750【解析】【分析】(1)用及格的人数除以其所占百分比即可得出总人数;(2)总人数乘以优秀人数所占百分比即可求出优秀人数,再求出不及格人数,继而用360°乘以不及格人数所占比例即可;(3)用总人数乘以样本中优秀、良好人数和所占比例即可.【详解】解:(1)抽取的学生总人数为28÷28%=100(人);(2)抽取的学生中,等级为“优秀”的人数为100×20%=20(人),∵不及格的人数为100﹣(28+50+20)=2(人),∴扇形统计图中等级为“不及格”部分的圆心角的度数为360°×2100=7.2°,故答案为:20人,7.2°;(3)根据以上统计结果估计成绩为“良好”及以上等级的学生共有2500×5020100+=1750(人).【点睛】本题考查的是样本估计总体、条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.224m 【解析】【分析】根据勾股定理求得AC 的长,再根据勾股定理的逆定理判定ABC ∆为直角三角形,从而不难求得这块地的面积.【详解】解:连接AC .4m AD = ,3m CD =,AD DC⊥5mAC ∴=22212513+= ACB ∴∆为直角三角形21151230m 22ACB S AC BC ∆∴=⨯⨯=⨯⨯=,211436m 22ACD S AD CD ∆=⋅=⨯⨯=,∴这块地的面积230624m ACB ACD S S ∆∆=-=-=.【点睛】本题考查了学生对勾股定理及其逆定理的理解及运用能力,解题的关键是掌握勾股定理的知识.25.(1)证明见解析;(2)当AB=BC 时,四边形DBEF 是菱形,理由见解析.【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE ∥BC ,然后根据两组对边分别平行的四边形是平行四边形证明.(2)根据邻边相等的平行四边形是菱形证明.【详解】解:(1)∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴∥DE BC又∵EF AB ∥,∴四边形DBFE 是平行四边形.(2)当AB=BC 时,四边形DBEF 是菱形.理由如下:∵D 是AB 的中点,∴BD=12AB ,∵DE 是△ABC 的中位线,∴DE=12BC ,∵AB=BC ,∴BD=DE ,又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.26.(1)A (32,0),B (0,3);(2)274或94.【解析】【详解】分析:(1)由函数解析式23y x =-+,令y=0求得A 点坐标,x=0求得B 点坐标;(2)有两种情况,若BP 与x 轴正方向相交于P 点,则AP OA =;若BP 与x 轴负方向相交于P 点,则3AP OA =,由此求得ABP △的面积.详解:(1)令y=0,得32x =,∴A 点坐标为3(,0)2,令x=0,得y=3,∴B 点坐标为(0,3);()2∵2OP OA =,∴()30P ,或()3,0.-∴AP=92或32,∴1192732224ABP S AP OB =⨯=⨯⨯= ,或113932224ABP S AP OB =⨯=⨯⨯= .点睛:考查了一次函数的相关知识,是初中数学的常考题目,关键是求出一次函数与坐标轴的交点坐标.27.①y =75x+145;②21;③20.【解析】【分析】①由点B 、C 的坐标,利用待定系数法即可求出当x≥3时该图象的函数关系式;②代入x =13,求出y 值即可;③代入y =30.8,求出x 值即可.【详解】解:①设当x≥3时,y 与x 之间的函数关系式为y =kx+b ,将点B (3,7)、C (8,14)代入y =kx+b 可得:37814k b k b +=⎧⎨+=⎩,解得:75145k b ⎧=⎪⎪⎨⎪=⎪⎩,∴当x≥3时该图象的函数关系式为y =75x+145.②当x =13时,y =75×13+145=21.答:某人乘坐13km ,应付21元钱.21③当y =75x+145=30.8,解得:x =20.答:若某人付车费30.8元,出租车行驶了20千米.【点睛】此题主要考查一次函数的应用,解题的关键是熟知待定系数法确定函数关系式.28.(1)40y x ;(2)y=32x(x ⩾10);(3)8人以下买散客票;8人以上买团体票;恰好8人时,即可按10人买团体票,可买散客票.【解析】【分析】(1)买散客门票价格为40元/张,利用票价乘人数即可,即y=40x ;(2)买团体票,需要一次购买门票10张及以上,即x≥10,利用打折后的票价乘人数即可;(3)根据(1)(2)分情况探讨得出答案即可.【详解】(1)散客门票:y=40x ;(2)团体票:y=40×0.8x=32x(x ⩾10);(3)因为40×8=32×10,所以当人数为8人,x=8时,两种购票方案相同;当人数少于8人,x<8时,按散客门票购票比较省钱;当人数多于8人,x>8时,按团体票购票比较省钱.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出方程.。

人教版八年级下册数学期末考试试卷含答案

人教版八年级下册数学期末考试试卷含答案

人教版八年级下册数学期末考试试题一、单选题1x 的取值范围是()A .2x ≤B .2x =C .2x ≥D .0x ≥2.下列二次根式中,是最简二次根式的是()AB C D 3.一次男子马拉松长跑比赛中,抽得6名选手所用时间(单位:min )如下:136,140,129,180,124,154,则样本数据(6名选手得成绩)的中位数是()A .136B .138C .140D .1544.一家鞋店销售某种女鞋30双,各种尺码鞋的销售量如表所示:尺码/厘米2222.52323.52424.525销售量/双12511731由鞋的尺码组成的数据中,众数是()A .11B .23C .23.5D .245.如图,在ABCD 中,3AB =,4BC =,则ABCD 的周长是()A .6B .8C .14D .166.如图,平面直角坐标系xOy 中,点A ,B 的坐标分别是(﹣2,0)和(0,3),以A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标是()A .BC .2-D .2-7.如图,平面直角坐标系xOy 中,一次函数()10y ax b a =+≠,()20y cx d c +≠=的图象交于点()1,4A ,若ax b cx d +>+,则自变量x 的取值范围是()A .1x >B .1x <C .4x >D .4x <8.四边形ABCD 中,对角线AC ,BD 相交于点O ,要使四边形ABCD 是平行四边形,则可以增加条件()A .AB CD =,//AD CB B .AO CO =,BO DO =C .AB CD =,BAD BCD ∠=∠D .AB CD =,AO CO=9.关于一次函数有如下说法:①函数2y x =-的图象从左到右下降,随着x 的增大,y 反而减小;②函数51y x =+的图象与y 轴的交点坐标是()0,1;③函数31y x =-的图象经过第一、二、三象限;则说法正确的是()A .①②B .①③C .②③D .①②③10.若一个直角三角形的两条直角边长分别为5和12,则其第三边长()A .13BC .5D .15二、填空题11=_______.12.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果:13甲=x ,13x =乙,2 3.6S =甲,215.8S =乙,则小麦长势比较整齐的试验田是______.13.若正比例函数y=kx 的图象经过点(2,4),则k=_____.14.如图,四边形ABCD 是菱形,点A ,B 的坐标分别为()3,0-和()0,2-,点C ,D 在坐标轴上,则CD 的长是________.15.以直角三角形的三边分别向外作正方形,正方形A ,B 的面积分别是8cm 2,10cm 2,则正方形C 的面积是__________cm 2.16.如图,正方形ABCD 中,E ,F 分别是边BC ,CD 上一点,AE BF ⊥于点G ,连接AF ,4AB =,BE x =,AF y =.当04x <<时,y 关于x 的函数解析式是________.三、解答题17.计算:(1)(2;(2)4⎫⎪⎪⎭18.某公司招聘员工一名,现有甲、乙两人竞聘通过计算机、语言表达和专业知识三项测试,他们各自的成绩(百分制)如表所示.应聘者计算机语言表达专业知识甲705080乙907540若公司对计算机、语言表达、专业知识分别占30%,20%,50%,计算两名应试者的平均成绩,从成绩看,应该录取谁?19.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .20.如图,四边形ABCD 中,2AB BC ==,CD =AD =90B ∠=︒,求四边形ABCD 的面积.21.如图,矩形ABCD 中,BD 是对角线,将ABD △沿直线BD 翻折180°得到EBD △,延长BE ,DC 交于点F .(1)求证:BF DF =;(2)若1AB =,2AD =,求CF 的长.22.如图,在平面直角坐标系xOy 中,直线3y x =+与x 轴,y 轴分别交于点A ,B ,点C的坐标是()1,4.(1)求ABC ∠的度数;(2)若第一象限内存在点D ,使四边形ABCD 是平行四边形,求点D的坐标.23.如图,在正方形ABCD 中,E 是对角线AC 上一点,DE 的延长线与BC 交于点F ,过点E 作DF 的垂线交边AB ,CD 于点H ,G .(1)求证:ED EH =;(2)延长BC ,HG 交于点M ,求证:CM AH =;(3)若4AB =,AH m =,求CF 的长(用含有m 的式子表示).24.已知函数1,231,2mx x m y x m x m ⎧-+<⎪⎪=⎨⎪-++≥⎪⎩,其中m 为常数,该函数的图象记为G .(1)当2m =-时,若点()3,D n 在图象G 上,求n 的值;(2)当34m x m -≤≤-时,若函数最大值与最小值的差为12,求m 的值;(3)已知点()0,1A ,()0,2B -,()2,1C ,当图象G 与ABC 有两个公共点时,直接写出m 的取值范围.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.如图,在平面直角坐标系xOy中,直线y=x+4与x轴,y轴分别交于点A,B,与直线12y x=-交于点C,点P的坐标是(),0t,过点P作x轴的垂线l,与射线CO,CB分别交于点D,E,以DE为边向右作正方形DEFG.(1)点C的坐标是________;(2)当点F在y轴上时,求t的值;(3)设正方形DEFG与BOC重合部分的面积为S,求S关于t的函数关系式,并直接写出自变量t的取值范围.参考答案1.A 【详解】依题意可得20x -≥解得2x ≤故选A .2.D 【详解】A 被开方数含分母,不是最简二次根式;B =C被开方数含能开得尽方的因数,不是最简二次根式;D故选:D .【点睛】本题考查最简二次根式的定义,理解最简二次根式的定义是解题的关键.最简二次根式必须满足两个条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.B 【解析】【分析】根据中位数的定义直接求解即可.【详解】解:把这些数从小到大排列为:124,129,136,140,154,180,则中位数是:1361401382+=(min ).故选:B .【点睛】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.4.C 【解析】【分析】利用众数的定义求解即可.【详解】解:由表格可得,这些鞋的尺码组成的一组数据中,24.5出现了11次,次数最多,则众数是24.5,故选:C .【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.注意众数可以不止一个.5.C 【解析】【分析】根据“平行四边形的两组对边分别相等”可知,平行四边形ABCD 的周长=2(AB+BC ),代入求值即可.【详解】解:根据平行四边形性质可知:AB CD =,BC AD =,∴平行四边形ABCD 的周长()2=14AB BC CD AD AB BC =+++=+故选C .【点睛】此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等.6.D 【解析】【分析】求出OA 、OB ,根据勾股定理求出AB ,即可得出AC ,求出OC 长即可.【详解】解:∵点A ,B 的坐标分别为(−2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB ,∴AC =AB∴OC =2-+∴点C 的坐标为(2-+0),故选:D .【点睛】本题考查了勾股定理,坐标与图形性质的应用,解此题的关键是求出OC 的长.7.A 【解析】【分析】根据一次函数的图象,上方的图象函数值大,即可求出自变量的取值范围.【详解】解:根据ax b cx d +>+知,()10y ax b a =+≠的图象在()20y cx d c +≠=的上方,由图可知:1x >时满足,故选:A .【点睛】本题考查了根据两条直线的交点求不等式的解集,解题的关键是理解一次函数的图象,通过数形结合的思想来解答.8.B 【解析】【分析】根据平行四边形的判定条件,对选项进行逐一判断即可得到答案.【详解】解:A 、如下图所示AB CD =,//AD CB ,四边形ABCD 是一个等腰梯形,此选项错误;B 、如下图所示,AO CO =,BO DO =,即四边形的对角线互相平分,故四边形ABCD 是平行四边形,此选项正确;C 、AB CD =,BAD BCD ∠=∠,并不能证明四边形ABCD 是平行四边形,此选项错误;D 、AB CD =,AO CO =,并不能证明四边形ABCD 是平行四边形,此选项错误;故选B.【点睛】本题主要考查了平行四边形的判定,解题的关键在于掌握平行四边形的五种判定方法.9.A 【解析】【分析】①一次函数(0)y kx b k =+≠,当0k >时,图象从左到右呈上升,y 随着x 的增大而增大,当0k <时,图象从左到右下降,y 随x 的增大而减小,据此判断①;②令x=0,据此解得函数51y x =+与y 轴的交点坐标;③一次函数(0)y kx b k =+≠,当0,0k b ><时,图象经过第一、三、四象限.【详解】解:①正比例函数2y x =-,20k =-<,图象从左到右下降,y 随x 的增大而减小,故①正确;②令x=0,解得1y =,图象与y 轴的交点坐标是()0,1,故②正确;③函数31y x =-的图象经过第一、三、四象限,故③错误,故正确的有①②,故选:A .【点睛】本题考查一次函数图象的性质,是重要考点,难度较易,掌握相关知识是解题关键.10.A 【解析】【分析】勾股定理是直角三角形两直角边的平方和等于斜边的平方,而所求第三边正是斜边,由此试,通过计算得出结果,即是最终结果.【详解】根据勾股定理得第三边长为:=13,故选A.【点睛】此题考查勾股定理的应用,解题关键在于先要清楚勾股定理的定义.11.3【解析】【分析】根据二次根式的分母有理化即可得.【详解】==故答案为:3.【点睛】本题考查了二次根式的分母有理化,熟练掌握二次根式的分母有理化的方法是解题关键.12.甲【解析】【分析】根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:由方差的意义,观察数据可知,<,∵3.615.8∴甲块试验田的方差小,故甲试验田小麦长势比较整齐.故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是熟练掌握方差的意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.2【解析】【详解】4=22k k ⇒=14【解析】【分析】根据题意和勾股定理可得AB 长,再根据菱形的四条边都相等,即可求出CD 的长.【详解】解:∵点A ,B 的坐标分别为(-3,0),(0,-2),∴OA =3,OB =2,∴AB ==∵四边形ABCD 是菱形,∴【点睛】本题考查了菱形的性质、坐标与图形性质,解决本题的关键是掌握菱形的性质.15.18【解析】【分析】根据勾股定理即可得到:正方形A ,B 的面积的和,等于正方形C 的面积,即可求得.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形C 的边长为c ,∴28a =,210b =,正方形C 的面积为2c ,∵222c a b =+∴正方形C 的面积81018=+=.故答案是:18.【点睛】本题考查了勾股定理的应用,正确理解正方形A ,B 的面积的和,等于正方形C 的面积是解决本题的关键.16.)04y x <<【解析】【分析】先证明,ABE BCF ≌可得,4,BE CF x DF x ===-再利用勾股定理可得函数关系式.【详解】解: 正方形ABCD ,4,90,AB BC CD AD ABC C D ∴====∠=∠=∠=︒,AE BF ⊥ 90,ABG CBG ABG BAG ∴∠+∠=︒=∠+∠,CBG BAE ∴∠=∠,ABE BCF ∴ ≌,4,BE CF x DF x ∴===-AF =AF y ∴=)04y x ∴=<<,故答案为:)04y x =<<【点睛】本题考查的是正方形的性质,勾股定理的应用,全等三角形的判定与性质,灵活应用以上知识解题是解题的关键.17.(1)11+(2)4【解析】【分析】(1)利用完全平方公式计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法运算后,化为最简二次根式,然后合并即可.【详解】(1)解:(2=+83=+11(2)解:⎭=4=4【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、完全平方公式是解决问题的关键.18.甲【解析】【分析】加权平均数:将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数,直接利用定义计算即可得到答案.【详解】⨯+⨯+⨯=++=分.解:甲的平均成绩为7030%5020%8050%21104071⨯+⨯+⨯=++=分.乙的平均成绩为9030%7520%4050%27152062∵71>62∴从成绩看,应该录取甲.【点睛】本题考查的是加权平均数的含义,掌握加权平均数的计算是解题的关键.19.见解析【解析】【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A C AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.20.10【解析】【分析】先求得AC 的长,再根据勾股定理的逆定理,证明ACD △是直角三角形,继而求得四边形ABCD 的面积.【详解】解:∵90B ∠=︒,∴Rt ABC中,AC ==((222240AC CD +=+=.(2240AD ==.∴222AC CD AD +=.∴90ACD ∠=︒.∴ACD △是直角三角形.∴四边形ABCD 的面积是111122102222AB BC AC CD ⋅+⋅=⨯⨯+⨯=.【点睛】本题考查了勾股定理及勾股定理的逆定理,熟练掌握相关定理是解题的关键.21.(1)见解析;(2)32【解析】【分析】(1)根据翻折的性质得到ABD FBD ∠=∠,结合四边形ABCD 是矩形,即可证得BF DF =;(2)设CF x =,先证得90BCF ∠=︒,然后再Rt BCF 中,利用勾股定理即可求得CF .【详解】(1)证明:将ABD △沿直线BD 翻折180°得到EBD △,∴ABD FBD ∠=∠,∵四边形ABCD 是矩形,∴//AB CD ,∴ABD BDF ∠=∠,∴BF DF =;(2)设CF x =,∵四边形ABCD 是矩形,∴1CD AB ==,2BC AD ==,90BCD ∠=︒,∴1BF DF x ==+,90BCF ∠=︒,Rt BCF 中,222BC CF BF +=,∴()22221x x +=+,解得32x =,即32CF =.【点睛】本题考查矩形的性质、翻折变换的性质、勾股定理,解题的关键是综合运用相关知识解题.22.(1)90°;(2)()4,1D 【解析】【分析】(1)作CE ⊥y 轴,求出A 、B 两点坐标后,再根据C 点坐标,得到BE=CE ,求出∠CBE=∠ABO=45°,即可求出∠ABC 的度数;(2)作DF ⊥x 轴,构造直角三角形后,证明AFD BEC ≌,求出AF 和DF ,即可得出D 点的坐标.【详解】解:(1)如图,作CE y ⊥轴,垂足为点E .∵直线3y x =-+与x 轴,y 轴分别交于点A ,B ,∴当0x =时,3y =,当0y =时,3x =.∴点A ,B 的坐标分别是()3,0,()0,3.∴3OB OA ==.∵90AOB ∠=︒,∴45OAB OBA ∠=∠=︒.∵点C 的坐标是()1,4,∴4OE =,1CE =.∴1BE OE OB =-=.∴CE BE=∵90CEB ∠=︒,∴45CBE ∠=︒.∴18090ABC ABO CBE ∠=︒-∠-∠=︒,即∠ABC 的度数是90°.(2)如图,四边形ABCD 是平行四边形,作DF x ⊥轴,垂足为点F .∴AD BC =,∠AFD=90°.∵90ABC ∠=︒,∴四边形ABCD 是矩形.∴90BAD ∠=︒.∵45BAO ∠=︒,∴45DAF ∠=︒.∴CBE DAF ∠=∠.∵90AFD BEC ∠=︒=∠,∴()AFD BEC AAS ≌.∴1AF BE ==,1DF CE ==.∴4OF =.∴点D 的坐标是()4,1.【点睛】本题综合考查了一次函数的图像、全等三角形的判定与性质、等边对等角、平行四边形的性质等内容,解决本题的关键是牢记相关概念与性质并能灵活运用,能通过作辅助线构造直角三角形、能通过全等和等边对等角得到相等的角等,本题蕴含了数形结合的思想方法.23.(1)见解析;(2)见解析;(3)1644m CF m -=+【解析】【分析】(1)连接BE ,先证明ABE ADE ≌,可得BE ED =,再证明BHE EBH ∠=∠,得到BE EH =,进而可证ED EH =;(2)连接DH ,DM ,由余角的性质可证EBM EMB ∠=∠,得到EB EM =,进而得到ED=EH=EM ,由三线合一得DH DM =,然后证明ADH CDM ≌△△即可;(3)连接FH ,设CF x =,则FH FM x m ==+,4BH m =-,4BF x =-,在Rt BFH 中,根据勾股定理可求CF 的长.【详解】(1)证明:连接BE .∵四边形ABCD 是正方形,AC 是对角线,∴AB AD BC CD ===,90ABC BCD ADC BAD ∠=∠=∠=∠=︒,45BAE DAE ∠=∠=︒.在△ABE 和△ADE 中AB ADBAE DAE AE AE=⎧⎪∠=∠⎨⎪=⎩,∴ABE ADE ≌,∴BE ED =,EBH ADE ∠=∠.∵DE HE ⊥,∴90DEH ∠=︒.四边形AHED 中,360BAD AHE HED ADE ∠+∠+∠+∠=︒,∴180AHE ADE ∠+∠=︒.∵180AHE BHE ∠+∠=︒,∴BHE ADE ∠=∠,∴BHE EBH ∠=∠,∴BE EH =,∴ED EH =.(2)证明:连接DH ,DM .∵EBH EHB ∠=∠,90EHB BMH EBH EBM ∠+∠=∠+∠=︒,∴EBM EMB ∠=∠,∴EB EM =,∴ED EH EM ==.又∵DE MH ⊥,∴DH DM =,在Rt △ADH 和Rt △CDM 中AD CDDH DM=⎧⎨=⎩∴ADH CDM ≌△△,∴CM AH =.(3)证明:连接FH .因为EH EM =,DE HM ⊥,∴HF FM =,设CF x =,则FH FM CF CM x m ==+=+,∵4AB BC ==,∴4BH m =-,4BF x =-.Rt BFH 中,222BF BH FH +=,∴()()()22244x m x m -+-=+,解得:1644m x m -=+,即1644m CF m -=+.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,补角的性质,线段垂直平分线的性质,勾股定理等知识,正确添加辅助线构造全等三角形是解答本题的关键.24.(1)-5;(2)74;(3)20m -<≤,463m <<【解析】【分析】(1)将2m =-代入解析式求解即可;(2)根据一次函数的图像的性质,分类讨论①当4m m -<时,②当3m m <-时,③当34m m m -≤≤-时,根据一次函数的定义分别求得最大和最小值,再求其差为12,从而求得m 的值;(3)设11()2m y x x m =-+<,231()2y x m x m =-++>,分类讨论①当2y 经过点B 时,求得m 的最小值,②当2y 经过点A 时,③当2y 与线段AC 有交点时,④当2y 经过点C 的时,⑤如图,当1y 经过点B 时,分别判断图象G 与ABC 的交点个数,得出符合题意的m 的取值范围.【详解】解:(1)当2m =-时,函数2,2,2, 2.x x y x x +<-⎧=⎨--≥-⎩∵点()3,D n 在图像G 上∴当3x =时,325n =--=-.(2)①当4m m -<时,即2m >时,对于函数12m y x =-+,随着x 的增大y 也增大.∴当3x m =-时,函数有最小值1331422m m y m =--+=-+.当4x m =-时,函数有最大值2341522m m y m =--+=-+.∴211y y -=.∴当2m >时,不存在m 值使最大值与最小值的差为12.②当3m m <-时,即32m <时,对于函数312m y x =-++,随着x 的增大,y 反而减小.∴当4x m =-时,函数有最小值()13541322m m y m =--++=-.当3x m =-时,函数有最大值()23531222m m y m =--++=-.∴211y y -=,故当32m <时,不存在m 值使最大值与最小值的差为12.③当34m m m -≤≤-时,即322m ≤≤时,图象G 从左到右先上升,再下降,即随着x 的增大y 值先增大,再减小,当x m =时有最大值12m +.当3x m =-时,1342m y =-+,当4x m =-时,532my =-.ⅰ当3114222mm ⎛⎫+--+= ⎪⎝⎭时,74m =.ⅱ当5113222m m⎛⎫+--= ⎪⎝⎭时,74m =.∴322m ≤≤时,当74m =时,函数最大值与最小值的差为12.综上述:74m =.(3)设112m y x =-+,2312y x m =-++①如图,当2y 经过点B 时,图象G 与ABC 有一个公共点,将(0,2)B -代入2312y x m =-++,得:3212m -=+解得2m =-②当2y 经过点A 时,将点A (0,1)代入2312y x m =-++3112m =+解得0m =∴当20m -<<时,当图象G 与ABC 有两个公共点如图,当0m =时,11y x =-+即,1y 也经过点A此时,当图象G 与ABC 有两个公共点20m ∴-<≤③当2y 与线段AC 有交点时,将点A (0,1)代入112m y x =-+,得112m=-+0m =此时21y x =-+与112my x =-+交于点A当m 继续增大时,图象G 与ABC 有四个公共点,1y 分别与线段,AB AC 各有一个交点,2y 与线段,AC BC 各有一个交点;④如图,当2y 经过点C 的时,将(2,1)C 代入2312y x m =-++31212m =-++解得:43m =此时1y 分别与,AB AC 各有一个交点,此时图象G 与ABC 有三个公共点当m 继续增大时,图象G 与ABC 有两个公共点⑤如图,当1y 经过点B 时,图象G 与ABC 有一个公共点,此时可以求得m 的最大值将(0,2)B -代入112m y x =-+,得:212m -=-+解得:6m =463m ∴<<综上所述,当图象G 与ABC 有两个公共点时,20m -<≤或463m <<.【点睛】本题考查了一次函数的定义,一次函数图像与性质等知识点,分类讨论,数形结合是解题的关键.25.(1)甲:5y x =+,乙:1152y x =+;(2)50min.【解析】【分析】(1)分别设出甲乙的函数解析式,利用待定系数法求解解析式即可;(2)由题意得15,y y -=甲乙利用甲乙的函数解析式列方程,解方程并检验可得答案.【详解】解:(1)设甲气球上升过程中:y kx b =+,由题意得:甲的图像经过:()()0,5,20,25两点,5,2025b k b =⎧∴⎨+=⎩解得:1,5k b =⎧⎨=⎩所以甲上升过程中:5,y x =+设乙气球上升过程中:,y mx n =+由题意得:乙的图像经过:()()0,15,20,25两点,15,2025n m n =⎧∴⎨+=⎩解得:1,215m n ⎧=⎪⎨⎪=⎩所以乙上升过程中:115,2y x =+(2)由两个气球的海拔高度相差15m ,即15,y y -=甲乙()151515,2x x ⎛⎫∴+-+= ⎪⎝⎭11015,2x ∴-=110152x ∴-=或11015,2x -=-解得:50x =或10x =-(不合题意,舍去)所以当这两个气球的海拔高度相差15m 时,上升的时间为50min.【点睛】本题考查的是一次函数的应用,考查利用待定系数法求解一次函数的解析式,掌握以上知识是解题的关键.26.(1)84,33⎛⎫- ⎪⎝⎭;(2)85t =-;(3)229881216,,435384,0250,0.t t t t S t t t ⎧++-<≤-⎪⎪⎪=---<<⎨⎪≥⎪⎪⎩【解析】【分析】(1)直线y =x+4与直线12y x =-交于点C ,联立即可求解;(2)知道l x ⊥轴,点(),0P t ,可以得到,2t D t ⎛⎫- ⎪⎝⎭,(),4E t t +,OP t =,求出DE ,再用四边形DEFG 是正方形的性质即可EF DE =,当F 在y 轴上时,EF OP =,即可求解;(3)当8835t -<≤-时,2S DE =;当805t -<<时,S DE DN =⋅;当0t ≥时,0S =.【详解】(1)∵直线y =x+4与直线12y x =-交于点C ∴124x x +=-,解得83x =-把83x =-代入y =x+4解得43y =∴点C 84,33⎛⎫- ⎪⎝⎭;故答案为:84,33⎛⎫- ⎪⎝⎭(2)如图,∵l x ⊥轴,点(),0P t∴,2t D t ⎛⎫- ⎪⎝⎭,(),4E t t +,OP t=∴34422t tDE t ⎛⎫=+--=+ ⎪⎝⎭∵四边形DEFG 是正方形,∴342tEF DE ==+.当F 在y 轴上时,EF OP =,∴342tt +=-,解得:85t =-.(3)当8835t -<≤-时,如图,222394121624tt S DE t ⎛⎫==+=++ ⎪⎝⎭.当805t -<<时,如图,DN OP t ==-,∴2334422t tS DE DN t t ⎛⎫=⋅=-⋅+=-- ⎪⎝⎭.当0t ≥时,0S =.综上述,229881216,, 435384,0250,0.t t ttS t tt⎧++-<≤-⎪⎪⎪=---<<⎨⎪≥⎪⎪⎩【点睛】本题考查了一次函数的图象与性质、正方形的性质,数形结合是解题的关键.。

人教版八年级下册数学期末考试试题有答案

人教版八年级下册数学期末考试试题有答案

人教版八年级下册数学期末考试试卷一、单选题1.下列各式是最简二次根式的是()AB C D 2.满足下列条件的三角形中,是直角三角形的是()A .三个内角度数之比是3:4:5B .三边长的平方比为5:12:13C .三边长度是1D .三个内角度数比为2:3:43.下列计算正确的是()A B =4C .(2=6D =24.某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选()甲乙丙丁方差3.6 3.244.3A .甲组B .乙组C .丙组D .丁组5.如图,数轴上A 点表示的数为2-,B 点表示的数是1,过点B 作BC AB ⊥,且2BC =,以点A 为圆心,AC 的长为半径作弧,弧与数轴的交点D 表示的数为()A B2+C 2-D .2+6.一次函数y =kx +b (k≠0)与y =bx +k (b≠0)在同一直角坐标系内的图象大致是()A .B .C .D .7.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =()AB .2CD 8.A 、B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.1l ,2l 分别表示甲、乙两人离开A 地的距离()km s 与时间()h t 之间的关系.对于以下说法正确的是()A .乙车出发1.5小时后甲才出发B .两人相遇时,他们离开A 地40kmC .甲的速度是80km /h 3D .乙的速度是40km /h 39.如图,等边ABC 的边长为6cm ,射线//AG BC ,点E 从点A 出发沿射线AG 以1cm/s 的速度运动,点F 从点B 出发沿射线BC 以2cm/s 的速度运动.设运动时间为()s t ,当t =()s 时,以A 、C 、E 、F 为顶点的四边形是平行四边形.A .1或2B .2或3C .2或4D .2或610.如图,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BR 于点R ,则PQ+PR 的值是()A .2B .2C .3D .83二、填空题11.函数23x x +中,自变量x 的取值范围是___________.121232-=______.13.北大附中实验学校科技节的作品得分包括三部分,专家评委给出的专业得分,宣传展示得分以及通过同学们投票得到的支持得分.已知某个作品各项得分如表所示(各项得分均按百分制计):按专业得分占50%、展示得分占40%、支持得分占10%,计算该作品的综合成绩(百分制),则该作品的最后得分是______.项目专业得分展示得分支持得分成绩(分)96989614.如图,AB =BC ,D 在∠ABC 外角平分线上,且CD ⊥BC ,△ABD 的面积为12cm 2,则△BCD 的面积为________cm 2.15.如图,直线1y x b =+与21y kx =-相交于点P ,则关于x 的不等式1x b kx +>-的解集为______.三、解答题16.计算题:(181320.125632(2)32)2×(5﹣6.17.一艘轮船从A 港向南偏西48°方向航行100km 到达B 岛,再从B 岛沿BM 方向航行125km 到达C 岛,A 港到航线BM 的最短距离是60km .(1)若轮船速度为25km/小时,求轮船从C 岛沿CA 返回A 港所需的时间.(2)C 岛在A 港的什么方向?18.如图,在四边形ABCD 中,//AD BC ,对角线AC 、BD 交于点O ,且AO OC =,过点O 作EF BD ⊥,交AD 于点E ,交BC 于点F ,(1)求证:四边形ABCD 为平行四边形;(2)连接BE ,若100BAD ∠=︒,2DBF ABE ∠=∠,求ABE ∠的度数.19.如图,直线1l分别与x轴,y轴交于A、B两点,A、B的坐标分别为(2,0)、(0,3),过点B的直线21:32l y x=+交x轴于点C,点(,6)D n是直线l上的一点,连接CD.(Ⅰ)求1l的解析式;(Ⅱ)求C、D的坐标;(Ⅲ)求BCD△的面积.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.(1)求证:EF=AE+CF(2)当AE=1时,求EF的长.21.某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)6143(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.22.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量和位置关系并证明.(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB 的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出....线段CM 与BN的数量关系.23.如图,函数y=﹣13x+2的图象与x轴、y轴分别交于点A、B,与函数y=kx(k为常数)的图象交于点E,以BE、OE为邻边的平行四边形是菱形.(1)求k;(2)过点B作y轴的垂线,交函数y=kx的图象于点C,四边形OACB是矩形吗;为什么.24.如图,AD是△ABC的边BC的中线,E是AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF,BF交AC于G.(1)若四边形ADCF是菱形,试证明△ABC是直角三角形;(2)求证:CG=2AG.25.2017年5月,举世瞩目的“一带一路”国际合作高峰论坛在北京举行.为了让学生更深刻地了解这一普惠世界的中国创举,某校组织八年级甲班和乙班的学生开展“一带一路”知识竞赛活动.现场决赛时,甲班和乙班分别选5名同学参加比赛,成绩如图所示:(1)根据上图将计算结果填入下表:平均数中位数众数方差甲班8.58.5__________乙班8.5______10 1.6(2)你认为哪个班的成绩较好;为什么.参考答案1.C2.C3.D4.B5.C6.C7.A8.D9.D10.A11.x≥-2且x≠3【详解】分析:根据二次根式的性质和分式的意义,被开方数≥0,分母≠0,可以求出x的范围.解答:解:根据题意得:x+2≥0且x-3≠0,解得:x≥-2且x≠3.12.2+【解析】再根据去绝对值法则进行计算,再根据二次根式加减法则进行计算即可得出答案.【详解】=解:原式)2=22=故答案为:2+【点睛】本题主要考查了二次根式的加减及绝对值的化简,熟练掌握相关法则进行计算是解决本题的关键.【分析】利用加权平均数求即可.【详解】解:根据题意,该作品的最后得分是96×50%+98×40%+96×10%=96.8(分),故答案为:96.8分.【点睛】本题考查加权平均数问题,掌握加权平均数计算方法是解题关键.14.12【解析】【分析】过D作DE⊥AB于E,由D在∠ABC外角平分线上,且CD⊥BC,得出DC=DE,AB=BC,所以△BCD的面积与△ABD的面积相等.【详解】过D作DE⊥AB于E,∵D在∠ABC外角平分线上,且CD⊥BC,∴DC=DE,∵△BCD的面积为12BC·DC,△ABD的面积为12AB·DE,又∵AB=BC,∴△BCD的面积与△ABD的面积相等为12cm2,故答案为12cm2.【点睛】本题考查了角平分线的性质,等腰三角形的性质,三角形的面积等知识,正确添加辅助线,熟练运用相关知识是解题的关键.【解析】【分析】观察函数图象得到,当x >﹣1,函数y =x+b 的图象都在函数y =kx ﹣1图象的上方,于是可得到关于x 的不等式x+b >kx ﹣1的解集.【详解】解:由图象可知两直线的交点坐标为(-1,12),且当x >﹣1,函数y =x+b 的图象在函数y =kx ﹣1图象的上方,∴关于x 的不等式x+b >kx ﹣1的解集为x >﹣1.故答案为:x >﹣1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.(1)4﹣3;(2)1【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据完全平方公式计算,然后根据平方差公式计算.【详解】解:(1)原式=3+2+4=4﹣3(2)原式=((5﹣)=25﹣24=1【点睛】本题主要考查了二次根式的化简和二次根式的混合运算,熟练掌握利用二次根式的性质进行化简是解题的关键.17.(1)3小时;(2)北偏西42︒【解析】【分析】(1)Rt △ABD 中,利用勾股定理求得BD 的长度,则CD BC BD =-,然后在Rt ACD △中,利用勾股定理来求AC 的长度,再根据时间=路程÷速度即可求得答案;(2)由勾股定理的逆定理推知90BAC ∠=︒.由方向角的定义作答.【详解】解:(1)由题意可知60AD km =,AD ⊥BC ,在Rt △ABD 中,222AD BD AB +=,∴22260100BD +=,80()BD km ∴=,∵BC =125km ,1258045()CD BC BD km ∴=-=-=,75()AC km ∴=,∴75253÷=(小时),∴从C 岛返回A 港所需的时间为3小时;(2)22221007515625AB AC +=+= ,2212515625BC ==,222AB AC BC ∴+=,90BAC ∴∠=︒,180904842NAC ∴∠=︒-︒-︒=︒,C ∴岛在A 港的北偏西42︒.【点睛】本题考查了勾股定理的应用,方向角问题,是基础知识比较简单.18.(1)见解析;(2)16°.【解析】【分析】(1)证明AOD COB △≌△可知:OD OB =根据已知条件AO OC =即可证明四边形ABCD 为平行四边形;(2)根据已知条件,通过角的关系转化,可得80ABC ∠=︒,根据80ABE EBD DBF ∠+∠+∠=︒即可求得.【详解】(1)证明:∵//AD BC ,∴OAD BOC ∠=∠.∵OAD BOC ∠=∠,OA OC =,AOD COB ∠=∠,∴(ASA)AOD COB ≌△△,∴OD OB =.∵OA OC =,OD OB =,∴四边形ABCD 为平行四边形.(2)解:由(1)得OB OD =,∵EF BD ⊥,∴EF 为BD 的垂直平分线,∴BE DE =,∴EDB EBD ∠=∠.∵//AD BC ,∴DBF EDB ∠=∠,∴DBF EBD ∠=∠,∵2DBF ABE ∠=∠,∴2DBF EBD ABE ∠=∠=∠.∵//AD BC ,∴180BAD ABC ∠+∠=︒,∵100BAD ∠=︒,∴80ABC ∠=︒,∴80ABE EBD DBF ∠+∠+∠=︒,∴2280ABE ABE ABE ∠+∠+∠=︒,∴16ABE ∠=︒.【点睛】本题考查了三角形全等的性质与判定,平行四边形的判定,角平分线的定义,垂直平分线的判定与性质,平行线的性质,掌握以上知识是解题的关键.19.(Ⅰ)y=-32x+3;(Ⅱ)C 点坐标为(-6,0),D 点坐标为(-2,6);(Ⅲ)12【解析】【分析】(Ⅰ)利用待定系数法求AB 的解析式;(Ⅱ)先解方程12x+3=0得C 点坐标为(-6,0),然后把D (n ,6)代入y=-32x+3中求出n 得到D 点坐标;(Ⅲ)利用三角形面积公式,根据S △BCD=S △DAC-S △BAC 进行计算.【详解】解:(Ⅰ)设直线l 1的解析式为y=kx+b ,把A (2,0)、B (0,3)代入得203k b b +=⎧⎨=⎩,解得323k b ⎧=-⎪⎨⎪=⎩,∴直线l 1的解析式为y=-32x+3;(Ⅱ)当y=0时,12x+3=0,解得x=-6,∴C 点坐标为(-6,0),把D (n ,6)代入y=-32x+3得-32n+3=6,解得n=-2,∴D 点坐标为(-2,6);(Ⅲ)S △BCD=S △DAC-S △BAC =12×(2+6)×6-12×(2+6)×3=12.【点睛】本题考查了待定系数法求一次函数解析式:求正比例函数,只要一个已知点的坐标就可以,因为它只有一个待定系数;而求一次函数y=kx+b ,则需要两组x ,y 的值.20.(1)见详解;(2)52EF =【解析】【分析】(1)把△ADE 绕点D 逆时针旋转90°得到△DAH ,使得点A 与点C 重合,则DE=DH ,∠EDH=90°,进而可得∠EDF=∠HDF=45°,然后可证△DEF ≌△DHF ,最后问题可求证;(2)设CF=x ,由(1)可得EF=1+x ,则BF=3-x ,BE=2,然后利用勾股定理可求解.【详解】(1)证明:把△ADE 绕点D 逆时针旋转90°得到△DAH ,使得点A 与点C 重合,如图所示:由旋转的性质可得DE=DH ,∠EDH=90°,AE=CH ,∵∠EDF=45°,∴∠EDF=∠HDF=45°,∵DF=DF ,∴△DEF ≌△DHF (SAS ),∴FH=EF ,∴EF=HF=FC+CH=AE+FC ;(2)设CF=x ,由(1)可得EF=1+x ,∵AB=BC=3,AE=1,∴BF=3-x ,BE=2,∴在Rt △BEF 中,222EF BE BF =+,即()()222123x x +=+-,解得:32x =,∴52 EF=.【点睛】本题主要考查正方形的性质,熟练掌握正方形的性质是解题的关键.21.(1)、y=50﹣x;(2)、w=3x+350;(3)、购进A、B两种品牌的饮料分别为20箱、30箱时,能获得最大利润410元.【解析】【详解】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(61﹣51)x+(43﹣36)(50﹣x)=3x+350;(3)由题意,得51x+36(50﹣x)≤2100,解得x≤20,∵y=3x+350,y随x的增大而增大,∴当x=20时,y最大值=3×20+350=410元,此时购进B品牌的饮料50﹣20=30箱,∴该商场购进A、B两种品牌的饮料分别为20箱、30箱时,能获得最大利润410元.22.(1)AG=EC,AG⊥EC,理由见解析;(2)不变化,∠EMB的度数为45°;(3)CM=【解析】【分析】(1)由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,∠BCE=∠BAG,再利用同角的余角相等即可得证;(2)过B作BP⊥EC,BH⊥AM,利用SAS得出三角形ABG与三角形BEC全等,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线,再由∠BAG=∠BCE,及一对对顶角相等,得到∠AMC为直角,即∠AME为直角,利用角平分线定义即可得证;(3)在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=,接下来证明BQ=CM,即要证明三角形ABQ与三角形BCM全等,利用同角的余角相等得到一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,90BG BEABC EBC BA BC︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,如图1,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)∠EMB 的度数不发生变化,∠EMB 的度数为45°理由为:如图2,过B 作BP ⊥EC ,BH ⊥AM ,在△ABG 和△CEB 中,90AB BCABG CBE GBC BG EB︒=⎧⎪∠=∠=-∠⎨⎪=⎩∴△ABG ≌△CEB (SAS ),∴S △ABG =S △EBC ,AG=EC ,∴11••22EC BP AG BH=∴BP=BH ,∴MB 为∠EMG 的平分线,∵∠AMC=∠ABC=90°,∴1452EMB EMG ︒∠=∠=(3)CM =理由为:如备用用,在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ =∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则2CM BN=故答案为:2CM BN =【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.23.(1)y=13x ;(2)是矩形,理由见解析.【解析】【分析】(1)由题意可得A ,B 坐标,由BE=OE ,可证AE=BE=OE ,可求E 点坐标,再代入解析式可求k(2)根据平行线分线段成比例可得OE=EC ,可证四边形OACB 是平行四边形,且∠AOB=90°可得平行四边形OACB 是矩形.【详解】解:∵函数y=-13x+2的图象与x轴、y轴分别交于点A、B∴A(6,0),B(0,2)∴BO=2,AO=6∵OE,BE是菱形的边∴BE=OE∴∠ABO=∠BOE∵∠AOB=90°∴∠ABO+∠BAO=90°,∠BOE+∠AOE=90°∴∠BAO=∠AOE∴OE=AE∴AE=BE作EM⊥AO,作ED⊥BO∴EM∥BO,DE∥AO∴12DE BEAO AB==,12EM AEBO AB==∴ME=1,DE=3∴E(3,1)∵y=kx的图象过E点∴1=3k∴k=1 3∴解析式y=1 3 x(2)是矩形.∵BC ⊥y 轴,AO ⊥y 轴∴BC ∥AO ∴1BE CE AE EO==∴OE=CE ,且AE=BE∴四边形ACBO 是平行四边形且∠AOB=90°∴平行四边形ACBO 是矩形.【点睛】本题考查了一次函数图象上点的坐标特征,矩形的判定,本题关键是求E 的坐标.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由菱形定义及AD 是△ABC 的中线知AD=DC=BD ,从而得∠DBA=∠DAB 、∠DAC=∠DCA ,根据∠DBA+∠DAC+∠DBA+∠DCA=180°可得答案.(2)作DM ∥EG 交AC 于点M ,分别证DM 是△BCG 的中位线和EG 是△ADM 的中位线得AG=GM=CM ,从而得出答案.【详解】解:(1)∵四边形ADCF 是菱形,AD 是△ABC 的中线,∴AD=DC=BD ,∴∠DBA=∠DAB 、∠DAC=∠DCA ,∵∠DBA+∠DAC+∠DBA+∠DCA=180°,∴∠BAC=∠BAD+∠DAC=90°,∴△ABC 是直角三角形;(2)过点D 作DM ∥EG 交AC 于点M ,∵AD是△ABC的边BC的中线,∴BD=DC,∵DM∥EG,∴DM是△BCG的中位线,∴M是CG的中点,∴CM=MG,∵DM∥EG,E是AD的中点,∴EG是△ADM的中位线,∴G是AM的中点,∴AG=MG,∴CG=2AG.【点睛】本题主要考查菱形的性质,解题的关键是掌握菱形的性质、直角三角形的性质、三角形中位线定理等知识点.25.(1)答案见解析;(2)答案见解析【解析】【分析】(1)由条形图分别得出甲、乙班5位同学的成绩,再根据众数、中位数和方差定义求解可得;(2)分别从平均数、众数、中位数和方差的角度分析可得.【详解】解:(1)甲班5位同学的成绩分别为8.5、7.5、8、8.5、10,∴甲班5位同学成绩的众数为8.5、方差为15×[(8.5-8.5)2×2+(7.5-8.5)2+(8-8.5)2+(10-8.5)2]=0.7,乙班5位同学的成绩分别为:7、10、10、7.5、8,∴乙班5位同学成绩的中位数为8,补全表格如下:平均数中位数众数方差甲班8.58.58.50.7乙班8.5810 1.6(2)从平均数看,甲、乙班成绩一样;从中位数看,甲班成绩好;从众数看,乙班成绩好;从方差看,甲班成绩稳定.【点睛】本题考查了运用平均数,中位数与众数、方差解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.21。

2022—2023年部编版八年级数学下册期末考试卷及答案【学生专用】

2022—2023年部编版八年级数学下册期末考试卷及答案【学生专用】

2022—2023年部编版八年级数学下册期末考试卷及答案【学生专用】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.若6x ,小数部分为y ,则(2x y 的值是( )A .5-B .3C . 5D .-3512a =-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .67.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<7.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.因式分解:22ab ab a -+=__________.3.4的平方根是 .4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:2211(1)m m m m+--÷,其中m=3+1.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、B6、C7、C8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、()21 a b-3、±2.4、55.5、1 (21,2) n n--6、13 2三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、3、(1)略(2)1或24、(1)k=-1,b=4;(2)点D的坐标为(0,-4).5、(5a2+3ab)平方米,63平方米6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.。

人教版八年级下册《数学》期末考试卷及答案【可打印】

人教版八年级下册《数学》期末考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?A. 16B. 18C. 20D. 222. 下列哪个数是质数?A. 21B. 23C. 27D. 293. 一个正方形的边长是6厘米,那么这个正方形的面积是多少平方厘米?A. 36B. 48C. 54D. 604. 一个长方体的长、宽、高分别是8厘米、4厘米、2厘米,那么这个长方体的体积是多少立方厘米?A. 64B. 32C. 16D. 85. 下列哪个数是整数?A. 2.5B. 3.6C. 4.8D. 5.1二、判断题(每题1分,共5分)1. 一个等腰三角形的底边长等于腰长。

()2. 任何两个不同的质数相加的和都是质数。

()3. 一个正方形的对角线等于边长的根号2倍。

()4. 一个长方体的体积等于底面积乘以高。

()5. 任何两个不同的整数相乘的积都是整数。

()三、填空题(每题1分,共5分)1. 一个等腰三角形的底边长为10厘米,腰长为6厘米,那么这个三角形的周长是______厘米。

2. 下列哪个数是质数:______。

3. 一个正方形的边长是7厘米,那么这个正方形的面积是______平方厘米。

4. 一个长方体的长、宽、高分别是10厘米、5厘米、2厘米,那么这个长方体的体积是______立方厘米。

5. 下列哪个数是整数:______。

四、简答题(每题2分,共10分)1. 简述等腰三角形的定义及特点。

2. 简述质数的定义及特点。

3. 简述正方形的定义及特点。

4. 简述长方体的定义及特点。

5. 简述整数的定义及特点。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为12厘米,腰长为8厘米,求这个三角形的周长。

2. 一个正方形的边长为9厘米,求这个正方形的面积。

3. 一个长方体的长、宽、高分别是9厘米、6厘米、3厘米,求这个长方体的体积。

4. 一个等腰三角形的底边长为15厘米,腰长为10厘米,求这个三角形的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档