石墨烯

合集下载

石墨烯

石墨烯

发现历程
可惜的一步之遥
美国德克萨斯大学奥斯汀分校的Rodney Rouff层尝试着将石 墨在硅片上摩擦,并深信采用这个简单的办法可后的石墨烯,但 他没有对产物做进一步的检测 美国哥伦比亚大学的Philip Kim利用石墨制作了一个“纳米铅 笔”,在一个表面上画写,并得到了石墨薄片,层数最低可达0层
特性
电学性能
电子在石墨烯中传输不易发生散射,迁移率可达2ӽ 105cm2/ (V· s),约为硅中电子迁移率的140倍。 其电导率可达106S/m,石墨烯的面电阻约为31Ω/sq,是室温 下导电性最佳的材料。
石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成大∏键, ∏电 子可以自由移动,赋予石墨烯优异的导电性。由于原子间作用力非常强,常温下, 及时周围碳原子发生挤撞,石墨烯中的电子收到的干扰也小。
发现历程 发现历程
曲 折 的 六 十 年
• • • •
1947年Philip Wallace研究石墨烯电子结构 1956年J.W.McClure推到出相应的波函数 1960年Linus Pauling曾质疑过石墨烯的导电性 1984年G.W.Semenoff得出与波函数方程类似 的狄拉克方程 • 1987年首席使用“graphene”指代单层石墨烯 • Philip Kim利用石墨在表面上画写,得到石墨 薄片 • 2004年Andre Geim和Konstantin Novoselov在实 验室用机械剥离法制备出石墨烯
石墨烯应用
石墨烯
电子器件 太光晶 阳学体 能器管 电件 池 复合材料 储能材料 石 墨 烯 纸 聚 合 物 基 石 墨 烯 复 合 材 料 锂电 离化 子学 电电 池容 器
石墨烯应用
石墨烯电池
西班牙Graphenano公司(一家以工业规模生产石墨烯的公司)同西班 牙科尔多瓦大学合作研究出了首例石墨烯聚合材料电池。一个锂电池 (以最先进的为准)的比能量数值为180wh/kg,而一个石墨烯电池的 比能量则超过600 wh/kg。也就是说,它的储电量是目前市场上最好 的产品的三倍。这种电池的寿命也很长,它的使用寿命是传统氢化电 池的四倍,是锂电池的两倍。用它来提供电力的电动车最多能行驶 1000千米。而将它充满电只需要不到八分钟的时间。

石墨烯专题知识

石墨烯专题知识

石墨烯被以为是替代硅旳理想材料,石墨 烯无禁带,不能直接用于晶体管等逻辑元 件,但能够采用石墨烯纳米带、石墨烯量 子点及双层石墨烯加偏压成为半导体,作 为晶体管源电极和漏电极之间旳通道。
IBM展示全球最快石墨烯晶体管,处理速度 可达100GHz
贝尔试验室旳Fulton等人制成旳128Mbit石墨 烯单电子存储器芯片照片
层左右旳石墨烯。
❖石墨烯旳发觉
碳是构成自然界有机生命体旳主要元素, 碳材料涉及活性碳、碳黑、碳纤维、金 刚石、石墨。伴随纳米技术旳发展, 1985年,由60个碳原子构成旳“足球” 分子C60被发觉。1991年,由具有一维管 状构造旳碳纳米管被发觉。Laudau 和 Wagner理论科学家以为二维旳晶体材料 因为其本身旳热力学不稳定性,在常温 下会迅速分解。
⑥兼容性好: 与多种金属和半导体材料 兼容,可用于制备复合材料.
………
三、石墨烯旳制备措施
目前石墨烯主要旳制造措施涉及四种,分 别是:微机械剥离法、外延生长法、氧化 石墨还原法和气相沉积法。
①微机械分离法
微机械剥离法即是用透明胶带将高定向 热解石墨片按压到其他表面上进行屡次 剥离,最终得到单层或数层旳石墨烯。
目前使用旳碳材料主要涉及活性炭、活 性碳纤维、炭气凝胶等,这些碳材料旳 基元都是石墨烯。因为超级电容器是经 过导体表白来存储电荷,所以适合电子 汇集旳有效表面积越大其容量就越大;
试验表白使用石墨烯作为电极旳超级电 容器能够产生相同体积电容器6 倍以上 旳容量。同步具有优良旳化学稳定性、 导电性、导热性和低成本等优点。
❖ 2023年,Geim,Novoselov等就是经过此 措施在世界上首次得到了单层石墨烯,证明 了二维晶体构造在常温下是能够存在旳 ,

石墨烯ppt课件

石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制

什么是石墨烯?

什么是石墨烯?
什么是石墨烯?
石墨烯是将如同苯环一样、由6个碳元素组成的六角形在二维平面上相互连接形成的六连环薄片。也叫石墨烯薄片。将这种薄片卷成筒状就是碳纳米管,多层层叠就是石墨。
石墨烯薄片的上下有π电子离域。就石墨而言,电子通过与层叠的相邻薄片的π电子重叠,进一步离域,趋于稳定。就碳纳米管而言,石墨烯薄片呈圆筒构造,变成单层时,其曲率进一步减小,允许的电子状态只有几个,因此具备量子效应。
由此可见,石墨烯是介于石墨和碳纳米管之间的材料,不过近年石墨烯本身备受关注。从2006年开始研究论文急剧增加,作为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,在美国研究尤其活跃。
石墨烯的物理特性有载流子迁移率高达20万cm2/Vs、高于金属和碳纳米管。此外有报告称,其还具有(1)能够大幅降低纳米元件特有的1/f噪声、(2)呈负折射率、(3)石墨烯上的电子就像质量为零那样运动等特性。另外,有人指出其还具备介于金属和半导体之间的若干特殊性质,其多种特性突然令人倍感兴趣。由于还有很多不明之处,研究人员可以大显身手。
富士通研形成碳纳米管与石墨烯的复合构造体
富士通研究所在相对于底板呈垂直方向整齐生成的多层碳纳米管上成功自组织形成了由几层到几十层石墨自组织形成的新复合构造体。该研究所表示,今后将通过阐明该复合构造体的形成机理,详细查明其物理性质,应用于发挥其特长的电子部件上。 (end)
供应和开发情况
பைடு நூலகம்美国IBM利用双层石墨烯大幅降低1/f噪声
美国IBM将两层石墨烯重叠,试制了晶体管,结果发现能够大幅降低纳米元件特有的1/f噪声。一般而言,纳米元件随着尺寸减小,被称作1/f的难以控制的噪声越来越明显,存在信噪比恶化的问题。这种现象就是众所周知的“波格定律(Hooge's law)”,即使采用石墨烯、碳纳米管以及硅材料也会产生这种现象。噪声之所以得到控制,估计是因为两层石墨烯之间发生了强电子结合,今后将进一步详细阐明原因。

石墨烯的结构与性能.

石墨烯的结构与性能.

力学性能
• 石墨烯是已知材料中强度和硬度最 高的晶体结构。
• 其抗拉强度和弹性模量分别为 125GPa和1.1TPa。
• 石墨烯的强度极限为42N/m2.。
力学性质——比砖石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每100纳米 距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们 测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨 烯断裂。如果物理学家能制取出厚度相当于普通食品塑料包装 袋的(厚度约为100纳米)石墨烯,那么需要施加差不多两万牛 的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋, 那么它将承受大约两吨重的物品。打个比方说单层石墨烯的强 度,就像把大象的重量加到一支铅笔上,才能够用这支铅笔刺 穿仅像保鲜膜一样厚度的单层石墨烯。
• 正是这种简单方法制备出来的简单物质— —石墨烯推翻了科学界一个长久以来的错 误认识——任何二维晶体不能在有限的温 度下稳定存在。
石墨烯的制备:
微机械剥离法

碳纳米管横向切割法


微波法

电弧放电法


光照还原法

外延生长法

石墨氧化还原法 电化学还原法 溶剂热法
液相剥离石墨法 碳化硅裂解法
大面积石墨烯的制备—CVD法:
结 晶粒尺寸较小, 层数不均一且难以控制, 晶界处存 在较厚的石墨烯, Ni与石墨烯的热膨胀率相差较大,
论 因此降温造成石墨烯的表面含有大量褶皱
在Ni膜上的SEM照片
不同层数的TEM照片
转移到二氧化硅/硅 上的光学照片
实验室制备方法
石墨经过强氧化剂氧化得到氧化石墨,在石墨层的六元环上形成 羟基、环氧基和羧基。一方面,含氧基团为亲水性,它们的引入 改善了石墨烯的水溶性,使氧化石墨在水中溶解度变大,稳定性 增加,这一点在科研中,多被用来制备改性石墨烯。另一方面, 含氧基团的引入由于空间位阻效应使石墨层间距变大,减小了石 墨层间的团聚现象。

石墨烯的介绍

石墨烯的介绍
能源 石墨2烯1的3介绍
-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程

石墨烯介绍

石墨烯介绍
石墨烯介绍
• Date: 2013年05月10日
1 2 3
石墨烯介绍
石墨烯特性
石墨烯应用
什么是石墨烯?
石墨烯(英文Graphene,命名来自英文graphite+ -ene) 是一种由C原子形成的蜂巢状的准二维 结构,是C元素的另外一种同素异形体。由亍是仍石墨中制取,丏包含烯类物质的基本特征(碳原子之 间的双键), 所以称为石墨烯。 我们所熟知的石墨、纳米碳管和富勒烯等,是由单层石墨烯经某种形变而形成的。
导电性 (最好)
机械特性 (强度最大) 化学性质 光学特性 物理特性 热导率 (极高)
1 2 3
石墨烯介绍
石墨烯特性
石墨烯应用
石墨烯应用
1. 电子器件斱面的应用
室温下石墨烯具有l0倍亍商用硅片的高 载流子迁秱率(约10 am /V·s),并且 受温度和掺杂效应的影响徆小,这是石 墨烯作为纳电子器件最突出的优势,使 电子工程领域极具吸引力的室温弹道场 效应管成为可能。较大的费米速度和低 接触电阻则有助亍迚一步减小器件开关 时间,超高频率的操作响应特性是石墨 烯基电子器件的另一显著优势。此外, 石墨烯减小到纳米尺度甚至单个苯环同 样保持徆好的稳定性和电学性能,使探 索单电子器件成为可能。
碳纳米管
石墨烯
石墨烯的来源?
实际上石墨烯本来就存在亍自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨, 厚1毫米的石墨大约包含300万层石墨烯。
石墨烯
如何获得石墨烯?
1947年,菲利普·华莱士开始研究石墨烯的电子结构 1987年,穆拉斯首次使用Graphene一词 如何才能制得石墨烯?
2. 代替硅生产超级计算机
石墨烯还是目前已知导电性能最出色的 材料。石墨烯的这种特性尤其适合亍高 频电路。高频电路是现代电子工业的领 头羊,一些电子设备,例如手机,由亍 工程师们正在设法将越来越多的信息填 充在信号中,它们被要求使用越来越高 的频率,然而手机的工作频率越高,热 量也越高,亍是,高频的提升便受到徆 大的限制。由亍石墨烯的出现,高频提 升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用 潜力。石墨烯看作是硅的替代品,能用 来生产未来的超级计算机。

石墨烯的简介

石墨烯的简介

KMnO4
30%的H2O2 水合肼
电子天平
圆底烧瓶 玻璃漏斗
甲醇(CH3OH)
„ „
五、我们实验室可以怎样制得石墨烯?
步骤一:氧化石墨
五、我们实验室可以怎样制得石墨烯?
步骤二:超声分散
步骤三:水合肼还原
六、我们今后的任务
LAST:我的思考——
作为单质,它最大的特性是在室温下传递电子的速度
比已知导体都快,电子的运动速度达到了光速的1/300。 这使得石墨烯中的电子的性质和相对论性的中微子非常
相似。这是石墨烯作为纳米电子器件最突出的优势。
应用:a. 半导体装置的材料 b.超高速计算机芯片 c.太阳能电池的透明电极 d.纳米传感器 e.储能材料 f. „ „
外延生长法通过加热单晶SiC来脱离出Si原子,然后 在0001面(富硅表面)上制备出超薄的石墨膜。首先,对 单晶SiC的表面进行氧化刻蚀或氢气刻蚀处理,然后在 超高真空环境中加热到约1000℃来除去氧化物,这样就 可以得到较为平整的表面。接着将样品加热到1250℃~ 1450℃,维持1 min一20 min,SiC表面就会形成一层石 墨薄膜, 温度须加热到1475℃以上。这样生成的石墨烯 片可以具有理想的电学特性,但所得到的石墨烯片层数 不一,电化学性质很容易受到基底掺杂的影响
石墨烯
GRAPHENE
四川大学 物理科学与技术学院 黄丽
2010诺贝尔物理学奖
2010诺贝尔物理学奖
姓名:安德烈.海姆 (A.K.Geim) 出生:1958.10,俄罗斯 国籍:荷兰 单位:英国曼彻斯特大学 获奖词:二维材料石墨烯 的突破性实验
姓名:康斯坦丁.诺沃肖洛夫
(K.S.Novoselov) 出生:1974.8,俄罗斯 国籍:英国、俄罗斯 单位:国曼彻斯特大学 获奖词:二维材料石墨烯的突 破性实验

石墨烯的化学符号

石墨烯的化学符号

石墨烯的化学符号
摘要:
一、石墨烯的简介
1.石墨烯的定义
2.石墨烯的特点
3.石墨烯的重要性和应用
二、石墨烯的化学符号
1.石墨烯的化学式
2.石墨烯的化学符号来源
3.石墨烯与其他碳材料的区别
三、石墨烯的应用领域
1.电子行业
2.能源行业
3.环保行业
4.其他领域
正文:
石墨烯是一种由单层碳原子构成的二维材料,具有高强度、导电性、透明性和柔韧性等特点。

石墨烯的发现被誉为“21 世纪的神奇材料”,科学家甚至预言,石墨烯将引领人类进入一个全新的科技时代。

石墨烯的化学符号为C,表示它是由碳原子组成的。

这个符号来源于元素周期表,碳是元素周期表中的第6 个元素,其化学符号就是C。

石墨烯的化
学符号与其独特的结构密切相关,它是一种由平面六角形碳原子构成的二维晶体,每个碳原子与周围三个碳原子形成共价键,构成一个稳定的平面结构。

石墨烯的广泛应用领域使其成为一种非常重要的材料。

在电子行业,石墨烯可以作为柔性显示器、触摸屏和电子纸等产品的原材料;在能源行业,石墨烯可以应用于锂电池、超级电容器和燃料电池等新能源技术中;在环保行业,石墨烯可以用于水处理、废气净化和土壤修复等领域。

此外,石墨烯还在航空航天、生物医学、建筑材料等领域有着广泛的应用前景。

总之,石墨烯作为一种具有巨大潜力和广泛应用前景的材料,其化学符号C 不仅代表了它的元素组成,还代表了它作为一种新型材料在科技领域的重要地位。

石墨烯

石墨烯

引言石墨烯是单层碳原子紧密堆积成单层二维蜂窝状晶体结构的一种炭质材料,碳原子排列与石墨的单原子层一样。

石墨烯是碳原子以sp2杂化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的苯六元环, 这种石墨晶体薄膜的厚度只有0.335nm,仅为头发的二十万分之一,是目前所发现的最薄的二维材料,是构建其他维数炭质材料(如零维富勒烯,一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性及电学质量和优异的电学、力学性能和结晶性。

2004 年, Manchester 大学的Geim 小组首次用机械剥离法获得了单层或薄层的新型石墨烯.石墨烯是一种没有能隙的半导体,具有比硅高 100 倍的载流子迁移率 (2 × 10 5cm 2/v),在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯还具有良好的导热性[3000W /(m ·K)] 、高强度(110GPa) 和超大的比表面积(2630mZ /g) 。

这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及复合材料等领域有光明的应用前景。

一、石墨烯的合成目前制备石墨烯的主要方法有: 化学气相沉积法, 微机械剥离法以及液相条件下的有机分子分散法, 溶剂热法和氧化还原法等.化学气相沉积法是以能量激化气体反应先驱物发生化学反应在基底表面形成石墨烯薄膜的一种薄膜成长方法. Keun 等,Kim 等通过 CH4分解,还原 CO等反应生成气态碳原子, 产物沉积在基底表面,生成二维石墨烯薄膜,然而现阶段工艺不成熟及较高的成本限制了其规模应用。

微机械剥离法是采用离子束对物质表面刻蚀,并通过机械力对物质表面进行剥离制备石墨烯 .Geim 等用微机械剥离法从高定向热解石墨上剥离得到单层石墨烯,但由于工艺复杂制备的石墨烯产率低不能够满足工业化需求。

在一定程度上限制了规模化生产。

有机分子分散法是将石墨在有机溶剂中超声分散得到石墨烯的一种方法。

石墨烯

石墨烯
石墨烯Байду номын сангаас
什么是石墨 1. 烯
石墨烯是一种平面单层紧密打包成
一个二维(2D)蜂窝晶格的碳原子, 并且是所有其他维度的石墨材料的基 本构建模块。它可以被包装成零维 (0D)的富勒烯,卷成了一维(1D) 的纳米管或堆叠成三维(3D)的石墨。
2.它是单原子层的石墨晶体薄膜,这
种石墨晶体薄膜的厚度只有0.335纳米, 将其20万片薄膜叠加到一起,也只相 当一根头发丝的厚度。
6.光学性质
石墨烯具有非常良好的光学特性,在较宽波长范围内吸收率约为2.3%,看上去几乎是透 明的。在几层石墨烯厚度范围内,厚度每增加一层,吸收率增加2.3%。大面积的石墨烯薄 膜同样具有优异的光学特性,且其光学特性随石墨烯厚度的改变而发生变化。这是单层石 墨烯所具有的不寻常低能电子结构。室温下对双栅极双层石墨烯场效应晶体管施加电压, 石墨烯的带隙可在0~0.25eV间调整。施加磁场,石墨烯纳米带的光学响应可调谐至太赫兹 范围。 当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这些特性可以使 得石墨烯可以用来做被动锁模激光器。 这种独特的吸收可能成为饱和时输入光强超过一个 阈值,这称为饱和影响,石墨烯可饱和容易下可见强有力的激励近红外地区,由于环球光 学吸收和零带隙。由于这种特殊性质,石墨烯具有广泛应用在超快光子学。石墨烯/氧化石 墨烯层的光学响应可以调谐电。 更密集的激光照明下,石墨烯可能拥有一个非线性相移的 光学非线性克尔效应。
一块石墨,一个石墨烯晶体管和一个胶带。于2010年 在斯德哥尔摩市被安德烈·海姆(Andre Geim)和康斯 坦丁·诺沃肖洛夫(Konstantin Novoselov)捐赠给诺 贝尔博物馆。
安德烈·海姆 (Andre Geim) 和康斯坦丁·诺沃 肖洛夫 (Konstantin Novoselov),于 2010年获得诺贝 尔奖

石墨烯简介

石墨烯简介

石墨烯Graphene一.石墨烯是什么?1.关于2010诺贝尔物理学奖海姆和诺沃肖洛夫他们曾是师生,现在是同事,他们都出生于俄罗斯,都曾在那里学习,也曾一同在荷兰学习和研究,最后他们又一起在英国于2004年第一次用微机械剥离法( Micromechanical cleavage) 获得石墨烯薄片层制备出了石墨烯。

这种神奇材料的诞生使安德烈·海姆和康斯坦丁·诺沃肖洛夫获得2010年诺贝尔物理学奖。

至此,三维的金刚石、“二维”的石墨、一维的碳纳米管和零维的富勒球(足球烯)就组成了完整的碳家族体系。

2.石墨烯的结构所谓石墨烯,它和石墨有着紧密的联系。

我们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。

当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。

——此即微机械剥离法单层石墨烯就是指只有一个 C 原子层厚度的石墨,C—C 间依靠共价键相连接而形成蜂窝状结构。

完美的石墨烯是理想的六边形晶格组成二维晶体结构,利用透射电镜(TEM),原子力显微镜(AFM)研究表明,这些悬浮的石墨烯片层并不是完全平整,他们表现出物质微观状态下固有的粗糙,表面会出现几度的起伏,可能正是这些三维的褶皱巧妙的促使二维晶体结构稳定存在。

石墨烯厚度只有0.335nm,如果我们把20 万片薄膜叠加到一起也只有一根头发丝那么厚。

3.石墨烯的特点及相应的应用它是已知材料中最薄的一种,并且比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。

eg.如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。

换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。

————应用:这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。

石墨烯性能简介

石墨烯性能简介

第一章石墨烯机能及相关概念之马矢奏春创作1石墨烯概念石墨烯(Graphene)是从石墨资估中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子.但实际上,10层以内的石墨机关也可称作石墨烯,而10层以上的则被称为石墨薄膜.单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状机关.完美的石墨烯具有理想的二维晶体机关,由六边形晶格组成,理论比概略积高达 2.6×102 m2 /g.石墨烯具有优良的导热机能(3×103W/(m•K))和力学机能(1.06×103 GPa).此外,石墨烯稳定的正六边形晶格机关使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 /(V·s).石墨烯特殊的机关、凸起的导热导电机能和力学机能,引起科学界巨大兴趣,成为材料科学研究热点.石墨烯机关图2石墨烯机关石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子慎密排列而成的蜂窝状晶体机关.石墨烯中碳 -碳键长约为0.142nm.每个晶格内有三个σ键,连接十分稳定形成了稳定的六边状.垂直于晶面标的目标上的π键在石墨烯导电的过程中起到了很大的传染感动.石墨烯是石墨、碳纳米管、富勒烯的底子组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯.形象来说,石墨烯是由单层碳原子慎密聚积成二维蜂窝状晶格机关,看上去就像一张六边形网格组成的平面.在单层石墨烯中,每个碳原子经由过程 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上相似苯环,碳原子都贡献出个一个未成键电子.单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一.石墨烯的机关很是稳定,碳原子之间连接及其柔韧.受到外力时,碳原子面会产生弯曲变形,使碳原子不必从新排列来适应外力,从而包管了自身的机关稳定性.石墨烯是有限机关,能够以纳米级条带形式消掉.纳米条带中电荷横向移动时会在中性点临近产生一个能量势垒,势垒随条带宽度的减小而增大.是以,经由过程控制石墨烯条带的宽度即可以进一步得到需要的势垒.这一特点是开拓以石墨烯为根本的电子器件的根本.石墨烯能带机关图3石墨烯机能石墨烯是一种超轻材料,面密度为0.77mg/m2,的主要机能是:一是具有超强的导电性.石墨烯的电子迁移率比纳米碳管或硅晶体高,是硅的100倍,在室温下可以达到15 000cm2 /( V·s) .电阻率比铝、铜和银低很多,只有10 ~6Ω·cm 旁边.二是具有超强的导热性.石墨烯的导热机能优于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m•K.三是具有超强的力学性,石墨烯的硬度超出金刚石,断裂强度达到钢铁的100倍.四是具有超强的透光性.石墨烯的吸光率很是小,透光率高达97. 7%.五是具有超强的比概略积.石墨烯的比概略积每克比通俗活性炭超出跨越1130m2,达到2630m2 /g.3.1 石墨烯的光学机能石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,具有优良的光学机能.理论和实验成果标明,单层石墨烯吸收2.3%的可见光,即透过率为97.7%.从基底到单层石墨烯、双层石墨烯的可见光透射率依次相差2.3%,是以可以按照石墨烯薄膜的可见光透射率来预算其层数.结合非交互狄拉克-费米子理论,模拟石墨烯的透射率,可以得出与实验数据相符的成果.按照折射和干与道理,不合层数的石墨烯在光学显微镜下会显示出不合的颜色和比较度,为石墨烯层数的辩白供应了便利.理论和实验标明大面积石墨烯薄膜同样具有优良的光学机能,且其光学特点岁石墨烯的厚度产生变更.石墨烯薄膜是一种范例的透明导电薄膜,可以代替氧化铟锡(ITO)、掺氟氧化铟(FTO)等传统薄膜材料,即可克服ITO薄膜的脆性缺点,也可解决铟本钱稀缺对应用的限制等诸多问题.石墨烯透明导电薄膜可作为染料敏化太阳能电池和液晶设备的窗口层电极.别的,当入射光的强度超出某一临界值时,石墨烯对其的吸收会达到饱和.这一非线性光学行为成为饱和吸收.在近红外光谱区,在强光辐照下,因为其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收.应用这一性质,石墨烯可用于超快速光子学,如光纤激光器等.3.2 石墨烯的电学机能石墨烯的每个碳原子均为sp2杂化,并贡献残剩一个p轨道电子形成π键,π电子可以自由移动,赋予石墨烯优良的导电性.因为原子间传染感动力很是强,在常温下,即使周围碳原子产生碰撞,石墨烯中的电子收到的搅扰也很小.电子在石墨烯中传输时不随意马虎产生散射,传输效率1.5×105cm2/(V·s),约为硅中电子迁移率的140倍.其电导率可达106s/m,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料.因其电阻率极低,电子迁移的速度极快,是以被等待可用来成长更薄、导电速度更快的新一代电子元件或晶体管.因为石墨烯本质上是一种透明、优胜的导体,也适合用来制作透明触控屏幕、光板、甚至是太阳能电池.石墨烯的出现在科学界激起了巨大的波澜.人们创造,石墨烯具有非同平凡的导电机能,超出钢铁数十倍的强度和极好的透光性,它的消掉有望在现代电子科技范围激发一轮革命.在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表示得好.因为电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种办法浪费72%-81%的电能,石墨烯则不合,它的电子能量不会被损耗,这使它具有了非比平凡的优良特点.3.3 石墨烯的力学机能石墨烯是一贯资估中强度和硬度最高的晶体机关.其抗拉强度和弹性模量辨别为125GPa和1.1TPa.石墨烯的强度极限为42N/m2.理想石墨烯的强度约为通俗钢的100倍,面积为1m2的石墨烯层片可辞谢4kg的质量.石墨烯可作为一种范例的二维增强材料,在复合股料范围具有潜在的应用价值.3.4石墨烯的热学机能石墨烯的强度比金刚石还要硬,在低温下,还能保持其原有的形态,从这一点就震撼了物理界,主假如因为石墨烯内碳原子排列是有规有律的,当施加外力传染感动于石墨烯时,内部的碳原子不会产生位移,只是产生了弯曲变形,就可以抵制外力,包管本身的稳定性.石墨烯的室温热导率是室温下铜的热导率的10倍多,导热系数高5300W/m•K,高于碳纳米管和金刚石.石墨烯的理论比概略积可达2630m2/g,用石墨烯支撑的微传感器可以感应单个原子或分子,当气体附着或分开石墨烯概略时,吸附的分子修改了石墨烯的局部载流子浓度,导致电阻产生阶跃型变更.这一特点可用于制作气体传感器.理论计算标明,石墨烯与锂可形成多孔复合机关,具有极强的氢气储存才能.3.5 石墨烯的磁学机能石墨烯氢化往后往往会具有铁磁性,主假如因为石墨烯在氢化往后,在边沿处有孤对电子对,这样就使得石墨烯有磁性.研究人员还在有磁场的情况下,做过经由过程修改温度,看能否让石墨烯的磁性有所变更.确定磁场强度为1T,当温度T<90K 时,石墨烯会表示出顺磁特点;当温度T>90K 时,石墨烯会呈现出了反磁特点. 3.6 石墨烯的化学机能石墨烯的电子性质受到了广泛存眷,然而石墨烯的化学性质却一贯无人问津,至今关于石墨烯化学机能我们只知道的是:石墨烯可以将周围的原子和分子进行有序的吸附(例如:二氧化氮,氨,钾),这条性质和我们所认知的活性炭有些相似.二氧化氮,氨,钾往往是被作为给体或受体,使得石墨烯内部的碳原子浓度产生变更,然而石墨烯本身就是一种导电材料.其它的吸附物,如氢离子和氢氧根离子则会产生导电性很差的衍生物,但这些都不是新的化合物,只是石墨烯装饰不合吸附物罢了.因为石墨烯和石墨都是碳的同素异形体,从化学的角度上来看,往往它们具有一些相同的性质,所以在一些石墨烯不熟悉的范围可以经由过程石墨来进行响应的实验,来创造石墨烯的规律,有了这条比较简单又便利的思惟,在未来,石墨烯更多的化学性质将会被开掘出来.石墨烯的光学、电学、力学以及热学特点示意图。

石墨烯 概念

石墨烯 概念

石墨烯概念石墨烯概念概述•石墨烯是一种由碳原子组成的二维材料,具有出色的导电性和导热性。

•它是一种单层晶体结构,形如蜂窝状的碳原子排列。

基本结构•石墨烯由碳原子组成,每个碳原子与周围三个碳原子形成共价键。

•每个碳原子形成一个六边形,整个结构类似于蜂巢。

物理特性•导电性:石墨烯是一种优良的电导体,电子在其内可以以近乎无阻碍的方式传输。

•导热性:石墨烯具有出色的热导性能,是目前已知最好的热导体之一。

•强度:尽管单层石墨烯非常薄,但其强度却非常高,比钢材强度还要高出200倍。

应用领域•电子学:石墨烯作为导电材料,可以应用于新型电子器件的制造,如柔性电子产品、传感器等。

•能源领域:石墨烯可以应用于锂离子电池、超级电容器等,提高能源存储和转换效率。

•材料科学:石墨烯可以用于制备高强度、轻质的复合材料,广泛应用于航天航空等领域。

•生物医学:石墨烯在生物医学领域有广泛的应用潜力,如用于药物传递、生物传感器等。

研究进展•石墨烯的发现对科学界产生了深远的影响,并获得了诺贝尔奖。

•目前,研究人员正在不断探索石墨烯的性质、制备方法和应用领域,取得了许多重要的突破。

总结•石墨烯作为一种新兴的材料,具有许多独特的特性和广阔的应用前景。

•这一概念对科技进步和创新产生了重要的推动作用,未来石墨烯有望为我们的生活带来更多的便利和创新突破。

机械剥离法•通过使用胶带或其他黏附物来剥离石墨烯层,这种方法简单易行,但产量低。

化学气相沉积法•通过在金属衬底上加热并注入碳源气体,使其在高温下分解并在金属表面形成石墨烯层。

•这种方法适用于大面积石墨烯的合成,但需要高温环境和专业设备。

液相剥离法•在石墨烯表面涂覆化学物质,然后通过剥离或溶解基底来获得石墨烯。

•这种方法适用于制备单层或多层石墨烯,并可以控制其厚度和质量。

继电子束蒸发法•在待制石墨烯的表面蒸发有机物,形成碳膜,然后通过退火使其转化为石墨烯。

•这种方法适用于大规模石墨烯的制备,但需要专业设备和条件。

石墨烯

石墨烯

组物理团队共同合作,首先分离出单独石墨烯平面。海姆和团队成员偶
然地发现了一种简单易行的制备石墨烯的新方法。他们将石墨片放置在
塑料胶带中, 折叠胶带粘住石墨薄片的两侧,撕开胶带,薄片也随之一
分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中 部分样品仅由一层碳原子构成——他们制得了石墨烯。
石墨烯
一、定义
石 墨 烯( G r a p h e n e) 是 一 种 由 碳 原 子以 s p 2 杂 化 轨 道
组 成 六 角 型呈 蜂 巢 晶 格 的 平 面 薄 膜 , 只 有 一 个碳 原 子 厚
度的二维材料。
二、主要制备方法
• 撕胶带法 于2004年,曼彻斯特大学和俄国切尔诺戈洛夫卡微电子工艺研究所的两
Hale Waihona Puke 这种情况下,我们用薛定谔方程来描述粒子的运动已经无效了,我们需要运 用引入了相对论效应的狄拉克方程来描述。事实上当我们将电子算符在K,K’ 进行傅里叶展开,代入哈密顿量之后,我们可以得到一个与二维的无质量电 子的狄拉克方程近似的方程
ivF r E r
通过上面的公式,我们可以在K附近可以得到波函数在K的分量 为
四、重要性能
• 3、导电性 石墨烯的导电性比银还要好,而且不受温度的影响
倒格子
倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的 一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大 的意义。例如,晶体的衍射是由于某种波和晶格互相作用,与一族晶面 发生干涉的结果,并在照片上得出一点,所以,利用倒格子来描述晶格 衍射的问题是极为直观和简便的。
T cos2 /(1 cos2 Dqx sin 2 )
当 0 时,隧穿概率为1,这是狄拉克费米子才有的性 质,对于非相对论条件下的电子无用,正是因为在粒子在石 墨烯中可以完全隧穿,使得石墨烯中的空穴与电子可以拥有 非常长的自由程。也是因此石墨烯的电子运动几乎不受声子 碰撞的影响,这使得电子运动受温度的影响非常小,同时在 强场下电子的迁移率也保持得比一般材料好。 综上所述,石墨烯良好的电子学性质并不是因为其“半金属” 性,而是由于狄拉克点的存在。

石墨烯介绍

石墨烯介绍

医学成像
生物医学工程
石墨烯的生物相容性和良好的力学性 能使其在组织工程、再生医学等领域 具有潜在应用。
石墨烯可用于制造高灵敏度的医学成 像设备,如超声成像、光声成像等。
能源储存与转换器件
电池
石墨烯的高比表面积和良好的导 电性使其成为电池电极的理想材 料,可提高电池的能量密度和功
率密度。
超级电容器
石墨烯的高比表面积和优异的电 化学性能使其在超级电容器领域 具有广泛应用,可实现快速充放
优异导电导热性能
导电性能
石墨烯具有优异的导电性能,其电导率可达10⁶ S/m,是铜 的100倍。
导热性能
石墨烯的导热性能也非常出色,其热导率可达5000 W/m·K ,远高于铜等传统导热材料。这使得石墨烯在散热器件、热 管理等领域具有广阔的应用前景。
02
石墨烯制备方法与技术
机械剥离法优点简单 Nhomakorabea行,成本低廉。
石墨烯介绍
• 石墨烯基本概念与特性 • 石墨烯制备方法与技术 • 石墨烯应用领域及前景展望 • 石墨烯产业发展现状与趋势分析 • 总结:石墨烯——颠覆性创新材料引领未来科技
革命
01
石墨烯基本概念与特性
石墨烯定义及结构
定义
石墨烯是一种由单层碳原子以sp² 杂化轨道组成六角型呈蜂巢晶格 的二维碳纳米材料。
创新应用拓展
石墨烯在柔性电子、可穿戴设备、生物医学、环 保等领域的应用拓展,将催生一批新的高科技产 业。
推动多学科交叉融合创新发展
促进物理学、化学和材料科学等基础学科的发展
石墨烯的研究涉及凝聚态物理、量子化学和材料科学等多个学科领域,其深入研究将有助 于揭示物质的基本规律和性质。
交叉融合创新

石墨烯简介

石墨烯简介

readme tian sen :石墨烯应用部分前五个可以适当删除。

1综述石墨烯2石墨烯的制备方法3石墨烯的特性1、石墨烯简介1、石墨烯定义石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。

2、石墨烯研究历史实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。

石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。

铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

石墨烯在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。

他们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。

不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。

这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。

因此,在随后三年内, 安德烈·盖姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,他们也因此获得2010年度诺贝尔物理学奖。

在发现石墨烯以前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。

所以,它的发现立即震撼了凝聚体物理学学术界。

虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。

石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。

二、制备方法1、撕胶带法发现石墨烯使用的方法2、机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。

石墨烯-PPT

石墨烯-PPT

2、加热SiC法
首先,样品经过氧化或H2 刻蚀表面处理,然后在 超高真空下(1 ×10 - 10 Torr) 经电子轰击加热到1 000 ℃ ,除去氧化物,并用俄歇电子能谱(AES) 监 测,当氧化物完全去除后, 加热样品至1 250 —1 450 ℃,这时将形成石墨烯层,石墨烯的厚度与加热 温度相关,且可通过AES (入射能为eV) 中 Si(92eV) 和C (271eV) 的峰强度测定石墨烯的厚 度。
康斯坦丁· 诺沃肖洛夫
安德烈· 海姆
3、结构 完美的石墨烯是二维的, 它只包括六角元胞(等角 六边形) 如果有五角元胞和七角元胞存在,那么他们构成石 墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘 曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认 为是卷成圆桶的石墨烯;
可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、 一维纳米碳管、三维石墨)的基本单元
双层石墨烯可降低元器件电噪声
美国IBM公司T·J·沃森研究中心 的科学家,最近攻克了在利用石墨 构建纳米电路方面最令人困扰的难 题,即通过将两层石墨烯片叠加, 可以将元器件的电噪声降低10倍, 由此可以大幅改善晶体管的性能, 这将有助于制造出比硅晶体管速度 快、体积小、能耗低的石墨烯晶体 管。
石墨烯可作为宇宙学研究的平台
其它应用
• • • • • • pH传感器 气体分子传感器 储氧材料 药物控制释放 离子筛 作为电极材料
五、石墨烯的展望
1. 电子工程领域极具吸引力的室温弹道场效应管 2. 进一步减小器件开关时间,THz超高频率的操作响应特性 3. 探索单电子器件 4. 在同一片石墨烯上集成整个电路 5. 其它潜在应用包括:复合材料;作为电池电极材料以提高 电池效率、储氢材料领域、场发射材料、量子计算机以及 超灵敏传感器等领域 6. 可应用于各种器件的特殊性能要被精确的控制 7. 最重要的是石墨烯制备方法的改进,如何大量、低成本制 备高质量的石墨烯材料应该是未来研究的一个重点 石墨烯的出现可能会将摩尔定律延续下去, 2025年以后可能是从“硅”时代跨越到“石墨烯”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图6:有望提高蓄电池的特性
住友电木正利用石墨烯开发的锂离子充电电池的负极构造(a)以及该电池的特性(b)。3~4层石墨烯之间有空隙(Cavity),因此具有低环境下输出功率密度较高,反复充放电时性能也不易劣化的特点。
而且石墨烯还有望使太阳能电池的性能获得飞跃性提高。有报告称,在有机半导体太阳能电池的半导体材料中混入氧化石墨烯后,因pn接合表面积增大等原因,转换效率提高到了原来的3倍。(未完待续,记者:野澤 哲生)
“神奇材料”石墨烯(一):进入实用化竞争阶段,应用例不断出现
2010年的诺贝尔物理学奖由成功分离石墨烯的研究人员获得。石墨烯具备很多超越单层石墨的特殊性质。旨在应用石墨烯的研发机会也在全球范围内急剧增加。石墨烯或将成为可实现高速晶体管、高灵敏度传感器、激光器、触摸面板、蓄电池及高效太阳能电池等多种新一代器件的核心材料。
其实普通半导体等也会发生无散射传输现象。但绝大多数以数K的极低度为必要条件,而且发生这一现象的长度非常短,仅为数nm~数百nm。而石墨烯则有望在室下实现长达数mm~数cm的无散射传输注1)。
注1)目前已确认石墨烯可在极低环境下实现数mm的无散射传输。室下只能传输200nm以上。
进行石墨烯理论研究的物质材料研究机构国际纳米结构研究基地的独立研究员若林克法指出,石墨烯发生的名为“克莱因穿隧(Klein Tunneling)”*的通道效应有望使这种材料比其他材料更易发生无散射传输现象。尽管产生克莱因穿隧效应时,因施加电压等原因材料中会存在能量上的障碍,但载流子可在全然不会反射及衰减的情况下越过能量障碍(图5)注2)。
图5:能否实现“梦想的无散射传输”
石墨烯会发生即使有势垒也不会散射,载流子可完全通过的“克莱因穿隧”现象(a)。这是因为n型与p型载流子在移动时具有名为“贝利相位”的自由度(b)。加传输(c)。
最近人们还发现了石墨烯的另一种独特性质。那就是不施加磁场,只需使石墨烯扭曲变形,就能像施加了极强磁场一样使石墨烯的电特性发生变化。因此石墨烯还有望用作高灵敏度应变感传器元件。
如果无散射传输特性能够实用化,石墨烯就有望超越可通过大电流的单纯特性而成为革命性的布线材料,包括IBM、美国英特尔及富士通在内的多家半导体厂商及研究机构目前都在推进这方面的研究。这是因为电阻值一般会随着布线长度成比例增加,而无散射传输布线则是布线越长,单位长度的电阻值越低。这有助于解决LSI总体布线中存在的一大课题——传输延迟问题。另外,无散射传输特性还对杂质非常敏感,因此有助于实现能够判定有无单分子的超高灵敏度传感器。
因此,对于还希望利用红外线来发电的太阳能电池而言,石墨烯有望成为划时代的透明导电膜。与不适于弯曲的ITO相比,还具备柔性较高的优势。
不过,透明导电膜目前还存在很多问题。由于制作大面积石墨烯时会混入很多杂质及缺陷,因此大多数试制品的导电性及透明性都未达到ITO的水平(图4)。即便如此,石墨烯仍有望用来制作触摸面板。(未完待续,记者:野澤 哲生)
石墨烯用作电子器件材料会带来更大效果。单层石墨烯中的电子与空穴(Hole)载流子迁移率有望在室下最大达到硅(Si)的100倍即20万cm2/Vs。这一数值远远超过以往被认为载流子迁移率最大为7.7万cm2/Vs的锑化铟(In)。而石墨烯室下的电阻值却只有铜(Cu)的2/3。人们还发现,石墨烯可耐受1亿~2亿A/cm2的电流密度,这是铜耐受量的100倍左右。载流子迁移速度很快,可达到光的1/300。传热率与金刚石相当,再加上其薄片形状,所以石墨烯作为划时代的散热材料备受期待。
“神奇材料”石墨烯(三):制造工艺决定成败
制造工艺决定成败
如上所述,石墨烯有望在诸多应用领域中成为新一代器件,但这些元件要达到实际应用水平,还需要解决一大问题。那就是如何在所要求的基板或位置制作出不含缺陷及杂质的高品质石墨烯,或者通过掺杂(Doping)法实现所期望载流子密度的石墨烯。用于透明导电膜用途时能否实现大面积化及量产化,而用于晶体管用途时能否提高层控制精度,这些问题都十分重要。
图4:已有多个透明导电膜试制例
(a)为产综研以石墨烯为透明导电膜制作的触摸面板。(b)为使用CNT的例子。(c)表示试制例的性能及用途。(a)由产综研提供。
“神奇材料”石墨烯(二):或将引发布线革命
是否会引发布线革命
石墨烯还具备其他比较对象所缺乏的多项独特性质。以单层石墨烯为例,其电子等载流子的有效质量*为零,而且可在室下显示出量子霍尔效应*。还会发生电阻值固定不会随距离变化的“无散射传输”*现象。
大幅提高蓄电池的输出功率密度
石墨烯还有很多虽未查明原理却被认为很有前景的应用例。比如用作锂离子充电电池的电极材料。美国Vorbeck Materials公司、美国能源部下属的研究所——西北太平洋国家实验室(PNNL)以及美国普林斯顿大学教授IlhanAksay的研究小组2010年7月宣布,通过向锂离子充电电池的电极中添加少量石墨烯,不仅可保持原来的能量密度,还可大幅提高输出功率密度注3)。“有望在几分钟内完成此前需要数小时的手机充电。估计还能用于电动汽车充电”(Vorbeck Materials)。
注3)对此有很多表示怀疑的研究人员。这是因为以前CNT也相继出现了相同的报告,不过均被判断为Ti等杂质的效果,目前公认CNT不具备催化剂的效果。
住友电木还尝试将石墨烯用作锂离子充电电池的负极材料(图6)。石墨烯是通过烧结基于该公司主力产品——苯酚的树脂制作而成的。据住友介绍,虽然目前能量密度还比不上石墨,但却在低下的放电特性及反复充放电耐性方面显示出了超越石墨的出色特性。
有望实现超高速FET及激光器
许多研究机构及厂商已开始以具备多项穿透特性的单层石墨烯为对象,研发新一代器件的实用化(图2)。主要开发对象之一是利用石墨烯的高载流子迁移率及高迁移速度制作的THz频率的晶体管。理论上估计其工作频率可达到10THz。
图2:应用领域从原子尺寸扩大到宇宙
石墨烯的用途分为特殊尺寸用途,电子器件用途及构造体用途。部分用途与CNT重叠。
*无散射传输:又称弹道传输(ballistic transport)。会在材料中的载流子平均自由行程长度大于材料的尺寸,而且载流子处于相干状态时发生。会失去材料本身的电阻,只会因用来施加电压的电极能带构造而产生电阻(量子化电阻)。与超电导极为不同的是,不会发生阻断外部磁场的现象(迈斯纳效应)。
美国IBM与韩国三星尖端技术研究所(SAIT)分别在2010年12月举行的半导体制造技术相关国际会议“2010 IEEE International ElectronDevices Meeting(IEDM 2010)”上发布了通道层使用石墨烯的高速动作型RF电路用FET(电场效应晶体管)。IBM的石墨烯FET的最大截止频率高达240GHz。另外,美国加州大学洛杉矶分校(UCLA)已于2010年9月发布截止频率达到300GHz的石墨烯FET。
要超越截止频率达到600GHz以上的化合物半导体HEMT(高电子迁移率晶体管),两公司发布的石墨烯FET的性能还无法充分满足要求。不过,IBM的石墨烯FET的截止频率提高得很快,2008年12月只有26GHz,2009年6月达到50GHz,2010年2月提高至100GHz,此次则达到了240GHz。在不久的将来,石墨烯FET的性能很可能会达到甚至超过HEMT的同等水平。
此前的碳纳米管(CNT)就是一个很大的教训。其实CNT也拥有很多与石墨烯共通的出色特性,包括极高的载流子迁移率、无散射传输特性及两极性等。之所以未能实用化,很大原因在于CNT的一维形状导致其很难处理,而且无法确立以量产为前提的制造工艺。无论特性如何出色,若无法确立制造工艺就不能实用化。
除了高速高灵敏度器件之外,透明导电膜也是最接近实用化的的应用例。设想作为目前普遍使用的ITO的替代材料,用于触摸面板、柔性液晶面板、太阳能电池及有机EL照明等。试制品也接二连三地面世。
透明导电膜这一用途备受期待的原因在于,石墨烯具备较高的载流子迁移率且厚度较薄。一般来说,高透明性与高导电性是互为相反的性质。从这一点来看,ITO正好处在透明性与导电性微妙的此消彼长(Trade-off)关系的边缘线上(图3)。这也是超越ITO的替代材料迟迟没有出现的原因。
*有效质量:指连接运动量与能量的方程式2阶微分时的系数。有效质量为零时,载流子就会像“光”一样快速运动。同时有利于提高施加电压时的响应速度。而相对于磁场的“回旋(Cyclotron)重量”则不会为零。
*量子霍尔效应:对电子二维分布的层(二维电子系统)施加强磁场时,电子轨道及能量水平所取的值不相关(量子化)的现象。一般只能在极低度环境下观测到这种现象。常被用作半导体品质较高的证据。
石墨烯还能用来制造激光元件。日本东北大学电气通信研究所教授尾辻泰一的研究小组,目前正以利用石墨烯开发超高输出功率的超短脉冲激光元件为目标推进相关研究。据该大学介绍,其关注点是,石墨烯采用电子与正孔对称的能带构造,而且具备容易实现较大载流子密度的性质。
优先推进微细化
不过,目前已实用化的绝大部分石墨烯FET为放大器及高灵敏度气体传感器元件等RF电路用FET。逻辑电路用FET尚未面世。这是因为单层石墨烯没有带隙(Band Gap)。没有带隙的话,就无法充分实现逻辑电路必须的晶体管“关断(Switch Off)”功能。但最近解决这一问题的线索开始浮出水面。
图3:既能透过光线也能通过电流
对理想的石墨烯与现有透明电极材料及导电材料进行了比较。石墨烯在面方向上具有充分的载流子密度和迁移率,法线方向上仅为单原子厚度,因此可透光。
石墨烯在理论上有望避开这种此消彼长的关系成为理想的透明导电膜。其原因是,由于载流子迁移率非常高,即使载流子密度较低,导电性也不容易下降。而载流子密度较低的话,会比较容易穿过更大波长范围的光。相当于单个原子的超薄厚度同样有助于提高透明性。不仅是可见光,石墨烯还可透过大部分红外线,这一性质目前已为人所知。
*克莱因穿隧(Klein Tunneling):遵循Dirac方程式运动的电子在某种条件下越过能障的现象。1929年由奧斯卡·克莱因(Oskar Klein)发现。又称为克莱因佯谬(Klein Paradox)。
相关文档
最新文档