巧求阴影部分的面积
求阴影部分面积的几种常用方法
求阴影部分面积的几种常用方法阴影部分的面积是指在形成的阴影中,被物体遮挡的部分面积。
计算阴影面积在多个领域中都有一定的应用,例如建筑设计、图像处理、计算机视觉等。
下面将介绍几种计算阴影部分面积的常用方法。
1.几何法几何法是最常见且简单的计算阴影面积的方法。
在平行光源的情况下,可以直接使用几何法计算阴影面积。
首先,需要知道光源的位置和物体的形状。
然后,可以通过光线和物体边缘的交点来确定阴影边缘,从而计算出阴影部分的面积。
这种方法在二维平面上的阴影计算中适用,但需要事先获得物体的准确形状和光源的位置。
2.正投影法正投影法是一种常用的计算阴影面积的方法。
在三维空间中,通过将物体和光源投影到一个平面上,然后计算投影面积来得到阴影的面积。
在计算阴影面积时,需要考虑物体的不透明度和光源的位置。
正投影法可以适用于复杂的物体和不同类型的光源。
3.体积投影法体积投影法是一种计算阴影面积的高级方法。
它首先将物体和光源之间的空间划分为多个体素(即体积像素),然后计算每个体素是否在物体的阴影区域中。
通过计算物体和光源之间的交点和遮挡关系,可以确定每个体素是否在阴影中。
最后,将位于阴影区域的体素的体积加总即可得到阴影的面积。
4.数值模拟法数值模拟法是一种计算阴影面积的复杂方法,它利用计算机模拟光线传播和物体与光线的相互作用。
该方法通过在计算机中建立一个模拟的三维场景,模拟光源的物理属性、物体的材质和几何形状,然后使用光线追踪算法模拟光线的传播和阴影的形成过程。
通过记录与阴影相关的信息,可以计算出阴影的面积。
综上所述,几何法、正投影法、体积投影法和数值模拟法是常用的计算阴影面积的方法。
选择适当的方法取决于具体的应用场景和需求。
不同的方法在准确性、计算复杂度和适用性方面存在差异,需要根据具体情况进行选择。
求阴影部分面积的几种常用方法
求阴影部分面积的几种常用方法阴影部分面积的计算是许多科学,工程和设计领域中常见的问题。
以下是几种常用的方法:1.基于几何模型的计算:这种方法适用于简单的阴影形状和物体表面。
可以通过几何关系和公式来计算阴影部分的面积。
例如,如果阴影形状是矩形或圆形,可以计算出其面积并减去被遮挡的部分。
对于其他形状,可以尝试将其近似为几何图形,然后计算阴影部分的面积。
2.基于光线投射的计算:这种方法基于光的直线传播特性。
通过确定光源的位置和阴影对象的形状,并追踪光线的路径,可以计算出阴影部分的面积。
这可以通过数值方法,如光线追踪算法,来实现。
光线追踪算法通过逐个追踪光线,计算出光线与物体的交点,并对光照强度进行积分来生成图像。
通过分析生成的图像,可以确定阴影部分的面积。
3.基于遮挡关系的计算:这种方法基于阴影对象和背景之间的遮挡关系。
可以使用二维图像处理算法,如阈值分割和连通区域分析,来分析图像中的遮挡关系。
首先,需要在图像中分割出阴影对象和背景,并标记出遮挡的区域。
然后,通过计算遮挡区域的像素数或像素面积,就可以得到阴影部分的面积。
这种方法适用于基于摄像机或传感器捕获的实时图像数据。
4.基于数值积分的计算:这种方法使用数值积分技术来计算阴影部分的面积。
数值积分是一种数值近似方法,用于计算曲线下的面积或曲线之间的面积。
可以将阴影形状建模为二维或三维曲线,然后使用数值积分算法,如拉格朗日插值法或梯形法则,来计算阴影部分的面积。
这种方法在精确模型或复杂阴影场景的计算中比较有效。
总之,根据具体情况和问题,可以选择不同的方法来计算阴影部分的面积。
这些方法可以根据问题的复杂性、可用数据和计算资源的限制来选择。
对于简单的几何形状和光线传播特性明确的场景,基于几何模型或光线投射的方法可能更为适用。
对于实时图像数据或复杂阴影场景,基于遮挡关系或数值积分的方法可能更为合适。
专题 求阴影部分的面积---四种方法(五大题型)(解析版)
(苏科版)九年级上册数学《第2章对称图形---圆》专题求阴影部分的面积---四种方法【典例一】(2023•锦州)如图,点A ,B ,C 在⊙O 上,∠ABC =40°,连接OA ,OC .若⊙O 的半径为3,则扇形AOC (阴影部分)的面积为( )A .23πB .πC .43πD .2π【分析】先由圆周角定理可得∠AOC 的度数,再由扇形的面积公式求解即可.【解答】解:∵∠ABC =40°,∴∠AOC =2∠ABC =80°,∴扇形AOC 的面积为80×π×32360=2π,故选:D .【点评】此题主要是考查了扇形的面积公式,圆周角定理,能够求得∠AOC 的度数是解答此题的关键.【变式1-1】(2023•新抚区模拟)如图,正五边形ABCDE 边长为6,以A 为圆心,AB 为半径画圆,图中阴影部分的面积为( )A .185πB .4πC .545πD .12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正五边形的外角和为360°,解题技巧提炼所求阴影部分是规则图形,直接用几何图形的面积公式求解.∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°﹣72°=108°,∵正五边形的边长为6,∴S阴影=108⋅π×62360=545π,故选:C.【点评】考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【变式1-2】(2023•大武口区模拟)如图,在矩形ABCD中,AD=1,AB=A为圆心,AB长为半径画弧交CD于点E,则阴影部分的面积为 .【分析】根据矩形的性质得出∠D=∠DAB=90°,AB=AE DE,即可证得∠DAE=45°,进而求得∠BAE=45°,再求出扇形ABE的面积,即可得出答案.【解答】解:∵在矩形ABCD中,AD=1,AB∴∠D=∠DAB=90°,∵AE=AB,∴DE1,∴AD=DE,∴∠DAE=45°,∴∠BAE=45°,∴阴影部分的面积S=S扇形ABE=π4.故答案为:π4.【点评】本题考查了矩形的性质、扇形的面积公式和勾股定理等知识点,能求出∠EAB 的度数是解此题的关键.【变式1-3】如图,有公共顶点O 的两个边长为3的正五边形(不重叠),以O 点为圆心,半径为3作圆,构成一个“蘑菇”形图案,则这个“蘑菇”形图案(阴影部分)的面积为( )A .4πB .185πC .3πD .52π【分析】利用扇形的面积公式计算即可.【解答】解:S 阴=(360108×2)⋅π⋅32360=18π5,故选:B .【点评】本题考查正多边形与圆,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式1-4】(2022•二道区一模)如图,在△ABC 中,∠ACB =90°,∠A =60°,以点A 为圆心,AC 长为半径画弧,交边AB 于点D ,以点B 为圆心,BD 长为半径画圆弧,交边BC 于点E ,若AC =2,则图中阴影部分图形的面积和为 (结果保留π).【分析】根据题意和图形可知阴影部分的面积S =S 扇形BDE +S 扇形ACD .【解答】解:在Rt △ABC ,∠C =90°,∠A =60°,AC =2,∴∠B =30°,AB =2AC =4,∴BC =∴阴影部分的面积S =S 扇形BDE +S 扇形ACD =30π×22360+60π×22360=π,故答案为:π.【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-5】(2023•三台县模拟)如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为( )A.2πB.3πC D【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC =30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=AC=可得到阴影部分的面积.【解答】解:∵正六边形ABCDEF的边长为2,∴AB=BC=2,∠ABC=∠BAF=(62)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°﹣∠ABC)=12×(180°﹣120°)=30°,过B作BH⊥AC于H,∴AH=CH,BH=12AB=12×2=1,在Rt△ABH中,AH=∴AC=同理可证,∠EAF=30°,∴∠CAE=∠BAF﹣∠BAC﹣∠EAF=120°﹣30°﹣30°=60°,∴S扇形CAE=2π,∴图中阴影部分的面积为2π,故选:A .【点评】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.【典例二】(2022秋•恩施市期末)如图,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,以点A 为圆心,线段AD 的长为半径画弧,与AC 边交于点E ;以点B 为圆心,线段BD 的长为半径画弧,与BC 边交于点F .若BC =6,AC =8,则图中阴影部分的面积为( )A .48―25π2B .48―25π4C .24―25π2D .24―25π4【分析】根据勾股定理得到AB=10,根据线段中点的定义得到AD =BD =5,根据扇形和解题技巧提炼将不规则阴影部分看成是以规则图形为载体的一部分,其他部分空白且为规则图形,此时采用整体作差法求解.三角形的面积公式即可得到结论.【解答】解:∵∠ACB=90°,BC=6,AC=8,∴AB==10,∠A+∠B=90°,∵点D为边AB的中点,∴AD=BD=5,∴图中阴影部分的面积=12×6×8―90⋅π×52360=24―25π4,故选:D.【点评】本题考查了扇形面积的计算,三角形的面积公式,勾股定理,熟练掌握扇形的面积公式是解题的关键.【变式2-1】(2023•北京模拟)如图,以O为圆心AB为直径的圆过点C,C为弧AB的中点,若AB=4,则阴影部分面积是( )A.πB.2+2πC.2πD.2+π【分析】求出∠AOC=∠BOC=90°,OA=OC=OB=2,求出阴影部分的面积=S扇形AOC,再根据扇形的面积公式求出答案即可.【解答】解:∵AB是⊙O的直径,C为AB的中点,∴∠AOC=∠BOC=90°,∵AB=4,∴OA=OC=OB=2,∴S△AOC =S△BOC=12×2×2=2,∴阴影部分的面积S=S△COB +S扇形AOC﹣S△AOC=S扇形AOC =90π×22360=π,故选:A.【点评】本题考查了垂径定理,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:已知扇形的圆心角是n °,半径是r ,那么这个扇形的面积=nπr 2360.【变式2-2】(2023•蜀山区校级三模)如图是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =4m ,OB =2m ,则阴影部分的面积是( )A .43πB .83πC .4πD .163π【分析】利用扇形面积公式,根据S 阴影=S 扇形AOD ﹣S 扇形BOC 即可求解.【解答】解:S 阴影=S 扇形AOD ﹣S 扇形BOC=120π⋅OA 2360―120π⋅OB 2360=120π(OA 2OB 2)360=π(4222)3=4π(m 2),故选:C .【点评】本题考查了求扇形面积,熟练掌握扇形面积公式是解题的关键.【变式2-3】(2022秋•松滋市期末)如图,点A 、B 、C 在⊙O 上,若∠BAC =30°,OB =2,则图中阴影部分的面积为( )A .π3―B .2π3―C .2π3―D .π3―【分析】根据S 阴=S 扇形OBC ﹣S △OBC ,计算即可.【解答】解:∵∠BAC =30°,∴∠BOC =2∠BAC =60°,∴△BOC 是等边三角形,∴S 阴=S 扇形OBC ﹣S △OBC =60⋅π×22360―12×2×=23π―故选:B .【点评】本题考查扇形的面积,圆周角定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式2-4】(2022秋•鄞州区期末)如图,扇形AOB 圆心角为直角,OA =10,点C 在AB 上,以OA ,CA 为邻边构造▱ACDO ,边CD 交OB 于点E ,若OE =8,则图中两块阴影部分的面积和为( )A .10π﹣8B .5π﹣8C .25π﹣64D .50π﹣64【分析】连接OC .利用勾股定理求出EC ,根据S 阴=S 扇形AOB ﹣S 梯形AOEC ,计算即可.【解答】解:连接OC .∵四边形OACD 是平行四边形,∴OA ∥CD ,∴∠OEC +∠EOA =180°,∵∠AOB =90°,∴∠OEC =90°,∴EC =6,∴S 阴=S 扇形AOB ﹣S 梯形OECA =90π×102360―12×(6+10)×8=25π﹣64.故选:C .【点评】本题考查扇形的面积的计算,平行四边形的性质,勾股定理等知识,解题的关键是掌握割补法求阴影部分的面积.【变式2-5】(2023•双柏县模拟)如图,在菱形ABCD 中,点E 是AB 的中点,以B 为圆心,BE 为半径作弧,交BC 于点F ,连接DE 、DF ,若AB =2,∠A =60°,则图中阴影部分的面积为( )A .π3B π3C π3D ―2π3【分析】连接AC ,根据菱形的性质求出∠BCD 和BC =AB =2,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【解答】解:∵四边形ABCD 是菱形,AB =2,∠A =60°,点E 是AB 的中点,∴△ABD 是等边三角形,DE ⊥AB ,∠ABC =120°,BE =1,∴DE BF =1,DF =DF ⊥BC ,∴阴影部分的面积S =S △BDE +S △BDF ﹣S 扇形BEF =2―120π×12360=π3,故选:B .【点评】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出△AEC 、△AFC 和扇形ECF 的面积是解此题的关键.【变式2-6】(2022秋•余杭区校级月考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连结AC ,BC .(1)求证:∠ACO =∠BCD ;(2)若CD =6,∠A =30°,求阴影部分的面积.【分析】(1)根据垂径定理得到BC=BD,根据圆周角定理证明结论;(2)根据等边三角形的判定定理得到△BOC为等边三角形,求出∠AOC,根据正弦的定义求出OC,利用扇形面积公式计算即可.【解答】(1)证明:∵AB是⊙O的直径,弦CD⊥AB,∴BC=BD,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:∵∠A=30°,∴∠BOC=60°,∴∠AOC=120°,∵AB是⊙O的直径,弦CD⊥AB,∴CE=12CD=3,在Rt△COE中,OC=CEsin60°=∴扇形OAC(阴影部分)的面积=4π,答:阴影部分的面积为4π.【点评】本题考查的是扇形面积计算、垂径定理、圆周角定理,掌握扇形面积公式是解题的关键.【典例三】(2023•大同模拟)如图,在扇形AOB 中,∠AOB =90°,半径OA =3,将扇形AOB 沿过点B 的直线折叠,使点O 恰好落在AB 上的点D 处,折痕为BC ,则阴影部分的面积为( )AB .9π4―C .π34D .3π34【分析】连接OD ,可得△OBD 为等边三角形,再求出∠COD 以及OC ,得到三角形BOC 的面积,又因为△BOC 与△BDC 面积相等,最后利用S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC 求解即可.【解答】解:如图,连接OD ,根据折叠的性质,CD =CO ,BD =BO ,∠DBC=∠OBC ,∴OB =BD =OD,解题技巧提炼先将不规则阴影部分与空白部分组合,构造规则图形或分割后为规则图形,再进行面积和差计算.∴△OBD 为等边三角形,∴∠DBO =60°.∵∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB •tan ∠CBO =3=∴S △BOC =12OB •OC =∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC=14π×32=9π4―故选:B .【点评】本题考查与扇形有关的不规则图形的面积求法,掌握割补法求面积是解题的关键.【变式3-1】(2023•乡宁县二模)如图,AB 是⊙O 的直径,AC 是弦,∠BAC =30°,在直径AB 上截取AD =AC ,延长CD 交⊙O 于点E ,若CE =2,则图中阴影部分的面积为( )A B .π2―1C .π﹣2D .π2【分析】连接OE ,OC ,BC ,推出△EOC 是等腰直角三角形,根据扇形面积减三角形面积计算即可.【解答】解:连接OE ,OC ,BC ,由旋转知AC =AD ,∠CAD =30°,∴∠BOC =60°,∠ACE =(180°﹣30°)÷2=75°,∴∠BCE =90°﹣∠ACE =15°,∴∠BOE =2∠BCE =30°,∴∠EOC =90°,即△EOC 为等腰直角三角形,∵CE =2,∴OE =OC =∴S 阴影=S 扇形OEC ﹣S △OEC ―12×=π2―1,故选:B .【点评】本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.【变式3-2】(2022秋•合川区期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接BC .若BO =BC =2 .【分析】证明△OBD 是等边三角形,根据S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )求解即可.【解答】解:连接BD .∵OC =OB =BC =∴△OBC 是等边三角形,∵CD ⊥AB ,AB 是直径,∴BC =BD ,∴BC =BD =OB =OD ,∴△OBD 是等边三角形,∵DE ⊥OB ,∴OE =EB∴DE =∴S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )=12×(2=4π﹣故答案为:4π﹣【点评】本题考查了扇形面积的计算以及垂径定理、等边三角形的判定和性质,解答本题的关键是理解性质和定理,注意掌握扇形的面积公式.【变式3-4】(2023•如皋市一模)如图,⊙O 的直径AB =8,C 为⊙O 上一点,在AB 的延长线上取一点P ,连接PC 交⊙O 于点D ,PO =OPC =30°.(1)求CD 的长;(2)计算图中阴影部分的面积.【分析】(1)作OE ⊥CD 于点E ,连接OC ,OD ,根据垂径定理得CE =DE ,再根据PO =OPC=30°,得OE =(2)根据阴影部分的面积为扇形COD 的面积减去△COD 的面积即可.【解答】解:(1)作OE ⊥CD 于点E ,连接OC ,OD ,∴CE =DE ,∵PO =OPC =30°,∴OE =12PO =∵直径AB =8,∴OD =4,∴DE ==2,∴CD =2DE =4;(2)∵OD =2DE ,∴∠DOE =30°,∴∠COD =60°,∴阴影部分的面积为60π×42360―12×4×=8π3―【点评】本题考查了垂径定理,扇形面积的计算,含30°的直角三角形的性质等知识,解题的关键是熟练掌握扇形的面积公式.【变式3-5】(2023•蒙阴县一模)已知AB 是圆O 的直径,半径OD ⊥BC 于点E ,BD 的度数为60°.(1)求证:OE =DE ;(2)若OE =1,求图中阴影部分的面积.【分析】(1)连接BD ,证明△OBD 是等边三角形,可得结论;(2)根据S 阴=S 扇形AOC +S △COE ,求解即可.【解答】(1)证明:连接BD ,∵BD 的度数是60°,∴∠BOD =60°,∵OB =OD ,∴△OBD 是等边三角形,∵OD ⊥BC ,∴OE =DE ;(2)解:连接OC .∵OD ⊥BC ,OC =OB ,∴∠COE =∠BOE =60°,∴∠OCE =30°,∴OC =2OE =2,∴CE =∴S 阴=S 扇形AOC +S △COE =60π⋅22360+12×1=2π3【点评】本题考查了扇形面积、三角形的面积的计算,正确证明△BOD 是等边三角形是关键.【变式3-6】(2023•长沙模拟)如图,已知AB 为⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,OF ⊥AC ,垂足为点F ,BE =OF .(1)求证:AC =CD ;(2)若BE =4,CD =【分析】(1)根据AAS 证明△AFO ≌△CEB 即可判断;(2)根据S 阴=S 扇形OCD ﹣S △OCD 计算即可.【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,CE =12CD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,AF =12AC ,∵BE =OF ,∴△AFO ≌△CEB (AAS ),∴AF =CE ,∴AC =CD ;(2)∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设OC =r ,则OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8,连接OD ,如图,在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120π×82360―12×4=643π﹣【点评】本题主要考查了垂径定理,勾股定理,以及扇形的面积的计算,正确求得∠COE 的度数是解决本题的关键.【典例四】(2023•凤台县校级三模)如图,点B 在半圆O 上,直径AC =10,∠BAC =36°,则图中阴影部分的面积为( )A .5πB .52πC .10πD .54π【分析】先根据三角形的中线把三角形分成面积相等的两个三角形得到△AOB 的面积与△COB的面积相解题技巧提炼通过对图形的变换,为利用公式法或和差法求解创造条件.有两种方法:(1)直接等面积转化法(2)平移转化法(3)对称转化法(4)旋转转化法等,从而把阴影部分的面积转化为扇形OBC 的面积,再根据扇形面积计算公式求出即可.【解答】解:∵点O 是AC 的中点,∴线段BO 是△ABC 的中线,∴S △AOB =S △COB ,∴S 阴影=S 扇形OBC ,∵∠BAC =36°,∴∠BOC =2∠BAC =72°,∵直径AC =10,∴OC =5,∴S 扇形OBC =72π×52360=5π,∴S 阴影=5π,故选:A .【点评】本题考查了扇形的面积,圆周角定理,三角形的中线的性质,熟练掌握扇形的面积公式是解题的关键.【变式4-1】(2023•孝义市三模)如图,AB 为半圆O 的直径,CD 垂直平分半径OA ,EF 垂直平分半径OB ,若AB =4,则图中阴影部分的面积等于( )A .4π3B .2π3C .16π3D .8π3【分析】根据图形可得,阴影部分的面积=S 半圆﹣2S 扇形 ACO ,根据扇形面积公式计算即可.【解答】解:如图所示:连接OC ,∵CD 垂直平分半径OA ,∴AC =OC ,∵OC =OA ,∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠A =60°,∴S 阴影=12S ⊙O ﹣2S 扇形ACO =12×(AB 2)2π―2×60×(AB 2)2π360 =12×4π﹣2×16×4π=2π―43π=23π.故选:B .【点评】本题考查了扇形的面积计算,掌握垂直平分线的性质,等边三角形的判定与性质,扇形的面积公式是解题的关键.【变式4-2】(2023•锦州二模)如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与AB ,BC 分别交于点D ,E ,连接AE ,DE ,若∠BED =45°,AB =2,则阴影部分的面积为( )A .π4B .π3C .2π3D .π【分析】根据直径所对的圆周角是直角得到∠AEC =90°,再根据等腰三角形三线合一得出点E 是BC 的中点,从而得出OE 是△ABC 的中位线,于是OE ∥AB ,根据同底等高得到△AOD 和△AED 的面积相等,从而阴影部分的面积转化为扇形AOD 的面积,根据扇形面积公式计算出扇形AOD 的面积即可得出阴影部分的面积.【解答】解:连接OE,OD,∵AC为⊙O的直径,∴∠AEC=90°,∵AB=AC,∴BE=CE,即点E是BC的中点,∵点O是AC的中点,∴OE是△ABC的中位线,∴OE∥AB,∴S△AOD =S△AED,∴S阴影=S扇形OAD,∵∠AEC=90°,∴∠AEB=90°,∵∠BED=45°,∴∠AED=45°,∴∠AOD=90°,∴S扇形OAD=90π×12360=π4,∴S阴影=π4,故选:A.【点评】本题主要考查了扇形的面积,圆周角定理,中位线定理,平行线间的距离相等,等腰三角形的三线合一,不规则图形的面积求法,把不规则图形转化为规则图形计算面积是解题的关键.【变式4-3】(2023•东兴区校级二模)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为BD,则图中阴影部分的面积为( )A .512πB .43πC .34πD .2512π【分析】根据AB =5,AC =3,BC =4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB =5,AC =3,BC =4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=30π×52360=2512π,故选:D .【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.【变式4-4】(2023•郸城县模拟)如图,扇形ABC 圆心角为90°,将扇形ABC 沿着射线BC 方向平移,当点B 落到线段BC 中点E 时平移停止,若AC 的长为2π,则图中阴影部分的面积是 .【分析】根据S 阴影=S 扇形DEF +S 矩形ABED ﹣S 扇形BAC =S 矩形ABED 求解即可.【解答】解:∵扇形ABC 圆心角为90°,AC 的长为2π,∴2π=90π⋅r 180,∴r =4,∴AB =BC =4,∵点E 是BC 的中点,∴BE =2,∴S阴影=S扇形DEF+S矩形ABED﹣S扇形BAC=S矩形ABED=2×4=8.故答案为:8.【点评】本题考查平移性质,扇形面积,熟练掌握求不规则图形面积,通过转化成规则图形面积的和差求解是解题的关键.【变式4-5】如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.求:(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π)【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.【解答】解:(1)阴影部分的周长是:2×12×2π×6+60π×12180=12π+4π=16π(厘米),答:阴影部分的周长为16π厘米;(2)∵阴影部分的面积是:S半圆+S扇形BAC﹣S半圆=S扇形BAC,∴阴影部分的面积=60×π×144360=24π(平方厘米).答:阴影部分的面积为24π平方厘米.【点评】本题考查了旋转的性质,弧长公式,扇形面积公式,掌握计算公式是解题的关键.【变式4-6】如图,AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于点E ,OF ⊥AC 于点F ,BE =OF .(1)求证:△AFO ≌△CEB ;(2)若BE =4,CD =①⊙O 的半径;②求图中阴影部分的面积.【分析】(1)根据AAS 即可判断;(2)①设 OC =r ,则 OE =r ﹣4,在Rt △OCE 中,利用勾股定理构建方程即可解决问题;②根据S 阴=S 扇形OCD ﹣S △OCD 计算即可;【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,∵BE =OF ,∴△AFO ≌△CEB (AAS ).(2)①∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设 OC =r ,则 OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8.②连接 OD .∵在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120⋅π⋅82360―12××4=643π﹣【点评】本题考查扇形的面积,全等三角形的判定和性质,勾股定理,垂径定理,圆周角定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题.【典例五】(2022秋•潼南区期末)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =2,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是 .解题技巧提炼有的阴影部分是由两个基本图形互相重叠得到的.常用的方法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:在Rt △ABC ,∠C =90°,∠B =30°,AB =2,∴∠A =60°,AC =12AB =1,BC∴阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB 60π×12360―12×1×=5π12―故答案为:5π12【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式5-1】(2022秋•北碚区校级期末)如图,正方形ABCD 的边长为1,以A 为圆心,AB 为半径画弧,连接AC ,以A 为圆心,AC 为半径画弧交AD 的延长线于点E ,则图中阴影部分的面积是 .【分析】根据正方形的性质和扇形的面积公式即可得到结论.【解答】解:∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°,∠DAC =45°,∴AC =∴图中阴影部分的面积=12×1×1]+(1×1―90π×12360)=12,故答案为12.【点评】本题考查了正方形的性质,扇形的面积的计算,正确的识别图形是解题的关键.【变式5-2】(2023•平遥县二模)如图,在Rt △ACB 中,∠ACB =90°,AC =1,∠A =60°,将Rt △ACB 绕点C 顺时针旋转90°后得到Rt △DCE ,点B 经过的路径为BE ,将线段AB 绕点A 顺时针旋转60°后,点B 恰好落在CE 上的点F 处,点B 经过的路径为BF ,则图中阴影部分的面积是( )A π12B π12C +π12D ―π12【分析】根据S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF 计算即可.【解答】解:S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF=12×1×60⋅π⋅22360+π12,故选:A .【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.【变式5-3】如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和三角形面积公式即可得到结论.【解答】解:连接BE ,∵AB 为直径,∴BE⊥AC,∵AB=BC=4,∠ABC=90°,∴BE=AE=CE,∴S弓形AE =S弓形BE,∴图中阴影部分的面积=S半圆―12(S半圆﹣S△ABE)﹣(S△ABC﹣S扇形CBF)=12π×22―12(12π×22―12×12×4×4)﹣(12×4×4―45π×42360)=3π﹣6,故答案为3π﹣6.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.【变式5-4】(2022•射洪市模拟)如图,在矩形ABCD中,AB=6,BC=4,以A为圆心,AD长为半径画弧交AB于点E,以C为圆心,CD长为半径画弧交CB的延长线于点F,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和矩形的性质即可得到结论.【解答】解:∵在矩形ABCD中,AB=6,BC=4,∠A=∠C=90°,∴CD=AB=6,AD=BC=4,∴图中阴影部分的面积=S扇形FCD ﹣(S矩形ABCD﹣S扇形DAE)=90π×62360―(6×4―90π×42360)=13π﹣24,故答案为:13π﹣24.【点评】本题考查了扇形面积的计算,矩形的性质,正确的识别图形是解题的关键.。
四种方法求阴影部分面积
四种方法求阴影部分面积首先,我们可以使用几何方法来求解阴影部分的面积。
设阴影部分的形状为矩形,其底边的长度为a,高度为h。
阴影的边界可以用两条直线来表示,设直线1与x轴的交点为A,直线2与x轴的交点为B。
两条直线与x轴的交点之间的距离为b。
则阴影部分的面积可以用以下公式表示:A=(a+b)*h/2第二种方法是通过将阴影部分分割成多个小矩形来求解。
首先,我们将阴影部分分割成n个小矩形,每个小矩形的底边长度为ai,高度为hi。
则阴影部分的面积可以表示为以下公式的和:A = ∑(ai * hi)其中i的范围从1到n。
第三种方法是使用积分来求解。
假设阴影部分的形状可以用函数y=f(x)来表示。
要求阴影部分的面积,我们需要找到函数f(x)的定义域上的积分区间[a,b]。
A = ∫[a, b] f(x) dx最后一种方法是使用统计学方法来求解。
假设我们已经获得了一组阴影部分的随机样本,符合一定的分布规律。
我们可以使用这组样本数据来进行统计分析,得出阴影部分的面积的估计值。
首先,我们可以计算出这组样本数据的平均值和标准差。
然后,使用均值加减一个标准差的方法,来计算阴影部分的上下边界。
根据阴影部分的上下边界和样本数据的分布,我们可以得到阴影部分面积的估计值。
需要注意的是,这种方法求得的阴影部分面积只是一个估计值,可能存在一定的误差。
综上所述,我们可以用几何法、分割法、积分法和统计法来求解阴影部分的面积。
每种方法都有自己的优缺点和适用范围,选择合适的方法取决于具体情况和问题要求。
阴影部分面积的求法
阴影部分面积的求法
1.矩形法:当阴影部分与原图形为矩形相交时,可通过计算阴影矩形的面积来求得阴影部分面积。
2. 几何图形分解法:当阴影部分与原图形为多边形相交时,可将其分解为若干个几何图形,再对各个图形进行面积计算后相加得到阴影部分的面积。
3. 分割法:当阴影部分与原图形为曲线相交时,可通过将原图形分割为若干小块,再对每个小块内的阴影部分进行面积计算后相加得到阴影部分的面积。
4. 积分法:当阴影部分为较为复杂的形状时,可通过积分计算得到其面积。
这种方法需要一定的数学基础和计算能力。
需要注意的是,在进行阴影部分面积的求解时,需要注意精度问题,特别是在使用积分法时更为重要。
同时,在进行计算时也要注意单位的一致性,以避免出现计算错误。
- 1 -。
(完整版)求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
巧求阴影部分面积
1、如下图:正方形边长为2厘米,求阴影部分面积。
思路引导:把“叶形”平均分成2份,然后拼成下面的图形。
即一个半圆减去一个三角形。
列式:2÷2=1(厘米)1/2×3.14×12-2×1÷2=1.57-1=0.57(平方厘米)2、如下图,已知正方形面积为18平方厘米,求阴影部分的面积。
思路引导:很容易看出,要求阴影部分的面积只要用正方形的面积-圆的面积,但求圆的面积比较困难,因为我们不知道圆的半径,看似可以求出正方形的边长,就可以知道圆的直径了,但小学没有学过开方。
因此,我们只能想别的办法,用设未知数的方法试一试。
设圆的半径为r,那么正方形的面积=2r×2r=18,于是得到下面的等式:2 r×2r=184r2=184r2=18÷4r2=4.5图中圆的面积:3.14×r2=3.14×4.5=14.13(平方厘米)阴影部分的面积:18-14.13=3.87(平方厘米)3、如下图正方形的面积是18平方厘米。
求图中阴影部分的面积。
思路引导:很容易看出图中阴影部分面积=正方形面积-四分之一圆的面积,然而我们发现圆的面积无法计算,因为我们不知道圆的半径或者直径,虽然说求出正方形的边长就能知道圆的直径,可是小学阶段没有学习开方,这条路子也行不通。
很容易联想到上面一题的做法,我们设圆的半径为r,那么正方形的面积=r×r=18,于是有下面的等式:r×r=18r2=18阴影部分面积:18-1/4×3.14×18=18-14.13=3.87(平方厘米)4、如右图:正方形的边长6分米,求图中阴影部分的面积。
怎么计算阴影部分的面积?思路引导:观察图形,如果把空白的四部分剪下,组合在一起,可以拼成一个半径是3分米的圆形,这样图中的四块阴影部分的面积就可以从正方形面积中减去这个圆的面积求出。
小学数学图形求阴影部分面积十大方法总结(附例题)
小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。
如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12 厘米. 求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2、如下图,正方形ABCD 的边长为 6 厘米,△ABE、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积。
一句话:因为△ABE、△ADF 与四边形AECF 的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12 厘米。
解:S△ABE=S △ADF=S 四边形AECF=12在△ABE 中,因为AB=6. 所以BE=4,同理DF=4,因此CE=CF=2 ,∴△ECF 的面积为2×2÷2=2 。
所以S△AEF=S 四边形AECF-S △ECF=12-2=10 (平方厘米)。
例3、两块等腰直角三角形的三角板,直角边分别是10 厘米和 6 厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S △BEF,S△ABG 和S△BEF 都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
4.微专题 三种方法求阴影部分面积
综合训练
1. 如图,在半径为4的⊙O 中,CD 是直径,AB是弦,且CD⊥AB,垂足为点E, ∠AOB=90°,则阴影部分的面积是___2_π____. 2. 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E.若∠AOC=60°,OC=2,则 阴影部分的面积是__2__- __2___3_c_m__2__.
针对训练 2. 如图,正方形ABCD的边长为4,以BC为直径的半圆O交对角线线BD于点E, 则阴影部分的面积为__8_-__π___.
第2题图
二、构造和差法 先设法将不规则阴影部分与空白部分组合或将阴影部分进行分割,构造规则图形, 再进行面积和差计算.如图:
针对训练 3. 如图,在扇形AOB 中,∠AOB=90°,正方形CDEF的顶点C是 »AB 的中点, 点D在OB上,点E在OB的延长线上.当正方形CDEF的边长为2 2 时,则图中 阴影部分的面积为_2_π__-__4__.第1题图第2题图
3. 如图,菱形ABCD的边长为2,∠A=60°,B»D是以点A为圆心,AB长为半径的 弧,C»D 是以点B为圆心,BC长为半径的弧,则阴影部分的面积为___3_____cm2. 4. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4 2 ,O是AB的中点, 以O为圆心,线段OC的长为半径画圆心角为90°的扇形EOF,E¼F 经过点C,则阴 影部分的面积为__2_π_-__4__.
第3题图
第4题图
微专题 三种方法求阴影部分面积
方法1 公式法 所求阴影部分的面积是规则图形,直接用扇形的面积公式求解. 如图:
针对训练 1. 如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是 ___3_π____.
第1题图
求阴影面积的几种常用方法
求阴影面积的几种常用方法1、直接用公式法例1、如图1,在Rt △ABC 中,∠A=90°,BC=4,点D 是BC 的中点,将△ABD 绕点A 按逆时针旋转90°,得△AB ’D ’,那么AD 在平面上扫过的区域(图中阴影部分)的面积是( )A. 4πB. 2π C.π D. 2π 分析:△ABD 绕点A 按逆时针旋转90°后,形成扇形ADD ’,且扇形的圆心角为90°,故可用扇形的面积公式直接求其面积。
解:∵∠A=90°, 点D 是BC 的中点,∴AD=21BC=2, ∴S 阴影=S 'ADD 扇形=3602902⨯π=π. 故选C.2、加减法.例2、如图2,正方形ABCD 的边长为a,那么阴影部分的面积为( ) A. 21πa 2 B. 41πa 2 C. 81πa 2 D. 161πa 2 分析:阴影部分的面积可以看作是扇形BCD 的面积减去半圆CD 的面积。
解:S 阴影=S CBD 扇形-S CD 半圆=360902a π-21π(2a )2 =41πa 2-81πa 2 =81πa 2. 所以本题答案选C.3、割补法例3、如图3,以BC 为直径,在半径为2且圆心角为90°的扇形内做半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是( )A. π-1B. π-2C. 21π-1D. 21π-2 分析:因为BC 为半圆的直径,所以CD ⊥AB ,CD=BD ,所以S CD 弓形= S BD 弓形,即S 阴影=S CAB 扇形-S ADC ∆.解:∵SCD 弓形= S BD 弓形∴S 阴影=S CAB 扇形-S ADC ∆⎪⎩⎪⎨⎧=+=+364423y x 22y x π⎪⎪⎨⎧-=-=918929ππyx =3602902⨯π-21×2×2 =π-1.故选A.4、等积变形法例4、如图4,已知半圆的直径AB=4cm ,点C 、D 是这个半圆的三等分点,则弦AC 、AD 和弧CD 围成的的阴影部分的面积为 cm 2.分析:因为C 、D 是半圆的三等分点,所以能够论证CD ∥AB ,所以S ACD ∆= S OCD ∆,所以S 阴影=S OCD 扇形解:连接OC 、OC 、CD∵C 、D 是半圆的三等分点,∴CD ∥AB∴S ACD ∆= S OCD ∆(同底等高),∴S 阴影=S OCD 扇形=3602602⨯π=32π. 5、覆盖法例5、如图5所示,正方形的边长为a ,分别以对角顶点为圆心,边长为半径画弧,则图中阴影部分的面积是多少?分析:阴影部分的面积可以看作是两个扇形的重叠部分。
求阴影面积的巧妙解法
求阴影面积的巧妙解法有很多,以下是一些常见的方法:
1. 平移法:将不规则的阴影部分通过平移、旋转等方式转化为规则图形,然后计算其面积。
2. 割补法:将阴影部分分割成若干个规则图形,然后计算它们的面积之和。
3. 等积变形法:通过等积变形,将阴影部分转化为与之等积的规则图形,然后计算其面积。
4. 容斥原理法:利用容斥原理,将阴影部分的面积转化为若干个规则图形的面积之差或和。
5. 比例法:利用相似三角形的性质,通过比例关系求出阴影部分的面积。
这些方法都需要根据具体的图形特点进行选择和运用,需要灵活运用数学知识和思维能力。
小学数学六年级总复习:求阴影部分面积方法举例
求阴影部分面积方法举例1、用替换法求面积“替换”就是等量代换。
用一种量(或一种量的一部分)来替代和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题难度,然后设法将这个被代换的量求出。
【例】:如图所示,正方形的面积为12 平方厘米,求阴影部分的面积。
【分析】设正方形的边长为r ,则 r ×r=r 2=12,用12 替换r 2即可求出扇形的面积,进而求出阴影部分的面积。
列式: 12-3.14 ×12÷4=12-9.42 =2.58 (平方厘米)同类练习:(1)如图所示,图中正方形的面积为 10 平方厘米,求阴影部分的面积。
2(2) 如图所示,三角形OAB的面积是 7cm,求图中阴影部分的面积。
(3)如图所示。
2①如果图中阴影部分的面积是7cm,求环形的面积。
2②如果环形面积是25.12cm,求阴影部分的面积。
2、用割补法求面积(这里主要讲“补”)补一些单一图形或集合图形使之成为可以计算的形或体,再解答,这种方法称之为割补法。
【例】:求图中阴影部分面积(单位:cm)。
1010【分析】在原图的基础上,补上一个与原图完全相同的图形,如右图所示。
列式: 10×10-3.14×()2÷2=100-39.25=10.75(cm2)3、用构造法求面积在计算某些图形题时,把原来不易处理的、不规则的图形,通过平移、旋转、翻折后,重新构成一个新的更便于处理的图形来解决问题,这种方法,称之为构造法。
【例】 1:求图 3(1)a 中阴影部分的面积。
(单位:厘米)101010图3(1) b图3(1) a【分析】观察图 3(1)a,会发现阴影部分中包含了与左边空白部分完全相同的扇形,将它平移到空白部分上,恰好与所剩阴影部分构成一个正方形。
如图3(1)b 将阴影部分重新构成了一个正方形。
列式: S阴 S正=10×10=100(平方厘米)【例】 2:如图 3(2)a,用一张斜边为 29 厘米的红色直角三角形纸片,一张斜边为 49 厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成了一个直角三角形。
中考数学:求阴影部分面积的几种常见方法
阴影局部面积的几种常见方法在初中数学中,求阴影局部的面积问题是一个重要容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规那么图形的面积,具有一定的难度,因此,正确把握求阴影局部面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影局部的面积.分析因为阴影局部是一个规那么的几何图形Rt△CEF,故根据条件可以直接计算阴影局部面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,那么FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,假设⊙O1半径为3cm;⊙O2半径为1cm,求阴影局部面积.分析这是求一个不规那么图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规那么图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影局部面积之和.分析所求的阴影局部面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影局部面积.分析此题的阴影局部是不规那么的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影局部面积.分析阴影局部图形不规那么,不能直接求面积,可以把它分割成几个局部求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影局部面积被分割为S1、S2、S3、S4四局部.那么六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB=4cm,求阴影局部面积.分析如果想直接求阴影局部面积,无法求解,因为它不是规那么图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE =2cm,阴影局部面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作OE⊥AB于点E,那么BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限的一个交点,求阴影局部的面积.分析阴影局部分两局部,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1局部分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2〔舍去〕.∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形画四个半圆,求阴影局部的面积.分析此题直接求阴影局部面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影局部面积为.222aaπ-.。
求阴影面积的十种方法
求阴影面积的十种方法
阴影面积是指在光源照射下,物体投射出的阴影所覆盖的面积。
在几何学中,阴影面积是计算投影面积的一个重要概念。
对于不同形状的物体,计算其阴影面积有不同的方法,下面介绍几种常见的方法。
1. 直接计算法:对于简单的几何体,例如矩形、三角形、圆形等,可以根据相应的公式计算出其阴影面积。
2. 消影法:利用几何形体之间的消影关系计算阴影面积,这种方法适用于多个物体在同一平面上的情况。
3. 画图法:通过绘制物体投影图和阴影图,求出阴影面积。
4. 面积加减法:对于复杂物体,可以将其分解成若干个简单形体,再分别计算其阴影面积,最后将得到的结果加减得到总面积。
5. 数学模型法:利用数学模型模拟物体在光源照射下的投影过程,计算出阴影面积。
6. 三角网格法:使用三角网格模型计算阴影面积,适用于复杂非规则形状的物体。
7. 光线追踪法:通过模拟光线在场景中的传播方向,计算出阴影面积。
8. 蒙特卡罗法:通过随机生成光线投射到物体上,进行多次模拟,最终统计得到阴影面积。
9. 深度图法:通过产生一个深度图,依据深度图中的遮挡关系得出阴影区域,计算阴影面积。
10. 像素级法:将物体的每一个像素与光线相交,统计被覆盖的像素点,通过像素点的数量计算出阴影面积。
总之,计算阴影面积的方法主要取决于物体的形状和光源的位置,通过选择适合的方法,能够得到比较准确的结果。
六年级阴影面积计算技巧和方法
六年级阴影面积计算技巧和方法嘿呀!今天咱们就来好好聊聊六年级阴影面积计算的那些技巧和方法!首先呢,咱们得明白啥是阴影面积。
哎呀呀,简单说就是图形中那些被阴影盖住的部分,咱们得想办法算出它的大小。
第一种方法,直接计算法!哇,这个方法可简单啦!如果阴影部分是个规则的图形,像正方形、长方形、三角形呀,那咱们就可以直接用对应的面积公式来算。
比如说三角形的面积就是底乘以高除以2 呢。
这是不是挺容易的?接下来,是割补法!哎呀呀,这个方法有点巧妙哦!如果阴影部分的形状不太规则,咱们就可以把它分割成几个规则的图形,或者给它补上一块,变成一个咱们熟悉的规则图形,然后再去计算。
比如说一个不规则的阴影图形,咱们可以把它分割成一个三角形和一个梯形,分别算出它们的面积,再相加或者相减,就能得到阴影部分的面积啦!还有呢,就是等量代换法!哇塞,这个方法可神奇啦!有时候,咱们可以通过找到图形之间的等量关系,把要求的阴影面积转换成我们能计算的图形面积。
比如说,两个三角形等底等高,那它们的面积就相等呀,就可以相互替换来计算阴影面积。
再说说添加辅助线法!嘿,这个方法可有用啦!当图形看起来很复杂,不好计算的时候,咱们就可以巧妙地添加一些辅助线,把图形分成几个部分,这样就能更清楚地看出阴影部分和其他部分的关系,从而计算出阴影面积。
还有一个很重要的方法,就是重叠法!哎呀呀,这个有点难理解,我给您好好讲讲。
比如说两个图形有一部分重叠在一起,形成了阴影部分,咱们可以先分别算出两个图形的面积,再减去重叠部分的面积,剩下的就是阴影部分的面积啦!在实际计算阴影面积的时候,咱们要仔细观察图形的特点,灵活运用这些方法。
有时候,可能需要同时使用几种方法呢!哎呀,计算阴影面积可真是个有趣又有点挑战的事情呀!您瞧瞧,这些方法是不是很实用呢?只要多练习,多思考,计算阴影面积对咱们六年级的同学来说,就不再是难题啦!哇,加油呀,同学们!相信大家都能掌握这些技巧,在数学的海洋里畅游!怎么样,您对这些方法清楚了吗?是不是感觉数学也没那么难啦?。
阴影面积的8种求法
阴影面积的8种求法成才路上奥数国家级教练与四名特级教师联手执教。
计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和弧CD围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
例2. 如图,是一个商标的设计图案,AB=2BC=8,弧ADE为1/4圆,求阴影部分面积。
三、重叠求余法(容斥原理)就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法然后运用“容斥原理”(SA∪B=SA+SB-SA∩B)解决。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例3. 如图,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例 4. 如图,在四边形ABCD中,AB=2,CD=1,∠A=60° ,∠B=∠D=90°,求四边形ABCD所在阴影部分的面积。
五、拼接法(割补法)这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例5. 如图,在一块长为a、宽为b的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽都是c个单位),求阴影部分草地的面积。
阴影部分面积的求法
阴影部分面积的求法(一)、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。
(二)、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。
(三)、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。
(四)、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
(五)、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,右图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。
(六)、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.(七)、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
(八)、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A 与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.(九)、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB 在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
别错过了几种小学阴影部分面积的求解方法
别错过了几种小学阴影部分面积的求解方法打开今日头条,查看更多精彩图片求阴影部分的面积是小学必考题目,本文整理分析几个常见的题型,供同学们学习。
一、直接利用公式求解利用基本公式,题目较简单,基础题居多。
这一类题目的难点是在复杂的图形中找到平常的图形,如三角形,正方形,长方形等.例1下图,求阴影部分的面积(单位:cm)。
解析:仔细观察,在两个正方形的组合图形中寻找关系,不难发现阴影部分就是一个底是2、高是3的三角形所以阴影部分的面积是:2 × 3 ÷ 2 = 3 (cm2) .二、“加减”法这方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例2求下图中阴影部分图形的面积。
解析:仔细观察,在两个正方形的组合图形中寻找关系,不难看出阴影部分的面积是长方形的面积减去半圆的面积,从而得解。
所以阴影部分的面积是:6×(6÷2)-3.14×(6÷2)×(6÷2)÷2=3.87(平方厘米)三、割补法(重点)割补法是指:把一个图形的某一部分割下来,填补在图形的另一部分,在原来面积不变的情况下,使其转化为旧的图形。
割补法求阴影部分的面积是个重点,很多题目都会用到。
使用割补法时要注意两点:一是割补后能使解题简单的才割补;二是割补前后图形的面积不能变。
例3求下图中阴影部分的面积。
解析:仔细观察,在两个正方形的组合图形中寻找关系,可以发现,有半部分拱形的面积可以分割下来,补到长方形内,这样,阴影部分的面积就是长方形面积减去一个三角形的面积。
所以阴影部分的面积是:6×3-3×3÷2=13.5(平方厘米).四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
例4下图,已知正方形的面积是4cm,求阴影部分的面积。
解析:仔细观图形为一个正方形,阴影部分分布在正方形的4个角处,空白地方为一个圆分成了四部分,所以我们把着四部分重新组合一下,就是一个圆,所以阴影部分的面积是正方形的面积减去一个直径为4圆的面积。