圆锥曲线综合练习及答案

合集下载

(完整版)圆锥曲线的综合经典例题(含答案解析)

(完整版)圆锥曲线的综合经典例题(含答案解析)

经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】① .②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。

圆锥曲线综合练习题及答案-.doc

圆锥曲线综合练习题及答案-.doc

一、单选题(每题6分共36分)1. 椭圆221259x y +=的焦距为. ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(—4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C 。

221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .677 B. 377C 。

185D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。

( )A .22149y x -=B 。

22194x y -= C. 2213131100225y x -= D 22131********y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( ) A .52 B. 102 C. 152D 5 7。

设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4 B .y 2=±8x C .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D 。

错误!9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为错误!的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4错误!D .8二.填空题。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。

圆锥曲线综合训练题(分专题-含答案)

圆锥曲线综合训练题(分专题-含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -=(2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). (2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 】解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+b y a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程.解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-k y k x . ,由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为∴所求椭圆方程为1315422=+yx 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即(1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程. — 解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1. (2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,<即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=, 2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I ) e c a =∴=2422,c a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即;则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] OP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. ,9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

圆锥曲线综合练习及答案

圆锥曲线综合练习及答案

圆锥曲线综合练习及答案 Last updated on the afternoon of January 3, 2021圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。

(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。

2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。

(132322=+y x ) 变式2、斜率为1的直线与双曲线1222=-y x 相交于A 、B 两点,又AB 中点的横坐标为1。

(1)求直线的方程 (2)求线段AB 的长(1)y=x+1(2)AB=62变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。

(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值 变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程;(2)求m 的取值范围。

例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程;(Ⅱ)当△AMN 得面积为103时,求k 的值.解:(1)由题意得222222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=. (2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=.设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+.所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k +++.由因为点A(2,0)到直线(1y k x =-)的距离212d k=+,所以△AMN 的面积为21||46||2k k S MN d +=⋅=.由22||4610123k k k +=+,解得1k =±. 变式1、已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔=[来源:学|科|网Z|X|X|K]1AF B ∆面积211133sin 60()40310,5,53225S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+=⇔===变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭,将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x k x x x x =-=++-222214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。

圆锥曲线综合练习题有答案推荐文档

圆锥曲线综合练习题有答案推荐文档

9圆锥曲线综合练习C . 2D . 2728 D. 1610 .在正△ ABC 中,D<^AB , E<^AC ,向量=1BC ,则以B ,C 为焦点,且过D , E 的双曲线离心率为212 .已知A 1, A 分别为椭圆C:xy +每=1(aAbA0)的左右顶点,椭圆 C 上异于A , A 2的点Pa b 441. 一、选择题:2 2已知椭圆―一 +-^—10 -m m -2A . 4B . 5=1的长轴在 y 轴上,若焦距为4,则m 等于( 2. 直线x-2y +2 =0经过椭圆C . 7 2 2x昇 孑b 2C.虽 5D. 8 =1(a Ab :>0)的一个焦点和一个顶点,则该椭圆的离心率为( 3. 设双曲线B .-22 2冷=1 (a >0)的渐近线方程为 a 9 B . 33x±2y =0,贝U a 的值为(4. 2若m 是2和8的等比中项,则圆锥曲线X 2+— =1的离心率是(mC.逅或逅2 2B. 752 2 冷—打=1(^0 , b>0),过其右焦点且垂直于实轴的直线与双曲线交于 a b点.若OM 丄ON ,则双曲线的离心率为( ) A.心 B .竺 C . 土逅2 2已知双曲线 M , N 两点,O 为坐标原6. 已知点 F i , F 2是椭圆 22rrx +2y =2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1 + PF 2 |的最小值是7. 2 2—=1上的点到一个焦点的距离为12,则到另一个焦点的距离为(25 9A . 22 或 2B . 7C . 222 2P 为双曲线 一-Z=1的右支上一点,9 16 的最大值为()A . 6 双曲线 D. 2M , N 分别是圆(x + 5)2 +y 2 =4 和(x-5)2 +y 2=1上的点,则|PM l —IPNI9. 已知点 2P (8, a )在抛物线y=4px 上,且P 到焦点的距离为10,则焦点到准线的距离为( 11.两个正数a , b 的等差中项是-,一个等比中项是 2品,且a Ab ,则抛物线y 2=-的焦点坐标是(2 aB . (— , 0) 5 A.(诗,0)1 C . (一 , 0)5D . (― , 0)C . 5922F 2分别是椭圆 笃+占=1(a >b 乂)的左、右焦点,A 是椭圆上位于第一象限内的一点, 点B 也在椭圆 上,a b16•若P(a, b)是双曲线4X 2—16y 2=m(m H0)上一点,且满足a-2b 》0 , a+2b >0,则该点P 一定位于双曲线(2=1,过P(2 , -1)的直线L 与双曲线只有一个公共点,则直线 I 的条数共有(B . 3条21.已知以F 1(-2 , 0) , F 2(2 , 0)为焦点的椭圆与直线 x + 73y +4=0有且仅有一个交点,则椭圆的长轴长为(C. 2^72 2 2 222 .双曲线 令-占=1与椭圆Z2+^=1(a>0, m>b>0)的离心率互为倒数,那么以 a , b, m 为边长的三角形是 a b m b恒满足k pA k pq =—,则椭圆C 的离心率为(A. 913.已知R 、且满足O3 +OB =0(O 为坐标原点),鴉"FW —0 ,若椭圆的离心率等于 当,则直线AB 的方程是(D . y =——X2C ,迟 214.已知点 P 是抛物线 y 2=2x 上的一个动点, 则点 P 到点M (0 , 2)的距离与点P 到该抛物线准线的距离之和的最小值为C. 75215 .若椭圆— =1与双曲线m n 2 2X y “ —=1(m ,n ,p qP , q 均为正数)有共同的焦点F i , F 2, P 是两曲线的一个公共点, 则|PF i |厅F 2I 等于C . m -pD .m 2 - p 2A .右支上B .上支上 C.右支上或上支上 D.不能确定17.如图,在^ABC 中,N CAB =N CBA =30:' , AC , BC 边上的高分别为 BD , AE ,则以A, B 为焦点,且过D ,的椭圆与双曲线的离心率的倒数和为( A. 43B . 1C . 2/3218 .方程 一P —— +—丄——尸 sin V 2 -sin “3 cos "2 —cosA .焦点在X 轴上的椭圆B .焦点在X 轴上的双曲线 C.焦点在y 轴上的椭圆D.焦点在y 轴上的双曲线2 2X y 3!19 .已知F 1, F 2是椭圆 尹+詁=1(a 》b 〉0)的左、右焦点,点 P 在椭圆上,且 NR P F 2 =-记线段PR 与y 轴的交点=1表示的曲线是(为Q , O 为坐标原点,若 △ FOQ 与四边形OF 2PQ 的面积之比为1:2,则该椭圆的离心率等于B . ^/^-3C . 4-273D . 43-120.已知双曲线方程为 C. 2条( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点 A(—1 , 0), B(1, 0)及抛物线y 2=2x ,若抛物线上点 P 满足I PA = m | PB ,则m 的最大值为(D .返 24 .设 F i , 三角形, 1 A .- 2 F 2是椭圆E a E 的离心率为(B . ? 3 25.等轴双曲线 实轴长为( A .迈 2=1(^ >0)的左、右焦点, 3 C.- 4C 的中心在原点,焦点在 3P 为直线上一点,△ F 2PF 1是底角为30的等腰2x 轴上,C 与抛物线y =16x 的准线交于A , B 两点,|AB|=4j3 ,则 C 的C. 4 C 的对称轴垂直, 26 .已知直线l 过抛物线C 的焦点,且与 则^ ABP 的面积为( ) A . 18 B . 2427 .中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点 C .逅2B .丽 C. 36 28 .椭圆ax +by 2=1与直线 y =1 _x 交于 A , B 两点 I 与C 交于A, B 两点,I AB|=12 , D . 48 (4 , - 2),则它的离心率为( D .並 2 过原点与线段 AB 中点的直线的斜率为 P 为C 准线上一点,D.巫 27 29.若椭圆 2—十工=1(m >0, m n n >0)与曲线x 2+y 2=|m — n|无焦点,则椭圆的离心率e 的取值范围是( A.(Y ,1) B. (0, C .(¥ ,1)D . (0,Y) 2 2 30 .已知F 1,F 2分别是椭圆亍匕二1的左、右焦点, A 是椭圆上一动点,圆 C 与F 1A 的延长线、F 1F 2的延长线以 及线段AF 2相切,若M (t , 0)为一个切点,则( A . t =2 B . t 》2 C . tc2 D . t 与2的大小关系不确定 31.如图,过抛物线 y 2=2 px( p>0)的焦点 F 的直线l 交抛物线于点 A, B ,交其准线于点 C ,若|BC |=2| BF |,且 | AF |=3,则此抛物线方程为( =9x =6x =3x =73x2x 2 32 .已知椭圆 一+y =1的焦点为F 1、4F 2 , 在长轴 A I A 2上任取一点 M,过M 作垂直于AA 2的直线交椭圆于 P,使得PF 1 PF 2 c O 的M 点的概率为246 C. D. 33 .以 O 为中心, F i ,F 2为两个焦点的椭圆上存在一点 M ,满足IMF 1 |=2|MO |=2|MF 2|,则该椭圆的离心率为 34.已知点F i , F 2是椭圆 +2 y 2 =2的两个焦点,点P 是该椭圆上的一个动点, 那么I PF 1 + PF 2I 的最小值是( 35•在抛物线 2y =x + ax —5(a H0)上取横坐标为x^ , x^2的两点,过这两点引一条割线, 有平行于该割线的一条直线同时与抛物线和圆 5x 2+5y 2=36相切,则抛物线的顶点坐标为( A . (-2 , -9)36 .若点O 和点F 分别为椭圆 4 B . 3 C . 6 B . (0, -5) 2 2 —+=1的中心和左焦点, 3 D . 8 C. (2 , -9) D. (1,-6) 点P 为椭圆上的任意一点, 则0P FP 的最大值为(37 .直线3x -4y +4 =0与抛物线 =4y 禾廿圆 2 2x + (y —1) =1从左到右的交点依次为 C,D,则器的值为B .丄 16 38 .如图,双曲线的中心在坐标原点 线的左焦点, 7 577 777 145方 14A. 1639 .设双曲线 直线 AB 与FC 相交于点 1 4 C 分别是双曲线虚轴的上、下端点,2 2 C :笃一占=1(a A0, b >0)的左、右焦点分别为a b F i , B 是双曲线的左顶点, ) F 是双曲F 2,若在双曲线的右支上存在一点 P ,使得| PF i |=3| PF 2 |,则双曲线C 的离心率e 的取值范围为( A. (1, 2] B .(血,2] C .(近,2) (1, 2) 40 .已知A (x 1 , yj 是抛物线y 2=4x 上的一个动点, 2 2B (x 2,y 2)是椭圆Vt^1上的一个动点,呵0)是一个定点,若AB // x 轴,且X 1 <X 2,则△NAB 的周长l 的取值范围为2C. 22 244 .已知以椭圆 务+ ■y〒=1(a>b>0)的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该 a b 椭圆的离心率的取值范围是( )A. (0,曽 B .(呼,1)P,则|PF 2|的值等于( B . 83的中点在双曲线上, 则双曲线的离心率是D .应2 248 .直线I 是双曲线 务—£ =1(a >0,b >0)的右准线,以原点a b10 A. (-3- '5)2 x41.设双曲线-2 a C. (10 V11 D. q '5)—占=1(a 沁,b >0)的离心率e = 2 ,右焦点F (c ,0),方程ax 2+bx-c = 0的两个根分别为 为,x ?,则点P (x 1 , x 2)在( 「 2 A .圆x=10内 2 2 B .圆 x +y =10 上 + y 2 =10外 D .以上三种情况都有可能2y 、 —孑=1(a ;>0, b >0)的右焦点 线段FP 的中点,则双曲线的离心率是( 42.过双曲线 2 x—2 a2 2 F 作圆X + y =a 的切线FM (切点为M ),交y 轴于点P,若M 为x243 .若双曲线 -7 -子y 轴上,则该双曲线离心率的取值范围为(y=1 (a :>0,b>0)上不存在点P 使得右焦点 F 关于直线 OP (0为双曲线的中心)的对称点在B. [72,均C. (1J 5] (1,问X 246 .已知F 1、F 2是双曲线 一2 a=1 (a> 0, b> 0) 的两焦点,以线段 F 1F 2为边作正三角形 MF 1F 2,若边 MF 1A . 4+2V3B. V 3+1D.247 .已知双曲线务. a则该双曲线离心率2=1(a >0, b :>0)的左顶点、右焦点分别为 b 2' e 的值为(A 、F,点 B(0, b),若 BA+ BF = BA-BF ,B • ^/3C .(牛1,1)D .(0,仔)2 245 .椭圆G : — +— =1的左准线43I ,左.右焦点分别为F i . F 2,抛物线C 2的准线为I ,焦点是F 2, C i 与C 2的一个交点为 A .430为圆心且过双曲线焦点的圆被直线I 分成弧长为2:1的两段,则双曲线的离心率为 ()42MO|-|M T 卜 b-aMO|-|MT | = b-a2Z P F 1F 2PF 2F 1,其中F I ,F 2为双曲线C i 的两个焦点,则双曲线51 .设圆锥曲线r 的两个焦点分别为F i , F 2 , 若曲线r 上存在点P 满足PF j : F 1F 2I J PF 2I =4:3:2心,右 Sx IPF 1 =$△ IPF 2 足 IF 1F 2 成立,二、填空题:|AB |=1x 轴上,且长轴长为 4,离心率为丄的椭圆的方程为2255. 9.已知双曲线X 2—(=1的一条渐近线与直线 X —2y+3=0垂直,则aa2256 .已知P 为椭圆一+仏=1上的点,F 1 , F 2是椭圆的两个焦点,9 42 22257.已知双曲线 笃-与=(a >0, b A0)和椭圆一+—=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,a b 16 9则双曲线的方程为 ___________________ .2 249.从双曲线=1@ A0,b 》0)的左焦点a 2b 2F 引圆 xF 2=a 2的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MO | —|MT |与b - a 的大小关系为C.MO |-|MT |c b -aD .不确定.50 .点P 为双曲线C i :22—2—= [(a ;>0,b>0)和 圆 C?: a b2 丄 22. .2”x+y=a+b 的个交点,且A .巧B .1+72C.率等于1十3 A .-或-2 252 •已知点P 为双曲线 2 B . 2或 232 2笃=1(a >0, b >0)右支上一点,F 1 , F 2分别为双曲线的左、右交点, a bC.丄或22I 为△PF 2F 2的内2a B.a J a 2m 2C.C i 的离心率为(,则曲线r 的离心则A 的值为53 .已知F i , F 2为椭圆2 2釘計1的两个焦点,过F i 的直线交椭圆于A, B 两点.若|F 2A| + |F 2B|=12 ,则54.中心在原点,焦点在 且 N F1P F 2 =6O ",贝u △ F 1PF 2 的面积2 2 2 258 .若双曲线 冷—占=1(^0 , b>0)的一条渐近线与椭圆 —+乞=1的焦点在x 轴上的射影恰为该椭圆的焦点,则 a b 4 3双曲线的离心率为 ________________ . 2 259.已知双曲线Zr=1(a ;>0, b>0)的左、右焦点分别为F 1 , F 2 ,过点F ?做与x 轴垂直的直线与双曲线一个焦点a bP ,且N PF 1F 2 =30,则双曲线的渐近线方程为60•已知F 1、F 2分别为椭圆 一+L=1的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若|函|-|左25 9贝y PQ (PR -PF2)=. 61 •已知圆C : X2 3 4 5+y 2+6X +8y +21 =0,抛物线y 2=8x 的准线为I ,设抛物线上任意一点 P 到直线I 的距离为则m 十| PC |的最小值为 ______________ .2 262.设双曲线=1的右顶点为A ,右焦点为F •过点F 平行双曲线的一条渐近线的直线与双曲线交于点9 16则^ AFB 的面积为.265.已知抛物线 C:y =2p x( p A0)过点 A(1, - 2). (I)求抛物线 C 的方程,并求其准线方程;(n)是否存在平行于 OA ( O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线 OA 与L 的距离等 于 逅?若存在,求直线l 的方程;若不存在,请说明理由. 5 66.已知抛物线X 2=2 py(p >0). P 点为抛物线上的动点,点 P 在x 轴上的射影是点 M ,点A 的坐标是(4 , -2),且|PA| + | PM I 的最小4.求抛物线的方程;设抛物线的准线与 y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程;1=4 ,263 .已知直线l 1:4x-3y + 6=0和直线b : x = 0 ,抛物线y三、解答题:64.已知椭圆 (I)求椭圆 (n)若直线2 2 C :笃+爲=1(a Ab >0)的两个焦点为h , F 2,a bC 的方程;l 过点M (-2 ,1),交椭圆C 于A, B 两点,且点M 恰是线段AB 的中点,求直线l 的方程.4 14呼七十F2蔦.(I)已知值是(ii)(n)设过抛物线焦点F 的动直线l 交抛物线于A , B 两点,连接AO , BO 并延长分别交抛物线的准线于 C , D 两点, 求证:以CD 为直径的圆过焦点 F .2的距离之和的最小值2 267.如图所示,已知椭圆 0:4 +詁=1但汕:>0) , A i , A2分别为椭圆C的左、右顶点.(I)设F i , F2分别为椭圆C的左、右焦点,证明:当且仅当椭圆C上的点P在椭圆的左、右顶点时,|PF i|取得最小值与最大值;(n)若椭圆C上的点到焦点距离的最大值为C相交于A , B两点(A, B不是左、右顶点),且满足AA2丄BA2 , 证明:直线l过定点,并求出该定点的坐标.2 2X y68.已知椭圆C:弋=1(a Ab A0)的离心率a b是该椭圆的一个顶点.(I)求椭圆C的方程;2(n)已知圆0:x2+y y上的切线I与椭圆相交于3定点的坐标;如果不是,请说明理由.e =——2,左、右交点分别为 F i , F2,抛物线—4j2x的交点F恰好B两点,那么以AB为直径的圆是否经过定点?如果时,求出3,最小值为1,求椭圆C的标准方程;(川)若直线l:y=kx +m与(n)中所述椭圆。

高考数学专题十九圆锥曲线综合练习题

高考数学专题十九圆锥曲线综合练习题

培优点十九圆锥曲线综合1.直线过定点2xxF轴的离心率为且垂直于,过左焦点例1:已知中心在原点,焦点在轴上的椭圆C2P两点,且,的直线交椭圆于.Q2?2PQ C(1)求的方程;C??22MM作椭是直线处的切线,点(2)若直线是圆上任一点,过点上的点2,28??yx ll ABMAMBAB过定点,,切点分别为,设切线的斜率都存在.求证:直线圆的切线,,C并求出该定点的坐标.22yx??.2)证明见解析,;【答案】(1)(2,11??8422yx??, 1)由已知,设椭圆的方程为【解析】(0?b??1?a C ??,不妨设点,代入椭圆方程得因为,1??22PQ?2?c,P22ba22ab22cc212222,,,所以,又因为,所以8ba??b2?4?e?cb?1??2a22b22yx所以的方程为.1??C 84??,即,(2)依题设,得直线的方程为2x???y?204?x?y?l??????,,,设yxABx,y,Mx,y210120??MA,由切线的斜率存在,设其方程为xxk?y?y?11??xxy?k??y?11???2????22,联立得,0?28y?xkx?4ky?kx?x?2k1??22yx1111?1??48???22??????22?0?8k2y?1?Δ?16kkx?ykx4?,由相切得??1111??2??2222,即,化简得4?8?y?kxk04yk?y?x?8?kx?2111111xyxyx11111MA???k?的方程为因为方程只有一解,所以,所以切线??1xx?yy???,11y21xx?2yy?8xx?2yy?8MB,同理,切线即的222yyx2?8?111x方程为,2211.8y??2yxx???0011AB的方程为,所以直线,所以又因为两切线都经过点yx,M?008y??2yxx?02208y??2yxx,00??4y??xAB的方程可化为,所以直线,又82y4?x?xx?00000??2yx2?x????,,令即,得08y?x8x?2y????00?y?881?y????AB所以直线.恒过定点2,1.面积问题222yxb??FF直线,焦距为、4例2:已知椭圆,的左、右焦点分别为0a?b?1??x?:yl 21122baclFlEAB1?与线段两点,的直线关于直线与椭圆相交于、在椭圆上.斜率为的对称点221PABD相交于点两点.,与椭圆相交于、C1)求椭圆的标准方程;()求四边形面积的取值范围.(2ACBD223232yx??,;.2)【答案】(1)(1????3948?????????EFFEF【解析】(1)由椭圆焦距为4,设,连结,,,设2,0F?2,0F21121bcb222???c??ab,,又,得则,?tan?cos?sin aacFF2csin90?1ac21,??????e???bc??b?|?|EFsin?sin??ca90EF2a?21aa22yx222a?bc?c?b?c?2a?8,所以椭圆方程为解得.,1??84????m+?y?xlyx,D,Cxy方程:、2()设直线,,22211.4?m??xx22?yx?213???1?22,所以,由,得08?x3?4mx?2m??48?28m?2??m?y??x?xx??213?222238????x?y?A6,66,?6Bl,,得:,代入椭圆得由(,1)知直线?AB????133333????44???6m?6,lPAB,得由直线相交于点与线段,??233??????2,28m4?22416m2xx?2??m?+12x2CD?x???8xx2?211221393116321??1kk?l?l,,,知与而+12mAB??S?CD??12ACBD ll291232443232163??????22?m???,06,6?m,+12m??由,得,,所以??????333993??????3232??,?.面积的取值范围四边形ACBD??93??3.参数的值与范围??????20?2px?pC:yF的上,过焦点3例:已知抛物线的焦点在抛物线,点1,2F1,0A C M,两点.交抛物线于直线NCl(1)求抛物线的方程以及的值;AF C22??xFNMF?B(2)记抛物线的准线与的值.轴交于点,,若,求40BN?BM?C2?3??2(),;1【答案】(.)22AF?x?y4????20p??2:Cypx,的焦点【解析】(1)抛物线1,0F p2;,则,抛物线方程为42p?xy4?1??2p??1,2A.点在抛物线上,C2???AF?12??????,设)依题意,(2、,设,y,MxyF1,0Nx,1?xl:my?2211.2?x4?y2x,得联立方程,消去.0my?4?y?4?1my?x??1my?4mx?y?y???1112①,且,所以??1my??4x?yy???2212???????y?y?FNMF?,即,则又,y1?x,?y,??1x2121122??4???y1?????m4y?1???2??????,则,,22?y得,代入①得,消去2?4m???21,0B?yBN?,BM?xx?1,y?121122222????2222y?x?1y?1?BM?|BN?|x?BM?BN?则2121??2222yy??2?x??2?xx?x??????2228?y?y???m4?1myy2112????4222,222111??2222y??2??2my?my?(?my?1)2?(my?1)y21112216m?16m??16m40?84?4m?m?m??18124?2?2?3.当,解得,故40?m?16?40m16?m2.弦长类问题4222xyx??2的顶点,的左右顶点是双曲线4:已知椭圆且椭圆例1?ya?b?0?:?C:?1C 2122ab33CC.的上顶点到双曲线的渐近线的距离为212C(1)求椭圆的方程;1QMCMCQ5?OQ?OQ?,求,两点,与相交于两点,且与(2)若直线,相交于l22111221的取值范围.MM??2.;(2)【答案】(1)212x1??y100,?3??2C3a?b0,)由题意可知:1(【解析】,,又椭圆的上顶点为1.3C,双曲线的渐近线为:0y?x?x?y??323?3b23x2.由点到直线的距离公式有:,∴椭圆方程1??b?1??y2232x2y并整理,代入)易知直线,消去的斜率存在,设直线(2的方程为m??kxy1?y?3得:??222,033mx???6kmx?k1?32?1?3k?02?1?3k?0??C相交于两点,则应有:,要与? ??????22222220m?3??41?3k?336k?mm?1?3k????????,设,yQxx,yQ,2112122?m3?36km则有:,.?xx???xx212122k?31k?31????????22.又m?km?m??x1?k?x?OQOQ??xx?yy?xxxkx?mxkx211121*********????????2222225?OQ?OQ?,又:,所以有:?k?5?6km?m1?331?k?m?3??212k?3122k?1?9m?,②??2222y,将,代入并整理得:,2x消去my?kx?1??y0m??x3?6kmx?1?3k33????222222.③要有两交点,则m?1?04??1?3k3k3m??Δ?36k3m12.由①②③有?0?k92?33m?6km????.有,设,、yxMMx,y,??xx??xx????2222k3413m??36k3m?414332434322k31?k31???22k31???22k?3m9??432?MM?1k?21??22k1?312k2k14422222.?k?1?kMM???1?k1?MM?k??19m代入有将.2112??22k3?12k3?1.??11??2t?0,,,,令kt?12??MM??21??29??2k1?3??t1t?1?t1??????t?0,?'tf?tf?.,令??32????9??t1t?331?11????????t??0,0,t内单调递增,内恒成立,故函数在所以在t0tff'?????99????5??????10M?0,?0,?Mft.故???2172??5.存在性问题??222yx??????A1,点例5:已知椭圆,,的左、右焦点分别为1,0?1,0FF0C:??1?ab?????21222ab??在椭圆上.C(1)求椭圆的标准方程;C M,有两个不同交点时,能在,使得当直线)是否存在斜率为2的直线与椭圆(2NCll5PM?NQP?若存在,求出直线,在椭圆上找到一点直线,满足上找到一点的Q Cl?y3方程;若不存在,说明理由.2x2;(2))不存在,见解析.【答案】(11?y?2【解析】(1)设椭圆的焦距为,则,1?cCc2??A1,,在椭圆∵上,∴??1???221AF2a??AF C 2????2222????????21222????2x22222a?1c?b?a?.的方程为,故椭圆,∴1?y?C2(2)假设这样的直线存在,设直线的方程为,t2x??y l5??????????,Pxy,xyD,xQ,x,MxyNy,,,,的中点为设,MN??3004242113??y?2x?t?22x,得由,消去,0?8?tty?9y2??22x?2y?2?yy?tt2??22,且∴,,故且123t??3??y?y?y?0t?36?Δ?4t8?012929NQ?PM为平行四边形,由,知四边形PMQNDD的中点,因此的中点,而为线段为线段PQ MN5y?t15?2t43?y?,,得∴?y 049297不在椭圆上,,可得,∴点又Q3?t??31?y???43.故不存在满足题意的直线l对点增分集训一、解答题2????2PP过点相外切,动圆圆心并且与圆1.已知动圆.的轨迹为2,0F4??x?2F:y C21的轨迹方程;(1)求曲线C1????lBA,直线、,设点与轨迹交于(2)过点两点,设直线的直线1,0F2,0?D C?xl:122ADBMM于,求证:直线经过定点.交l2y??2;(1)(2)见解析.【答案】0?1x??x3,1)由已知,【解析】(2??|PF ?|PF ?2PF| |PF2211P,,轨迹为双曲线的右支,,42c??|FF 2C2a?2?a?1c212y??2?.标准方程曲线0x???1x C3xBM必过)由对称性可知,直线(2轴的定点,31????????,MlBM1,02,?2,33BPA经过点,的斜率不存在时,,,,知直线当直线??122????????ly,By,2ky:l?x?Axx的斜率存在时,不妨设直线当直线,,,122111. ??y3y31y1??111y?,M1?AD:y?x时,,,当,直线?x????????M1?x1x?212x?22??111??2?x?y?k22k?43?4k?????2222,得,,?xx??xx0k?33?kx?4kx??4???21k?kBM,经过点,即下面证明直线,即证?1,0P 2121223k?k3?223x?y?3???3yyPBPM x?1x?121?3yx?3y?xy?yy?kx?2ky?kx?2k,即,,由2121122211??234?k22k3k4?4??4???0?5?,即整理得,045xx???4xx?????BMBM.经过点过定点即证,直线1,0P1,0223yx????1,AB分别为椭圆的左顶2211222?3?3kk?3k点、下顶点,在椭圆,上,设2.已知点0bE:??1?a???222ba??221AB.原点到直线的距离为O7E1)求椭圆的方程;(yxEPDPBPA两点,求分别交轴于在第一象限内一点,直线轴、,,(2)设为椭圆C的面积.四边形ABCD22yx23.2);)【答案】(1(1?? 4392231yx??4??1,1??)因为椭圆,有经过点,【解析】(10E:a??1b????22222baba??221ab?AB,的距离为由等面积法,可得原点到直线O722a?b22yx b?3E的方程为联立两方程解得,.,所以椭圆1??E:2a?4322xy????2200?1?0?x?P0,x,yy.,则(,即2)设点12??4x3y00000043y2y??00?2y?yPA:?x.直线,令,得0x?D x?2x?20032?x2y?2232yx?y?3300000从而有.,同理,可得?BD???AC32x?x2?y3?000.x110000所以四边形的面积为??AC?BD?2?22x3?y0022x383y3xy?12x?xy?12x?83y12?12?4?4y?12?43110000000000????223y?2y?3x?2?xy?3x?2y23x00000000 y?433xy?6x12?20000.32??3y?2xy?3x?2000032所以四边形的面积为.ABCD2??2P上,且有点的圆心,在圆的半径3.已知点为圆是圆上的动点,点Q8??yx?1CPC??0?MQ?APAPM,满足.和,上的点1,0AAM2AP?P在圆上运动时,判断(1)当点点的轨迹是什么?并求出其方程;Q22F,1)若斜率为的直线与圆中所求点的轨迹交于不同的两点相切,与((2)Q1yx??kl43H的取值范围.(其中是坐标原点),且,求kO??OFOF?542x222A)2;,长轴长为(2【答案】(1)是以点,的椭圆,为焦点,焦距为1??y C2????2233,?,?.????3223????AP的垂直平分线,)由题意是线段【解析】(1MQ所以,2?22?CAQC?QP?QC?QA?CP?22A的椭圆,为焦点,焦距为2所以点的轨迹是以点,,长轴长为Q C222a?,∴,,1ab???c1c?2x2.故点的轨迹方程是Q1??y2????,,,)设直线(2:yHy,xF,xbkx??y l2112b22221??1b?k与圆直线,,即相切,得1?xy?l21?k ??222y得:联立,消去,0?4kbx?2b??1?2k2x2??b?kx?y???????2222222,得,2?x21?y??0k?02b1?1??8?2k8??Δ16kbbk?4?1?2k22?2bkb4,,?xx?x?x?????22??2k?2b1?kb4?????222b?kb?OF?OH?xx?yy?1?kb?xx?kb?x?x∴212122k21?k21?2121212122k1?21?2k????22221k41?kk2k?2k?12?1???k?,222k1k?2k?121?22431?k112,所以,得???k?25k241?23322233,∴,解得或?k????kk???322323????2332,??,故所求范围为.????2323????22yx1??222AA,的焦距为,离心率为已知椭圆,圆,.4c??O:xy0bC:??1?a?c22122ba2ABA△AB.是椭圆的左右顶点,面积的最大值为是圆的任意一条直径,2O1的方程;1)求椭圆及圆(OC PE,求,)若为圆的任意一条切线,与椭圆的取值范围.交于两点(2PQQ Oll??2264yx223,,).;1【答案】()(21?yx?1????334??1xABB,易知当线段轴距离为,(【解析】1)设则点到h h?a2??AO??h??S2S1AAAB△OB△211?a?c??S2ycBO??h,,轴时,在AB△Amax1c1b?3,,,,,1?a?c2c?2?a??e?a222yx22.,圆的方程为所以椭圆方程为1x?y?1??432b2LL的方程为,此时)当直线2;的斜率不存在时,直线(3PQ??1x??a m221d???L,,直线为圆的切线,设直线,方程为:1?k?m?mkx?y?2k?1y?kx?m????222直线与椭圆联立,,得,0?4m?4k??3x12?8kmx22?yx??1? 43??8km?x?x??21234k????2,由韦达定理得:,判别式0?k?Δ?4823?24m?12??x?x ?212?34k?22?23?kk?43?122,,令所以弦长3?3?t?4k??xxPQ?1?k2123k?42??1624??所以;3,???3PQ?3???????t3t??????64PQ?3,,综上,??3??22yx????FF经、.如图,己知的左、右焦点,直线是椭圆51xy?k?:l01a?b?G:??2122ab 43ABF△FBA.过左焦点交,且与椭圆,的周长为两点,G21(1)求椭圆的标准方程;G △ABFI为等腰直角三角形?若存在,求出直线)是否存在直线的方程;若不,使得(2l2存在,请说明理由.??xc,故与,因为直线.轴的交点为22yx;2(1))不存在,见解析.(【答案】1??23【解析】(1)设椭圆的半焦距为1,0?1?Gcl ABF△34a?3,所以,的周长为,即又,故3?AFAB??BF4a?4222222?3?1ab??c?2.22yx因此,椭圆的标准方程为.1??G32(2)不存在.理由如下:AB不可能为底边,即.先用反证法证明BFAF?22??????,假设,,设,则由题意知BFB?x,Fy1,0,yAAFx222121222????22?1x?1?y?yx?,????222112.又得:,,代入上式,消去,?1???10?6x?x?x?xyy21122222xyxy2121213322xx?xx?x?6.轴,所以,故因为直线斜率存在,所以直线不垂直于ll2211?3xx?x?2x3?3?6矛盾)与,,(2211??2222,所以矛联立方程,得:6?x??x?0?6?3k?26x?kx?3k23?22?yx?1?2k6???1?xy?k?盾.2123k?2?故.BF?AF22AB不可能为等腰直角三角形的直角腰.再证明△ABFA为直角顶点.为等腰直角三角形,不妨设假设2??22F△AF,此方设,在中,由勾股定理得:,则m?AF m?2?AF343m?2??m2112程无解.故不存在这样的等腰直角三角形.。

圆锥曲线综合练习及答案

圆锥曲线综合练习及答案

圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。

(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。

2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。

(132322=+y x )变式2、斜率为1的直线与双曲线1222=-y x 相交于A 、B 两点,又AB 中点的横坐标为1。

(1)求直线的方程 (2)求线段AB 的长 (1)y=x+1 (2)AB=62…变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。

(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程; (2)求m 的取值范围。

例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为22.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN 得面积为103时,求k 的值.解:(1)由题意得222222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=. (2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=.`设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+.所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k +++.由因为点A(2,0)到直线(1y k x =-)的距离212d k=+,所以△AMN 的面积为221||46||212k k S MN d k +=⋅=+. 由2||4610k k +=,解得1k =±. 变式1、1已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率; (Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BFBF F F BF F F ο=+-⨯⨯ 2223(2)5a m m a am m a ⇔-=++⇔= [来源:学|科|网Z|X|X|K])1AF B ∆面积211133sin 60()40310,5,53225S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+====变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,`2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x kx x x x =-=++-222214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.…即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。

圆锥曲线综合试题(全部大题目)含答案

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。

(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。

6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。

圆锥曲线大题综合(含答案)

圆锥曲线大题综合(含答案)

圆锥曲线大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.2.(2022秋·广东江门·高二校考期中)已知抛物线22(0)y px p =>的焦点F 到其准线的距离为4.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022秋·广东江门·高二校考期中)椭圆C :22221(0)x y a b a b +=>>2.(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.5.(2022秋·广东江门·高二校考期中)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,2a =.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :22221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点()11,0F -,圆()222116F x y -+=:,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.10.(2022秋·广东广州·高二校联考期中)已知两定点()4,0A -,()1,0B -,动点P 满足2PA PB =,直线:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.12.(2022秋·广东江门·高二校考期中)动点N (x ,y )与定点F (1,0)的距离和N 到定直线2x =的距离的比是常数22.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l 的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a b Γ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;15.(2022秋·广东江门·高二校考期中)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得直线l 绕点F 无论怎样转动都有0PM PN k k +=?若存在,求出点P 的坐标;若不存在,请说明理由.16.(2022秋·广东广州·高二南海中学校考期中)在平面直角坐标系xOy 中,已知点()4,0A -,()4,0B ,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.17.(2022春·广东汕头·高二校考期中)已知椭圆C :()222210x y a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆2222:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.19.(2022春·广东广州·高二二师番禺附中校考期中)已知点A的坐标为()-,点B的坐标为(),且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.21.(2022春·广东深圳·高二校考期中)已知抛物线()2:20C x py p =>的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆221:1164x y E +=,()22222:10,4x y E a b a a b+=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).24.(2022秋·广东广州·高二校联考期中)如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()222210x y a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,B ⎛ ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点)P,圆Q :(2216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M 到A (﹣2,0)和到B (2,0)的斜率之积为﹣14.(1)求曲线Γ的轨迹方程;(2)若点P (x 0,y 0)(y 0≠0)为直线x =4上任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()2222:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.圆锥曲线大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .则直线AB 的方程为2,y x =-设()()1122,,,A x y B x y ,联立228y x y x=-⎧⎨=⎩,整理可得21240xx -+=,所以1212x x +=,由抛物线的性质可得12||12416AB x x p =++=+=.3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点1,圆2,点在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.的比是常数2.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.【详解】(1)因为12||22F F c ==,则c =1,因为2222,3a b a c ==-=,所以椭圆Γ的方程22143x y +=;(2)证明:椭圆Γ的左、右焦点分别为12(1,0),(1,0)F F -,①当直线l 垂直于x 轴时,因为直线l 与椭圆Γ相切,所以直线l 的方程为2x =±,此时点12,F F 到直线l 的距离一个为11d =,另一个为23d =,所以123d d =,②当直线l 不垂直于x 轴时,设直线l 的方程为y =kx +b ,联立2234120y kx b x y =+⎧⎨+-=⎩,消去y ,整理得222(34)84120k x kbx b +++-=,所以,222222644(34)(412)16(9123)k x k b k b ∆=-+-=+-,因为直线l 与椭圆Γ相切,Δ=0,所以,2234b k =+,因为1(1,0)F -到直线l 的距离为12||1-=+k b d k ,2(1,0)F 到直线l 的距离为22||1+=+k b d k ,所以,222221222222|||||||(34)||33|311111k b k b k b k k k d d k k k k k-+--++=⋅====+++++,所以点12,F F 到直线l 的距离之积为定值,且定值为3.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;【详解】(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,设PM 的中点为N ,所以点A ,B 在以PM 为直径的圆N 上,又点A ,B 在圆M 上,所以线段AB 为圆N 和圆M 的公共弦,因为圆22:430M x x y -++=①,AB的中点设为F点,由HF始终垂直干当P点在x轴上时,F点与H点的重合,M,得HM的中点坐标为⎛(2,0)⎝圆去掉点M,圆C上,点F是椭圆C的右焦点.(1)求椭圆C的方程;(2)过点F的直线l与椭圆C交于M,N两点,则在x轴上是否存在一点P,使得直线l绕点F无论怎样转k k+=?若存在,求出点P的坐标;若不存在,请说明理由.动都有0PM PN,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆22:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :221(0)a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为22,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆1:1164x y E +=,()222:10,4E a b a a b +=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()2210a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,2B ⎛- ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()22:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.)27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点P ,圆Q :216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.(1)因为N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M ,28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M到A(﹣2,0)和到B(2,0)的斜率之积为﹣1 4.(1)求曲线Γ的轨迹方程;(2)若点P(x0,y0)(y0≠0)为直线x=4上任意一点,PA,PB交椭圆Γ于C,D两点,求四边形ACBD 面积的最大值.【点睛】熟练掌握直线与圆锥曲线位置关系及函数单调性是解题关键30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()22:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.。

圆锥曲线综合测试题(含答案)

圆锥曲线综合测试题(含答案)

圆锥曲线综合测试题一、选择题(每题5分)1、双曲线x 2-5y 2=0的焦距为( ) A.6 B.26 C.23 D.432、顶点在原点,且过点(-4,4)的抛物线的标准方程是( )A.y 2=-4xB.x 2=4yC. y 2=-4x 或x 2=4yD.y 2=4x 或x 2=-4y3、若椭圆19222=+m y x (m>0)的一个焦点坐标为(1,0),则m 的值为( ) A.5 B.3 C.23 D.224、已知方程11122=--+ky k x 表示双曲线,则k 的取值范围是( ) A.-1<k<1 B.k>0 C.k ≥0 D.k>1或k<-15、已知双曲线15222=-y a x 的右焦点为(3,0)则该双曲线的离心率为( ) A.14143 B.423 C.23 D.34 6、如果点P (2,y 0)在以点F 为焦点的抛物线y 2=4x 上,则PF=( )A.1B.2C.3D.47、双曲线12222=-b y a x 与椭圆12222=+by m x (a >0,m>b>0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8、已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB=( )A.3B.6C.9D.129、已知双曲线12222=-by a x (a >0,b>0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,∆AOB 的面积为3,则p=( )A.1B.23 C.2 D.3 10、已知F 1,F 2为椭圆191622=+y x 的两个焦点,过点F 2的直线交椭圆与A ,B 两点,在∆A F 1B 中,若有两边之和等于10,则第三边的长度为( )A.6B.5C.4D.311、已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆12、若直线mx +ny=4与圆O: x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆14922=+y x 的交点个数为( )A.至多一个B.2C.1D.0二、填空题(每题5分)13、抛物线x 2=4y 上一点P 到焦点的距离为3,则点P 到y 轴的距离为 。

(完整版)圆锥曲线大题综合测试(含详细答案)

(完整版)圆锥曲线大题综合测试(含详细答案)

圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。

圆锥曲线综合练习题及答案.doc

圆锥曲线综合练习题及答案.doc

圆锥曲线综合练习题及答案.椭圆的焦点是。

()a.5b.3 c.4d82 .已知双曲线的偏心率为2,焦点为(-椭圆的焦点是。

()a.5b.3c.4d82 .已知双曲线的偏心率为2,焦点为(:4x-3y 6=0,直线l2: x=-1,抛物线y2上的移动点p=4x到直线l1和直线l2的距离之和的最小值为()a.2b.3c.d.9 .已知直线l1:4x-3y 6=0,直线l2:X=-1,从抛物线y2=4x上的移动点p到直线l1和直线l2的距离之和的最小值是()10。

抛物线y2=4x的焦点是f,准线是l,穿过f并具有斜率的直线与x轴上方的抛物线部分在点a处相交,AK⊥l,垂直脚是k,那么△AKF的面积是()a.4b.3c.4d.8ii(每项6分,共24分)7。

椭圆的准线方程是_ _ _ _ _ _。

8.双曲线渐近线方程是_ _ _ _ _ _。

9.如果椭圆(0)的准线通过该点,则椭圆的偏心率为_ _ _ _ _ _。

10.当已知抛物线拱的顶点距离水面2米时,测得的水面宽度为8米。

当水面上升米时,水面的宽度为_ _ _ _ _ _。

3.回答问题11。

已知椭圆的两个焦点分别是偏心率。

(15点)(1)求椭圆圆方程。

(2)不平行于坐标轴的直线与椭圆在两个不同的点相交,线段中点的横坐标是直线斜率的数值范围。

12.设置双曲线c: 双曲线c的偏心率e的取值范围在两个不同的点a、b(I)上:(二)让直线L和Y轴的交点为P,求出a13的值。

已知椭圆:两个焦点分别是,并且具有斜率k的直线穿过右焦点并且在点a 和b处与椭圆相交,并且与y轴的交点被设置为p,并且线段的中点正好是b。

(25点)(1)如果找到了椭圆C的偏心值范围。

(2)如果从A和B到右准线的距离之和为,则得到椭圆C的方程。

14.(201-x=-1,抛物线y2=4x,从最后一个移动点p到直线l1和直线l2的距离之和的最小值是()a.2b.3c.d.9。

已知的直线l1: 4x-3y 6=0,直线l2:X=-1,从抛物线y2=4x上的移动点p到直线l1和直线l2的距离之和的最小值是()10。

完整版)圆锥曲线综合练习题(有答案)

完整版)圆锥曲线综合练习题(有答案)

完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。

4B。

5C。

7D。

82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。

若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。

(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。

2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。

(132322=+y x ) 变式2、斜率为1的直线与双曲线1222=-y x相交于A 、B 两点,又AB 中点的横坐标为1。

(1)求直线的方程 (2)求线段AB 的长 (1)y=x+1 (2)AB=62变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。

(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值 变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程; (2)求m 的取值范围。

例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为22.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN 得面积为103时,求k 的值. 解:(1)由题意得222222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=.(2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=. 设点M,N的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+.所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k +++.由因为点A(2,0)到直线(1y k x =-)的距离2||12k d k=+,所以△AMN 的面积为221||46||212k k S MN d k +=⋅=+. 由22||4610123k k k +=+,解得1k =±. 变式1、1已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率; (Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BFBF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔= [来源:学|科|网Z|X|X|K]1AF B ∆面积211133sin 60()40310,5,532252S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+⨯=⇔=== 变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=. 又222121212||1||1()4AB k x x k x x x x =+-=++-2222114(1)11622k kk k ⎛⎫=+-⨯-=++ ⎪⎝⎭.22216111684k k k +∴=++,解得2k =±.即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。

(1) 求双曲线C 的方程; (2) 若直线l :2+=kx y 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点),求k 的取值范围。

x Ay 11 2 M N B O解:(Ⅰ)设双曲线方程为22221x y a b-= ).0,0(>>b a 由已知得.1,2,2,32222==+==b b a c a 得再由故双曲线C 的方程为.1322=-y x(Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得2222130,(62)36(13)36(1)0.k k k k ⎧-≠⎪⎨∆=+-=->⎪⎩即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则22629,,22,1313A B A BA B A B k x x x x OA OB x x y y k k -+==⋅>+>--由得 而2(2)(2)(1)2()2A B A B A B A B A B A B x x y y x x kx kx k x x k x x +=+++=++++2222296237(1)22.131331k k k k k k k -+=+++=---于是222237392,0,3131k k k k +-+>>--即解此不等式得.3312<<k ② 由①、②得 .1312<<k 故k 的取值范围为33(1,)(,1).33--⋃例4、已知椭圆2222+=1x y a b(>>0)a b ,点52(,)52P a a 在椭圆上.(I)求椭圆的离心率.(II)设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足||||AQ AO =,求直线OQ 的斜率的值.1. 解:因为点52(,)52P a a 在椭圆上,故22222251528a a a a b b +=⇒=,于是222222318a b b e a a -==-=,所以椭圆的离心率64e = (2)设直线OQ 的斜率为k ,则其方程为y kx =,设点Q 的坐标为00(,)x y变式1、已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率.(1)求椭圆2C 的方程;(2)设O 为坐标原点,点A,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程.变式2、在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(0a b >>)的左焦点为()11,0F -且点()0,1P 在1C 上.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程.解析:(Ⅰ)由左焦点()11,0F -可知21c =,点()0,1P 在1C 上,所以2222011a b+=,即21b =,所以2222a b c =+=,于是椭圆1C 的方程为2212x y +=.(Ⅱ)显然直线l 的斜率存在,假设其方程为y kx b =+.联立2212x y y k x b⎧+=⎪⎨⎪=+⎩,消去y ,可得()222214220kxk b x b +++-=,由()()()2224421220kb k b ∆=-+-=可得22210k b -+=①.联立24y xy kx b ⎧=⎨=+⎩,消去y ,可得()222240k x k b x b +-+=,由()2222440kb b k ∆=--=可得1kb =②.由①②,解得222k b ⎧=⎪⎨⎪=⎩或222k b ⎧=-⎪⎨⎪=-⎩,所以直线方程为222y x =+或222y x =--. 变式3、设点P 的轨迹为曲线C ,直线1y kx =+与曲线C 交于A 、B 两点.(1)求出C 的方程;(2)若k =1,求AOB ∆的面积;(3)若OA OB ⊥,求实数k 的值。

解(1)2214y x +=(2)由2221523044y x x x x y =+⎧⇒+-=⎨+=⎩1231,538(1,0),(,)55x x A B ∴=-=∴-故1841255AOBs =⨯⨯= (3)设1122(,),(,)A x yB x y由122(4)2302244230,,12122244y kx k x kx x y k x x x x k k ⎧⎪=+⇒++-=⎨+=⎪⎩∴∆〉+=-=-++又2121212120(1)()10OA OB x x y y k x x k x x ⊥⇒+=⇒++++=①代入②得:241012k k -+=∴=±例5、如图, 直线y=21x 与抛物线y=81x 2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点.(1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时, 求ΔPAB 面积的最大值.解(1) 解方程组 481212-==x y xy 得 2411-=-=y x 或 4822==y x即A(-4,-2),B(8,4), 从而AB 的中点为M(2,1).由k AB ==21,直线AB 的垂直平分线方程 y -1=21(x -2). 令y=-5, 得x =5, ∴Q(5,-5). (2) 直线OQ 的方程为x +y=0, 设P(x , 81x 2-4).∵点P 到直线OQ 的距离d=24812-+x x =3282812-+x x ,25=OQ ,∴S ΔOPQ =21d OQ =3281652-+x x .∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x <43-4或43-4<x ≤8.∵函数y=x 2+8x -32在区间[-4,8] 上单调递增, ∴当x =8时, ΔOPQ 的面积取到最大值30.变式1、已知直线L 与抛物线2y =x 相交于A (1,1y x )、B (2,2x y )两点,若y 1y 2=-1(1)求证:直线L 过定点M ,并求点M 的坐标。

相关文档
最新文档