数字图像处理07
数字图像处理课后参考答案
数字图像处理第一章1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。
1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。
1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。
第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
数字图像处理课件ppt
06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换
(完整版)数字图像处理知识点总结
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
(完整版)数字图像处理:部分课后习题参考答案
第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。
连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。
联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。
其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。
联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。
遥感数字图像处理_地表反射率、温度的反演以及植被指数的计算
操作方法及过程1、使用ENVI对landsat 7 ETM+原始数据进行辐射定标:①对1、2、3、4、5、7波段进行辐射定标。
利用ENVI中的File |Open External File |Landsat Geo TIFF with MetaData加载威武市Landsat ETM+原始影像数据中的_MTL文件,再利用Basic Tools |Preprocessing |Calibration Utilities |Landsat Calibration 在弹出的对话对话框中选择包含1、2、3、4、5、7波段的_MTL文件,将Calibration Type选为Radiance,然后选择输出路径保存为radiance。
②对61和62波段进行辐射定标。
步骤和上面的一样,只是选择输入文件时为包含61和62波段的_MTL文件,将结果保存为radiance_band6。
2、将BSQ格式的影像数据转化为BIL:利用Basic Tools |Convert Data,弹出对话框中选择Radiance,Output Interleave中选择BIL,选择输出路径保存为radiance_BIL。
3、使用FLAASH大气辐射校正模型进行地表反射率的计算:①利用Spectral |FLASSH弹出大气校正模型参数设置窗口如下:分别按照以上所示的内容进行参数设置,将输入文件设为radiance_BIL,输出文件设为flassh,设置Scene Center Location时,打开原始影像在头文件中找到行和列,算出中心行和列,利用Pixel Locator工具找到中心点的经纬度。
将Sensor Type设为Landsat TM7。
设置Ground Elevation时,利用裁剪工具在亚洲幅SRTM DEM影像数据中裁剪该地区的DEM数据,再用统计功能算出高程的平均值为2058m。
在头文件中找到Flight Data:1999年8月10日,Flight Time GTM:3时36分39秒。
数字图像处理ppt课件
between 64 to 128 (using function
imagesc).
>>clims=[64,128]
>>imagesc(a,clims)
f. Make a movie from a 4-D image (load mri, make the movie by immovie, then show movie by function movie).
二、实验内容:
使用Photoshop观察数字图像增强的效果; 练习和掌握图像增强的Matlab编程。。 熟悉下列模块函数
Image enhancement. histeq - Read image file. imadust - Adust imae intensity values or colormap.
imshow - Display image.
subimage - Display multiple images in single figure.
truesize - Adjust display size of image.
warp - Display image as texture-mapped surface.
processing.
f. Compare the qualities of two images and
makes a discussion about them.
g. Add noises, such as gaussian, salt&pepper,
speckle noise into the image respectively.
10)选图像Blood、噪声类型Salt & Pepper、滤波器类型Median、邻域3x3,比较原始图像、
(完整版)数字图像处理第三版中文答案解析冈萨雷斯
第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。
根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。
则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。
如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。
2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。
2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。
美国的商用交流电频率是77HZ 。
问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。
因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。
为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。
数字图像处理知识点
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
(完整版)数字图像处理简答题及答案
(完整版)数字图像处理简答题及答案1、数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
如要从⼀幅照⽚上确定是否包含某个犯罪分⼦的⼈脸信息,就需要先将照⽚上的⼈脸检测出来,进⽽将检测出来的⼈脸区域进⾏分析,确定其是否是该犯罪分⼦。
4、简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
5、简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
6、图像的数字化包含哪些步骤?简述这些步骤。
图像的数字化主要包含采样、量化两个过程。
采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。
经过采样之后得到的⼆维离散信号的最⼩单位是像素。
量化就是把采样点上表⽰亮暗信息的连续量离散化后,⽤数值表⽰出来,是对亮度⼤⼩的离散化。
经过采样和量化后,数字图像可以⽤整数阵列的形式来描述。
7、图像量化时,如果量化级⽐较⼩会出现什么现象?为什么?如果量化级数过⼩,会出现伪轮廓现象。
数字图像处理试卷
内容提要1.07数字图像处理试卷B2.2008数字图像处理试题A及答案3.2009级_数字图像处理_试卷答案4.2010年华中科技大学图像所考博控制科学与工程专业《数字图像处理》试题5.华中科技大学非全日制研究生考试试题(2010-2011 学年第二学期)6.电子科技大学数字图像处理2008年考研试题7.电子科技大学数字图像处理2008年考研试题答案8.电子科技大学数字图像处理-2006答案年考研试题9.电子科技大学数字图像处理-2006年考研试题10.电子科技大学数字图像处理-2007年考研试题11.电子科技大学数字图像处理-2007年考研试题答案12.数字图像处理_(试题)13.数字图像处理各章要求必做题及参考答案14.数字图像处理模拟试题4套(含答案)15.数字图像处理模拟题及参考答案16.数字图像处理试卷及答案(A卷)17.数字图像处理试卷及答案18.2007级“数字图像处理”试题及答案19.数字图像处理试题汇总20.华中科技大学研究生课程考试试卷——2009年图像处理试题21.华中科技大学研究生课程考试试卷——数字图像处理2006届试题22.华中科技大学研究生课程考试试卷——数字图像处理2007届试题23.数字图像处理题目《 数字图像处理 》课程期末 考试试题 B 考卷专业、班级: 姓名: 学号: 题 号一 二 三 四 五 六 七八九十十一十二总成绩 得 分一、填空体(共26分,每空2分)1.图像按存在形式可分为 物理图像 和__________________。
2.RGB 模型是基于笛卡儿坐标系,3个坐标轴分别为R 、G 、B ,它们一般被归一化,用r 、g 、b 表示,这样组成了一个单位立方体。
原点对应__________________色,(1,1,1)对应__________________色。
它们之间的连线上分布不同的灰度值,而立方体内其余各点对应于不同的颜色,可以用从原点到该点的矢量表示。
《数字图像处理》知识点汇总
《数字图像处理》知识点汇总1.什么是图像?“图”是物体投射或反射光的分布,“像”是⼈的视觉系统对图的接受在⼤脑中形成的印象或反映。
图像是客观和主观的结合。
2.数字图像是指由被称作象素的⼩块区域组成的⼆维矩阵。
将物理图象⾏列划分后,每个⼩块区域称为像素(pixel)。
对于单⾊即灰度图像⽽⾔,每个像素包括两个属性:位置和灰度。
灰度⼜称为亮度,灰度⽤⼀个数值来表⽰,通常数值范围在0到255之间,即可⽤⼀个字节来表⽰。
0表⽰⿊、255表⽰⽩。
3.彩⾊图象可以⽤红、绿、蓝三元组的⼆维矩阵来表⽰。
通常,三元组的每个数值也是在0到255之间,0表⽰相应的基⾊在该象素中没有,⽽255则代表相应的基⾊在该象素中取得最⼤值,这种情况下每个象素可⽤三个字节来表⽰。
4.数字图像处理就是利⽤计算机系统对数字图像进⾏各种⽬的的处理。
5.对连续图像f(x,y)进⾏数字化需要在空间域和值域进⾏离散化。
空间上通过图像抽样进⾏空间离散,得到像素。
像素亮度需要通过灰度级量化实现灰度值离散。
数字图像常⽤矩阵来表⽰。
6.从计算机处理的⾓度可以由⾼到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。
这三个层次覆盖了图像处理的所有应⽤领域。
(1). 图像处理指对图像进⾏各种加⼯,以改善图像的视觉效果;强调图像之间进⾏的变换。
图像处理是⼀个从图像到图像的过程。
(2). 图像分析指对图像中感兴趣的⽬标进⾏提取和分割,获得⽬标的客观信息(特点或性质),建⽴对图像的描述;图像分析以观察者为中⼼研究客观世界,它是⼀个从图像到数据的过程。
(3). 图像理解指研究图像中各⽬标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中⼼,借助知识、经验来推理、认识客观世界,属于⾼层操作(符号运算)。
7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。
数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
数字图像处理课件ppt
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
(完整版)数字图像处理简答题
1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:灰度:使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像.像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
数字图像处理的基本原理和常用方法
数字图像处理的基本原理和常用方法数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
图像处理最早出现于20 世纪50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20 世纪60 年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4 )图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 平滑
整数化和归一化后得:
[i,j] -2 -1 0 1 2 -2 1 2 3 2 1 -1 2 4 6 4 2 0 3 6 7 6 3 1 2 4 6 4 2 2 1 2 3 2 1
2 平滑
通过T5邻域平均后的朱家 角风光
经过高斯滤波后的朱家角风 光
3 中值滤波
1)什么是中值滤波
与加权平均方式的平滑滤波不同,中值滤波用一个含有奇 数点的滑动窗口,将邻域中的像素按灰度级排序,取其中 间值为输出像素。
102 100 98 90 91 88
111 112
1 引言
当m 3时
相关运算
f x,y T 0,0 f x 1,y 1 T 0,1 f x 1,y T 0,2 f x 1,y 1 T 1,0 f x,y 1 T 1,1 f x,y T 1,2 f x,y 1 T 2,0 f x 1,y T 2,1 f x 1,y T 2,2 f x 1,y 1
假设
从信号分析的观点
问题
2 平滑
1)邻域平均(矩形邻域和圆形邻域)
1 1 1 1 T3 1 1 1 9 1 1 1 1 1 1 1 1 1 1 5 T 1 1 1 25 1 1 1 1 1 1
0 1 0 1 3 Tc 1 1 1 5 0 1 0 1 1 0 1 1 1 1 5 1 1 Tc 1 21 1 1 1 0 1 1
数字图像处理
第七章 邻域运算
CH7 邻域运算
一、引言
二、平滑
三、中值滤波
四、边缘检测
五、细化
上机实习
1 引言
1)邻域运算
定义 输出图像中每个像素是由对应的输入像素及其一个 邻域内的像素共同决定时的图像运算。 通常邻域是远比图像尺寸小的一规则形状。如下面 情况中,一个点的邻域定义为以该点为中心的一个 圆内部或边界上点的集合。
97 95 94 103 102
100 89 87 85 78
79 67 72 75 74 73 79 1 67 2 72 1 75 74 73
86 84 88 92 97 90 86 84 88 92 97 90
102 100 98 90 91 88 102 100 98 90 91 88
100 96 87 86 92 95 100 96 87 86 92 95
进一步的表达
1 f x, y 1 f x, y 1 1 f x 1, y 1 f x, y 1 5 1 T1 f x, y 1 T2 f x 1, y T5 f x, y 1 5 F T , f
$进一步阅读:Gonzalez, p91.
1 引言
2)相关与卷积
信号与系统分析中基本运算相关与卷积,在实际图 像处理中都表现为邻域运算。 两个连续函数f(x)和g(x)的相关记作:
f x g x f a g x a da
两个连续函数f(x)和g(x)的卷积定义为:
[i,j] -2 -1 0 1 2 -2 0.105 0.287 0.135 0.287 0.105 -1 0.287 0.606 0.779 0.606 0.287 0 0.135 0.779 1 0.779 0.135 1 0.287 0.606 0.779 0.606 0.287 2 0.105 0.287 0.135 0.287 0.105
1 引言
卷积运算定义为:
f x, y T* f x, y m 1 m 1 T i, j f x i ,y j 2 2 i 0 j0
m 1 m 1
当m 3时 f x, y T 0,0 f x 1, y 1 T 0,1 f x 1, y T 0, 2 f x 1, y 1 T 1,0 f x, y 1 T 1,1 f x, y T 1, 2 f x, y 1 T 2,0 f x 1, y 1 T 2,1 f x 1, y T 2, 2 f x 1, y 1
f x * g x f a g x a da
1 引言
3)模板(template,filter mask)的相关与 卷积运算
给定图像f(x,y)大小N*N,模板T(i,j)大小m*m (m为奇数)。
常用的相关运算定义为:使模板中心T((m1)/2,(m-1)/2) 与f(x,y)对应。
m 1 m 1 i 0 j 0
f x, y T * f x, y T i, j f x i , y j f x 相当于f x, y 对卷积模板 1 -1 做相关(卷积)运算; 1 f y 相当于f x, y 对卷积模板 做相关(卷积)运算; -1 但是此时两点分别位于 i+ 1 , j 和 i, j + 1 处, 2 2 因此常分别采用2 2模板: 1 1 1 1 1 1 1 1 和 1 1 ,此时梯度点位于 i+ 2 , j + 2 处。
102 100 98 90 91 88 102 1 100 2 98 1 90 91 88
111 112 97 1 95 2 94 1 103 102 100 2 89 3 87 2 85 78
111 112 97 95 94 103 102 100 1 89 2 87 1 85 78
111 112 97 95 94 103 102 100 89 87 85 78
2)中值滤波的要素
中值滤波的效果取决于两个要素:邻域的空间范围和中值 计算中涉及的像素数。(当空间范围较大时,一般只用某 个稀疏矩阵做计算)。
中值滤波能够在抑制随机噪声的同时不使边缘模糊。但对 于线、尖顶等细节多的图像不宜采用中值滤波。
3)中值滤波的优点
3 中值滤波
例
有椒盐噪声的朱家角风光
用3*3的滤波窗口对上图做 二维中值滤波
4 边缘检测
1)什么是边缘检测
边缘是指图像中灰度发生急剧变化的区域。图 像灰度的变化可以用图像的梯度反映。 边缘检测:求连续图像f(x,y)梯度的局部最大 值和方向。
f x, y 沿r的梯度 f f x f y f x cos f y sin r x r y r f f 使 最大的条件是 r 0 r
101 1 106 2 121 1 133 99 102 101 106 121 133 99 102
98 2 103 3 87 2 99 111 121 98 103 87 99 111 121
97 1 95 2 94 1 103 102
100 89 87 85 78
79 67 72 75 74 73 79 2 67 3 72 2 75 74 73
邻域运算与点运算一起构成最基本、最重要的图像处理方法。
1 引言
点+的邻域
点+的邻域
1 引言
举例
1 x, y f x, y 1 f x 1, y f x, y f x 1, y f x, y 1 f 5
$进一步阅读:Gonzalez, p463.
4 边缘检测
4 边缘检测
梯度最大值及其方向
f x sin f y cos 0 fy tan f 或 x
1
梯度最大值
fx2 f y2
4 边缘检测
最简单的梯度近似计算为:
f x f i, j f i 1, j f y f i, j f i, j 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
注意:大卷积模板可以加大滤波程度,但也会导致图 像细节的损失。
2 平滑
无噪声朱家角风光
有高斯噪声的朱家角风光
2 平滑
通过T3邻域平均后的朱家 角风光
通过T5邻域平均后的朱家 角风光
2 平滑
2)高斯滤波(Gaussian Filters)
98 1 103 2 87 1 99 111 121 98 103 87 99 111 121
97 2 95 3 94 2 103 102
100 1 89 2 87 1 85 78
79 67 72 75 74 73 79 1 67 2 72 1 75 74 73
86 84 88 92 97 90 86 2 84 3 88 2 92 97 90
111 112
111 112
111 112
100 96 1 2 87 86 1 92 95
101 106 2 3 121 133 2 99 102
98 103 1 2 87 99 1 111 121
97 95 94 103 102
100 89 87 85 78
79 67 72 75 70
1 2 1 2 3 2 1 2 1
111 112
100 1 96 2 87 1 86 92 95 100 96 87 86 92 95
101 2 106 3 121 2 133 99 102 101 106 121 133 99 102