中考阴影部分面积求解专题
中考数学专题复习和训练求阴影部分的面积
求阴影部分的面积专题透析:计算平面图形中的面积问题是中考中的常考题型,多以选择题、填空题的形式出现,其中求阴影部分的面积是这类问题的难点.不规则阴影部分常常由三角形、四边形、弓形和圆、圆弧等基本图形组合而成,考查内容涉及平移、旋转、相似、扇形面积等相关知识,还常与函数相结合.在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助转化化归思想,将阴影部分不规则图形转化为规则的易求的图形求解.典例精析:例1.如图,菱形ABCD 的对角线BD AC 、分别为223、,以B 为圆心的弧与AD DC 、相切于点E F 、,则阴影部分的面积是A.π-3233 B.π-3433C.π-43D.π-23 分析:本题的阴影部分是不规则的,要直接求出阴影部分的面积不现实,但我们发现阴影部分是菱形ABCD 减去扇形ABC 的面积;菱形ABCD 可根据题中条件直接求出,要求扇形扇形ABC 的面积关键是求出圆心角∠ABC 的度数和半径;连结BD BE 、交于点O ,所有这些问题均可以化归在Rt △AOB 或Rt △BOC 中利用三角函数和勾股定理来解决. 选D 师生互动练习:1. 如图,Rt △ACB 中,C 90AC 15AB 17∠===,,;以点C 为 圆心的⊙C 与AB 相切于D ,与CA CB 、分别交于E F 、两点,则 图中阴影部分的面积为 .2.如图的阴影部分是一商标图案图中阴影部分,它以正方形ABCD的顶点A 为圆心,AB 为半径作BD ,再以B 为圆心,BD 为半径作弧, 交BC 的延长线与E ,BD,DE 和DE 就围成了这个图案,若正方形的边长为4,则这个图案的面积为A.π4B.8C.π3D.π-38 3.如图,Rt △ABC 中,,C 90A 30∠=∠=,点O 在斜边AB 上,半径为2,⊙O 过点B 切AC 于D ,交BC 边于点E E,则由线段CD EC 、及DE 围成的阴影部分的面积为 . 4. 已知直角扇形AOB 的半径OA 2cm =,以OB 为直径在扇形内作半圆⊙M ,过M 引MP ∥AO 交AB 于P ,求AB 与半圆弧及MP 围成的 阴影部分的面积为 .例2.如图,⊙O 的圆心在定角()0180αα∠<<的角平分线上运动,且⊙O 与α∠的两边相切,图中的阴影部分的面积y 关于⊙O 的半径()x x 0>变化的函数图象大致是分析:连结OA OB OC 、、后,本题关键是抓住阴影部分的面积=四边形ACOB 的面积-扇形BOC 的面积.设阴影部分的面积为y ,⊙O 的半径()x x 0>. ∵⊙O 切AM 于点B ,切AN 于点C , ∴OBA OCA 90,OB OC x,AB AC ∠=∠====,∴BOC 3609090180αα∠=---=-;∵AO 平分MAN ∠,xAB AC 1tan 2α==,且图中阴影部分的面积y =四边形ACOB 的面积-扇形BOC 的面积.∴ ()22180x 1x 1180y 2x x 112360360tan tan 22αππαπαα⎛⎫⎪--=⨯⨯⨯-=- ⎪ ⎪⎝⎭∵x 0> ,且()0180αα∠<<是定角∴阴影部分的面积y 关于⊙O 的半径()x x 0>之间是二次函数关系. 故选C .师生互动练习:1.如图,已知正方形ABCD 的边长为1,E F G H 、、、分别为各边上的点,且AE BF CG ==DH =;设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致为2.2013.临沂中考如图,正方形ABCD 中,AB 8cm =,对角线AC 与BD 相交于点O ,点E F 、分别从B C 、两点同时出发,以/1cm s 的速度沿BC CD 、运动,到点C D 、停止运动.设运动时间为()t s ,OEF 的面积为()2S cm 与()t s 的函数关系式可用图象表示为3.2014.菏泽中考如图在Rt ABC 中,AC BC 2==,正方形CDEF 的顶点D F 、分别是边AC BC 、的动点,C D 、两点不重合.设CD 的长度为x ,ABC 与正方形CDEF 的重叠部分的面积为y ,则下列图象中能表示y 与x 的函数关系的是 例3.如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形 的顶点称为格点.已知每个正六边形的边长为1,△ABC 的顶点在格点上, 则△ABC 的面积为 . 分析: 延长AB ,然后作出过点C 与格点所在的水平直线,一定交于点E .则图中的阴影部分 = △AEC 的面积 - △BEC 的面积. 由正六边形的边长为1,根据正多边形形的性质,可以得出过正六边 形中心的对角线长为2,间隔一个顶点的对角线长为3,则CE 4=;若△AEC 和△BEC 都以CE 为求其面积的底边,则它们相应的高怎样化归在直角三角形中来求出呢 解:由同学们自我完成解答过程 师生互动练习:1.如图已知网格中每个小正方形的边长为2,图中阴影部分的 每个端点位置情况计算图中的阴影部分的面积之和为 .2.如图,已知下面三个图形中网格中的每个正方形的边长都设为1.结果均保留π⑴.图①中的阴影图案是由两段以格点为圆心,分别以小正方形的边长和对角线长为半径的圆弧和网格的边围成.,图中阴影部分的面积为 ;⑵.图②中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.图②中阴影部分的面积是 ;⑶.图③中在AB 的上方,分别以△ABC 的三边为直径作三个半圆围成图中的阴影部分的面积之和为 .3.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的FEBD O A CEC D ABDE OBA C PNMBO A E F D BA C E DB CA F x y 1212O A x y 123412345O C x y 1212O D B αCBAO MNxy OA xy OB xy OC xy ODC E A B ②①③CC交点上,若灰色三角形面积为214,则方格纸的面积为.附专题总结:求含圆图形中不规则阴影部分面积的几个技巧一.旋转、翻折为特殊图形:图①的第一个图是直角扇形OAB和直角扇形OCD搭建的,其中OA=9,OB=4,要求阴影部分的面积,可以将△ODB旋转至△OAC来求扇环BDCA的面积更简便见图①的第二个图.图②的第一个图中是直角扇形OAB和正方形OFED以及矩形OACD,其中OF=1,要求阴影部分的面积,可以将半弓形ODB沿正方形对角线翻折至EFA来求矩形ACEF的面积更简便见图②的第二个图二.图①的第一个图大圆⊙O 的弦并与小圆⊙圆⊙O O图①这样来求圆环的面积更容易;虽三.如图第一个图是以等腰Rt△AOB的直角顶点O为圆心画出的直角扇形OAB和以OA、OB为直径画出的两个半圆组成的图形,要求第一个图形阴影,可以按如图所示路径割补成一个弓形见第二个图中的标示更容易求出阴影图形的面积;如果OA=10,求出第一个图形阴影部分的面积略解:S阴影=2B0A11S S AOB101010255042ππ-=⨯⨯-⨯⨯=-扇形点评:解决.割补法在很多涉及到几何图形的题中都有运用.四.差法求叠合图中形的阴影例1.图①是教材114页的第3题,可以用四个半圆的面积之和减去正方形的面积得到阴影部分的面积;例2.图②自贡市中考题△ABC中,AB=BC=6,AC=10,分别以AB,BC为直径作半圆,则图中阴影部分的面积为.略解:△ABC的底边AC===2ABC1161S2S S21592222ππ⎛⎫⨯⨯-=⨯⨯⨯-⨯=-⎪⎝⎭影点评:本题的图形结构可以看成是三个图形叠合在一起两个半圆和一个等腰三角形端点相接的叠合,具有这种图形结构题其实并不是我们想象那么抽象艰深.比如:本题的阴影部分恰好是两个半圆和一个等腰三角形端点相接的叠合后,两个半圆覆盖等腰三角形后多出来的部分;那么下面的这个题就的计算也就不那么复杂了.举一反三,“难题”不难师生互动练习::见上学期圆单元训练和专题复习的相应部分.迎考精炼:1.如图,AB 是⊙O的直径,弦CD AB,CD⊥=,则S阴影 =A.πB.2π D.23π2. 如图,⊙A、⊙B、⊙C两两不相交,且半径均为,则图中的三个阴影部分的面积之和为A.12πB.8πC.6πD.4π3.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中的阴影部分的面积为2π23πC.2πD.23π4.如图,在Rt△ABC中,C90,AC8BC4∠===, ,分别以AC BC、为直径画半圆,则图中的阴影部分的面积之和为A.2016π- B.1032π- C.1016π- D.20132π-5. 如图,四边形ABCD是正方形, AE垂直于BE于E,且AE3,BE4==,则阴影部分的面积是6. 如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形'''AB C D,图中的阴影部分的面积为A.1 C.1 D.127.如图,ABCD沿对角线AC平移,使A点至AC的中点''''A B C D,新的正方形与原正方形的重叠部分图中的阴影部分的面积是B.12C.148.将n个边长都为4cm的正方形按如图所示的方法摆放,点,,,1nA A风别是正方形对角线的交点,则n个正方形重叠部分的面积的和为A.21cm4B.2n1cm4-C.()24n1cm- D.n21cm4⎛⎫⎪⎝⎭9. 两张宽均为5cm的纸带相交成α角,则这两张带重叠部分图中阴影的面积为A.()225cmsinαB.()225cmcosαC.()250sin cmα D.()225sin cmα10. 如图,△ABC是等边三角形,被一平行于BC的矩形所截,线段AB被截成相等的三部分,则图中的阴影部分的面积是△ABC面积的A.19B.29C.13D.4911.AB是⊙O的直径,以AB为一边作等边△ABC,交⊙O于点E F、,2=,则图中的阴影部分的面积为A.43π- B.23πC.3πD.3π12.如图;三个小正方形的边长都为1,则图中阴影部分面积OC图①CD DB图②BA2A1C'C结果保留π13. 如图①,等边△ABD 和等边△CBD 的边长均为1,将△ABD 沿AC 方向平移得到△'''A B D 的置,得到图 形②,则阴影部分的周长为 .14.如图,△ABC 的边AB 3AC 2==,,Ⅰ、Ⅱ、Ⅲ分别表示以AB AC BC 、、为边的正方形,则图中三个阴影部分的面积之和的最大值为 . 15.若图中正方形F 以上的正方形均是以直角三角形向外作的正方形:①.若正方形A B C D 、、、的边长分别是a b c d 、、、,则正方形F 的面积如何用含a b c d 、、、的式子表示出来为 ;②.如果正方形F 的边长16cm ,那么正方形A B C D 、、、的面积之和是 .16.如图,边长为3的正方形ABCD 绕点按顺时针方向旋转30°后得到的正方形EFCG 交AD 于点H ,S 四边形HFCD = .17.如图, 已知AD DE EF 、、分别是ABC 、ABD 、AED 的中线,若2ABC 24cm S =,则阴影部分DFE 的面积为 .18.如图,在正方形ABCD 内有一折线,其中AE EF EF FC ⊥⊥、,并且AE 6=,EF 8=, AF 10=则正方形与其外接圆之间形成的阴影部分的面积为 . 19.如图把⊙O 向右平移8个单位长度得到⊙O 2,两圆相交于 A 、B,且O 1 A 、O 2 A 分别与⊙O 2、⊙O 1相切,切点均为A 点, 则图中阴影部分的面积为 . 20.如图,矩形ABCD 中,BC 4DC 2==,,以AB 为直径的半圆O 与DC 相切于点E ,则图中的阴影部分的面积是 结果保留π21.在Rt △ABC 中,A 90AB AC 2∠===,,以AB 为直径作圆交BC 于点D ,则图中阴影部分的面积是 .22.如图,在△ABC 中,,AB 5cm AC 2cm ==,将△ABC 绕顶点C 按顺时针方向旋转45°至△11A B C 的位置,则线段AB 扫过的区域图中阴影部分的面积为 2cm .23.如图,半圆A 和半圆B 均与y 轴相切于O ,其直径CD EF 、和x 轴垂直,以O 为顶点的两条抛物线分别经过C E 、和点D F 、,则图中的阴影部分的面积是 .24.如图,抛物线21y x 2=-+向右平移1个单位得到抛物线2y ,则抛物线2y 的顶点坐标为 ;阴影部分的面积S = . 25.如图在边长为2的菱形ABCD ,B 45∠=,AE 为BC 边上的 高,将△ABE 沿AE AE 在直线翻折得△'AB E ,求△'AB E 与四边形 AECD 重叠阴影部分的面积. 26.如图,矩形OBCD 按如右图所示放置在平面直角坐标系中坐标 原点为O ,连结AC 点A C 、的坐标见图示交OB 于点E ;求阴影 部分的四边形OECD 的面积27.如图,在△ABC 中,=90A ∠, O 是BC 边上的一点以O 为圆 心的半圆分别与AB AC 、边相切于点D E 、,连接OD 已知. 求:⑴.tan C ∠.⑵.求图中的阴影部分的面积之和.28.如图,⊙O 的直径AB 为10cm 1,弦AC 为6cm ,ACB ∠的平分线 交⊙O 于点D .⑴.求弦CD 的长; ⑵.求阴影部分的面积;29.如图, 在平面直角坐标系中,以(),10为圆心的⊙P 与y 轴 相切于原点O ,过点(),A 10-的直线AB 于⊙P 相切于点B . ⑴.求AB 的长;⑵.求AB OA 、与OB 围成的阴影部分面积不取近似值; ⑶.求直线AB 上是否存在点M ,使OM PM +的值最小 如果存在,请求出点M 的坐标;如果不存在,请说明理由.FB'EDA BC xy(4,2)(0,-1)E BDC A O BD C A ①B'D 'A'B D C ②FE D A B C 17题H G EF D A B C 16题15题ⅢⅡⅠG F M E B C A 14题18题1086B D C F E A xy –1–2123–1–212O24题A 1C AB 22题DB 21题O DA EBC 20题23题xy 1-1BA O。
中考数学 阴影部分面积-含答案
阴影部分面积未命名一、填空题1.如图,已知水平放置的圆柱形污水排水管道的截面半径12cmOB=,截面圆心O到污水面的距离6cmOC=,则截面上有污水部分的面积为________.【答案】48π【分析】连接OA,阴影部分的面积等于扇形AOB的面积与三角形AOB的面积差,计算圆心角∠AOB的大小即可.【详解】如图,连接OA,∵OB=12,OC=6,OC⊥AB,∴sin∠OBA=12OCOB=,AC=BC,∴∠OBA=30°,BC AB=2BC ∵OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=120°,∴212012=360AOB S π⨯⨯扇形=48π,∴11=622AOB S AB OC ⨯=⨯△∴阴影部分的面积为-AOB AOB S S △扇形=48π故答案为:48π【点睛】本题考查了垂径定理,特殊角的三角函数,扇形的面积,三角形的面积,熟练进行图形面积分割,并运用相应的公式计算是解题的关键.2.如图,已知Rt ABC 中,6AB =,8BC =,分别以点A 、点C 为圆心,以2AC 长为半径画圆弧,则图中阴影部分的面积为____________.(结果保留π)【答案】2524.4π-【分析】 先计算,,A C AC ∠+∠ 再由阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,再分别计算ABC 的面积,圆心角为90,︒ 以12AC 为半径的扇形面积,从而可得答案. 【详解】 解: Rt ABC 中,6AB =,8BC =,90,B ∠=︒90,10,A C AC ∴∠+∠=︒===115,6824,22ABC AC S ∴==⨯⨯= 又阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,290525,3604S ππ⨯∴==扇形 2524.4S π∴=-阴影 故答案为:2524.4π- 【点睛】本题考查的是勾股定理的应用,扇形面积的计算,掌握扇形面积的计算是解题的关键.3.如图,在等腰Rt ABC △中,90BAC ∠=︒,BC =A ,B ,C 为圆心,以12AB 的长为半径画弧分别与ABC 的边相交,则图中阴影部分的面积为______.(结果保留π)【答案】82π-【分析】三角形面积公式S=1AC AB 2⨯,扇形面积公式:S =2360n r π,阴影面积=三角形面积—180°扇形的面积,计算即可.【详解】∵等腰Rt ABC △中,90BAC ∠=︒,BC =∴AB=BC•sin45°==42, ∴S △ABC =144=82⨯⨯, ∵∠A+∠B+∠C=180°, ∴1=4=2212AB ⨯, 以2为半径,180°扇形是半圆=212=22ππ⨯, 阴影面积=8-2π.故答案为:8-2π.【点睛】本题主要考查扇形的面积公式,三角形面积,熟知扇形的面积公式的运用,解题的关键是阴影面积=等腰直角三角形的面积-以2为半径180°扇形面积.4.如图,在正方形ABCD 的边长为6,以D 为圆心,4为半径作圆弧.以C 为圆心,6为半径作圆弧.若图中阴影部分的面积分别为12S S 、时,则12S S -=_____________.(结果保留π)【答案】1336π-【分析】根据割补法可进行求解.【详解】解:由题意可得:设以以D 为圆心,4为半径作圆弧所在的扇形面积为S ,则有: 222906904636,==94360360ABCD DCB S S S ππππ⨯⨯====正方形扇形,, ∴12=1336ABCD DCB S S S S S π-=+--正方形扇形;故答案为1336π-.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算是解题的关键.5.如图,矩形ABCD 的对角线交于点O ,以点A 为圆心,AB 的长为半径画弧,刚好过点O ,以点D 为圆心,DO 的长为半径画弧,交AD 于点E ,若AC =2,则图中阴影部分的面积为_____.(结果保留π)【答案】4π 【分析】由图可知,阴影部分的面积是扇形ABO 和扇形DEO 的面积之和,然后根据题目中的数据,可以求得AB 、OA 、DE 的长,∠BAO 和∠EDO 的度数,从而可以解答本题.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵AB =AO ,∴△ABO 是等边三角形,∴∠BAO =60°,∴∠EDO =30°,∵AC =2,∴OA =OD =1,∴图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点睛】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.6.如图,在△ABC 中,∠A =90°,AB =AC =2,以AB 为直径的圆交BC 于点D ,求图中阴影部分的面积为_____.【答案】1【分析】连接AD ,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD ,∵AB =BC =2,∠A =90°,∴∠C =∠B =45°,∴∠BAD =45°,∴BD =AD ,∴BD =AD∴由BD ,AD 组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD 的面积,∴S △ABD =12AD•BD =121.故答案为:1.【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.7.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆交于点E 、F ,则图中阴影部分的面积是_______.【答案】142π- 【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【详解】。
专题 求阴影部分的面积---四种方法(五大题型)(解析版)
(苏科版)九年级上册数学《第2章对称图形---圆》专题求阴影部分的面积---四种方法【典例一】(2023•锦州)如图,点A ,B ,C 在⊙O 上,∠ABC =40°,连接OA ,OC .若⊙O 的半径为3,则扇形AOC (阴影部分)的面积为( )A .23πB .πC .43πD .2π【分析】先由圆周角定理可得∠AOC 的度数,再由扇形的面积公式求解即可.【解答】解:∵∠ABC =40°,∴∠AOC =2∠ABC =80°,∴扇形AOC 的面积为80×π×32360=2π,故选:D .【点评】此题主要是考查了扇形的面积公式,圆周角定理,能够求得∠AOC 的度数是解答此题的关键.【变式1-1】(2023•新抚区模拟)如图,正五边形ABCDE 边长为6,以A 为圆心,AB 为半径画圆,图中阴影部分的面积为( )A .185πB .4πC .545πD .12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正五边形的外角和为360°,解题技巧提炼所求阴影部分是规则图形,直接用几何图形的面积公式求解.∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°﹣72°=108°,∵正五边形的边长为6,∴S阴影=108⋅π×62360=545π,故选:C.【点评】考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【变式1-2】(2023•大武口区模拟)如图,在矩形ABCD中,AD=1,AB=A为圆心,AB长为半径画弧交CD于点E,则阴影部分的面积为 .【分析】根据矩形的性质得出∠D=∠DAB=90°,AB=AE DE,即可证得∠DAE=45°,进而求得∠BAE=45°,再求出扇形ABE的面积,即可得出答案.【解答】解:∵在矩形ABCD中,AD=1,AB∴∠D=∠DAB=90°,∵AE=AB,∴DE1,∴AD=DE,∴∠DAE=45°,∴∠BAE=45°,∴阴影部分的面积S=S扇形ABE=π4.故答案为:π4.【点评】本题考查了矩形的性质、扇形的面积公式和勾股定理等知识点,能求出∠EAB 的度数是解此题的关键.【变式1-3】如图,有公共顶点O 的两个边长为3的正五边形(不重叠),以O 点为圆心,半径为3作圆,构成一个“蘑菇”形图案,则这个“蘑菇”形图案(阴影部分)的面积为( )A .4πB .185πC .3πD .52π【分析】利用扇形的面积公式计算即可.【解答】解:S 阴=(360108×2)⋅π⋅32360=18π5,故选:B .【点评】本题考查正多边形与圆,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式1-4】(2022•二道区一模)如图,在△ABC 中,∠ACB =90°,∠A =60°,以点A 为圆心,AC 长为半径画弧,交边AB 于点D ,以点B 为圆心,BD 长为半径画圆弧,交边BC 于点E ,若AC =2,则图中阴影部分图形的面积和为 (结果保留π).【分析】根据题意和图形可知阴影部分的面积S =S 扇形BDE +S 扇形ACD .【解答】解:在Rt △ABC ,∠C =90°,∠A =60°,AC =2,∴∠B =30°,AB =2AC =4,∴BC =∴阴影部分的面积S =S 扇形BDE +S 扇形ACD =30π×22360+60π×22360=π,故答案为:π.【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-5】(2023•三台县模拟)如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为( )A.2πB.3πC D【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC =30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=AC=可得到阴影部分的面积.【解答】解:∵正六边形ABCDEF的边长为2,∴AB=BC=2,∠ABC=∠BAF=(62)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°﹣∠ABC)=12×(180°﹣120°)=30°,过B作BH⊥AC于H,∴AH=CH,BH=12AB=12×2=1,在Rt△ABH中,AH=∴AC=同理可证,∠EAF=30°,∴∠CAE=∠BAF﹣∠BAC﹣∠EAF=120°﹣30°﹣30°=60°,∴S扇形CAE=2π,∴图中阴影部分的面积为2π,故选:A .【点评】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.【典例二】(2022秋•恩施市期末)如图,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,以点A 为圆心,线段AD 的长为半径画弧,与AC 边交于点E ;以点B 为圆心,线段BD 的长为半径画弧,与BC 边交于点F .若BC =6,AC =8,则图中阴影部分的面积为( )A .48―25π2B .48―25π4C .24―25π2D .24―25π4【分析】根据勾股定理得到AB=10,根据线段中点的定义得到AD =BD =5,根据扇形和解题技巧提炼将不规则阴影部分看成是以规则图形为载体的一部分,其他部分空白且为规则图形,此时采用整体作差法求解.三角形的面积公式即可得到结论.【解答】解:∵∠ACB=90°,BC=6,AC=8,∴AB==10,∠A+∠B=90°,∵点D为边AB的中点,∴AD=BD=5,∴图中阴影部分的面积=12×6×8―90⋅π×52360=24―25π4,故选:D.【点评】本题考查了扇形面积的计算,三角形的面积公式,勾股定理,熟练掌握扇形的面积公式是解题的关键.【变式2-1】(2023•北京模拟)如图,以O为圆心AB为直径的圆过点C,C为弧AB的中点,若AB=4,则阴影部分面积是( )A.πB.2+2πC.2πD.2+π【分析】求出∠AOC=∠BOC=90°,OA=OC=OB=2,求出阴影部分的面积=S扇形AOC,再根据扇形的面积公式求出答案即可.【解答】解:∵AB是⊙O的直径,C为AB的中点,∴∠AOC=∠BOC=90°,∵AB=4,∴OA=OC=OB=2,∴S△AOC =S△BOC=12×2×2=2,∴阴影部分的面积S=S△COB +S扇形AOC﹣S△AOC=S扇形AOC =90π×22360=π,故选:A.【点评】本题考查了垂径定理,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:已知扇形的圆心角是n °,半径是r ,那么这个扇形的面积=nπr 2360.【变式2-2】(2023•蜀山区校级三模)如图是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =4m ,OB =2m ,则阴影部分的面积是( )A .43πB .83πC .4πD .163π【分析】利用扇形面积公式,根据S 阴影=S 扇形AOD ﹣S 扇形BOC 即可求解.【解答】解:S 阴影=S 扇形AOD ﹣S 扇形BOC=120π⋅OA 2360―120π⋅OB 2360=120π(OA 2OB 2)360=π(4222)3=4π(m 2),故选:C .【点评】本题考查了求扇形面积,熟练掌握扇形面积公式是解题的关键.【变式2-3】(2022秋•松滋市期末)如图,点A 、B 、C 在⊙O 上,若∠BAC =30°,OB =2,则图中阴影部分的面积为( )A .π3―B .2π3―C .2π3―D .π3―【分析】根据S 阴=S 扇形OBC ﹣S △OBC ,计算即可.【解答】解:∵∠BAC =30°,∴∠BOC =2∠BAC =60°,∴△BOC 是等边三角形,∴S 阴=S 扇形OBC ﹣S △OBC =60⋅π×22360―12×2×=23π―故选:B .【点评】本题考查扇形的面积,圆周角定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式2-4】(2022秋•鄞州区期末)如图,扇形AOB 圆心角为直角,OA =10,点C 在AB 上,以OA ,CA 为邻边构造▱ACDO ,边CD 交OB 于点E ,若OE =8,则图中两块阴影部分的面积和为( )A .10π﹣8B .5π﹣8C .25π﹣64D .50π﹣64【分析】连接OC .利用勾股定理求出EC ,根据S 阴=S 扇形AOB ﹣S 梯形AOEC ,计算即可.【解答】解:连接OC .∵四边形OACD 是平行四边形,∴OA ∥CD ,∴∠OEC +∠EOA =180°,∵∠AOB =90°,∴∠OEC =90°,∴EC =6,∴S 阴=S 扇形AOB ﹣S 梯形OECA =90π×102360―12×(6+10)×8=25π﹣64.故选:C .【点评】本题考查扇形的面积的计算,平行四边形的性质,勾股定理等知识,解题的关键是掌握割补法求阴影部分的面积.【变式2-5】(2023•双柏县模拟)如图,在菱形ABCD 中,点E 是AB 的中点,以B 为圆心,BE 为半径作弧,交BC 于点F ,连接DE 、DF ,若AB =2,∠A =60°,则图中阴影部分的面积为( )A .π3B π3C π3D ―2π3【分析】连接AC ,根据菱形的性质求出∠BCD 和BC =AB =2,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【解答】解:∵四边形ABCD 是菱形,AB =2,∠A =60°,点E 是AB 的中点,∴△ABD 是等边三角形,DE ⊥AB ,∠ABC =120°,BE =1,∴DE BF =1,DF =DF ⊥BC ,∴阴影部分的面积S =S △BDE +S △BDF ﹣S 扇形BEF =2―120π×12360=π3,故选:B .【点评】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出△AEC 、△AFC 和扇形ECF 的面积是解此题的关键.【变式2-6】(2022秋•余杭区校级月考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连结AC ,BC .(1)求证:∠ACO =∠BCD ;(2)若CD =6,∠A =30°,求阴影部分的面积.【分析】(1)根据垂径定理得到BC=BD,根据圆周角定理证明结论;(2)根据等边三角形的判定定理得到△BOC为等边三角形,求出∠AOC,根据正弦的定义求出OC,利用扇形面积公式计算即可.【解答】(1)证明:∵AB是⊙O的直径,弦CD⊥AB,∴BC=BD,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:∵∠A=30°,∴∠BOC=60°,∴∠AOC=120°,∵AB是⊙O的直径,弦CD⊥AB,∴CE=12CD=3,在Rt△COE中,OC=CEsin60°=∴扇形OAC(阴影部分)的面积=4π,答:阴影部分的面积为4π.【点评】本题考查的是扇形面积计算、垂径定理、圆周角定理,掌握扇形面积公式是解题的关键.【典例三】(2023•大同模拟)如图,在扇形AOB 中,∠AOB =90°,半径OA =3,将扇形AOB 沿过点B 的直线折叠,使点O 恰好落在AB 上的点D 处,折痕为BC ,则阴影部分的面积为( )AB .9π4―C .π34D .3π34【分析】连接OD ,可得△OBD 为等边三角形,再求出∠COD 以及OC ,得到三角形BOC 的面积,又因为△BOC 与△BDC 面积相等,最后利用S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC 求解即可.【解答】解:如图,连接OD ,根据折叠的性质,CD =CO ,BD =BO ,∠DBC=∠OBC ,∴OB =BD =OD,解题技巧提炼先将不规则阴影部分与空白部分组合,构造规则图形或分割后为规则图形,再进行面积和差计算.∴△OBD 为等边三角形,∴∠DBO =60°.∵∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB •tan ∠CBO =3=∴S △BOC =12OB •OC =∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC=14π×32=9π4―故选:B .【点评】本题考查与扇形有关的不规则图形的面积求法,掌握割补法求面积是解题的关键.【变式3-1】(2023•乡宁县二模)如图,AB 是⊙O 的直径,AC 是弦,∠BAC =30°,在直径AB 上截取AD =AC ,延长CD 交⊙O 于点E ,若CE =2,则图中阴影部分的面积为( )A B .π2―1C .π﹣2D .π2【分析】连接OE ,OC ,BC ,推出△EOC 是等腰直角三角形,根据扇形面积减三角形面积计算即可.【解答】解:连接OE ,OC ,BC ,由旋转知AC =AD ,∠CAD =30°,∴∠BOC =60°,∠ACE =(180°﹣30°)÷2=75°,∴∠BCE =90°﹣∠ACE =15°,∴∠BOE =2∠BCE =30°,∴∠EOC =90°,即△EOC 为等腰直角三角形,∵CE =2,∴OE =OC =∴S 阴影=S 扇形OEC ﹣S △OEC ―12×=π2―1,故选:B .【点评】本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.【变式3-2】(2022秋•合川区期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接BC .若BO =BC =2 .【分析】证明△OBD 是等边三角形,根据S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )求解即可.【解答】解:连接BD .∵OC =OB =BC =∴△OBC 是等边三角形,∵CD ⊥AB ,AB 是直径,∴BC =BD ,∴BC =BD =OB =OD ,∴△OBD 是等边三角形,∵DE ⊥OB ,∴OE =EB∴DE =∴S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )=12×(2=4π﹣故答案为:4π﹣【点评】本题考查了扇形面积的计算以及垂径定理、等边三角形的判定和性质,解答本题的关键是理解性质和定理,注意掌握扇形的面积公式.【变式3-4】(2023•如皋市一模)如图,⊙O 的直径AB =8,C 为⊙O 上一点,在AB 的延长线上取一点P ,连接PC 交⊙O 于点D ,PO =OPC =30°.(1)求CD 的长;(2)计算图中阴影部分的面积.【分析】(1)作OE ⊥CD 于点E ,连接OC ,OD ,根据垂径定理得CE =DE ,再根据PO =OPC=30°,得OE =(2)根据阴影部分的面积为扇形COD 的面积减去△COD 的面积即可.【解答】解:(1)作OE ⊥CD 于点E ,连接OC ,OD ,∴CE =DE ,∵PO =OPC =30°,∴OE =12PO =∵直径AB =8,∴OD =4,∴DE ==2,∴CD =2DE =4;(2)∵OD =2DE ,∴∠DOE =30°,∴∠COD =60°,∴阴影部分的面积为60π×42360―12×4×=8π3―【点评】本题考查了垂径定理,扇形面积的计算,含30°的直角三角形的性质等知识,解题的关键是熟练掌握扇形的面积公式.【变式3-5】(2023•蒙阴县一模)已知AB 是圆O 的直径,半径OD ⊥BC 于点E ,BD 的度数为60°.(1)求证:OE =DE ;(2)若OE =1,求图中阴影部分的面积.【分析】(1)连接BD ,证明△OBD 是等边三角形,可得结论;(2)根据S 阴=S 扇形AOC +S △COE ,求解即可.【解答】(1)证明:连接BD ,∵BD 的度数是60°,∴∠BOD =60°,∵OB =OD ,∴△OBD 是等边三角形,∵OD ⊥BC ,∴OE =DE ;(2)解:连接OC .∵OD ⊥BC ,OC =OB ,∴∠COE =∠BOE =60°,∴∠OCE =30°,∴OC =2OE =2,∴CE =∴S 阴=S 扇形AOC +S △COE =60π⋅22360+12×1=2π3【点评】本题考查了扇形面积、三角形的面积的计算,正确证明△BOD 是等边三角形是关键.【变式3-6】(2023•长沙模拟)如图,已知AB 为⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,OF ⊥AC ,垂足为点F ,BE =OF .(1)求证:AC =CD ;(2)若BE =4,CD =【分析】(1)根据AAS 证明△AFO ≌△CEB 即可判断;(2)根据S 阴=S 扇形OCD ﹣S △OCD 计算即可.【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,CE =12CD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,AF =12AC ,∵BE =OF ,∴△AFO ≌△CEB (AAS ),∴AF =CE ,∴AC =CD ;(2)∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设OC =r ,则OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8,连接OD ,如图,在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120π×82360―12×4=643π﹣【点评】本题主要考查了垂径定理,勾股定理,以及扇形的面积的计算,正确求得∠COE 的度数是解决本题的关键.【典例四】(2023•凤台县校级三模)如图,点B 在半圆O 上,直径AC =10,∠BAC =36°,则图中阴影部分的面积为( )A .5πB .52πC .10πD .54π【分析】先根据三角形的中线把三角形分成面积相等的两个三角形得到△AOB 的面积与△COB的面积相解题技巧提炼通过对图形的变换,为利用公式法或和差法求解创造条件.有两种方法:(1)直接等面积转化法(2)平移转化法(3)对称转化法(4)旋转转化法等,从而把阴影部分的面积转化为扇形OBC 的面积,再根据扇形面积计算公式求出即可.【解答】解:∵点O 是AC 的中点,∴线段BO 是△ABC 的中线,∴S △AOB =S △COB ,∴S 阴影=S 扇形OBC ,∵∠BAC =36°,∴∠BOC =2∠BAC =72°,∵直径AC =10,∴OC =5,∴S 扇形OBC =72π×52360=5π,∴S 阴影=5π,故选:A .【点评】本题考查了扇形的面积,圆周角定理,三角形的中线的性质,熟练掌握扇形的面积公式是解题的关键.【变式4-1】(2023•孝义市三模)如图,AB 为半圆O 的直径,CD 垂直平分半径OA ,EF 垂直平分半径OB ,若AB =4,则图中阴影部分的面积等于( )A .4π3B .2π3C .16π3D .8π3【分析】根据图形可得,阴影部分的面积=S 半圆﹣2S 扇形 ACO ,根据扇形面积公式计算即可.【解答】解:如图所示:连接OC ,∵CD 垂直平分半径OA ,∴AC =OC ,∵OC =OA ,∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠A =60°,∴S 阴影=12S ⊙O ﹣2S 扇形ACO =12×(AB 2)2π―2×60×(AB 2)2π360 =12×4π﹣2×16×4π=2π―43π=23π.故选:B .【点评】本题考查了扇形的面积计算,掌握垂直平分线的性质,等边三角形的判定与性质,扇形的面积公式是解题的关键.【变式4-2】(2023•锦州二模)如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与AB ,BC 分别交于点D ,E ,连接AE ,DE ,若∠BED =45°,AB =2,则阴影部分的面积为( )A .π4B .π3C .2π3D .π【分析】根据直径所对的圆周角是直角得到∠AEC =90°,再根据等腰三角形三线合一得出点E 是BC 的中点,从而得出OE 是△ABC 的中位线,于是OE ∥AB ,根据同底等高得到△AOD 和△AED 的面积相等,从而阴影部分的面积转化为扇形AOD 的面积,根据扇形面积公式计算出扇形AOD 的面积即可得出阴影部分的面积.【解答】解:连接OE,OD,∵AC为⊙O的直径,∴∠AEC=90°,∵AB=AC,∴BE=CE,即点E是BC的中点,∵点O是AC的中点,∴OE是△ABC的中位线,∴OE∥AB,∴S△AOD =S△AED,∴S阴影=S扇形OAD,∵∠AEC=90°,∴∠AEB=90°,∵∠BED=45°,∴∠AED=45°,∴∠AOD=90°,∴S扇形OAD=90π×12360=π4,∴S阴影=π4,故选:A.【点评】本题主要考查了扇形的面积,圆周角定理,中位线定理,平行线间的距离相等,等腰三角形的三线合一,不规则图形的面积求法,把不规则图形转化为规则图形计算面积是解题的关键.【变式4-3】(2023•东兴区校级二模)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为BD,则图中阴影部分的面积为( )A .512πB .43πC .34πD .2512π【分析】根据AB =5,AC =3,BC =4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB =5,AC =3,BC =4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=30π×52360=2512π,故选:D .【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.【变式4-4】(2023•郸城县模拟)如图,扇形ABC 圆心角为90°,将扇形ABC 沿着射线BC 方向平移,当点B 落到线段BC 中点E 时平移停止,若AC 的长为2π,则图中阴影部分的面积是 .【分析】根据S 阴影=S 扇形DEF +S 矩形ABED ﹣S 扇形BAC =S 矩形ABED 求解即可.【解答】解:∵扇形ABC 圆心角为90°,AC 的长为2π,∴2π=90π⋅r 180,∴r =4,∴AB =BC =4,∵点E 是BC 的中点,∴BE =2,∴S阴影=S扇形DEF+S矩形ABED﹣S扇形BAC=S矩形ABED=2×4=8.故答案为:8.【点评】本题考查平移性质,扇形面积,熟练掌握求不规则图形面积,通过转化成规则图形面积的和差求解是解题的关键.【变式4-5】如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.求:(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π)【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.【解答】解:(1)阴影部分的周长是:2×12×2π×6+60π×12180=12π+4π=16π(厘米),答:阴影部分的周长为16π厘米;(2)∵阴影部分的面积是:S半圆+S扇形BAC﹣S半圆=S扇形BAC,∴阴影部分的面积=60×π×144360=24π(平方厘米).答:阴影部分的面积为24π平方厘米.【点评】本题考查了旋转的性质,弧长公式,扇形面积公式,掌握计算公式是解题的关键.【变式4-6】如图,AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于点E ,OF ⊥AC 于点F ,BE =OF .(1)求证:△AFO ≌△CEB ;(2)若BE =4,CD =①⊙O 的半径;②求图中阴影部分的面积.【分析】(1)根据AAS 即可判断;(2)①设 OC =r ,则 OE =r ﹣4,在Rt △OCE 中,利用勾股定理构建方程即可解决问题;②根据S 阴=S 扇形OCD ﹣S △OCD 计算即可;【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,∵BE =OF ,∴△AFO ≌△CEB (AAS ).(2)①∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设 OC =r ,则 OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8.②连接 OD .∵在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120⋅π⋅82360―12××4=643π﹣【点评】本题考查扇形的面积,全等三角形的判定和性质,勾股定理,垂径定理,圆周角定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题.【典例五】(2022秋•潼南区期末)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =2,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是 .解题技巧提炼有的阴影部分是由两个基本图形互相重叠得到的.常用的方法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:在Rt △ABC ,∠C =90°,∠B =30°,AB =2,∴∠A =60°,AC =12AB =1,BC∴阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB 60π×12360―12×1×=5π12―故答案为:5π12【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式5-1】(2022秋•北碚区校级期末)如图,正方形ABCD 的边长为1,以A 为圆心,AB 为半径画弧,连接AC ,以A 为圆心,AC 为半径画弧交AD 的延长线于点E ,则图中阴影部分的面积是 .【分析】根据正方形的性质和扇形的面积公式即可得到结论.【解答】解:∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°,∠DAC =45°,∴AC =∴图中阴影部分的面积=12×1×1]+(1×1―90π×12360)=12,故答案为12.【点评】本题考查了正方形的性质,扇形的面积的计算,正确的识别图形是解题的关键.【变式5-2】(2023•平遥县二模)如图,在Rt △ACB 中,∠ACB =90°,AC =1,∠A =60°,将Rt △ACB 绕点C 顺时针旋转90°后得到Rt △DCE ,点B 经过的路径为BE ,将线段AB 绕点A 顺时针旋转60°后,点B 恰好落在CE 上的点F 处,点B 经过的路径为BF ,则图中阴影部分的面积是( )A π12B π12C +π12D ―π12【分析】根据S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF 计算即可.【解答】解:S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF=12×1×60⋅π⋅22360+π12,故选:A .【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.【变式5-3】如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和三角形面积公式即可得到结论.【解答】解:连接BE ,∵AB 为直径,∴BE⊥AC,∵AB=BC=4,∠ABC=90°,∴BE=AE=CE,∴S弓形AE =S弓形BE,∴图中阴影部分的面积=S半圆―12(S半圆﹣S△ABE)﹣(S△ABC﹣S扇形CBF)=12π×22―12(12π×22―12×12×4×4)﹣(12×4×4―45π×42360)=3π﹣6,故答案为3π﹣6.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.【变式5-4】(2022•射洪市模拟)如图,在矩形ABCD中,AB=6,BC=4,以A为圆心,AD长为半径画弧交AB于点E,以C为圆心,CD长为半径画弧交CB的延长线于点F,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和矩形的性质即可得到结论.【解答】解:∵在矩形ABCD中,AB=6,BC=4,∠A=∠C=90°,∴CD=AB=6,AD=BC=4,∴图中阴影部分的面积=S扇形FCD ﹣(S矩形ABCD﹣S扇形DAE)=90π×62360―(6×4―90π×42360)=13π﹣24,故答案为:13π﹣24.【点评】本题考查了扇形面积的计算,矩形的性质,正确的识别图形是解题的关键.。
中考复习专题---阴影部分面积计算
中考复习专题---阴影部分面积计算(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除专题二 阴影部分面积计算例 如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与 AB 交于点D ,以O 为圆心,OC 的长为半径作 CE 交OB 于点E ,若OA =4,∠AOB =120°,则图中阴影部分的面积为________(结果保留π)。
1. 如图,把八个等圆按相邻的两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则S 1S 2=( ) A. 34 B. 35 C. 23D. 1 第1题图2. 如图,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影部分的面积占圆面积的( )A. 12B. 14C. 16D. 18第2题图3.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为( )A. 10B. 12C. 14D. 16第3题图4. 如图,四个半径为1的小圆都过大圆圆心且与大圆相内切,阴影部分的面积为( )A. πB. 2π-4C. π2D. π2+1第4题图答案1. B 【解析】设每个等圆的半径为r .∵正八边形的内角度数是(8-2)×180°8=135°,∴正八边形外侧每一个小扇形的圆心角度数都是360°-135°=225°,∴正八边形内侧八个扇形(无阴影部分)面积之和S 1=8×135π×r 2360,正八边形外侧八个扇形(阴影部分)面积之和S 2=8×225π×r 2360,∴S 1S 2=8×135π×r 23608×225π×r 2360=35. 2. B 【解析】如解图,连接OD ,∵MN ∥AD ,∴S △ODN =S △AON ,∴S 阴影=2S 扇形ODN =14S ⊙O ,则阴影部分的面积占圆面积的14.第2题解图3. D 【解析】如解图,连接DB ,GE ,FK ,则DB ∥GE ∥FK ,∴S △DGB =S △DBE ,∴S △DGE =S △GBE ,同理,S △GKE =S △GFE ,∴S △DEK =S △DGE +S △GKE =S △GBE +S △GFE =S 正方形BEFG =42=16.第3题解图4. B 【解析】如解图,设两小圆交点为A 、C ,其中一小圆圆心为B ,连接AB ,AC ,BC ,∵四个小圆面积和为4π,大圆的面积也是4π,∴S 阴影=S 小圆重合部分,∴S 阴影=8S 弓形AC =8(S 扇形ABC -S △ABC )=8×(90×π×12360-12×1×1)= 2π-4.第4题解图针对演练◆直接和差法1. 如图,正方形AEFG 的一边AE 放置在正方形ABCD 的对角线AC 上,EF 与CD 交于点M ,得四边形AEMD ,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( )A. -4-4 2B. 42-4C. 8-4 2D. 42+4第1题图2. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是( )A. π6B. π3C. π2-12D. 12第2题图3. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上.当正方形CDEF 的边长为2时,阴影部分的面积为( )A. 3π2+2B. 2π-2C. π2+2D. π-2第3题图 第4题图4. 如图,在圆心角为135°的扇形OAB 中,半径OA =2,点C ,D 为AB ︵的三等分点,连接OC ,OD ,AC ,CD ,BD ,则图中阴影部分的面积为( )A. 3π2B. π+ 2C. 3π2-3 2D. 3π2- 25. 如图,已知边长为2的正六边形ABCDEF ,点A 1,B 1,C 1,D 1,E 1,F 1分别为所在各边的中点,则图中阴影部分的总面积是( ) A. 334 B. 234 C. 34 D. 38第5题图 第6题图6. 如图,在圆心角为90°的扇形OAB 中,半径OA =2,C 为AB ︵的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为________.7. 用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分面积为________.第7题图◆割补法8. 如图,△ABC 的面积为16,点D 是BC 边上一点,且BD =14BC ,点G 是AB 上一点,点H 在△ABC 内部,且四边形BDHG 是平行四边形.则图中阴影部分的面积是( )A. 3B. 4C. 5D. 6第8题图 第9题图9. 如图,在△ABC 中,∠A =90°,AB =AC =2,点O 是边BC 的中点,半圆O 与△ABC 的边AB ,AC 分别相切于点D ,E ,则阴影部分的面积为( )A. 1-π4B. π4C. 1-π8D. π810. 如图是某商品的标志图案.AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为( )A. 5π cm 2B. 10π cm 2C. 15π cm 2D. 20π cm 2第10题图11. 如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N ,若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A. 23a 2B. 14 a 2C. 59 a 2D. 49 a 2第11题图12. 如图,正方形的边长为3 cm ,点E ,F 为对角线AC 的三等分点,则图中阴影部分的面积为________cm 2.第12题图 第13题图13. 如图,菱形ABCD 的边长为2 cm ,∠A =60°,BD ︵是以点A 为圆心、AB 长为半径的弧,CD ︵是以点B 为圆心、BC 长为半径的弧,则阴影部分的面积为________ cm 2.14. 将边长分别为2、4、6的三个正三角形按如图方式排列,A 、B 、C 、D 在同一直线上,则图中阴影部分的面积的和为________.第14题图参考答案1. B 【解析】由题意知△ADC 是等腰直角三角形,AD =CD =2,则S △ACD =12AD·CD =12×2×2=2,AC =2AD =22,则EC =AC -AE =22-2,∵△MEC 是等腰直角三角形,∴S △MEC =12ME·EC =12(22-2)2=6-42,∴S阴影=S △ACD -S △MEC =2-(6-42)=42-4.2. A 【解析】由题意可知,△ABC ≌△ADE ,∵∠ACB =90°,AC =BC =1,由勾股定理得AB =2,∴S阴影=S △ADE +S 扇形BAD -S △ABC =S 扇形BAD =30·π·(2)2360=π6,故选A. 3. D 【解析】如解图,连接OC ,∵在扇形AOB 中,∠AOB =90°,点C 是AB ︵的中点,∴∠COD =45°,OD =CD =2,∴在Rt △COD 中,OC =2CD =22,∴S阴影=S 扇形BOC -S △ODC =45×π×(22)2360-12×22=π-2. 第3题解图4. C 【解析】∵C ,D 是AB ︵的三等分点,∠AOB =135°,∴∠AOC =∠COD =∠BOD =45°,∵AO =CO =DO =BO ,∴△AOC ≌△COD ≌△BOD ,如解图,过点A 作AE ⊥OC 于E ,∴在Rt △AOE 中,AE =AO ·sin45°=2×22=2,∴S △AOC =12OC·AE=12×2×2=2,∴S阴影=S 扇形AOB -3S △AOC =135π·22360-32=3π2-3 2. 第4题解图5. A 【解析】如解图,过点A 作AM ⊥A 1B 1于M ,∵六边形ABCDEF 为正六边形,∴∠B 1AA 1=120°,又∵点A 1,B1分别为AF ,AB 的中点,∴AA 1=AB 1=12×2=1,∠AA 1B 1=180°-120°2=30°,∴AM =12AA 1=12,A 1M =AA 1·cos30°=1×32=32,∴A 1B 1=2A 1M =3,则S △AA1B1=12×3×12=34,同理,S △EE 1F 1=S △CC 1D 1=34,∴阴影部分的总面积为34×3=334. 第5题解图 6. π+2-12【解析】如解图,连接OC 、CE ,∵C 为AB ︵的中点,∴AC ︵=BC ︵,∴∠DOC =∠EOC =12∠AOB =45°,又∵D 、E 分别是OA 、OB 的中点,∴OD =12OA =1,OE =12OB =1,∴OD =OE ,DE =2,∴∠ODE =45°,∴OC ⊥DE ,∵OC =OC ,∴△OCD ≌△OCE (SAS),∴S △ODE =12×1×1=12,S 扇形OBC =45π×22360=π2,∴S △OCD =12OC ·12DE =22,∴S 阴影=S 扇形OBC +S △OCD -S △ODE =π2+22-12=π+2-12. 第6题解图7. π-332 【解析】如解图,设AB ︵的中点为P ,连接OA 、OP 、AP ,则∠AOP =60°,∴△AOP 为等边三角形,S △AOP =12×32×1=34,S 扇形OAP =60π×12360=π6,S 弓形AP =S 扇形OAP -S △AOP =π6-34,∴S 阴影=6×S 弓形=6×(π6-34)=π-332.第7题解图8. B 【解析】∵四边形BDHG 是平行四边形,∴GH =BD =14BC ,GH ∥BC ,设△AGH 边GH 上的高是a ,△CGH 边GH 上的高是b ,△ABC 边BC 上的高是h ,则a +b =h ,∴S 阴影=S △AGH +S △CGH =12GH (a +b )=12BD ·h =12×14BC ·h =14S △ABC =14×16=4. 9. B 【解析】如解图,连接OD 交BE 于点F ,连接OE ,∵半圆O 与△ABC 的边AB 、AC 分别相切于点D 、E ,∴OD ⊥AB ,OE ⊥AC ,又∵在△ABC 中,∠A =90°,AB =AC =2,点O 是BC的中点,∴四边形ADOE 是正方形,△OBD 和△OCE 是等腰直角三角形,∴OD =OE =AD =BD =AE =EC =1,∠ABC =∠EOC =45°,∴AB ∥OE ,∴∠DBF =∠OEF ,∠DOE =90°,在△BDF 和△EOF 中,∴△BDF ≌△EOF (AAS),∴S △BDF =S △EOF ,∴S 阴影=S 扇形DOE =90×π×12360=π4.第9题解图10. B 【解析】∵AC 与BD 是⊙O 的两条直径,∴∠ABC =∠BCD =∠CDA =∠DAB =90°,∴四边形ABCD 是矩形,∴OA =OB ,∴∠DBA =∠BAC =36°,根据三角形的外角和定理得∠AOD =∠BOC =72°,∵矩形ABCD 对角线相等且互相平分,∴OA =OC =OD =OB =5 cm ,∴S △AOB =S △BOC =S △COD =S △AOD ,∴S阴影=S 扇形AOD +S 扇形BOC =2S 扇形AOD =2×72π×52360=10π cm 2. 11. D 【解析】如解图,过点E 分别作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,则∠EPM =∠EQN =90°,由于E 点在正方形的对角线上,则EP =EQ ,则四边形EPCQ 为正方形,从而可得∠PEM +∠MEQ =∠QEN +∠QEM =90°,∴∠PEM =∠QEN ,∴△EPM ≌△EQN (ASA),∴S 四边形EMCN =S 四边形EMCQ +S △EQN =S 四边形EMCQ +S △EPM =S 正方形EPCQ .∵EQ ∥AD ,∴EQ AD =CE CA =23,∴EQ =23a ,∴四边形EMCN 的面积为49a 2.第11题解图12. 4 【解析】如解图,设过点E 的垂线交BC 于点H ,交CD 于点G,过点F的垂线交BC于点I,∵E、F是对角线AC的三等分点,BC=3 cm,∴IC=1 cm,由正方形性质可得S四边形ABHE=S四边形AEGD ,S△FIC=12FI·IC=12 cm2,∴S阴影=S△ABC-S△FIC=12×3×3-12=4cm2.第12题解图13. 3【解析】如解图,连接BD,过点D作DE⊥BC,垂足为E,∵四边形ABCD是菱形,∠A=60°,∴△ABD和△BCD是等边三角形,∴S阴影=S△BCD=12BC·DE=12×2×2×sin60°=2×32= 3 cm2. 第13题解图14. 3【解析】如解图,AG分别交BE、CF、BH于点E、F、H.在三个正三角形中,∠ABE=∠BCF=∠CDG=60°,∴BE∥CF∥DG,∴CFDG=ACAD,即CF6=2+42+4+6,解得CF=3,∴第二个三角形中的阴影部分三角形的底边长为4-3=1,同理BE CF=AB AC,即BE3=22+4,解得BE=1,边长为4的等边三角形的高为4×32=23,∵阴影部分的面积的和=△BEH的面积+第二个等边三角形中阴影部分的面积,∴阴影部分的面积的和为12×1×23= 3. 第14题解图9。
中考数学复习指导:应用平移变换求阴影部分面积
应用平移变换求阴影部分面积在求阴影部分图形面积的题目中,其阴影部分图形大多是不规则的,部分同学乍遇这类题目显得不知所措.为此,本文就由平移产生的阴影部分面积予以剖析.一、点的平移例l 如图l,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB 匀速运动到点B,运动时间为t,分别以AP与PB为直径作半圆,则图中阴影部分的面积S 与时间t之间的函数图象大致为( )分析本题阴影部分的面积按等量关系“阴影面积=以AB为直径的半圆面积-以AP 为直径的半圆面积-以PB为直径的半圆面积”,列出函数关系式,然后再判断函数图象.设P点运动速度为v(常量),AB=a(常量),则AP=vt,PB=a-vt.则阴影面积为:由函数关系式可以看出,选D.二、线段的平移例2 已知,如图2,在平面直角坐标系中,A(3,4),求当OA沿着x轴平移到点A'在双曲线y=时,所扫过的面积.分析本题线段的平移所扫过的面积其实是一个平行四边形的面积.当点A平移到双曲线y=上点A'时,纵坐标不变仍为4,由于点A,在双曲线y=上,所以横坐标为5,说明线段平移了5-3=2个单位长度,因此面积为2×4=8.三、抛物线的平移例3 如图3(1),将抛物线y=x2平移得到新抛物线m,抛物线m经过点A(-6,0)和点0(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q.则图中阴影部分的面积为______.分析由抛物线构成的阴影部分没有面积公式,咋一看不知如何下手.其实抛物线y=x2平移得到新抛物线m,抛物线m经过点A(-6,0)和点O(0,0),抛物线m的解析式为y=x2+3x,对称轴为x=-3,所以Q(-3,).抛物线m与x轴、对称轴围成的面积其实就是抛物线y=x2与y轴、y=围成的面积,因此图中阴影部分的面积即为矩形的面积3×=13.5.四、弧线的平移例4如图4(1)所示,半圆AB平移到半圆CD的位置时所扫过的面积为_______.分析本题弧线的平移,其实就是半圆AB平移到半圆CD的位置时所扫过的部分是一个矩形(如图4(2)),根据矩形的面积公式计算即可.所以阴影部分的面积其实就是矩形ABCD的面积,即3×2=6.五、其它曲线的平移例5 如图5(1)所示,求下图S形水泥弯路面的面积.(单位:米)分析本题不规则曲线围成的阴影部分的面积,相信许多同学会产生放弃此题的念头.其实利用平移的思想,把图5(1)中水泥弯路面左边的甲部分向右平移2米,使S形水泥路面的两条边重合,便转化为图5(2),S形水泥路面的面积转化为右图中的阴影部分的面积.S形水泥路的面积是:30×2=60(米2).六、三角形的平移例6 如图6所示是重叠的两个直角三角形.将其中一个R t△ABC沿BC方向平移得到R t△DEF,如果AB=8 cm,BE=4 cm,DH=3 cm,则图中阴影部分的面积为_______cm2.分析由于两个三角形是平移得到的,所以是它们全等形,因此每个三角形不重叠的部分的面积是相等的.由此可知,阴影部分的面积等于四边形ABEH的面积.由题意可知,四边形ABEH为直角梯形,AB=8,BE=4,DH=3,又DE=AB,∴HE=8-3=5.所以,四边形ABEH的面积为:(8+5) ×4=26(cm2).七、四边形的平移例7 如图7,两个直角梯形重叠在一起,将其中一个直角梯形沿AD方向平移,平移的距离等于AE的长,HG=20 cm.KG=8 cm,KC=5 cm,求图中阴影部分的面积.分析此题与例6思路类似,阴影部分的面积等于四边形DHGK的面积(140 cm2).(HG+DK)×KG=(20+20-5)×8=140(cm2).八、多边形的平移例8 如图8,两个五边形重叠在一起,将其中一个多边形沿EC方向平移,∠C=∠H=90°若CF=3 cm,FD=15 cm,FH=6 cm,求图中阴影部分的面积.分析与例6,例7类似,阴影部分的面积等于四边形FHGD的面积.(FD+HG)×FH=(3+15+15)×6=99(c m2).九、圆的平移例9 如图8所示,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B,C解答下列问题:(1)将⊙A向左平移_______个单位长度与y轴首次相切,得到⊙A',此时点A'的坐标为_______,阴影部分的面积S=_______;(2)略.分析(1)结合已知条件及网格中信息可知,⊙A向左平移3个单位长度与y轴首次相切,得到⊙A'.此时点A'的坐标为(2,1),阴影部分中的扇形向右平移3个单位,可得到一个长为3,宽为2的矩形,从而得到阴影部分的面积S=6.综上所述,初中阶段只学习三角形、特殊的四边形、圆及扇形的面积公式等,而在求阴影部分的面积时,其阴影部分往往是不规则图形,故无法直接求解,这时要注意观察和分析图形,学会分解和组合图形,实现不规则图形向规则图形的转化.。
专题03 阴影部分面积的计算-备战2022年中考数学母题题源解密(全国通用)(原卷版)
专题03 阴影部分面积的计算考向1 静态背景下与扇形有关的阴影部分面积的计算【母题来源】2021年中考山东枣庄卷【母题题文】如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C 为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π【答案】C【试题解析】连接BD,EF,如图,∵正方形ABCD的边长为2,O为对角线的交点,由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.∵点E,F分别为BC,AD的中点,∴FD=FO=EO=EB=1,∴,OB=OD.∴弓形OB=弓形OD.∴阴影部分的面积等于弓形BD的面积.∴S阴影=S扇形CBD﹣S△CBDπ﹣2.故选:C.【命题意图】考查基本的计算能力,注重割补法和转化思想的应用。
【命题方向】以选填为主,主要安排在选填的压轴位置,技巧性较强。
【得分要点】求阴影部分面积的常用方法:(1)公式法:若所求阴影部分是规则图形,如扇形、特殊四边形、三角形等,可直接利用公式计算;(2)和差法:若所求阴影部分是不规则图形,可将图形适当分割,将不规则的阴影部分面积转化为几个规则图形面积的和或差;(3)等积转化法:当直接求面积较麻烦或根本求不出来时,可通过等面积转化(利用图形的平移、旋转、对称变换前后面积不变的性质或同底等高的两个三角形面积相等)为公式法或和差法创造条件;(4)一般地,图形中若出现弧线,则先找到这条弧所在圆的圆心,将其补全为扇形,再利用图形间的关系进行求解. 考向2 动态背景下与扇形有关的阴影部分面积的计算【母题来源】2021年中考内蒙古兴安盟卷【母题题文】(2021•兴安盟)如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C是的中点,且扇形CFD绕着点C旋转,半径AE、CF交于点G,半径BE、CD交于点H,则图中阴影面积等于()A.B.C.π﹣1 D.π﹣2【答案】D【试题解析】两扇形的面积和为:π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:1,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.故选:D.【命题意图】考查了扇形的面积,正方形面积公式,构造辅助线运用转化思想解答关键.【命题方向】以选填为主,多为选填的压轴位置,试题区分度较高.【得分要点】动态背景下阴影部分面积的主要以平移、折叠、旋转变换为背景,结合勾股定理以及锐角三角函数知识求出扇形的半径和圆心角,进而得出扇形的面积,在解答过程中要注意合理添加辅助线,将不规则图形的面积通过割补或转化进行计算.1.(2021•东胜区二模)如图,已知所在圆的半径为4,弦AB长为,点C是上靠近点B的四等分点,将绕点A逆时针旋转120°后得到,则在该旋转过程中,线段CB扫过的面积是()A.B.C.πD.2.(2021•峨山县模拟)如图,在菱形ABCD中,AB=4,∠ABC=120°,以A为圆心,AB为半径画圆弧,交AC于点E,过点E作EF∥AB交AD于点F,则阴影部分的面积为()A.B.C.D.3.(2021•驻马店二模)如图,已知点C、D是以AB为直径的半圆的三等分点,的长为,连接OC、AD,则图中阴影部分的面积为()A.B.C.D.4.(2021•河南模拟)如图,扇形AOB中,∠AOB=90°,点C为OA上一个动点,连接BC,以BC为对称轴折叠△OBC得到△DBC,点O的对应点为点D,当点D落在弧AB上时,若OA=2,则阴影部分的面积为()A.B.C.D.5.(2021•新洲区模拟)在矩形ABCD中,AB=6,BC=3,把以AB为直径的半圆O绕点B顺时针旋转至如图位置(点A落在CD上的点A′处),则半圆O扫过的面积(图中阴影部分)是()A.3πB.πC.D.6.(2021•姜堰区一模)如图,OA是⊙O的半径,弦BC⊥OA,垂足为M,连接OB、AC,如果OB∥AC,OB=2,那么图中阴影部分的面积是()A.B.C.πD.2π7.(2021•江岸区模拟)有一张矩形纸片ABCD,已知AB=2,AD=4,上面有一个以AD为直径的半圆,如图甲,将它沿DE折叠,使A点落在BC上,如图乙,这时,半圆还露在外面的部分(阴影部分)的面积是()A.π﹣2B.πC.πD.8.(2021•山西模拟)如图所示的是小慧设计的一个美丽的图案,该图案是由两个圆心相同,半径分别为9cm 和3cm的圆构成的,那么该图案中阴影部分的面积为()cm2A.72πB.60πC.48 D.36π9.(2021•硚口区模拟)如图,AB和CD是⊙O的两条互相垂直的弦,若AD=4,BC=2,则阴影部分的面积是()A.2π﹣1 B.π﹣4 C.5π﹣4 D.5π﹣810.(2021•湘潭模拟)如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将沿直线AC翻折,若翻折后的圆弧恰好经过点O,则图中阴影部分的面积为()A.B.C.D.11.(2021•紫金县模拟)如图,正方形ABCD边AB=1,和都是以1为半径的圆弧,阴影两部分的面积分别记为S1和S2,则S1﹣S2等于()A. 1 B.1C. 1 D.112.(2021•漳平市模拟)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D,若OA=4,则图中阴影部分的面积为()A.3πB.3π﹣2C.2D.13.(2021•卧龙区一模)如图,在菱形ABCD中,AB=2,以点B为圆心,BA长为半径画弧,恰好过顶点D和顶点C,点E,F分别是弧AC上的两点,若∠EBF=60°,则图中阴影部分的面积为.14.(2021•澄海区模拟)如图,已知Rt△ACB≌Rt△BDE,∠ACB=∠BDE=90°,∠CAB=30°,点C在线段BD上,BC=2,将△BDE绕点B按顺时针方向旋转30°,使得BE与BA重合,则线段DE经旋转运动所形成的平面图形(即阴影部分)的面积为.15.(2021•峡江县模拟)如图,扇形AOB的圆心角为直角,边长为1的正方形ODCF的顶点F,D,C分别在OA,OB,上,过点B作BE⊥FC,交FC的延长线于点E,则图中阴影部分的面积等于.16.(2021•中原区校级四模)如图,AC的半圆O的一条弦,将弧AC沿弦AC为折线折叠后过圆心O,图中阴影部分的面积为,则⊙O的半径为.17.(2021•江北区校级模拟)如图,半径为4的扇形AOB的圆心角为90°,点D为半径OA的中点,CD⊥OA交于点C,连接AC、CO,以点O为圆心OD为半径画弧分别交OC、OB于点F、E,则图中阴影部分的面积为.18.(2021•德城区二模)如图,等边△ABC中,BC=6,O、H分别为边AB、AC的三等分点,AH AC,AO AB,将△ABC绕点B顺时针旋转100°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积为.19.(2021•福州模拟)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=2,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.20.(2021•成都模拟)如图,在平面直角坐标系xOy中,等边△ABC的顶点A在y轴的正半轴上,B(﹣5,0),C(5,0),点D(11,0),将△ACD绕点A顺时针旋转60°得到△ABE,则的长度为,图中阴影部分面积为.。
中考数学专题复习和训练--求阴影部分的面积
合 .在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助
阴影部分(不规则图形)转化为规则的易求的图形求解
.
转化化归 思想,将
典例精析:
例 1.如图 , AB 是⊙ O 的直径,弦 CD AB, C 30 ,CD 2 3 ,则 S 阴影 =
A.
B. 2
2 C. 3
3
分析: 本题的阴影部分是不规则的,要可以转化到规则的阴影部分,比
形中心的对角线长为 2,间隔一个顶点的对角线长为 3 ,则 CE 4 ;若 △AEC 和 △BEC 都以 CE 为求其面积的底边 ,则它们相应的高怎样化归在直角三角形中来求出呢? 解:(由同学们自我完成解答过程)
师生互动练习:
1.如图已知网格中每个小正方形的边长为 2,图中阴影部分的
每个端点位置情况计算图中的阴影部分的面积之和为
小圆⊙ O′向右 平移 至大圆⊙ O 使圆心重合(见 图① 的第二个图) ,这样来求圆环的面积更容易O;
图② 虽然是半圆也可以采用相同的方法求阴影部分半圆环的面积
.
A
B
A
C B
O O'
O
O' O
O
A
B
A
B
C
图① 三 .补转化为一个整体:
图②
如图第一个图是以等腰 Rt△AOB 的直角顶点 O 为圆心画出的直角扇形 OAB 和以 OA 、 OB 为
如转化为扇形 AOD 的面积来求;利用垂径定理和三角函数计算可以得出
C
EC ED,EO EA ,由此可以证明⊿ AEC ≌⊿ DEO ; 所以阴影部分等于
扇形 AOD 的面积,利用扇形面积的计算公式求出结果为
2 . 选D
中考数学专题训练之二--求阴影部分的面积 (含答案)
求阴影部分的面积1.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣2.如图,在矩形ABCD 中AB=,BC=1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .B .2﹣C .D .3.如图,线段AB=2,分别以A 、B 为圆心,以AB 的长为半径作弧,两弧交于C 、D 两点,则阴影部分的面积为( )A .B .C .D .4.如图所示,有一个半径为2的扇形,∠AOB=90°,其中OC 平分∠AOB ,BE ⊥OC ,CD ⊥AO ,则图中阴影面积为( ) A .π﹣1 B .π﹣2 C .﹣2D .﹣15 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是( )A. π6B. π3C. 1+π6 D. 16. 如图,在半径为2 cm 的⊙O 中,点C 、点D 是AB ︵的三等分点,点E 是直径AB 的延长线上一点,连接CE 、DE ,则图中阴影部分的面积是( )A. 3 cm 2B. 2π3 cm 2C.2π3- 3 cm 2D.2π3+ 3 cm 2 7. 如图,正方形ABCD 的面积为12,点M 是AB 的中点,连接AC 、DM 、CM ,则图中阴影部分的面积是( )A. 6B. 4.8C. 4D. 38.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA ,ED 长为半径画AF ︵和DF ︵,连接AD ,则图中阴影部分面积是( )A. πB. 54π C. 3+π D. 8-π9. 如图,在扇形AOB 中,∠AOB=120°,半径OC 交弦AB 于点D ,且OC ⊥AO ,若OA=积为____________10.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为,则图中阴影部分的面积为 .11.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心, OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影 部分的面积为___________.12.如图,在扇形AOB 中,∠AOB =900,点C 为OA 的中点,CE ⊥OA 交⌒AB于点E .以点O 为圆心,OC 的长为半径作⌒CD 交OB 于点D .若OA =2,则阴影部分的面积为.B13.如图,在菱形ABCD 中,AB=1,∠DAB=60°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB′C′D′,其中点C 的运动路径为,则图中阴影部分的面积为 _____ .14、如图,抛物线的顶点为(2,2),P -与y 轴交于点(0,3)A ,若平移该抛物线使其顶点P 沿直线移动到点'(2,2)P -,点A 的对应点为'A ,则抛物线上PA 段扫过的区域(阴影部分)的面积为15.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.把△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB 于点E .若AD=BE ,则△A′DE 的面积是 .16.如图,在扇形OAB 中,∠AOB=90°,点C 为OB 的中点,CD ⊥OB 交弧AB 于点D .若OA=2,则阴影部分的面积为 .17.如图,四边形ABCD 是一个矩形,E 、F 、G 、H 分别是边AD 、BC 上的三等分点,请你根据图中的数据求阴影部分的面积为 cm 2.18.如图,正方形ABCD 的边长为6,分别以A ,B 为圆心,6为半径画BD ︵,AC ︵,则图中阴影部分的面积为__________.19.如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.20.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为________.21. 如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.22.如图,在△ABC中,已知点D、E、F分别为BC,AD,CE的中点,且S△ABC=4 cm2,则阴影部分的面积为________.23 如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为________(结果保留π).24.如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是________.25. 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则图中阴影部分的面积为________.26.如图,在矩形ABCD中,点O在BC边上,OB=2OC=2,以O为圆心,OB的长为半径画弧,这条弧恰好经过点D,则图中阴影部分的面积为________.27.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是________.28. 如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为________cm 2.29. 如图,正方形ABCD 的边长为1,分别以点A 、D 为圆心,1为半径画弧BD 、AC ,两弧相交于点F ,则图中阴影部分的面积为________.30. 如图,在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB1E ,则△AB 1E 与四边形AECD 重叠部分的面积是________.31. 如图,在矩形ABCD 中,AB =6 cm ,BC =8cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是________ cm 2.求阴影部分的面积答案1 解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°,∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C . 2 A . 3 A . 4 B5.B 【解读】在Rt △ABC 中,∵AC =BC =2,∴AB =AC 2+BC 2=2,∴S 阴影=S 扇形DAB =30π×22360= π3.6.B 【解读】如解图,连接OC 、OD 、CD ,∵点C 、点D是AB ︵的三等分点,∴∠DOB =∠COD =60°,又∵CO =OD ,∴CO =OD =CD ,∴∠DOB =∠CDO =60°,∴CD ∥AB ,∴S △CED =S △COD ,∴S 阴影=S 扇形COD =60π×22360=2π3 cm 2.7.C 【解读】如解图,设DM 与AC 交于点E ,∵四边形ABCD 是正方形,∴AM ∥CD ,AB =CD ,∴△AME ∽△CDE ,∵点M 是AB 的中点,∴AM CD =12,∴AE CE =EM DE =AM CD =12,∵S 正方形ABCD =12,∴S △ABC =12S正方形ABCD =6,∴S △ACM =12S △ABC =3,∴S △AEM =13S △ACM =1,S △CEM =23S △ACM =2,∴S △AED =2S △AEM =2,∴S 阴影=S △CEM +S △AED =2+2=4,故选C.8.D 【解读】如解图,过点D 作DH ⊥AE 于点H ,∵∠AOB=90°,OA =3,OB =2,∴AB =OA 2+OB 2=13,由旋转的性质可知,OF =OA =3,OE =OB =2,DE =EF =AB =13,∴AE =OA +OE =5,易证△DHE ≌△BOA ,∴DH =OB =2,∴S 阴影=S △ADE +S △EOF +S 扇形AOF -S 扇形DEF =12AE ·DH +12OE ·OF +90π×OA 2360-90π×DE 2360=12×5×2+12×2×3+90×π×32360-90×π×(13)2360=8-π.10 解:△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB ,DB′==,A′B′==2,∴S 阴=﹣1×2÷2﹣(2﹣)×÷2=π﹣.故答案为π﹣. 1133π-121223π+13 解:连接BD′,过D′作D′H ⊥AB ,∵在菱形ABCD 中,AB=1,∠DAB=60°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S △ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.14 阴影部分''PAA P 可认为是一个平行四边形,'PP ==过A 作'AB PP ⊥,则sin 45322AB OA =︒=⨯=∴阴影部分''PAA P 的面积为'12S PP AB =⨯==15 解:Rt △ABC 中,由勾股定理求AB==10,由旋转的性质,设AD=A′D=BE=x ,则DE=10﹣2x , ∵△ABC 绕AB 边上的点D 顺时针旋转90°得到△A′B′C′, ∴∠A′=∠A ,∠A′DE=∠C=90°, ∴△A′DE ∽△ACB ,∴=,即=,解得x=3,∴S △A′DE =DE×A′D=×(10﹣2×3)×3=6, 故答案为:6.16π﹣.17 解:根据题意得,AE =EF =FD =10cm ,DC =HF =20cm , ∴S 扇形FAH =S 扇形DEC ,∴S 阴影部分=S 矩形ABCD ﹣S 曲边ABH ﹣S 扇形DEC =S 矩形ABCD ﹣(S 矩形ABHF ﹣S 扇形FAH )﹣S扇形DEC=S 矩形FHCD ,∵S 矩形FHCD =HF •FD =20cm ×10cm =200cm 2, ∴S 阴影部分=200cm 2; 故答案为200.18 3π-19. ∵菱形的两条对角线的长分别为10和6,∴菱形的面积=12×10×6=30,∵点O 是菱形两条对角线的交点,∴阴影部分的面积=12×30=15. 20.4 解:如解图,设BD 与⊙O 交于点E 和F 两点.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵⊙O 过A ,C 两点,∴扇形AOE 与扇形FOC 关于点O 成中心对称,∴S 扇形AOE =S 扇形FOC ,∴S 阴影=S △AOB =12×12AC ·AB =12×12×4×4=4. 21.π【解读】如解图,连接OC ,在半圆O 中,AB =BC ,CD =DE ,∴AB ︵=BC ︵,CD ︵=DE ︵,∴∠AOB =∠BOC ,∠COD =∠DOE ,∴S 阴影=S 扇形OAB +S 扇形ODE =12S 扇形AOC +12S 扇形COE =12S 半圆AOE =12×π×222=π,∴阴影部分的面积为π.22.1 cm 2【解读】∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE +S △ACE =12S △ABC =12×4=2 cm 2,∴S △BCE =12S △ABC =12×4=2 cm 2,∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1 cm 2.23.2-π2【解读】∵BC =AC =2,∠C =90°,∴AB =22,∵点D 为AB 的中点,∴AD =BD =2,∴S 阴影=S △ABC -S 扇形EAD -S 扇形FBD =12×2×2-45π×(2)2360×2=2-π2.24.32-π4【解读】根据已知可得∠ABC =90°,∵在Rt △ABC 中,tan ∠CAB =13=33,∠CAB =30°,∴∠BAB′=30°,∴S 阴影=S △AB′C′-S扇形BAB′=12AB′·B′C′-30π·(3)2360=12×3×1-π4=32-π4.25.183【解读】∵MC =6,NC =23,∠C =90°,∴S △CMN =63,由折叠性质得△CMN ≌△DMN ,∴△CMN 与△DMN 对应高相等,∵MN ∥AB ,∴△CMN ∽△CAB 且相似比为1∶2,∴两者的面积比为1∶4,从而得S △CMN ∶S四边形MABN=1∶3,∴S 阴影=S 四边形MABN =18 3.26.2π3-3【解读】设弧与AD 交于点E ,如解图,连接OE ,过点O 作OP ⊥AD 于点P ,由题意得,OB =OE =OD ,∴OD =2OC =2,∴∠ODC =30°,则∠ODE =60°,∴△ODE 为等边三角形,∴S △ODE =12×2×3=3,则S 阴影=S 扇形EOD -S △ODE =60×π×22360-3=2π3- 3. 27.2π3-3【解读】如解图,连接BD ,设BE 交 AD 于点G ,BF 交CD 于点H ,∵在菱形ABCD 中,∠A =60°,AB =2,∴BD =BC =2,由题意知扇形圆心角为60°,∴∠DBG =∠CBH ,∠GDB =∠C ,∴△DGB ≌△CHB ,∴S 阴影=S 扇形EBF - S △DBC=60×π×22360-12×2×3=2π3- 3.28.41 【解读】如解图,连接EF ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理,S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 阴影=S △EFP +S △EFQ =16+25=41 cm 2.29.32-π6【解读】如解图,过点F 作FE ⊥AD 于点E ,连接AF 、DF ,∵正方形ABCD 的边长为1,∴AE =12AD =12AF =12,∴∠AFE =∠BAF =30°,∴∠F AE =60°,EF =32,∴△ADF 为等边三角形,∴∠ADF =60°,∴S 弓形AF =S 扇形ADF -S △ADF =60π×12360-12×1×32=π6-34,∴S 阴影=2(S 扇形BAF -S 弓形AF )=2×(30π×12360-π6+34)=32-π6. 30.22-2 【解读】如解图,设CD 与AB 1交于点O ,∵在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,∴AE =BE =2,由折叠性质易得△ABB 1为等腰直角三角形,∴S △ABB1=12BA ·AB 1=2,S △AB1E =1,CB 1=2BE -BC =22-2,∵AB ∥CD ,∴∠OCB 1=∠B =45°,又∵∠B 1=∠B =45°,∴CO =OB 1=2-2,∴S △COB 1=12CO ·OB 1=3-22,11∴S 重叠=S △AB1E -S △COB 1=1-(3-22)=22-2.31.32 【解读】如解图,连接BD ,EF ,设BF 与ED 相交于点G .∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =6 cm ,AD =BC =8 cm ,∴S △ABD =S △BCD =12S 矩形ABCD =12×6×8=24 cm 2,∵E 、F 分别是BC 、CD 的中点,∴EF ∥BD ,EF =12BD ,∴△GEF ∽△GDB ,∴DG =2GE ,∵S △BDE =12S △BCD ,∴S △BDG =23S △BDE =13S △BCD =13×24=8 cm 2,∴S 阴影=S △ABD +S △BDG =24+8=32 cm 2.。
中考专题-圆中阴影部分面积求解解析(教案)
难点举例:在计算过程中,注意分数、小数的运算,以及平方、开方等运算的准确性。
(5)数据分析能力的运用:在解决不同类型的题目时,学生需要分析数据,找出解题规律,提高解题效率。
难点举例:分析不同类型题目的共同点和差异,总结解题方法,形成自己的解题策略。
在学生小组讨论环节,我发现学生们在讨论过程中能够积极思考,提出自己的观点。但与此同时,也有一部分学生在讨论中过于依赖他人,缺乏独立思考。为了解决这个问题,我将在今后的教学中注重培养学生的独立思考能力,鼓励他们在讨论中敢于发表自己的见解。
最后,我注意到在总结回顾环节,部分学生对所学知识点的掌握程度并不理想。这说明我在教学过程中可能没有充分关注到学生的个体差异,导致他们在学习过程中跟不上整体进度。因此,我将在今后的教学中更加关注每个学生的学习情况,因材施教,确保每个学生都能掌握所学知识。
五、教学反思
在今天的教学中,我发现学生们在圆中阴影部分面积求解方面存在一些问题。首先,他们在构建空间观念上还有一定的困难,尤其是在处理复杂的几何图形时,难以准确把握图形之间的关系。在接下来的教学中,我需要加强这方面的训练,多提供一些直观的教具或图形,帮助学生建立更清晰的空间观念。
其次,学生在逻辑推理能力方面也表现出一定的不足。在解决实际问题时,他们往往不能迅速找到解题的关键步骤,导致解题思路不清晰。针对这一问题,我打算在讲授过程中,更多地运用案例分析,引导学生逐步分析问题,培养他们的逻辑推理能力。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制圆形和扇形,并进行面积求解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
关于阴影部分的面积求值问题是中考的一类考题
关于阴影部分的面积求值问题是中考的一类考题,归纳起来可以分为 间接求值法(即用相关面积间接表示求值)、分割求值法(即分成若干部分求和)、割补求值法(即通过割补转化成有面积公式的图形求面积)、等积变形求值法等。
我们通过下面的问题来体会这些方法的的应用:1. (2009深圳)如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC = ∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为(A .B .C .D . 等积变形2. (2009嘉兴)如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ▲ )A .3B .4C .6D .9间接求值,参数意识3. (2009遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是 A.4π-8 B. 8π-16 C.16π-16 D. 16π-32 间接求值4. (2009湖州)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 . 等积变形5. 2009娄底)如图7,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 . 割补法求值6. (2009衡阳)如图8,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD . (1)求证:AC=BD ;(第9题)(第15题)CABS 1S 2 图8(2)若图中阴影部分的面积是243cm π,OA=2cm ,求OC 的长.割补法求值7. 如图7-341,正方形ABCD 、A1B1C1D1边长都是a .(2)在正方形A 1B 1C 1D 1中,分别以A 1,B 1,C 1,D 1为圆心,设两图中阴影部分周界长为S 1,S 2,则S 1与S 2的关系是[ ]A .S 1>S 2; B .S 1=S 2;C .S 1<S 2; D .大小关系不定.间接求值法8. 如图:正方形ABCD 的边长为a , 以各边为直径在正方形内作半圆 , 所围成的图中阴影部分的面积为[ ]A .2)21(a π- 2)21(a π-B .2)22(a π-C .2)12(a -πD .2)42(a π-9. 如图:以直角三角形三边为直径的三个半圆围成的两个月牙形(阴影部分)的面积和等于[ ]A .AB ·AC B .AC ·BC C .AB ·BD D .21AC ·BC 10. 如图:以正△ABC 的三边为弦的三条圆弧相交于△ABC 的外心O,若AB=a, 则图中阴影部分的面积为[ ]A .2)233(a -πB .2)8343(a π-C .2)343(a π-D .2)3433(a π- 11如图:∠AOM=90°,AN ∥OM ,OA=1cm ,是以O 为圆心的圆的一部分,是以A 为圆心的圆的一部分,这个曲边形ABC (阴影部分)的面积为___________.221cm 12图:⊙O 1与⊙O 2交于A , B , ⊙O 2的直径AC 切⊙O 1于A , ⊙O 2的弦CB 的延长线交⊙O 1于E , 且AC=5 , BC=3 , 求图中阴影部分的面积.13如图:平行四边形ABCD中 , AB=6 , AD=3 , BD^AD , 以BD为直径的圆交 AB于E , 交DC于F,求阴影部分的面积.14 已知:如图,AB为半圆⊙O的直径,C、D为半圆⊙O的三等分点,若AB=12,求阴影部分的面积.15 如图,已知:∠AOB=90°,AC∥OB,AO=3,分别以O点,A点为圆心,AO、AB为半径画弧,交OB、AC于B、C,求阴影部分的周长和面积.。
与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(解析版)
与圆有关的计算求阴影部分面积 题型解读|模型构建|通关试练模型01 阴影部分面积计算求阴影部分面积在考试中主要考查学生对图形的理解和数形结合的认识能力具有一定的难度.一般考试中选择题或填空题型较多,熟练掌握扇形面积、弧长的计算、等边三角形的判定和性质,特殊平行四边形性质是解题的关键. 模型02 阴影部分周长计算求阴影部分弧长或周长的计算,掌握弧长计算方法是正确计算的前提,求出相应的圆心角度数和半径是正确计算的关键.该题型一般考试中选择题或填空题型较多,圆心角是n °,圆的半径为R 的扇形面积为S ,则S 扇形=n 360πR 2或S 扇形=12lR (其中l 为扇形的弧长).熟练应用公式是解题的关键. 模型03 与最值相关的计算阴影部分面积和周长中求最值,此题有一定的难度,解题中注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.本题考查中经常与轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短等知识点相结合,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.求阴影部分面积方法总结 方法一 直接利用公式法求阴影部分面积方法二 直接或构造和差法求阴影部分面积 方法三 利用等积转换法求阴影部分面积方法四 利用容斥原理求阴影部分面积模型01 阴影部分面积计算 考|向|预|测阴影部分面积计算问题该题型主要以选择、填空形式出现,目前与综合性大题结合考试,作为其中一问,难度系数不大,在各类考试中都以中档题为主.解这类问题的关键是将所给问题抽象或转化为规则图形的面积进行求解,属于中考选择或填空题中的压轴题.答|题|技|巧 第一步: 确定弧所对的圆心,(找圆心)第二步: 连接圆心与弧上的点;(连半径) 第三步: 确定圆心角度数(有提示角度的话注意求解相应角,没有提示角度的话一般为特殊角,大胆假设小心论证)第四步: 把不规则图形面积转化为规则图形面积进行求解例1.(2023·四川)一个商标图案如图中阴影部分,在长方形ABCD 中,6cm AB =,4cm BC =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则阴影部分的面积是( )A .2(4π4)cm +B .2(4π8)cm +C .2(8π4)cm +D .2(4π16)cm −【答案】A 【详解】解:由题意知4cm AF AD BC ===,10cm BF AF AB =+=,阴影部分的面积211π42S AB BC AD BF BC =⋅+−⋅ 21164π410442=⨯+⨯−⨯⨯244π20=+−4π4=+,故选A .例2.(2023·湖北)如图,在ABC 中,90A ∠=︒,3,6,AB AC O ==是BC 边上一点,以O 为圆心的半圆分别与,AB AC 边相切于,D E 两点,则图中两个阴影部分面积的和为 .【答案】5π−/5π−+【详解】解:如图,连接OD ,OE ,以O 为圆心的半圆分别与,AB AC 边相切于,D E 两点,∴OD AB ⊥,OE AC ⊥,90A ∠=︒,∴四边形ADOE 是矩形, 又OD OE =,∴四边形ADOE 是正方形,∴AD DO OE AD ===,90DOE ∠=︒,90A OEC ∠=∠=︒,A C B E C O ∠=∠,∴ACB ECO ∠∽, ∴AC AB EC EO =,设AD DO OE AD r ====,则6EC AC AE r =−=−, ∴636r r =−,解得2r =,∴2AD DO OE AD ====, 90DOE ∠=︒,∴DOB 和EOC △所包含扇形的面积之和为:22180901ππ2π3604r ︒−︒⨯=⨯=︒,∴图中两个阴影部分面积的和为:21π362π5π2ABC ADOE S S −−=⨯⨯−−=−正方形,故答案为:5π−.模型02 阴影部分周长计算考|向|预|测阴影部分弧长或周长计算该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查求与弧结合的不规则图形的周长,准确应用弧长公式是解题的关键.但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成求规则图形的长度问题.答|题|技|巧第一步: 观察图形特点,确定弧长和线段长;第二步: 利用弧长公式求长度;第三步: 求图形中其它边的长度;例1.(2023·河北)如图,正方形ABCD 的边长为2,分别以B ,C 为圆心,以正方形的边长为半径的圆相较于点P ,那么图中阴影部分①的周长为 ,阴影部分①②的总面积为 .【答案】 2π+ 2233π【详解】解:连接PB 、PC ,作PF BC ⊥于F ,2PB PC BC ===,PBC ∴△为等边三角形,60PBC PCB ∴∠=∠=︒,30PBA ∠=︒,∴sin602PF PB =⋅︒=∴阴影部分①的周长AP BP l l AB =++ 3026022180180ππ⨯⨯=++2π=+阴影部分①②的总面积()2BPC ABP BPC S S S ⎡⎤=−−⨯⎣⎦扇形扇形223026021223603602ππ⎡⎤⎛⨯⨯=−−⨯⨯⎢⎥ ⎝⎣⎦ 23π=,,故答案为:2π+;23π.例2.(2023·浙江)如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为 .【答案】a π 【详解】解:四边形ABCD 是正方形,边长为a ,AB CB AD CD a ∴====,90B D ∠=∠=︒,∴树叶形图案的周长902180a a ππ⋅=⨯=.故答案为:a π. 模型03 与最值相关的计算 考|向|预|测圆的弧长与面积和最值相关的计算主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”“点到直线距离垂线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题,进而解决求阴影部分的最值问题. 答|题|技|巧 第一步: 观察图形特点,确定变量和不变的量(一般情况下弧长固定,线段长变化)第二步: 利用将军饮马或者“两点之间线段最短”“点到直线距离垂线段最短”等知识点进行转化 第三步: 牢记弧长公式,求对弧长和线段长;第四步: 利用数形结合思想注意确定最值;例1.(2023·江苏)如图,点C 为14圆O 上一个动点,连接AC ,BC ,若1OA =,则阴影部分面积的最小值为( )A .3144πB .142π−C .24πD .184π− 【答案】C【详解】解:连接AB ,OC ',AC ',BC ',要使阴影部分的面积最小,需要满足四边形AOBC 的面积最大,只需满足ABC 的面积最大即可, 从而可得当点C 位于弧AB 的中点C '时,ABC 的面积最大,连接OC ',则OC AB '⊥于D ,12OD AB ∴===,1DC OC OD ''∴=−=,1111122AOB ABC AOBC S S S ''⎛∴=+=⨯⨯+⎝⎭四边形, 扇形AOB 的面积29013604ππ⨯==, ∴阴影部分面积的最小值42π=−,故选:C . 例2.(2022·浙江)如图,⊙O 是以坐标原点O 为圆心,P 的坐标为(2,2),弦AB 经过点P,则图中阴影部分面积的最小值为()A .8πB .323πC .8π﹣16D .323π−【答案】D【详解】解:由题意当OP ⊥A'B'时,阴影部分的面积最小,∵P (2,2),∴,∵OA'=OB'=∴=,∴tan ∠A'OP=tan ∠,∴∠A'OP=∠B'OP=60°,∴∠A'OB'=120°,∴S 阴=S 扇形OA'B'-S △A'OB''=()212042132462236023ππ−=− ,故答案为:D . 例3.(2023·吉林)如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,4AC =,以AB 直径作圆,P 为BC 边的垂直平分线DE上一个动点,则图中阴影部分周长的最小值为.【答案】483π+【详解】解:如图,连接CE ,连接BP∵P 为BC 边的垂直平分线DE 上一个动点,∴点C 和点B 关于直线DE 对称,∴CP BP =,∴AP CP AP BP +=+∴当动点P 与点E 重合时AP BP +最小,此时AP CP +最小,∵90ACB ∠=︒,30B ∠=︒,4AC =,∴28AB AC ==,4AE =,∴CP AP AC ==,∴ACP △是等边三角形,∴60APC ∠=︒,∵8AP CP AP BP AB +=+==, ∴阴影部分的周长最小值为6044881803ππ︒⨯⨯+=+︒. 故答案为483π+.1.(2023·江苏)如图,在Rt ABC △中,9034A AB AC ∠=︒==,,,以O 为圆心的半圆分别与AB AC 、边相切于D E 、两点,且O 点在BC 边上,则图中阴影部分面积S =阴( )A .12B .π3C .35π4−D .15036π4949− 【答案】D 【详解】解:连接,OD OE ,设O 与BC 交于M 、N 两点,∵AB AC 、分别切O 于D 、E 两点,∴90ADO AEO ∠=∠=︒,又∵90A ∠=︒,∴四边形ADOE 是矩形,∵OD OE =,∴四边形ADOE 是正方形,∴90DOE ∠=︒,∴90DOM EON ∠+∠=︒,设OE x =,则AE AD OD x ===,4EC AC AE x =−=−. ∵,90C C CEO A ∠=∠∠=∠=︒,∴COE CBA ∽, ∴CE OE CA AB = , ∴443x x −= , 解得127x = ,∴()ABC ADOE DOM EON S S S S S =−−+阴影正方形扇形扇形 22129011273427360π⎛⎫⨯ ⎪⎛⎫⎝⎭=⨯⨯−− ⎪⎝⎭ 150364949π=−.故选D .2.(2022·湖北)如图,在Rt ABC 中,90C ∠=︒,6AB =,AD 是BAC ∠的平分线,经过A ,D 两点的圆的圆心O 恰好落在AB 上,O 分别与AB 、AC 相交于点E 、F .若圆半径为2.则阴影部分面积( ).A .13πB .43πC .23π D3− 【答案】C【详解】解:连接OD ,OF .∵AD 是∠BAC 的平分线,∴∠DAB =∠DAC ,∵OD =OA ,∴∠ODA =∠OAD ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴S △AFD =S △OFA ,∴S 阴=S 扇形OFA ,∵OD=OA=2,AB=6,∴OB=4,∴OB=2OD,∴∠B=30°,∴∠A=60°,∵OF=OA,∴△AOF是等边三角形,∴∠AOF=60°,∴S阴=S扇形OFA=2 6022= 3603 p p.故选:C.3.(2023·安徽)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O中的阴影部分是一个正六边形,其中心与圆心O重合,且AB BC=,则阴影部分面积与圆的面积之比为()A B C D【答案】B【详解】解:如图所示,连接OA,OB,OC设正六边形的边长为1,则1OA =,60AOB ∠=︒,OA OB =∴AOB 为等边三角形,则60BOA OBA ∠=∠=︒,1OA OB AB ===,2AC =,∴BCO BOC ∠=∠,又∵ABO BCO BOC ∠=∠+∠,∴30BCO BOC ∠=∠=︒,则=90AOC ∠︒,∴OC所以圆的面积为3π,正六边形的面积为1166sin 6061122AOB S AB OA =⨯⋅⋅︒=⨯⨯⨯△,则阴影部分面积与圆的面积之比为23π=, 故选:B .4.(2022·广西)如图所示,⊙O 是以坐标原点O 为圆心,4为半径的圆,点P),弦AB 经过点P ,则图中阴影部分面积的最小值等于( )A .2π﹣4B .4π﹣8 CD【答案】D 【详解】由题意当OP ⊥AB 时,阴影部分的面积最小,∵P),∴OP=2,∵OA=OB=4,∴∴tan ∠AOP=tan ∠∴∠AOP=∠BOP=60°,∴∠AOB=120°,∴S 阴=S 扇形OAB ﹣S △AOB=2120·41-23602π⨯= ,故选D .5.(2023·山东)如图,正比例函数与反比例函数的图象相交于AB 、两点,分别以AB 、两点为圆心,画与x 轴相切的两个圆,若点A 的坐标为(2,1),则图中两个阴影部分面积的和是( )A .12πB .14πC .πD .4π【答案】C【详解】解:∵点A 的坐标为(2,1),且⊙A 与x 轴相切,∴⊙A 的半径为1,∵点A 和点B 是正比例函数与反比例函数的图象的交点,∴点B 的坐标为(-2,-1),同理得到⊙B 的半径为1,∴⊙A 与⊙B 关于原点中心对称,∴⊙A 的阴影部分与⊙B 空白的部分完全重合,∴⊙A 的阴影部分与⊙B 空白的部分的面积相等,∴图中两个阴影部分面积的和=π•12=π.故选C .6.(2023·山西)如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点O 在AB 上,以O 为圆心作圆与BC 相切于点D ,与AB 、AC 相交于点E 、F ;连接AD 、FD ,若O 的半径为2.则阴影部分面积为( )A .13πB .43πC .23πD .23π【答案】C【详解】解:连接OD ,OF .∵O 与BC 相切,∴90ODB ∠=︒.∵90C ∠=︒,∴ODB C ∠=∠,∴OD AC ∥,∴.AFD OFA S S =,∴OFA S S =阴影扇形,∵30B ∠=︒,∴60BAC ∠=︒,∵OF OA =,∴AOF 是等边三角形,∴60AOF ∠=︒, ∴260223603OFA S S ππ⋅⋅===阴影扇形.故选C .7.(2023·黑龙江)如图,ABC 中,90ACB ∠=︒,4AC BC ==,分别以点A ,B 为圆心,AC ,BC 的长为半径作圆,分别交AB 于点DE ,则弧CD 弧CE 和线段DE 围成的封闭图形(图阴影部分)的面积 (结果保留π)【答案】4π8−【详解】解:∵904ACB AC BC ∠=︒==,, ∴14482ABC S =⨯⨯=△,4542CAD S ππ⨯==扇形,()282164S ππ=⨯−=−空白, ∴()816448ABC S S S ππ=−=−−=−阴影空白,故答案为:48π−.8.(2022·河南)在矩形ABCD 中,4,AB AD ==,以BC 为直径作半圆(如图1),点P 为边CD 上一点.将矩形沿BP 折叠,使得点C 的对应点E 恰好落在边AD 上(如图2),则阴影部分周长是 .4+/4【详解】解:设阴影部分所在的圆心为O ,如图,连接OF ,∵四边形ABCD 是矩形,∴∠ABC=∠A=90°,由折叠得,BE BC ==∵4,AB =∴4AE ==∴,AB AE = ∴1(18090)452ABE AEB ∠=∠=︒−︒=︒∴90904545,OBE ABE ∠=︒−∠=︒−︒=︒∵OB OF =∴45OBF OFB ∠=∠=︒∴180454590BOF ∠=︒−︒−︒=︒∴BF 的长==,4BF ==,∴ 阴影部分周长4+4+.9.(2022·内蒙古)如图,在Rt AOB 中,90AOB ∠=︒,以O 为圆心,OB 的长为半径的圆交边AB 于点D ,点C 在边OA 上且CD AC =,延长CD 交OB 的延长线于点E .(1)求证:CD 是圆的切线;(2)已知4sin 5OCD ∠=,AB =AC 长度及阴影部分面积. 【答案】(1)证明见详解;(2)AC=3,阴影部分面积为50-43π.【详解】(1)证明:连接OD∵OD=OB∴∠OBD=∠ODB∵AC=CD∴∠A=∠ADC∵∠ADC=∠BDE∴∠A=∠EDB∵∠AOB=90°∴∠A+∠ABO=90°∴∠ODB+∠BDE=90°即OD ⊥CE ,又D 在o 上∴CD 是圆的切线;(2)解:由(1)可知,∠ODC=90°在Rt △OCD 中,4sin 5OD OCD OC ∠==∴设OD=OB=4x ,则OC=5x ,∴3CD x∴AC=3x∴OA=OC+AC=8x在Rt △OAB 中:222OB OA AB +=即:()()(22248x x += 解得1x =,(-1舍去)∴AC=3,OC=5,OB=OD=4在Rt △OCE 中,4sin 5OE OCD ∠==∴设OE=4y ,则CE=5y ,∵222OE OC CE +=()()222455y y += 解得53y =,(53−舍去) ∴2043OE y ==219012050-5-4-42360233OB S OE OC πππ⋅=⋅=⨯⨯=阴影 ∴阴影部分面积为50-43π.1.如图,在以点O 为圆心的半圆中,AB 为直径,且AB=4,将该半圆折叠,使点A 和点B 落在点O 处,折痕分别为EC 和FD ,则图中阴影部分面积为( )A .3πB .23πC .3πD .23π 【答案】D 【详解】∵AB 是直径,且AB=4,∴OA=OE=2,∵使点A 和点B 落在点O 处,折痕分别为EC 和FD ,∴AC=OC=OD=DB=1,∴CD=2,∴△EOF 是等边三角形,∴∠EOF=60°,S 半圆=21222=ππ⨯,S 长方形CDFE=2∴S 阴=S 长方形CDFE -(S 半圆-S 长方形CDFE)+2(S 扇形OEF -S △EOF )=212232+(-ππ⨯=23π 故选D.2.如图,在矩形ABCD 中,AB =4,BC =6,点E 是AB 中点,在AD 上取一点G ,以点G 为圆心,GD 的长为半径作圆,该圆与BC 边相切于点F ,连接DE ,EF ,则图中阴影部分面积为( )A.3πB.4πC.2π+6D.5π+2【答案】B【详解】如图,连接GF,∵四边形ABCD是矩形∴AD=BC=6,∠ADC=∠C=90°=∠A=∠B,AB=CD=4∵点E是AB中点∴AE=BE=2∵BC与圆相切∴GF⊥BC,且∠ADC=∠C=90°∴四边形GFCD是矩形,又∵GD=DF∴四边形GFCD是正方形∴GD=GF=CD=CF=4∴BF=BC﹣FC=2∵S阴影=(S四边形ABFD﹣S△AED﹣S△BEF)+(S扇形GDF﹣S△GDF)∴S阴影=((26)4116222222+⨯−⨯⨯−⨯⨯)+(4π﹣1442⨯⨯)=4π.故选B.3.如图,四边形ABCD为正方形,边长为4,以B为圆心、BC长为半径画AB,E为四边形内部一点,且BE⊥CE,∠BCE=30°,连接AE,求阴影部分面积( )A .4π−B .6πC .42π−−D .43π−−【答案】C【详解】过E 点作EM ⊥BC 于M 点,作EN ⊥AB 于N 点,如图,∵BE ⊥CE ,∴∠BEC=90°,∵∠BCE=30°,∴∠EBC=60°,∵EM ⊥BC ,∴在Rt △EMC 中,∴tan ∠ECM=EM MC =tan30°=,∴,∴∴在Rt △EBM 中,∴tan ∠EBM=EMBM∴BM=,∵BM+MC=BC=4,∴=4,∴EM =∴BM=1==,∵NE ⊥AB ,EM ⊥BC ,且∠ABC=90°,∴四边形BMEN 是矩形,∴NE=BM=1,∵AB=BC=4,∠ABC=90°,∴1141222ABE S AB NE =⨯⨯=⨯⨯=△,11422BEC S BC EM =⨯⨯=⨯=△22901443604ABCS AB πππ=⨯⨯=⨯⨯=扇形o o∴42ABE BEC ABC S S S S π=−−=−−△△阴影扇形故选:C .4.如图,正三角形ABC 的边长为4cm ,D ,E ,F 分别为BC ,AC ,AB 的中点,以A ,B ,C 三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(π)cm 2B .(πcm 2C .(2π)cm 2D .(2π-cm 2【答案】C【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°,∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S 扇形AEF=1226023360π⨯⨯2π)cm2,故选C .5.如图,在Rt AOB △中,90AOB ∠=︒,2OA =,1OB =,将Rt AOB △绕点O 顺时针旋转90︒后得Rt FOE △,将线段EF 绕点E 逆时针旋转90︒后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .5π+C .524π−D .724π− 【答案】C 【详解】解:作DH AE ⊥于H ,∵90AOB ∠=︒,2OA =,1OB =,∴AB 由旋转,得EOF BOA ≌,∴OAB EFO ∠=∠,∵90FEO EFO FEO HED ∠+∠=∠+∠=︒,∴EFO HED ∠=∠,∴HED OAB ∠=∠,∵90DHE AOB ∠=∠=︒,DE AB =,∴()AAS DHE BOA ≌,∴1DH OB ==,阴影部分面积ADE =V 的面积EOF +V 的面积+扇形AOF 的面积−扇形DEF 的面积211902905311222360360ππ⨯⨯=⨯⨯+⨯⨯+−5124π=−故选:C .6.如图,在半径为2、圆心角为90︒的扇形OAB 中,2BC AC =,点D 从点O 出发,沿O A →的方向运动到点A 停止.在点D 运动的过程中,线段BD ,CD 与BC 所围成的区域(图中阴影部分)面积的最小值为( )A .23πB .213π−C .3πD .132π− 【答案】B【详解】当点D 在线段OA 上时,易得当点D 与点A 重合时,阴影部分面积最小,连接OC 、BC ,过点C 作CH OA ⊥于点H ,如图,190303AOC ︒︒∠=⨯=,112CH OC ∴==, ∵290603BOC ︒︒=⨯=∠, ∴260223603BOC S =⨯⨯=扇形ππ.∴ 2112212213223BOC AOC AOB S S S S ππ=+−=+⨯⨯−⨯⨯=−△△阴扇形;∴线段BD 、CD 与BC 所围成的区域(图中阴影部分)面积的最小值为213π−.故答案为B .7.如图,矩形ABCD 中,4,3AB BC ==,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差12S S −为( )A .13124π−B .9124π−C .1364π+D .6【答案】A 【详解】解:∵在矩形ABCD 4,3AB BC ==,F 是AB 中点,∴2BF BG ==,∴12ABCD ADE BGF S S S S S −+=−矩形扇形扇形, ∴22129039021343123603604S S πππ⋅⨯⋅⨯−=⨯−−=−, 故选A .8.如图,在半径为4的扇形OAB 中,90AOB ∠=︒,点C 是AB 上一动点,点D 是OC 的中点,连结AD 并延长交OB 于点E ,则图中阴影部分面积的最小值为( )A .44π−B .4πC .24π−D .2π【答案】B 【详解】∵点D 是OC 的中点,2OD =,∴点D 在以O 为圆心2为半径的圆弧上,∴可知当AE 与小圆O 相切于D 时,OE 最大,即△AOE 的面积最大,此时阴影部分的面积取得最小值, ∵24OA OD ==, ∴1sin =2OD OAE OA =∠,则30OAE ∠=︒,∵∠AOB=90°,∴tan OE OA OAE =⋅∠=,∴4OAE OAB S S S π=−=阴影扇形, 故选B .9.如图,在Rt ABC △中,90C ∠=︒,6AB =,AD 是BAC ∠的平分线,经过A ,D 两点的圆的圆心O 恰好落在AB 上,O 分别与AB 、AC 相交于点E 、.F 若圆半径为2.则阴影部分面积= .【答案】23π/23π【详解】解:连接OD ,OF .AD 是BAC ∠的平分线,DAB DAC ∴∠=∠,OD OA =,ODA OAD ∴∠=∠,ODA DAC ∴∠=∠,OD ∴∥AC ,90ODB C ∴∠=∠=︒,∴AFD OFA S S =,∴OFA S S =阴扇形,2OD OA ==,6AB =,4OB ∴=,2OB OD ∴=,30B ∴∠=︒,60A ∴∠=︒,OF OA =,AOF ∴是等边三角形,60AOF ∴∠=︒,260π22π3603OFA S S ⋅∴===阴影部分扇形,故答案为:2π3.10.如图,在Rt ABC 中,30A ∠=︒,BC =点O 为AC 上一点,以O 为圆心,OC 长为半径的圆与AB 相切于点D ,交AC 于另一点E ,点F 为优弧DCE 上一动点,则图中阴影部分面积的最大值为 .【答案】223π+ 【详解】解:连接DE ,OD ,∵Rt ABC 中,30A ∠=︒,BC =∴6tan 30BC AC ===︒,∵AB 为O 的切线,∴90ADO ∠=︒,∴2AO OD =,60AOD ∠=︒,∵OD OE OC ==,∴36AC AO OC OD =+==,△ODE 为等边三角形,∴2DE OE OD OC ====,∵S 阴影=S 弓形DGE+S △DEF∴当OF ⊥DE 时,阴影部分面积最大,此时OF 与DE 交于G ,∴∠DOG=∠EOG=30°,∠DGO=90°,∴cos302OG OD =⋅︒==,2GF OG OF =+=,∴S 阴影= S 扇形ODE - S △DEO +S △DEF=260211222(22360223ππ⨯⨯−⨯⨯⨯=+.11.如图,点C 为14圆O 上一个动点,连接AC ,BC ,若OA =1,则阴影部分面积的最小值为 .【答案】42π−【详解】取弧AB 的中点C′,连接AB 、OC '、AC '、BC ',要使阴影部分的面积最小,需要满足四边形AOBC 的面积最大,只需满足△ABC 的面积最大即可,从而可得当点C 位于弧AB 的中点C '时,△ABC 的面积最大,则OC AB '⊥于D1222OD AB ∴===12DC OC OD ''∴=−=−1111(122AOB ABC AOBC S S S D D ''∴=+=⨯⨯+=四边形扇形AOB 的面积29013604ππ⨯== ∴阴影部分面积的最小值为4π=故答案为:4π.12.如图所示,⊙O 是以坐标原点O 为圆心,4为半径的圆,点P),弦AB 经过点P ,则图中阴影部分面积的最小值= .【答案】【详解】解:由题意当OP ⊥AB 时,阴影部分的面积最小.∵P,∴OP=2.∵OA'=OB'=4,∴∴tan ∠A'OP=tan ∠∴∠AOP=∠BOP=60°,∴∠A'OB'=120°,∴S 阴=S 扇形OA'B'-S △A'OB'=2120π4360⋅⋅﹣122⋅.故答案为:.13.如图,扇形OAB 中,OA R =,60AOB ∠=︒,C 为弧AB 的中点,点D 为OB 上一动点,连接AD DC 、,当阴影部分周长最小时,tan ADC ∠等于 .【答案】【详解】解:如图,作点C 关于OB 的对称点E ,连接AE 交OB 于点F ,连接FA 、OC , 由对称可知,DC DE =,FC FE =,∵AD CD AD DE AE AF EF +=+≥=+,当点D 移动到点F 时,取等号,此时AD CD +最小, ∵C 为弧AB 的中点,∴AC BC =,则30AOC COB BOE ∠=∠=∠=︒,90AOE ∴∠=︒, 又OA OE =,∴45OEF ∠=︒,∴304575EFB BOE OEA ∠=∠+∠=︒+︒=︒,由轴对称可知,75CFB EFB ∠=∠=︒,∴30AFC ∠=︒,∴当阴影部分周长最小时,30ADC AFC ∠=∠=︒,则tan ADC ∠= .故答案为:.14.如图,扇形AOB 中,120AOB ∠=︒,M 切弧AB 于点C ,切OA ,OB 分别于点D ,E ,若1OA =,则阴影部分面积的周长为 .【答案】13π16−+【详解】∵⊙M 内切于扇形AOB ,∴C 、M 、O 三点共线,连接C 、M 、O ,连接ME 、MD ,如图所示,根据相切的性质可知DM ⊥AO ,ME ⊥OB ,设⊙M 的半径为R ,∴ME=MD=MC=R ,∠MDO=∠MEO=90°,结合MO=MO ,可得t t R MDO R MEO ≅△△,∴∠MOD=∠MOE=12∠AOB=120°×12=60°,∴在Rt △MOE 中,∠OME=90°-∠MOE=30°,∴OE=ME=R ,OM=2OE=R ,又∵OA=OC=OB=1,∴OM+MC=1,即R+R=1,解得R=3,∴OE=2BE=OB -1,∵∠MOE=60°,∴»60123603BC OA ππ=⨯⨯=o o ,∵∠OME=30°,∴∠CME=180°-∠OME=180°-30°=150°,15015015223603606EC ME R πππ=⨯⨯=⨯⨯=−,则阴影部分的周长为:BE+BC +EC 1+13π+156π−=1316π−,故答案为:1316π−.15.如图,在AOB 中,2OA =,3OB =,32AB =.将AOB 绕点O 逆时针旋转45︒后得到COD △,则图中阴影部分(边AB 扫过的图形)的周长为 .【答案】534π+ 【详解】解:∵32CD AB ==,AC 的长为4521801802n OA πππ⋅⨯==,BD 的长为45331801804n OB πππ⋅⨯==,∴阴影部分的周长为533534224AC BD AB CD ππ+++=++=+. 故答案为534π+. 16.如图,在ABC 中,90ACB ∠=︒,以点C 为圆心,CA 长为半径的圆交AB 于点D .(1)若25B ∠=︒,求AD 的度数;(2)若D 是AB 的中点,且4AB =,求阴影部分(弓形)的面积.【答案】(1)50°(2)23π【详解】(1)解:连接CD ,如图,90ACB ∠=︒,25B ∠=︒,902565BAC ∴∠=︒−︒=︒,CA CD =,65CDA CAD ∴∠=∠=︒,180656550ACD ∴∠=︒−︒−︒=︒,∴AD 的度数为50︒;(2)解:过点C 作CH AB ⊥于点H ,D 是AB 的中点,90ACB ∠=︒,122CD AD BD AB ∴====,CD CA =, ACD ∴为等边三角形,60ADC ∴∠=︒,sin 60CH CD =⋅︒=∴阴影部分的面积260212236023ACD ACD S S ππ⋅⋅=−=−⨯=扇形17.如图,在△ABC 中,AB =AC , 以AB 为直径作圆O ,分别交AC , BC 于点D 、E .(1)求证:BE =CE ;(2)当∠BAC =40°时,求∠ADE 的度数;(3)过点E 作圆O 的切线,交AB 的延长线于点F ,当AO =BE =2时,求图中阴影部分面积.【答案】(1)见解析(2)110︒(3)23π【详解】(1)证明:如图,连接AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∴AE ⊥BC ,∵AB=AC ,∴BE=CE ;(2)∵AB=AC ,AE ⊥BC ,∠BAC =40° ∴1==20°,2BAE BAC ∠∠∴∠ABE=90°-∠BAE=70°,∵四边形ABED 是圆内接四边形,∴∠ADE=180°-∠ABE=110°,(3)连接OE ,∵EF 是O 的切线,∴OE EC ⊥,∵22AO BE OB OE AO =====,,∴BOE 是等边三角形,∴60BOE ∠=︒,30F ∠=︒∴EF ==∴160××42==223603OEF OBE S S S ππ−⨯⨯阴影部分扇形. 18.如图,ABC 中,90,ACB BAC ∠=︒∠的平分线交BC 于点O ,以点O 为圆心,OC 长为半径作圆.(1)求证:AB 是O 的切线;(2)若30,4CAO OC ∠=︒=,求阴影部分面积.【答案】(1)见解析;(2)163π−【详解】解:(1)证明:过O 作OD AB ⊥于D ,如图所示,90,ACB ∠=︒OC AC ∴⊥, OA 平分,BAC ∠OD OC ∴=, OC 为O 的半径,OD ∴为O 的半径,AB ∴是O 的切线.(2)∵OD ⊥AB ,∴∠ODB=90°,∵∠CAO=30°,∠ACB=90°,∴∵∠AOC=90°-30°=60°,∴∠COD=2∠AOC=120°,由(1)得:AB 是⊙O 的切线,OC ⊥AC ,∴AC 为⊙O 的切线,∴∴阴影部分面积=△AOC的面积+△AOD的面积-扇形OCD的面积2 1112044422360π⨯=⨯+⨯−163π=.。
中考求阴影部分面积
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和C D ⌒围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。
例2.如图2,PA 切圆O 于A ,OP 交圆O 于B ,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB 与直径CD 平行,且与小半圆相切,那么图中阴影部分的面积等于_______。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法
例谈求阴影部分面积的几种常见方法【专题综述】在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.【方法解读】一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影部分的面积.分析因为阴影部分是一个规则的几何图形Rt△CEF,故根据已知条件可以直接计算阴影部分面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由已知条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,则FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,若⊙O1半径为3cm;⊙O2半径为1cm,求阴影部分面积.分析这是求一个不规则图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规则图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影部分面积之和.分析所求的阴影部分面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个内角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影部分面积.分析本题的阴影部分是不规则的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影部分面积.分析阴影部分图形不规则,不能直接求面积,可以把它分割成几个部分求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影部分面积被分割为S1、S2、S3、S4四部分.则六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB =4cm,求阴影部分面积.分析如果想直接求阴影部分面积,无法求解,因为它不是规则图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE=2cm,阴影部分面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作O E⊥AB于点E,则BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限内的一个交点,求阴影部分的面积.分析阴影部分分两部分,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1部分分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2(舍去).∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形内画四个半圆,求阴影部分的面积.分析本题直接求阴影部分面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影部分面积为.222aaπ-.【强化训练】1.(2017内蒙古包头市)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=42,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+12.(2017四川省凉山州)如图,一个半径为1的⊙O1经过一个半径为2的⊙O的圆心,则图中阴影部分的面积为()A.1B.12C.2D.223.(2017四川省资阳市)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.1312πB.34πC.43πD.2512π4.(2017衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π5. (2017云南省)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(2017吉林省)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).7. (2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.8. (2017湖北省恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)9. (2017内蒙古赤峰市)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD 与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:A M是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).10.(2017新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:B E是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。
中考数学专题:与圆有关的阴影部分面积的计算 训练(含答案)
专题 阴影部分面积的计算一.选择题1. 如图,在扇形OAB 中,∠AOB =90°,点C 是AB ︵的中点,点D 在OB 上,OD ∶DB =1∶2,OA =2,则图中阴影部分的面积为( )A. π2-23B. π4-23C. π2-223D. π-232. 如图,菱形ABCD 的边长为2,∠A =60°,弧BD 是以点A 为圆心、AB 长为半径的弧,弧AC 是以点B 为圆心、BC 长为半径的弧,则阴影部分的面积为( )A.32 B. 3 C. 332D. 2 33. 如图,点B 在半圆O 上,直径AC =6,∠BCA =60°,连接OB ,则阴影部分的面积为( )A. 2πB. 3πC.3π2 D. 3π44. 如图,在边长为1的等边△ABC 中,两条弧AOB ︵与AOC ︵所对的圆心角均为120°,则由两条弓形及边BC 所围成的阴影部分的面积是( )A.33 B. 3 C. 312 D. 345. 如图,正三角形与正六边形的边长分别为2和1,正六边形的顶点O 是正三角形的中心,则阴影部分的面积为( )第5题图A.33 B.233C. 3D. 36. 如图,在▱ABCD 中,AD =4,∠BAD =120°,以点D 为圆心,AD 的长为半径画弧,交CD 于点E ,连接BE ,若BE 恰好平分∠ABC ,则图中阴影部分的面积为( )A. 123-4π3 B. 123-8π3C. 163-4π3D. 163-8π3二.填空题7. 如图,点C 在以AB 为直径的半圆弧上,∠ABC =30°,沿直线CB 将半圆折叠,点A落在点A′处,A′B和弧BC交于点D,已知AB=6,则图中阴影部分的面积为8.如图,⊙O为正六边形ABCDEF的外接圆,连接OB,OF,BD,DF,若⊙O的半径为2,则阴影部分的面积为9.(2019·福建)如图,边长为2的正方形ABCD的中心与半径为2的⊙O的圆心重合,E,F分别是AD,BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)三.解答题10.如图,在▱ABCD中,∠B=45°,AB=2,连接CA,将▱ABCD绕点A逆时针旋转至▱AB′C′D′,点D′在BA的延长线上,若CA⊥AB,(1)求AD的长(2)求图中阴影部分的面积11. 如图,以AB为直径,点O为圆心的半圆上有一点C,且∠ABC=60°,点D为AO 上一点,将△DBC沿直线DC对折得到△DB′C,点B的对应点为B′,且B′C与半圆相切于点C,连接B′O交半圆于点E.(1)求证:B′D⊥AB;(2)当AB=2时,求图中阴影部分面积.参考答案1. A 【解析】如解图,连接OC ,易得∠COB =45°,过点C 作CE ⊥OB 于点E ,则CE =CO ·sin45°=2×22=2,∵OA =2,OD ∶DB =1∶2,∴OD =23.∴S 阴影=S 扇形BOC -S △OCD =45π·22360-12×23×2=π2-23.2. B 【解析】如解图,连接BD ,∵四边形ABCD 是菱形,∠A =60°,∴△ABD 、△BCD 均是等边三角形.∴S 阴影=S △BCD =34·BC 2=34×22= 3.3. C 【解析】∵AC 为半圆O 的直径,∴∠ABC =90°,又∵∠BCA =60°,∴∠BAC =30°,∵OA =OB ,∴∠OBA =∠BAC =30°,∴∠BOC =60°,∵OA =OC ,∴△AOB 与△BOC 等底同高,即S △AOB =S △BOC ,∴S 阴影=S 扇形BOC =60π·32360=3π2.4. C 【解析】如解图,连接OA ,OB ,OC ,线段OA 将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针绕点O 旋转120°后,阴影部分便合并成△OBC ,它的面积等于△ABC 面积的三分之一,∴S 阴影=13×34×12=312.5. A 【解析】如解图,过点O 分别作AB 、BC 的垂线,垂足为点E 、F ,∵O 为等边三角形的中心,∴OE =OF ,S △OFC =S △OEA ,∴S 四边形OABC =S 四边形OEBF =13S 正三角形.∵S 正三角形=12×2×2×sin60°=3,∴S 阴影=33.6. B 【解析】如解图,过点A 作AF ⊥CD 于点F ,∵四边形ABCD 是平行四边形,∠BAD =120°,∴∠D =60°,∵AD =4,∴AF =AD ·sin60°=23,∵∠ABC =∠D =60°,BE 平分∠ABC ,∴∠CBE =30°,∵∠C =∠BAD =120°,∴∠CEB =∠CBE =30°,∴EC =BC =AD =4,∴DC =DE +EC =8,∴S 阴影=S ▱ABCD -S △BEC -S 扇形ADE =8×23-12×4×23-60π·42360=123-8π3.7.3π2【解析】如解图,连接AD ,CD ,∵沿直线CB 将半圆折叠,点A 落在点A ′处,∴∠ABC =∠CBA ′=30°,AB =A ′B =6,∴∠ABD =60°,∵AB 是半圆的直径,∴∠ADB =90°,∴∠BAD =30°,∴AC ︵=CD ︵=BD ︵,BD =12AB =12A ′B =12×6=3,∴CD =BD =12A ′B ,∠A ′DC =60°,∴S 阴影=S 扇形A ′CD =60π·32360=3π2.第7题解图8. 43π. 【解析】如解图,连接OC ,OE ,分别交BD ,DF 于点M ,N ,∵正六边形ABCDEF 内接于⊙O ,∴∠BOC =60°,∠BCD =∠COE =120°,∵OB =OC ,∴△OBC 是等边三角形.∴∠OBC =∠OCB =60°,∴∠OCD =∠OCB ,∵BC =CD ,∴∠CBD =∠CDM =30°,BM =DM ,∴∠OBM =30°,S △DCM =S △BCM ,∴∠OBM =∠CBD ,∴OM =CM ,∴S △OBM =S △BCM ,∴S △OBM =S △DCM ,同理,S △OFN =S △DEN ,∴S 阴影=S 扇形COE =120π×22360=43π.9. π-110. 【解析】(1)AD 的长为22如解图,以点A 为圆心,AC ′长为半径画C ′E ︵,交AD ′于点E ,∵AB =2,∠B =45°,CA ⊥AB ,∴AC =AB =CD =2,∠CAD =45°,AD =AC 2+DC 2=22+22=2 2(2)由旋转的性质可知∠DAD ′=45°,S △ACD =S △AC ′D ′,S 扇形CAC ′=S 扇形C ′AE ,∴S 阴影=(S 扇形DAD ′-S △AC ′D ′)+(S △ACD -S扇形CAC ′)=S扇形DAD ′ -S扇形CAC ′=S扇形DAD ′ -S扇形C ′AE =45π×(22)2360-45π×22360=π2.11.(1)证明:由题意得:∠B′CB =∠B′CO +∠OCB =90°+60°=150°. ∵△DBC 沿直线DC 对折得到△DB′C , ∴∠DCB =21 ∠B′CB = 21×150°=75°. 在△DBC 中,∠CDB =180°-∠ABC -∠DCB =180°-60°-75°=45°. ∴∠B′DB =2∠CDB =2×45°=90°,∴B′D ⊥AB ;(2)解:∵AB =2,△OBC 是等边三角形, ∴OC =OB =BC =B′C =1. ∵∠B′CO =90°, ∴∠B′OC =45°∴S 阴影=S △B′CO -S 扇形EOC =21-8。
中考求阴影部分面积(供参考)
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和C D⌒围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4. 如图4,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5. 如图5,在四边形ABCD中,AB=2,CD=1,∠=︒∠=∠=A B D60,90︒,求四边形ABCD所在阴影部分的面积。
例2.如图2,PA切圆O于A,OP交圆O于B,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a、宽为b的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于_______。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
中考数学阴影部分面积专题含答案
专题:阴影部分面积1、圆有关的计算:(1)弧长计算公式:180R n l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) (2)扇形面积:2360R n S π=扇形或lR S 21=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长)(3) 圆锥:扇形到圆锥三个不变量侧面积计算公式:圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样, S 圆锥侧=S 扇形=21·2πr · l = πrl 其中l 是圆锥的母线长,r 是圆锥的地面半径。
圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )圆锥的高:22r R h -=算弧长:考查形式主要有扇形与三角形、四边形相结合求阴影部分面积。
利用扇形、三角形、四边形的面积公式,以及特殊角的锐角三角函数、勾股定理等,根据图形特征①运用割补法求面积;②运用旋转变换、等面积变换求面积;③运用整体作差法求面积等。
类型一:割补法求面积̂上【经典例题1】(2020•荆门)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为AB一点,∠AOC=30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.【解析】∵∠AOB =90°,∠AOC =30°,∴∠BOC =60°,∵扇形AOB 中,OA =OB =2,∴OB =OC =2,∴△BOC 是等边三角形,∵过C 作OA 的垂线交AO 于点D ,∴∠ODC =90°,∵∠AOC =30°,∴OD =√32OC =√3,CD =12OC =1, ∴图中阴影部分的面积═S 扇形BOC ﹣S △OBC +S △COD=60⋅π×22360−12×2×2×√32+12×√3×1 =23π−√32. 故答案为23π−√32. 练习1-1(2020四川自贡)如图,矩形ABCD 中,E 是AB 上一点,连接DE ,将△ADE 沿DE 翻折,恰好使点A 落在BC 边的中点F 处,在DF 上取点O ,以O 为圆心,OF 长为半径作半圆与CD 相切于点G .若AD =4,则图中阴影部分的面积为 .【解析】连接OG ,∵将△ADE 沿DE 翻折,恰好使点A 落在BC 边的中点F 处,∴AD =DF =4,BF =CF =2,∵矩形ABCD 中,∠DCF =90°,∴∠FDC =30°,∴∠DFC =60°,∵⊙O 与CD 相切于点G ,∴OG ⊥CD ,∵BC ⊥CD ,∴OG ∥BC ,∴△DOG ∽△DFC , ∴DO DF =OG FC , 设OG =OF =x ,则4−x 4=x 2, 解得:x =43,即⊙O 的半径是43.连接OQ ,作OH ⊥FQ ,∵∠DFC =60°,OF =OQ ,∴△OFQ 为等边△;同理△OGQ 为等边△;∴∠GOQ =∠FOQ =60°,OH =√32OQ =2√33,S 扇形OGQ =S 扇形OQF ,∴S 阴影=(S 矩形OGCH ﹣S 扇形OGQ ﹣S △OQH )+(S 扇形OQF ﹣S △OFQ )=S 矩形OGCH −32S △OFQ =43×2√33−32(12×43×2√33)=2√39. 故答案为:2√39. 练习1-2如图,在扇形AOB 中,∠AOB=120°,半径OC 交弦AB 于点D ,且OC ⊥AO ,若OA=2√3,则阴影部分的面积为 .【解析】阴影部分面积=△AOD 面积 + BCD 部分面积BCD 部分面积=扇形OBD 面积-△OBD 面积∴阴影部分面积=△AOD 面积+扇形OBD 面积-△OBD 面积 所以阴影部分面积为3+π练习1-3如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交弧AB 于点E .以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D .若OA =2,则阴影部分的面积为 .AD【解析】如图,连接OC ,EC ,由题意得△OCD ≌△OCE,OC ⊥DE,DE=2,所以S 四边形ODCE =21×2×2=2,S △OCD =22, 又S △ODE =21×1×1=21,S 扇形OBC =2π, 所以阴影部分的面积为:S 扇形OBC +S △OCD −S △ODE =2π+22−21;故答案为:2π+22−21.DA【解析】连接OC 、AC ,由题意得,OA=OC=AC=2,∴△AOC 为等边三角形,∠BOC=30∘,∴扇形△COB 的面积为:ππ313602302=⋅, △AOC 的面积为:21×2×3=3, 扇形AOC 的面积为:ππ323602602=⋅, 则阴影部分的面积为:ππ32331-+=π313-, 故答案为:π313-.练习1-7如图,AB 为半圆O 的直径,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,若AB=8,则图中阴影部分的面积为.【解析】连接AD,OD,BD,可得△ACD∽△CDB,有CD2=AC•CB,∴CD=23,OC=2,tan∠COD=23:2=3:1,∴S扇形OAD=π38,S△CDO=21CO×CD=23,∴S ADC=S扇形OAD-S△CDO=π38-23,S扇形CDE=3π,∴阴影部分的面积=S半圆-(S ADC+S扇形CDE)=π37+23.故选A.练习1-8如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π32则图中阴影部分的面积为( )A.9πB.93πC.π23233- D.π32233-EDC OA B【解析】连接BD,BE,BO,EO, ∵B ,E 是半圆弧的三等分点, ∴∠EOA=∠EOB=∠BOD=60∘, ∴∠BAC=∠EBA=30∘, ∴BE ∥AD ,∵弧BE 的长为π32,∴18060R ⋅π=π32, 解得:R=2,∴AB=ADcos30∘=23, ∴BC=0.5AB=3, ∴AC=3,∴S △ABC =21×BC ×AC=21×3×3=233,∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC −S 扇形BOE =233-π32. 故选:D.练习1-9如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆,分别交AB ,AC 边于点D ,E ,再以点C 为圆心,CD 长为半径作圆,交BC 边于点F ,连接E ,F ,那么图中阴影部分的面积为 .【解析】432312-+π练习1-10(2020内蒙古呼和浩特)(3分)如图,△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧,交AC 于点E ,若∠A =60°,∠ABC =100°,BC =4,则扇形BDE 的面积为 .【解析】∵∠A =60°,∠B =100°,∴∠C =20°, 又∵D 为BC 的中点,∵BD =DC =BC =2,DE =DB , ∴DE =DC =2, ∴∠DEC =∠C =20°, ∴∠BDE =40°,∴扇形BDE 的面积=,故答案为:.类型二:与旋转变换有关的面积计算【经典例题2】(2020乐山)在ABC ∆中,已知90ABC ∠=︒,30BAC ∠=︒,1BC =.如图所示,将ABC ∆绕点A 按逆时针方向旋转90︒后得到''AB C ∆.则图中阴影部分面积( )A.4π B.C.D.【解析】在Rt △ABC 中,∵30BAC ∠=︒, ∴AC=2BC=2,∴AB∵ABC ∆绕点A 按逆时针方向旋转90︒后得到''AB C ∆,∴='''1,'90AB AB BC B C CAC ===∠=∴'60CAB ∠=∴()22''''9039021==1=36023260AB C CAC DAB SS S S πππ---⨯-阴影扇形扇形.故选:B练习2-1如图,把腰长为8的等腰直角三角板OAB 的一直角边OA 放在直线1上,按顺时针方向在l 上转动两次,使得它的斜边转到l 上,则直角边OA 两次转动所扫过的面积为 .【解答】∵△OAB 为腰长为8的等腰直角三角形, ∴OA =OB =8,AB =8√2,∴直角边OA 两次转动所扫过的面积=14π•OA 2+90+45360π(AB 2﹣OB 2)=16π+24π=40π.故答案为:40π.练习2-2如图,在△ABC 中,∠BAC=90°,BC=5,AC=3,将△ABC 绕顶点C 按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中阴影部分)的面积为 .第2-2题图 第2-3题图 第2-4题图 【解析】3π练习2-4如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .π32B .332π-C .3232π-D .3234π-【解析】C练习2-5如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为BB′̂,则图中阴影部分的面积为 .第2-5题图 第2-6题图【解析】2345-π练习2-6如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转C'D'B'ACDB300得到菱形AB'C'D',其中点C 的运动能路径为弧,则图中阴影部分的面积为 . 【解析】3234-+π练习2-7(2020•玉林)如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,此时边AD ′与对角线AC 重叠,则图中阴影部分的面积是 .【解答】解:∵在边长为3的正六边形ABCDEF 中,∠DAC =30°,∠B =∠BCD =120°,AB =BC ,∴∠BAC =∠BCA =30°, ∴∠ACD =90°, ∵CD =3, ∴AD =2CD =6,∴图中阴影部分的面积=S 四边形ADEF +S 扇形DAD ′﹣S 四边形AF ′E ′D ′, ∵将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处, ∴S 四边形ADEF =S 四边形AD ′E ′F ′∴图中阴影部分的面积=S 扇形DAD ′=30⋅π×62360=3π,故答案为:3π.练习2-8(2020•株洲)如图所示,点A 、B 、C 对应的刻度分别为0、2、4、将线段CA 绕点C 按顺时针方向旋转,当点A 首次落在矩形BCDE 的边BE 上时,记为点A 1,则此时线段CA 扫过的图形的面积为( )A .4πB .6C .4√3D .83π【解析】由题意,知AC =4,BC =4﹣2=2,∠A 1BC =90°. 由旋转的性质,得A 1C =AC =4. 在Rt △A 1BC 中,cos ∠ACA 1=BCA 1C=12.∴∠ACA 1=60°. ∴扇形ACA 1的面积为60×π×42360=83π.即线段CA 扫过的图形的面积为83π. 故选:D .类型三:整体作差法求面积【经典例题3】(2020江苏泰州)如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为()A .10πB .9πC .8πD .6π【解析】解:连接OC ,90AOB ∠=︒,CD OA ⊥,CE OB ⊥,∴四边形CDOE 是矩形, //CD OE ∴,36DEO CDE ∴∠=∠=︒,由矩形CDOE 易得到DOE CEO ∆≅∆,36COB DEO ∴∠=∠=︒∴图中阴影部分的面积=扇形OBC 的面积,2361010360OBCS ππ⋅⨯==扇形∴图中阴影部分的面积10π=,故选:A .练习3-1如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =√2,则图中阴影部分面积为( )A .4−π2B .2−π2C .2﹣πD .1−π4【解析】解:连接OD ,过O 作OH ⊥AC 于H ,如图, ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°, ∵⊙O 与BC 相切于点D ,∴OD ⊥BC ,∴四边形ODCH 为矩形,∴OH =CD =√2, 在Rt △OAH 中,∠OAH =45°,∴OA =√2OH =2,在Rt △OBD 中,∵∠B =45°,∴∠BOD =45°,BD =OD =2, ∴图中阴影部分面积=S △OBD ﹣S 扇形DOE =12×2×2−45×π×2180=2−12π. 故选:B .练习3-2如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π- 【解析】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=, ∵四边形ABCD 是正方形,边长为2, ∴=22AC ,∵点O 是AC 的中点,∴OA=2,∴290(2)3602S ππ︒==︒扇形,H GFE OD C B A ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.练习3-3如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=120°,AB=2√3,以点O 为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)【解析】如图,菱形面积的二分之一减去两个60°扇形的面积.答案:3√3−π.OD CB AA.2π﹣B.π+C.π+2D.2π﹣2【解析】连接CD.练习3-6如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB 相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+【解析】连接CD,如图,∵AB是圆C的切线,∴CD⊥AB,∵△ABC是等腰直角三角形,∴AB=AC=×=2,∴CD=AB=1,∴图中阴影部分的面积=S△ABC﹣S扇形ECF=××﹣=1﹣.故选:A.练习3-7中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2 C.24πcm2D.2πcm2【解析】如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB﹣S扇形OCD=﹣=40π(cm2),选:B.练习3-8如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形. 若正三角形边长为6 cm ,则该莱洛三角形(阴影部分)的面积为__________cm 2周长为 cm.【解析】面积18π-183,周长6π;练习3-9如图,分别以边长为 2 的等边三角形 A BC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .【解析】35ππ-23练习3-10如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π-B. 12π-C. 12π-D. 122π- 【解析】连接OC点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴===11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOB S ππ⨯扇形==12CDOE AOB S S S π∴--阴影正方形扇形故选B .练习3-11(2020山东青岛)如图,在ABC 中,O 为BC 边上的一点,以O 为圆心的半圆分别与AB ,AC 相切于点M ,N .已知120BAC ∠=︒,16AB AC +=,MN 的长为π,则图中阴影部分的面积为__________.【解析】如图,连接OM 、ON 、OA ,设半圆分别交BC 于点E ,F ,则OM ⊥AB ,ON ⊥AC ,∴∠AMO=∠ANO=90º,∵∠BAC=120º,∴∠MON=60º,∵MN 的长为π,∴60180OM ππ=, ∴OM=3,∵在Rt △AMO 和Rt △ANO 中, OM ON OA OA =⎧⎨=⎩, ∴Rt △AMO ≌Rt △ANO(HL),∴∠AOM=∠AON=12∠MON=30º,∴AM=OM·tan30º=33⨯= ∴122332AMO AMON S SAM OM ==⨯=四边形 ∵∠MON=60º, ∴∠MOE+∠NOF=120º,∴211=3=333MOE NOF S S S ππ+=圆扇形扇形, ∴图中阴影面积为()AOB AOC AMON MOE NOF S S S S S +--+四边形扇形扇形=13()32AB AC π⨯+-=243π-,故答案为:243π-.类型四:用图形变换转化求阴影部分面积【经典例题4】如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 .【解析】连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴DC =12AB =1,四边形DMCN 是正方形,DM =√22. 则扇形FDE 的面积是:90π×12360=π4. ∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴CD 平分∠BCA ,又∵DM ⊥BC ,DN ⊥AC ,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,{∠DMG=∠DNH ∠GDM=∠HDN DM=DN,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:π4−12.故答案为π4−12.练习4-1如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.练习4-2如图,点B、C把弧AD三等分,ED是⊙O的切线,过点B、C分别作半径的垂线【解析】∵点B、C把弧线AD分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=2, ∴阴影部分的面积是:2 , 故选C .练习4-3如图,一个半径为22的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为 .【解析】连接AC ,BC ,DC ,AB ,∵⊙D 过⊙C 的圆心C ,⊙D 和⊙C 交于A 、B ,∴AD=BD=DC=22,AC=4,AD 2+DC 2=AC 2=16,∴∠ADC=90°,同理∠BDC=90°,∴A 、D 、B 三点共线,即D 在两圆的公共弦AB 上,∵AD=CD=BD ,∴∠ACB=90°,∴S 弓形AmB =S 扇形ACB -S △ACB =8故答案为:8.练习4-4如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC =33,则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE =92CE ;④S 阴影=32.其中正确结论的序号是__①②④__.【解析】①∵AF 是AB 翻折而来,∴AF=AB=6, ∵AD=BC=33,∴DF=322=-AD AF , ∴F 是CD 中点;∴①正确; ②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD , ∵AD ⊥DC ,∴OP ∥CD , ∴AO/AF=OP/DF , 设OP=OF=x ,则x /3=(6−x )/6,解得:x =2,∴②正确; ③∵Rt △ADF 中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°, ∴∠EAF=∠EAB=30°, ∴AE=2EF ; ∵∠AFE=90°,∴∠EFC=90°-∠AFD=30°, ∴EF=2EC ,∴AE=4CE ,∴③错误; ④连接OG ,作OH ⊥FG ,∵∠AFD=60°,OF=OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG=∠FOG=60°,OH=23OG=3,S 扇形OPG=S 扇形OGF , ∴S 阴影=(S 矩形OPDH-S 扇形OPG-S △OGH )+(S 扇形OGF-S △OFG )=S 矩形OPDH-23S △OFG=23.∴④正确; 故答案为①②④.练习4-5如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A ,B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )【解析】连接AB交O1O2于点C,∵把⊙O1向右平移8个单位长度得⊙O2,∴O1O2=8,∴O1C=8÷2=4,易得△AO1O2为等腰直角三角形,∴AO1=42,∴阴影部分的面积=8π-16,故答案为8π-16.练习4-6如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考阴影部分面积习题汇总
1.(2013•东营,8,3分)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形 的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )
A .
a π
B . 2a π
C . 1
2
a π
D . 3a
2.(2013山西,1,2分)如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,
则图中阴影部分的面积是( )
A .23π-32
B .23
π
-3 C .π-32 D .π-3
3.(2013河北省,14,3分)如图7,AB 是⊙O 的直径,弦CD ⊥AB ,∠C = 30°,CD = 23.则S 阴影=
4. 如图:以直角三角形三边为直径的三个半圆围成的两个月牙形(阴影部分)的面积和等于
5.已知:如图,AB 为半圆⊙O 的直径,C 、D 为半圆⊙O 的三等分点,若AB=12,求阴影部分的面积.
6.如图,已知:∠AOB=90°,AC ∥OB ,AO=3,分别以O 点,A 点为圆心,AO 、AB 为半径画弧,交OB 、
AC 于B 、C ,求阴影部分的周长和面积.
7. (2013•嘉兴4分)如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度 =
8.如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,点G 、H 在DC 边上,且GH =2
1
DC .若AB =10,
BC =12,则图中阴影部分面积为 .
9.如图,在半径为5,圆心角等于450
的扇形AOB 内部 作一个正方形CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB 上,则阴影部分的面积为(结果保留π) .
10.如图3,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影面积占圆面积: ( ) A .
12 B .14
C .16
D .1
8
11、如图,在Rt △ABC 中,∠C=90°,AC=4,BC=2分别以AC 、BC 为直径画半圆,则图中阴影部分的面积
为 .(结果保留π)
12、如图.矩形ABCD 中,AB=1,AD=2.以AD 的长为半径的⊙A 交BC 边于点E ,则图中阴影部分的面积为 .
13.(2013陕西,16,3分)如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别
是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,
则GE+FH 的最大值为 .
考点:此题一般考查的是与圆有关的计算,考查有垂径定理、相交弦定理、圆心角与圆周角的关系,及扇形的面积及弧长的计算公式等知识点。
解析:本题考查圆心角与圆周角的关系应用,中位线及最值问题。
连接OA ,OB , 因为∠ACB=30°,所以∠AOB=60°,所以OA=OB=AB=7,因为E 、F 中AC 、BC 的中点, 所以EF=
AB 21=3.5,因为GE+FH=GH -EF ,要使GE+FH 最大,而EF 为定值,所以GH 取最大值时GE+FH 有最大值,所以当GH 为直径时,GE+FH 的最大值为14-3.5=10.5
(第1题图)
A
B
C
D
C
A B C G
H E F 第16题图
(第1题) H G F
E
D C
B
A
C
A
B
12题
14.(2013四川内江,23,6分)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.
15.(2013四川内江,23,6分)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.
考点:正多边形和圆;弧长的计算;旋转的性质.
分析:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.
解答:解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,
正六边形的中心O运动的路程∵正六边形的边长为2cm,
∴运动的路径为:=;
∵从图1运动到图2共重复进行了六次上述的移动,
∴正六边形的中心O运动的路程6×=4πcm
故答案为4π.
16.(2013贵州省六盘水,18,4分)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4
次旋转后,顶点O经过的总路程为,经过61次旋转后,顶点O经过的总路程为.
考点:弧长的计算;正方形的性质;旋转的性质.
分析:为了便于标注字母,且更清晰的观察,每次旋转后向右稍微平移一点,作出前几次旋
转后的图形,点O的第1次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,
第2次旋转路线是以正方形的对角线长为半径,以90°圆心角的扇形,第3次旋转路
线是以正方形的边长为半径,以90°圆心角的扇形;
①根据弧长公式列式进行计算即可得解;
②求出61次旋转中有几个4次,然后根据以上的结论进行计算即可求解.17.(2013湖北省十堰市,1,3分)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是﹣1≤S<﹣.
18.(2013江西,21,9分)如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.
(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=
2
3
,cos60°=
2
1
,tan60°=3,721≈26.851,可使用科学计算器)
19.(2013四川绵阳,21,12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE。
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积。
的面积为
3
8。
答:图中阴影部分
20.如上图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB。
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留 )。