【精品试卷】普通高校招生考试试题汇编-曲线运动复习专用试卷

合集下载

高考物理曲线运动真题汇编(含答案)

高考物理曲线运动真题汇编(含答案)

高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m mA v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

最新高中物理《曲线运动》高考真题汇编(纯word可编辑版)

最新高中物理《曲线运动》高考真题汇编(纯word可编辑版)

最新高中物理《曲线运动》高考真题汇编(纯word可编辑版)一、《力和运动》高考真题汇编二、《曲线运动、运动的合成》高考真题汇编三、《平抛运动》高考真题汇编四、《匀速圆周运动》高考真题汇编第1节《力和运动》高考真题(纯word可编辑版)1.【2019年4月浙江物理选考】小明以初速度v0=10m/s竖直向上抛出一个质量m=0.1kg的小皮球,最后在抛出点接住。

假设小皮球在空气中所受阻力大小为重力的0.1倍。

求小皮球:(1)上升的最大高度;(2)从抛出到接住的过程中重力和空气阻力所做的功(3)上升和下降的时间。

【答案】(1);(2)0;;(3),【解析】(1)上升过程:mg+F f=ma1解得a1=11m/s2上升的高度:(2)重力做功:W G=0空气阻力做功:(3)上升的时间:下降过程:mg-F f=ma2解得a2=9m/s2解得2.【2019年物理全国卷3】如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。

t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力。

细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。

木板与实验台之间的摩擦可以忽略。

重力加速度取g=10m/s2。

由题给数据可以得出( )A. 木板的质量为1kgB. 2s~4s内,力F的大小为0.4NC. 0~2s内,力F的大小保持不变D. 物块与木板之间的动摩擦因数为0.2【答案】AB【解析】结合两图像可判断出0-2s物块和木板还未发生相对滑动,它们之间的摩擦力为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2-5s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,由牛顿运动定律,对2-4s和4-5s列运动学方程,可解出质量m为1kg,2-4s内的力F为0.4N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误.3.【2019年物理江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ。

高考历年真题曲线运动(解析版)

高考历年真题曲线运动(解析版)

10年高考(2011-2020年)全国II卷物理试题分项全解全析专题04 曲线运动1、全国II卷2020年高考使用的省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆等10个省份2、2011-2020年全国II卷分布情况概况:3、2011-2020年全国II卷试题赏析:一、选择题1、(2020·全国II卷·T16)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。

若摩托车经过a点时的动能为E1,它会落到坑内c点。

c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。

21E E 等于( )A. 20B. 18C. 9.0D. 3.0【答案】B【解析】有题意可知当在a 点动能为E 1时,有21112E mv 根据平抛运动规律有2112h gt =11h v t =当在a 点时动能为E 2时,有22212E mv 根据平抛运动规律有221122h gt 223hv t联立以上各式可解得2118E E故选B 。

2、(2019·全国II 卷·T19)如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离.某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其v-t 图像如图(b )所示,t 1和t 2是他落在倾斜雪道上的时刻.则A. 第二次滑翔过程中在竖直方向上的位移比第一次的小 B. 第二次滑翔过程中在水平方向上的位移比第一次的大C. 第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D. 竖直方向速度大小为v 1时,第二次滑翔在竖直方向上所受阻力比第一次的大 【答案】BD 【解析】A .由v -t 图面积易知第二次面积大于等于第一次面积,故第二次竖直方向下落距离大于第一次下落距离,所以,A 错误;B .由于第二次竖直方向下落距离大,由于位移方向不变,故第二次水平方向位移大,故B 正确C .由于v -t 斜率知第一次大、第二次小,斜率越大,加速度越大,或由0v v a t-=易知a 1>a 2,故C 错误 D .由图像斜率,速度为v 1时,第一次图像陡峭,第二次图像相对平缓,故a 1>a 2,由G -f y =ma ,可知,f y 1<f y 2,故D 正确3、(2017·全国II 卷·T17)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。

近6年全国卷高考物理真题分类汇编:曲线运动(Word版含答案)

近6年全国卷高考物理真题分类汇编:曲线运动(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:曲线运动学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共9小题)1.(2022·全国·高考真题)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。

运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h 。

要求运动员经过一点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A .1hk + B .h kC .2h kD .21hk - 2.(2021·全国·高考真题)“旋转纽扣”是一种传统游戏。

如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。

拉动多次后,纽扣绕其中心的转速可达50r/s ,此时纽扣上距离中心1cm 处的点向心加速度大小约为( )A .10m/s 2B .100m/s 2C .1000m/s 2D .10000m/s 23.(2020·全国·高考真题)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。

若摩托车经过a 点时的动能为E 1,它会落到坑内c 点。

c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。

21E E 等于( )A .20B .18C .9.0D .3.04.(2020·全国·高考真题)如图,一同学表演荡秋千。

已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg 。

绳的质量忽略不计,当该同学荡到秋千支架的正下方时,速度大小为8 m/s ,此时每根绳子平均承受的拉力约为( )A.200 N B.400 N C.600 N D.800 N5.(2018·全国·高考真题)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103 m /s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为A.西偏北方向,1.9×103m/sB.东偏南方向,1.9×103m/sC.西偏北方向,2.7×103m/sD.东偏南方向,2.7×103m/s6.(2018·全国·高考真题)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率为v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是()A v L <B vC v <D v 7.(2018·全国·高考真题)在一斜面顶端,将质量相等的甲乙两个小球分别以v 和2v的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的动能与乙球落至斜面时的动能之比为( ) A .2:1B .4:1C .6:1D .8:18.(2018·全国·高考真题)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ,bc 是半径为R 的四分之一的圆弧,与ab 相切于b 点。

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。

一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。

高考物理曲线运动真题汇编(含答案)

高考物理曲线运动真题汇编(含答案)

高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.一位网球运动员用网球拍击球,使网球沿水平方向飞出.如图所示,第一个球从O 点水平飞出时的初速度为v 1,落在自己一方场地上的B 点后,弹跳起来,刚好过网上的C 点,落在对方场地上的A 点;第二个球从O 点水平飞出时的初速度为V 2,也刚好过网上的C 点,落在A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)两个网球飞出时的初速度之比v 1:v 2; (2)运动员击球点的高度H 与网高h 之比H :h【答案】(1)两个网球飞出时的初速度之比v 1:v 2为1:3;(2)运动员击球点的高度H 与网高h 之比H :h 为4:3. 【解析】 【详解】(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为x 2由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬间,其水平方向的分速度不变,竖直方向的分速度以原速率反向,根据运动的对称性可知两球第一次落地时的水平位移之比x 1:x 2=1:3,故两球做平抛运动的初速度之比v 1:v 2=1:3(2)设第一个球从水平方向飞出到落地点B 所用时间为t 1,第2个球从水平方向飞出到C 点所用时间为t 2,则有H =2112gt ,H -h =2212gt 又:x 1=v 1t 1O 、C 之间的水平距离:x '1=v 2t 2第一个球第一次到达与C 点等高的点时,其水平位移x '2=v 1t 2,由运动的可逆性和运动的对称性可知球1运动到和C 等高点可看作球1落地弹起后的最高点反向运动到C 点;故 2x 1=x '1+x '2可得:t 1=2t 2 ,H =4(H -h ) 得:H :h =4:33.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

曲线运动(原卷版)——2025年高考物理一轮复习讲练测(新教材新高考)

曲线运动(原卷版)——2025年高考物理一轮复习讲练测(新教材新高考)

A.梦天实验舱内,水球体积越小其惯性越大B.击球过程中,水球对C.击球过程中,水球所受弹力是由于水球发生形变产生的D.梦天实验舱内可进行牛顿第一定律的实验验证....A.3.2m3.如图所示,蜡块能在充满水的玻璃管中匀速上升,若在玻璃管沿水平向右做直线运动的同时,蜡块从玻璃管底端开始匀速上升,则关于蜡块实际运动轨迹的说法正确的是( )A.轨迹1,玻璃管可能做匀加速直线运动B.轨迹2,玻璃管可能做匀减速直线运动C.轨迹3,玻璃管可能先做匀加速直线运动,然后做匀减速直线运动D.轨迹4,玻璃管可能做匀减速直线运动4.某物体做匀速圆周运动的向心加速度大小恒定,则该物体的角速度()w-、线速度—半径(v-r²r....A .飞行的时间之比:2:1t t =乙甲B .水平位移之比:2:1x x =甲乙A .在A 、C 两点时,速度方向相反B .在B 点时,手机受到合力为零C .在C 点时,线中拉力最小D .在B 、D 两点时,线中拉力相同7.运动员某次发球,将球从离台面高0h 处发出,球落在h h >A.当转盘的角速度增至B.若2R r=A.A、B的线速度大小之比为B.A、B的角速度大小之比为C.A、C的周期之比为3D.A、C的向心加速度大小之比为A .BD 为电场的一条等势线B .该匀强电场的场强大小为C .轻绳的最大拉力大小为7mgD .轻绳在A 第Ⅱ卷(非选择题,共三、实验题(本大题共2小题,共16分)11.(6分)测量曲线运动物体的瞬时速度往往比较困难。

假设小球受到的空气阻力与其速度大小成正比,①如图甲,在某一高度处释放塑料球,使之在空气中竖直下落。

塑料球速度逐渐增加,最终达到最大速度m v ,测量并记录m v 。

②如图乙,用重锤线悬挂在桌边确定竖直方向,将塑料球和一半径相同的钢球并排用一平板从桌边以相同的速度同时水平推出;③用频闪仪记录塑料球和钢球在空中的一系列位置,同时测量塑料球下落时间①如图1,用胶水把细竹棒中心固定在电动机转轴上;②按图2把直流电动机固定在铁架台上,细竹棒保持水平,用导线把电动机接入电路中;③把一端系有小球的细棉线系牢在细竹棒的一端,测出系线处到转轴距离x;合上开关,电动机转动,使小球在水平面上做匀速圆周运动,调节电动机的转速,使小球转速在人眼可分辨范围为宜。

高考物理曲线运动真题汇编(含答案)

高考物理曲线运动真题汇编(含答案)

高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。

【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。

2.一宇航员登上某星球表面,在高为2m处,以水平初速度5m/s抛出一物体,物体水平射程为5m,且物体只受该星球引力作用求:(1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s2;(2)1 10;【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。

(完整版)曲线运动测试题及答案

(完整版)曲线运动测试题及答案

曲线运动单元测试一、选择题(总分41分。

其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。

)1.关于运动的性质,以下说法中正确的是( ) A .曲线运动一定是变速运动 B .变速运动一定是曲线运动 C .曲线运动一定是变加速运动D .物体加速度大小、速度大小都不变的运动一定是直线运动 2.关于运动的合成和分解,下列说法正确的是( ) A .合运动的时间等于两个分运动的时间之和 B .匀变速运动的轨迹可以是直线,也可以是曲线 C .曲线运动的加速度方向可能与速度在同一直线上 D .分运动是直线运动,则合运动必是直线运动3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下说法正确的是( )A .速度大的时间长B .速度小的时间长C .一样长D .质量大的时间长 4.做平抛运动的物体,每秒的速度增量总是( )A .大小相等,方向相同B .大小不等,方向不同C .大小相等,方向不同D .大小不等,方向相同5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为( )A .1∶4B .2∶3C .4∶9D .9∶166.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A 的受力情况是( )A .绳的拉力大于A 的重力B .绳的拉力等于A 的重力C .绳的拉力小于A 的重力D .绳的拉力先大于A 的重力,后变为小于重力7.如图所示,有一质量为M 的大圆环,半径为R ,被一轻杆固定后悬挂在O 点,有两个质量为m 的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小环同时滑到大环底部时,速度都为v ,则此时大环对轻杆的拉力大小为( )A .(2m +2M )gB .Mg -2mv 2/RC .2m (g +v 2/R )+MgD .2m (v 2/R -g )+MgAv(第10题)(第11题)8.下列各种运动中,属于匀变速运动的有( )A .匀速直线运动B .匀速圆周运动C .平抛运动D .竖直上抛运动 9.水滴自高处由静止开始下落,至落地前的过程中遇到水平方向吹来的风,则( ) A .风速越大,水滴下落的时间越长 B .风速越大,水滴落地时的瞬时速度越大C .水滴着地时的瞬时速度与风速无关D .水滴下落的时间与风速无关10.在宽度为d 的河中,水流速度为v 2 ,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A .可能的最短渡河时间为2dv B .可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关D .不管船头与河岸夹角是多少,渡河时间和水速均无关11.关于匀速圆周运动的向心力,下列说法正确的是( ) A .向心力是指向圆心方向的合力,是根据力的作用效果命名的 B .向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C .对稳定的圆周运动,向心力是一个恒力 D .向心力的效果是改变质点的线速度大小二、实验和填空题(每空2分,共28分。

精编新版高考总复习-曲线运动专题测试题库100题(答案)

精编新版高考总复习-曲线运动专题测试题库100题(答案)

最新精选高考物理复习题库 曲线运动专题(100题)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如下图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2n 1 D .从动轮的转速为r 2r 1n 12.下列关于运动和力的叙述中,正确的是( )A .做曲线运动的物体,其加速度方向一定是变化的B .物体做圆周运动,所受的合力一定指向圆心C .物体所受合力方向与运动方向相反,该物体一定做直线运动D .物体运动的速率在增加,所受合力方向一定与运动方向相同3.(2013·大理模拟)质量为m 的飞机以恒定速率v 在空中水平盘旋(如下图所示),其做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对飞机的作用力大小为( )A .m v 2RB .mgC.m g2+v4R2D.m g 2-v4R24.如下图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力5.题目文件丢失!6.如下图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是()A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动7.在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的高一些.路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于()。

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20 套( 带答案 ) 及分析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径 R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v =6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,A炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。

2018年—2023年高考物理曲线运动部分真题汇编+答案详解

2018年—2023年高考物理曲线运动部分真题汇编+答案详解

2018年—2023年高考物理曲线运动部分真题汇编+答案详解(真题部分)1.(2023全国甲,14,6分)一同学将铅球水平推出,不计空气阻力和转动的影响,铅球在平抛运动过程中()A.机械能一直增加B.加速度保持不变C.速度大小保持不变D.被推出后瞬间动能最大2.(2023全国甲,17,6分)一质点做匀速圆周运动,若其所受合力的大小与轨道半径的n次方成正比,运动周期与轨道半径成反比,则n等于()A.1B.2C.3D.43.(2023全国乙,15,6分)小车在水平地面上沿轨道从左向右运动,动能一直增加。

如果用带箭头的线段表示小车在轨道上相应位置处所受合力,下列四幅图可能正确的是()4.(2023江苏,10,4分)达·芬奇的手稿中描述了这样一个实验:一个罐子在空中沿水平直线向右做匀加速运动,沿途连续漏出沙子。

若不计空气阻力,则下列图中能反映空中沙子排列的几何图形是()5.(2023湖南,2,4分)如图(a),我国某些农村地区人们用手抛撒谷粒进行水稻播种。

某次抛出的谷粒中有两颗的运动轨迹如图(b)所示,其轨迹在同一竖直平面内,抛出点均为O,且轨迹交于P点,抛出时谷粒1和谷粒2的初速度分别为v1和v2,其中v1方向水平,v2方向斜向上,忽略空气阻力,关于两谷粒在空中的运动,下列说法正确的是()A.谷粒1的加速度小于谷粒2的加速度B.谷粒2在最高点的速度小于v1C.两谷粒从O到P的运动时间相等D.两谷粒从O到P的平均速度相等6.(2022广东,3,4分)如图是滑雪道的示意图。

可视为质点的运动员从斜坡上的M点由静止自由滑下,经过水平NP段后飞入空中,在Q点落地。

不计运动员经过N点的机械能损失,不计摩擦力和空气阻力。

下列能表示该过程运动员速度大小v或加速度大小a随时间t变化的图像是 ()7.(2022广东,6,4分)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P点等高且相距为L。

高考物理曲线运动题20套(带答案)

高考物理曲线运动题20套(带答案)

高考物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。

设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。

(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。

【答案】(1)(2)【解析】【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。

【详解】(1)此题可以看成是无反弹的完整平抛运动,则水平位移为:x==v0t竖直位移为:H=gt2解得:v0=;(2)若小球正好落在箱子的B点,则小球的水平位移为:x′=2nL(n=1.2.3……)同理:x′=2nL=v′0t,H=gt′2解得:(n=1.2.3……)2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m,平台上静止放置着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q点,小车的上表面左端点P与Q点之间是粗糙的,PQ间距离为L滑块B与PQ之间的动摩擦因数为μ=0.2,Q点右侧表面是光滑的.点燃炸药后,A、B分离瞬间A滑块获得向左的速度v A=6m/s,而滑块B则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v m s h ===⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.4.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.6.如图所示,轻绳绕过定滑轮,一端连接物块A,另一端连接在滑环C上,物块A的下端用弹簧与放在地面上的物块B连接,A、B两物块的质量均为m,滑环C的质量为M,开始时绳连接滑环C部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L,控制滑块C,使其沿杆缓慢下滑,当C下滑43L时,释放滑环C,结果滑环C刚好处于静止,此时B刚好要离开地面,不计一切摩擦,重力加速度为g.(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小.【答案】(1)3mg L (2) 【解析】 【详解】(1)设开始时弹簧的压缩量为x ,则 kx=mg设B 物块刚好要离开地面,弹簧的伸长量为x′,则 kx′=mg 因此x ′=x =mg k由几何关系得 2x L =2 3L求得 x=3L得 k=3mgL(2)弹簧的劲度系数为k ,开始时弹簧的压缩量为x 1=3mg Lk = 当B 刚好要离开地面时,弹簧的伸长量 x 2=3mg Lk = 因此A 上升的距离为 h =x 1+x 2=23LC 下滑的距离 43L H == 根据机械能守恒 MgH −mgh =221122m Mv +求得 v =7.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J 【解析】 【分析】 【详解】(1)由题知,物体刚好能经过D 点,则有:2Dv mg m R=解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=-p W E =解得:p E =62J8.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】⑴小球恰能通过第二个圆形轨道最高点,有:22v mg m R=求得:υ2 ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: −μmgL 1=12mv 22−12mv 12 ②求得:υ1在最高点时,合力提供向心力,即F N +mg=21m Rυ ③ 求得:F N = m(21Rυ−g)= 40N根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 −μmgL 1 −mg 2R =12mv 22 ⑤ 求得:h 1=2R+μL 1+222gυ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:mgh 2−μmg(L 1+L 2)=0−0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有d =12gt 2 ⑦ x=v E t →υE =xt=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 −μmg(L 1+L 2)=212E mv −0 ⑨ 求得:h 3=μ(L 1+L 2)+22Egυ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩9.如图所示,倾角θ=30°的光滑斜面上,一轻质弹簧一端固定在挡板上,另一端连接质量m B =0.5kg 的物块B ,B 通过轻质细绳跨过光滑定滑轮与质量m A =4kg 的物块A 连接,细绳平行于斜面,A 在外力作用下静止在圆心角为α=60°、半径R=lm 的光滑圆弧轨道的顶端a 处,此时绳子恰好拉直且无张力;圆弧轨道最低端b 与粗糙水平轨道bc 相切,bc 与一个半径r=0.12m 的光滑圆轨道平滑连接,静止释放A ,当A 滑至b 时,弹簧的弹力与物块A 在顶端d 处时相等,此时绳子断裂,已知bc 长度为d=0.8m ,求:(g 取l0m/s 2) (1)轻质弹簧的劲度系数k ;(2)物块A 滑至b 处,绳子断后瞬间,圆轨道对物块A 的支持力大小;(3)为了让物块A 能进入圆轨道且不脱轨,则物体与水平轨道bc 间的动摩擦因数μ应满足什么条件?【答案】(1)5/k N m = (2)72N (3)0.350.5μ≤≤或0.125μ≤ 【解析】(1)A 位于a 处时,绳无张力弹簧处于压缩状态,设压缩量为x 对B 由平衡条件可以得到:sin B kx m g θ=当A 滑至b 时,弹簧处于拉伸状态,弹力与物块A 在顶端a 处时相等,则伸长量也为x ,由几何关系可知:2R x =,代入数据解得:5/k N m =; (2)物块A 在a 处和在b 处时,弹簧的形变量相同,弹性势能相同 由机械能守恒有:()22111sin 22A B A A B B m gR cos m gR m v m v αθ-=++ 将A 在b 处,由速度分解关系有:sin B A v v α= 代入数据解得:22/A v m s =在b 处,对A 由牛顿定律有:2Ab A A v N m g m R-= 代入数据解得支持力:72b N N =. (3)物块A 不脱离圆形轨道有两种情况: ①不超过圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要满足:21102A A A m gd m v μ-=-恰能到圆心等高处时需要满足条件:22102A A A A m gr m gd m v μ--=-代入数据解得:10.5μ=,20.35μ= ②过圆轨道最高点,则恰好过最高点时:2A A v mg m r= 由动能定理有:22311222A A A A A m gr m gd m v m v μ--=- 代入数据解得:30.125μ=为使物块A 能进入圆轨道且不脱轨,有:0.350.5μ≤≤或0.125μ≤.10.某高中物理课程基地拟采购一种能帮助学生对电偏转和磁偏转理解的实验器材.该器材的核心结构原理可简化为如图所示.一匀强电场方向竖直向下,以竖直线ab 、cd 为边界,其宽度为L ,电场强度的大小为203.mv E =在cd 的左侧有一与cd 相切于N 点的圆形有界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为m ,电荷量为q 的带正电粒子自O 点以水平初速度0v 正对M 点进入该电场后,从N 点飞离cd 边界,再经磁场偏转后又从P 点垂直于cd 边界回到电场区域,并恰能返回O 点.粒子重力不计.试求:()1粒子从N 点飞离cd 边界时的速度大小和方向;()2P 、N 两点间的距离;()3圆形有界匀强磁场的半径以及磁感应强度大小;()4该粒子从O 点出发至再次回到O 点的总时间.【答案】()012v ,方向与边界cd 成30o 角斜向下;(532L , ;(3)54L , 0835mv qL;()0035342L L v π 【解析】【分析】(1)利用运动的合成和分解,结合牛顿第二定律,联立即可求出粒子从N 点飞离cd 边界时的速度大小,利用速度偏向角公式即可确定其方向;(2)利用类平抛规律结合几何关系,即可求出P 、N 两点间的距离;(3)利用洛伦兹力提供向心力结合几何关系,联立即可求出圆形有界匀强磁场的半径以及磁感应强度大小;(4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,结合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立即可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如图所示:粒子从O 到N 点时间:t 1=0L v 粒子在电场中加速度:a=qE m 203v 粒子在N 点时竖直方向的速度:v y =at 130粒子从N 点飞离cd 边界时的速度:v=2v 0速度偏转角的正切:tan θ=y0v v 3故θ=600,即速度与边界cd 成300角斜向下.(2)粒子从P 到O 点时间:t 2=0L 2v 粒子从P 到O 点过程的竖直方向位移:y 2=221at 23 粒子从O 到N 点过程的竖直方向位移:y 1=211at 23 故P 、N 两点间的距离为:Y PN =y 1+y 2=53L 8(3)设粒子做匀速圆周运动的半径为r ,根据几何关系可得:r 0cos 60+r=53L 8 解得粒子做匀速圆周运动的半径:53 根据洛伦兹力提供向心力可得:qvB=m 2v r解得圆形有界匀强磁场的磁感应强度:B=mv qr 083mv根据几何关系可以确定磁场区域的半径:R=2r 0cos30即圆形有界匀强磁场的半径:R=5L 4(4)粒子在磁场中运动的周期:T=2πr v 粒子在匀强磁场中运动的时间:t 3=23粒子从O 点出发至再次回到O 点的总时间:t=t 1+t 2+t 3=03L 2v+0L 18v 【点睛】本题考查带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,还要分析好从电场射入磁场衔接点的速度大小和方向;运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.。

(完整版)历年高考试题分类汇编之《曲线运动》,推荐文档

(完整版)历年高考试题分类汇编之《曲线运动》,推荐文档

平 历年高考试题分类汇编之《曲线运动》(全国卷 1)14.如图所示,一物体自倾角为 θ 的固定斜面顶端沿水平方向抛出后落在斜面上。

物体与斜面接触时速度与水平方向的夹角 φ 满足A. tan φ=sin θB. tan φ=cos θC. tan φ=tan θD. tan φ=2tan θ答案:D gt 解析:竖直速度与水平速度之比为:tanφ = v 0 0.5gt 2v 0t ,故 tanφ =2 tanθ ,D 正确。

,竖直位移与水平位移之比为:tanθ = (江苏卷)5.如图所示,粗糙的斜面与光滑的水平面相连接,滑块沿水平面以速度v 0 运动.设滑块运动到 A 点的时刻为 t =0,距 A 点的水平距离为 x ,水速度为v x .由于v 0 不同,从 A 点到 B 点的几种可能的运动图象如下列选项所示,其中表示摩擦力做功最大的是答案:D解析:考查平抛运动的分解与牛顿运动定律。

从 A 选项的水平位移与时间的正比关系可知,滑块做平抛运动,摩擦力必定为零;B 选项先平抛后在水平地面运动,水平速度突然增大,摩擦力依然为零;对 C 选项,水平速度不变,为平抛运动,摩擦力为零;对 D 选项水平速度与时间成正比,说明滑块在斜面上做匀加速直线运动,有摩擦力,故摩擦力做功最大的是 D 图像所显示的情景,D 对。

本题考查非常灵活,但考查内容非常基础,抓住水平位移与水平速度与时间的关系,然后与平抛运动的思想结合起来,是为破解点。

(江苏卷)13.(15分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L 、网高h ,乒乓球反弹前后水平分速度不变,竖直分速 度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g )(1) 若球在球台边缘O 点正上方高度为h 1处以速度v 1 ,水平发出,落在球台的P 1点(如L g 2 2h L g 2 2h gt g t 图实线所示),求P 1点距O 点的距离x 1。

普通高校招生考试试题汇编-曲线运动.docx

普通高校招生考试试题汇编-曲线运动.docx

高中物理学习材料桑水制作2011普通高校招生考试试题汇编-曲线运动17(2011安徽).一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。

如图(a )所示,曲线上的A 点的曲率圆定义为:通过A 点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径。

现将一物体沿与水平面成α角的方向已速度υ0抛出,如图(b )所示。

则在其轨迹最高点P 处的曲率半径是A .20v gB .220sin v gαC .220cos v g α D .220cos sin v g αα答案:C解析:物体在其轨迹最高点P 处只有水平速度,其水平速度大小为v 0cos α,根据牛顿第二定律得20(cos )v mg m αρ=,所以在其轨迹最高点P 处的曲率半径是220cos v gαρ=,C 正确。

15(2011海南),如图,水平地面上有一个坑,其竖直截面为半圆。

ab 为沿水平方向的直径。

若在a 点以初速度0v 沿ab 方向抛出一小球, 小球会击中坑壁上的c 点。

已知c 点与水平地面的距离为圆半径的一半,求圆的半径。

解析:设圆半径为r ,质点做平抛运动,则:0x v t = ①210.52y r gt ==② 过c 点做cd ⊥ab 与d 点,Rt △acd ∽Rt △cbd 可得2cd ad db =•即为:ρAv 0αρP图(a )图(b )2()(2)2rx r x =- ③ 由①②③得:204(743)r v g±=20(2011全国理综).一带负电荷的质点,在电场力作用下沿曲线abc 从a 运动到c ,已知质点的速率是递减的。

关于b 点电场强度E 的方向,下列图示中可能正确的是(虚线是曲线在b 点的切线)(D )解析:主要考查电场力方向和曲线运动所受合外力与轨迹的关系。

正确答案是D 。

10(2011天津).(16分)如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一初速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R 。

以来高考曲线运动试题汇编.docx

以来高考曲线运动试题汇编.docx

高中物理学习材料桑水制作2000年以来高考曲线运动试题汇编平抛运动:(2001年全国理综)19.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速为2v ,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为A .21222v v dv B .0 C .21v dv D .12v dv (2006年天津理综)16.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则A .垒球落地时瞬时速度的大小仅由初速度决定B .垒球落地时瞬时速度的方向仅击球点离地面的高度决定C .垒球在空中运动的水平位移仅由初速度决定D .垒球在空中运动的时间仅由击球点离地面的高度决定(2000年上海物理)16.(4分)右图为用频闪摄影方法拍摄的研究物体作平抛运动规律的照片,图中A 、B 、C为三个同时由同一点出发的小球,AA /为A 球在光滑水平面上以速度运动的轨迹;BB /为B 球以速度v 被水平抛出后的运动轨迹;CC /为C 球自由下落的运动轨迹,通过分析上述三条轨迹可得出结论: 。

答案:作平抛运动的物体在水平方向作匀速直线运动,在竖直方向作自由落体运动(或平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合成)。

(2001年春季物理)13.质量为10.0=m kg 的小钢球以100=v m/s 的水平速度抛出,下落0.5=h m 时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角=θ_____________.刚要撞击钢板时小球动量的大小为_________________.(取2/10s m g =)(2000年全国物理)10.图为一空间探测器的示意图, P 1、P 2、P 3、P 4是四个喷气发动机,P 1、P 3的连线与空间一固定坐标系的x轴平行,P 2、P 4的连线与y 轴平行,每台发动机开动时,都能向探测器提供推力,但不会使探测器转动,开始时,探测器以恒定的速率v 0向正x 方向平动,要使探测器改为向正x 偏负y 60o的方向以原来的速率v 0平动,则可A .先开动P 1适当时间,再开动P 4B .先开动P 3适当时间,再开动P 2C .先开动P 4适当时间,再开动P 2D .先开动P 3适当时间,再开动P 4(2003年上海物理)20.(10分)如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2).某同学对此题的解法为: 小球沿斜面运动,则t g t v h ⋅+=θθsin 21sin 0,由此可求得落地时间t .问:你同意上述解法吗?若同意,求出所需时间;若不同意则说明理由并求出你认为正确的结果.答案:不同意。

专题04曲线运动-2024年高考真题和模拟题物理分类汇编(学生卷)

专题04曲线运动-2024年高考真题和模拟题物理分类汇编(学生卷)

专题04曲线运动1.(2024年辽宁卷考题)2.“指尖转球”是花式篮球表演中常见的技巧。

如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的()A.半径相等B.线速度大小相等C.向心加速度大小相等D.角速度大小相等2.(2024年湖北考题)3.如图所示,有五片荷叶伸出荷塘水面,一只青蛙要从高处荷叶跳到低处荷叶上。

设低处荷叶a、b、c、d和青蛙在同一竖直平面内,a、b高度相同,c、d高度相同,a、b分别在c、d正上方。

将青蛙的跳跃视为平抛运动,若以最小的初速度完成跳跃,则它应跳到()A.荷叶aB.荷叶bC.荷叶cD.荷叶d3.(2024年江苏卷考题)4.喷泉a、b形成如图所示的形状,不计空气阻力,则喷泉a、b的()A.加速度相同B.初速度相同C.最高点的速度相同D.在空中的时间相同B.角速度D.向心力如图所示,在细绳的拉动下,半径为平面内转动。

卷轴上沿半径方向固定着长度为l的细管,管底在C.2krm D.一条河流某处存在高度差,小鱼从低处向上跃出水面,冲到高处.如图所C.(2024浙江1月考题)8.如图所示,小明取山泉水时发现水平细水管到水平地面的距离为水桶高的两倍,在地面上平移水桶,水恰好从桶口中心无阻挡地落到桶底边沿A。

已知桶高为h,直径为D,则水离开出水口的速度大小为()C.(21)22D g+在某地区的干旱季节,人们常用水泵从深水井中抽水灌溉农田,简化模型如图所示。

水井中的水面距离水平地面的高度为H。

出水口距水平地面的高度为B.落地速度与水平方向夹角为连线的最远距离为10m D.轨迹最高点与落点的高度差为14.雪地转椅是一种游乐项目,其中心传动装置带动转椅在雪地上滑动。

如(b)所示,传动装置有一高度可调的水平圆盘,可绕通过中心B连接转椅(视为质点)。

转椅运动稳定后,其角速度与圆盘角速度相等。

μ11.(2024年辽宁卷考题)14.如图,高度0.8m h =的水平桌面上放置两个相同物块A、B,质量A B 0.1kg m m ==。

高考物理曲线运动题20套(带答案)含解析(20211110230344)

高考物理曲线运动题20套(带答案)含解析(20211110230344)

高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T1 1s 2 mg 04 2( H L )L【点睛】本题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决本题的重点.2. 小孩乐园里的弹珠游戏不单拥有娱乐性还能够锻炼小孩的眼手合一能力。

某弹珠游戏可 简化成如下图的竖直平面内OABCD 透明玻璃管道,管道的半径较小。

为研究方便成立平面直角坐标系, O 点为抛物口,下方接一知足方程y5 x 2 的圆滑抛物线形状管道 OA ;9AB 、BC 是半径同样的圆滑圆弧管道,CD 是动摩擦因数 μ=0.8 的粗拙直管道;各部分管道在连结处均相切。

A 、B 、C 、D 的横坐标分别为x ABCD=1.20m 、 x = 2.00m 、x = 2.65m 、 x =3.40m 。

已知,弹珠质量 m = 100g ,直径略小于管道内径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理学习材料 (精心收集**整理制作)
2011普通高校招生考试试题汇编-曲线运动
17(2011安徽).一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。

如图(a )所示,
曲线上的A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两
侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径。

现将一物体沿与水平面成α角的方向已速度υ0抛出,如图(b )所示。

则在其轨迹最高点P
处的曲率半径是
A .20v g
B .220sin v g
α
C .
220cos v g α D .22
0cos sin v g α
α
答案:C
解析:物体在其轨迹最高点P 处只有水平速度,其水平速度大小为v 0cosα,根据牛顿第二定律得
2
0(cos )v mg m
αρ
=,所以在其轨迹最高点P 处的曲率半径是220cos v g
α
ρ=,C 正确。

15(2011海南),如图,水平地面上有一个坑,其竖直截面为半圆。

ab 为沿水平方向的直径。

若在a 点以初速度0v 沿ab 方向抛出一小球, 小球会击中坑壁上的c 点。

已知c 点与水平地面的距离为圆半径的一半,求圆的半径。

解析:设圆半径为r ,质点做平抛运动,则:
0x v t = ①
2
10.52
y r gt ==
② 过c 点做cd ⊥ab 与d 点,Rt △acd ∽Rt △cbd 可得2
cd ad db =∙即为:
ρ
A
v 0 α
ρ P
图(a )
图(b )
2()(2)2
r
x r x =- ③ 由①②③得:2
04(743)r v g
±=
20(2011全国理综).一带负电荷的质点,在电场力作用下沿曲线abc 从a 运动到c ,已知质点的速率是递减的。

关于b 点电场强度E 的方向,下列图示中可能正确的是(虚线是曲线在b 点的切线)(D )
解析:主要考查电场力方向和曲线运动所受合外力与轨迹的关系。

正确答案是D 。

10(2011天津).(16分)如图所示,圆管构成的半圆形竖直轨
道固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一初速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R 。

重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求:
(1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小。

10.(16分)
(1)粘合后的两球飞出轨道后做平抛运动,竖直方向分运动为自由落体运动,有
21
22
R gt =

解得
2
R t g
= ②
(2)设球A 的质量为m ,碰撞前速度大小为v 1,把球A 冲进轨道最低点时的重力势能定为0,
由机械能守恒定律知
22
111222
mv mv mgR =+ ③
设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知 122mv mv =

飞出轨道后做平抛运动,水平方向分运动为匀速直线运动,有 22R v t =
⑤ 综合②③④⑤式得 222v gR =
17(2011广东).如图6所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是
A.球的速度v 等于L
2H
g
B.球从击出至落地所用时间为
2H
g
C.球从击球点至落地点的位移等于L
D.球从击球点至落地点的位移与球的质量有关
解析:由平抛运动规律:L=vt ,H=
2
1gt 2
求出AB 正确。

选AB
36(2011广东)、(18分)如图20所示,以A 、B 和C 、D 为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B 点,上表面所在平面与两半圆分别相切于B 、C 。

一物块被轻放在水平匀速运动的传送带上E 点,运动到A 时刚好与传送带速度相同,然后经A 沿半圆轨道滑下,再经B 滑上滑板。

滑板运动到C 时被牢固粘连。

物块可视为质点,质量为m ,滑板质量M=2m ,两半圆半径均为R ,板长l =6.5R ,板右端到C 的距离L 在R <L <5R 范围内取值。

E 距A 为S=5R ,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g. (1) 求物块滑到B 点的速度大小;
(2) 试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f 与L 的关系,并判断
物块能否滑到CD 轨道的中点。

36、解析:
(1)μmgs+mg ·2R=2
1
mv B 2 ①
所以 v B =3Rg
(2)设M 滑动x 1,m 滑动x 2二者达到共同速度v,则
mv B =(M+m)v ② μmgx 1=
2
1
mv 2 ③ —μmgx 2=
21mv 2—2
1
mv B 2 ④ 由②③④得v=Rg , x 1=2R, x 2=8R
二者位移之差△x= x 2—x 1=6R <6.5R ,即滑块未掉下滑板 讨论:
① R <L <2R 时,W f =μmg(l +L)=
2
1
mg (6.5R+L ) ② 2R ≤L <5R 时,W f =μmgx 2+μmg(l —△x)=4.25mgR <4.5mgR ,即滑块速度不为0,
滑上右侧轨道。

要使滑块滑到CD 轨道中点,v c 必须满足:2
1
mv c 2 ≥mgR ⑤
此时L 应满足:μmg(l +L) ≤21mv B 2—21
mv c 2 ⑥
则 L ≤2
1
R ,不符合题意,滑块不能滑到CD 轨道中点。

答案:(1) v B =3Rg
(2)
①R <L <2R 时,W f =μmg(l +L)=
2
1
mg (6.5R+L ) ②2R ≤L <5R 时,W f =μmgx 2+μmg(l —△x)=4.25mgR <4.5mgR ,即滑块速度不为0,滑上右侧轨道。

滑块不能滑到CD 轨道中点
11(2011上海).如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。

当绳与河岸的夹角为α,船的
速率为
(A)sin v α (B)sin v α (C)cos v α (D)cos v
α
答案:C
25(2011上海).以初速为0v ,射程为s 的平抛运动轨迹制成一光滑轨道。

一物体由静止开始从轨道顶端滑下,当其到达轨道底部时,物体的速率为 ,其水平方向的速度大小为 。

25答案. 0/gs v ,2200/1(/)v v gs +
24(2011山东).(15分)如图所示,在高出水平地面 1.8h m =的光滑平台上放置一质量2M kg =、由两种不同材料连接成一体的薄板A ,其右段长度10.2l m =且表面光滑,左段表面粗糙。

在A 最右端放有可视为质点的物块B ,其质量1m kg =。

B 与A 左段间动摩擦因数0.4u =。

开始时二者均静止,先对A 施加20F N =水平向右的恒力,待B 脱离A (A 尚未露出平台)后,将A 取走。

B 离开平台后的落地点与平台右边缘的水平距离 1.2x m =。

(取2
10m
g s =)求:
(1)B 离开平台时的速度B v 。

(2)B 从开始运动到刚脱离A 时,B 运动的时间t s 和位移x B (3)A 左端的长度l 2 解析:。

相关文档
最新文档