北师大版七年级数学上-第一学期第一次月考试题.docx
北师大版七年级上册数学第一次月考考试题(完整)
北师大版七年级上册数学第一次月考考试题(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.一5的绝对值是( )A .5B .15C .15-D .-55.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若()2320m n -++=,则m+2n 的值是________.5.若264a =3a =________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.已知关于x的不等式组523(1)138222x xx x a+>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a的取值范围.3.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|b40++-=,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM =13S三角形ABC,试求点M的坐标.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、D7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、20°.3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、±26、5三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、-3≤a<-23、(1)9(2)(0,0)或(-4,0)4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。
北师大版七年级数学上册第一次月考考试题(完整版)
北师大版七年级数学上册第一次月考考试题(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=,90C∠=,45A∠=,30D∠=,则12∠+∠等于()A.150B.180C.210D.2704.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤a bc c =.A.5 B.4 C.3 D.25.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A .14°B .15°C .16°D .17°6.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <549.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)13a ,小数部分是b 3a b -=________.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.已知,|a|=﹣a ,b b =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____. 4.已知11x y =3,则代数式21422x xy y x xy y ----的值为________. 5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)6.一个角是70°39′,则它的余角的度数是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15 (2)21232x x -+-=-2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD 的面积.4.如图1,P 点从点A 开始以2厘米/秒的速度沿A →B →C 的方向移动,点Q 从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、B5、C6、A7、A8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、1.2、-1或33、﹣2c4、45、①③④⑤.6、19°21′.三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、0<m <3.3、(1)y=x+1;(2)C (0,1);(3)14、(1) 4s;(2) 9s;(3) t=323s 或16s5、(1)35%,126;(2)见解析;(3)1344人6、略。
北师大版 2024年秋季七年级上册第一次月考数学试卷(全解全析)
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章---第二章。
5.难度系数:0.69。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、绕轴旋转一周可得到圆柱,故此选项不合题意;B、绕轴旋转一周,可得到球体,故此选项不合题意;C、绕轴旋转一周,可得到一个中间空心的几何体,故此选项不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故此选项符合题意;故选:D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108【解答】解:10.6万亿=106000 0000 0000=1.06×1013.故选:B.4.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.【解答】解:长方体用一个平面去截,可得出三角形、四边形、五边形、六边形的截面,不可能出现圆形的截面,因此选项A符合题意;圆锥体用平行于底面的一个平面去截,可得到圆形、因此选项B不符合题意,球体用一个平面去截可以得到圆形的截面,因此选项C不符合题意;圆锥体用平行于底面的平面去截,可得到圆形的截面,因此选项D不符合题意;故选:A.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.6【解答】解:根据数轴可知:x﹣(﹣1.2)=6﹣1,解得:x=3.8,故选:A.6.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.12【解答】解:把x=﹣1代入运算程序得:(﹣1)×(﹣3)﹣8=3﹣8=﹣5<0,把x=﹣5代入运算程序得:(﹣5)×(﹣3)﹣8=15﹣8=7>0,故输出的结果y为7.故选:B.7.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.8【解答】解:根据题意,1与4相对,2与6相对,3与5相对,∴1+4=5,2+6=8,3+5=8,∴相对两个面上的数字之和的最小值是5.故选:A.8.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.0【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2024+2023b﹣c2023=(﹣1)2024+2023×0﹣12023=1+0﹣1=0.故选:D.9.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:∵a<0,a2>b2,∴|a|>|b|,∴a<b,故①符合题意,④符合题意;当a=﹣2,b=﹣1时,a2=4,b2=1,故②不符合题意;当a=﹣2,b=﹣1时,1aa=−12,1bb=−1,1aa>1bb,故③不符合题意;故选:B.10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5【解答】解:∵|m|=3,n2=4,∴m=±3,n=±2,∵|m﹣n|=n﹣m,∴n﹣m≥0,即n≥m,∴n=2,m=﹣3或n=﹣2,m=﹣3,∴m+n=﹣1或m+n=﹣5,故选:D.第Ⅱ卷二、填空题(本大题共53分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.【解答】解:∵2m+1与﹣2互为相反数,∴2m+1﹣2=0,∴m=12.故答案为:12.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.【解答】解:主视图上有5个正方形,左视图和俯视图上有4个正方形,表面积为(5+4+4)x2=26.故答案为:26.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.【解答】解:16+8﹣10=14℃.故答案为:14.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.【解答】解:根据题意,得5+(5.50﹣2.50)÷0.6×1=10(元).故答案为:10.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.【解答】解:∵a2=4,∴a=±2,当a=2,b=1时,f(a,b)=f(2,1)=2﹣1=1;当a=﹣2,b=1时,f(a,b)=f(﹣2,1)=﹣2+1=﹣1;由上可得,f(a,b)的值为1或﹣1,故答案为:1或﹣1.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;……………………4分(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.……………………8分17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};【解答】解:﹣(﹣10)=10,﹣|﹣24|=﹣24,﹣14=﹣1,整数:{﹣4,﹣(﹣10),0,﹣|﹣24|,﹣14…};……………………2分非负数:{+8.3,﹣(﹣10),0,π…};……………………4分分数:{+8.3,﹣0.8,﹣13%,−343⋯};……………………6分负有理数:{﹣4,﹣0.8,﹣13%,−343,﹣|﹣24|,﹣14…}.……………………8分18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.【解答】解:(1)∵点A、B表示的数是互为相反数,∴AB中点是原点,∴点C表示的数是﹣4;……………………1分(2)……………………4分(3)﹣3<﹣|﹣1|<﹣(﹣1.5)<314.……………………7分19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?【解答】解:(1)18﹣7+7﹣3+11﹣4﹣5+11+6﹣7+9=36(千米),所以李师傅这天最后到达目的地时,距离下午出车时的出发地36千米远;……………………2分(2)18+7+7+3+11+4+5+11+6+7+9=88(千米),所以李师傅这天下午共行车88千米;……………………5分(3)88×0.6=52.8(升),所以这天下午李师傅用了52.8升油.……………………8分20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.【解答】解:(1)(5+4+4)×2=26(cm2),故答案为:26cm2;……………………2分(2)根据三视图的画法,画出相应的图形如下:……………………8分21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为6,∴a+b=0,cd=1,m=6或﹣6,当m=6时,原式=1﹣6=﹣5;当m=﹣6时,原式=1+6=7.综上所述:原式的值是﹣5或7.……………………4分(2)∵a2b>0,ab<0,∴b>0,a<0,∵a2=9,|b|=1,∴a=﹣3,b=1,∴a+b=﹣3+1=﹣2.……………………8分22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?【解答】解:(1)200-2=198(辆),答:第二天生产198辆;……………………2分(2)15﹣(﹣11)=15+11=26(辆),答:产量最多的一天比产量最少的一天多生产26辆;……………………5分(3)60×[200×7+4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]+15×[4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]=60×1406+15×6=84450(元),答:该厂工人这一周的工资总额是84450元.……………………8分 23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53= =14× 2× 2. (2)猜想:13+23+33+…+n 3= .(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403. 【解答】解:(1)13+23+33+43+53=225=14×52×62,……………………3分 (2)猜想:13+23+33+…+n 3=14×n 2×(n +1)2. ……………………5分(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+…+393+403﹣(13+23+33+…+103) =14×402×412−14×102×112 =672400﹣3025=669375. ……………………9分24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.【答案】(1)解:当0.5=t 时,440.52t =×=,826−=, 当0.5=t 时,点Q 到原点O 的距离为6.………………………(2分)(2)解:当 2.5t =时,点Q 运动的距离为44 2.510t =×=, ∵点A 到原点的距离为8,点Q 从点A 出发,到达原点后再返回, ∴点Q 到原点O 的距离为2;………………………(4分) (3)解:点Q 到点的A 距离为4时,分三种情况讨论:①点Q 向左运动4个单位长度,此时运动时间:441t =÷=(秒),P 点表示的数是2−,Q 点表示的数是4;此时P 点到Q 点之间的距离是6.………………………(6分) ②点Q 向左运动8个单位长度到原点,再向右运动4个单位长度,则点Q 运动的距离为:8412+=,运动时间:1243t =÷=(秒) P 点表示的数是6−,Q 点表示的数是4;此时P 点到Q 点之间的距离是10.………………………(8分) ③点Q 向左运动8个单位长度到原点,再向右运动12个单位长度,则点Q 运动的距离为:81220+=,运动时间:2045t ÷(秒) P 点表示的数是10−,Q 点表示的数是12;此时P 点到Q 点之间的距离是22.综上,点P 到点Q 的距离为6或10或22.………………………(11分)。
北师大版七年级数学上册第一次月考测试卷(附答案)
北师大版七年级数学上册第一次月考测试卷(附答案)(满分120分,时间90分钟)题号一二三总分得分合要求的)1.下列几何体中,没有曲面的是( )2.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A.-18%B.-8%C.+2%D.+8%3.下列平面图形不能够围成正方体的是( )4.若一个数的绝对值是2 019,则这个数是( )A.2 019B.-2 019C.±2 019D.以上都不对5.下列说法正确的是( )A.有理数包括正整数、零和负分数B.-a不一定是整数C.-5 和+(-5)互为相反数D.两个有理数的和一定大于每一个加数6.有理数a,b在数轴上的位置如图所示,下面结论正确的是( )A. b-a<0B. ab>0C. a+b>0D.|a|>|b|7.如图所示是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是( )8.一个圆柱体削去12立方分米后,正好削成一个与它等底等高的圆锥,这个圆锥体体积是( )立方分米.A.24B.12C.6D.189.如图所示,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A,B,C的三个数依次为( )A.1,-2,0B.-2,1,0C.-2,0,1D.0,-2,110.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )二、填空题(本大题共8小题,共32分)11.把下列各数-1.5, 12,0,-0.101,3,--5填在相应集合里.非正数集合:{ } 负分数集合:{ } 整数集合:{ }12.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”,这里把雨滴看成了点,用数学知识解释这一现象: . 13.若|a-6|+|b+5|=0,则a+b 的值为 .14.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有 种不同的涂法. 15.在(-1)²⁰¹⁹,(-1)²⁰²⁰,-2²,(-3)²中,最大的数与最小的数的和等于 . 16.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要 块正方体木块,至多需要 块正方体木块.17.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 个.18.观察下列算式:2¹=2,2²=4,2³=8,2⁴=16,2⁵=32,2⁶=64,2⁷=128,2⁸=256,…通过观察,根据所发现的规律可确定2¹⁵个位上的数字是 . 三、解答题(本大题有6个小题,共58分) 19.(8分)计算下列各题:(1)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587); (2)(−1)5×{[−423÷(−2)2+(−1.25)×(−0.4)]÷(−19)−32}.20.(8分)如图,这是一个由一些相同的小立方块塔成的几何体从上面看的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面看和从左面看的形状图.21.(10分)一辆货车从超市出发送货,先向南行驶30km到达A单位,继续向南行驶20km到达B 单位.回到超市后,又给向北15 km处的C单位送了3次货,然后回到超市休息.(1)C单位离A 单位有多远?(2)该货车一共行驶了多少千米?22.(10分)一只蜘蛛在一个正方体的顶点 A 处,一只蚊子在正方体的顶点 B 处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?23.(10分)如图所示,在数轴上的三个点 A、B、C 表示的数分别为−3,−2,2,试回答下列问题.(1)A,C两点间的距离是 ;(2)若E点与B点的距离是8,则 E点表示的数是;(3)若将数轴折叠,使A 点与C 点重合,则B 点与哪个数重合?24.(12 分)下面是按一定规律排列的一列数: 第1个数: 1−(1+−12); 第2个数: 2−(1+−12)[1+(−1)23][1+(−1)34]; 第3个数: 3−(1+−12)(1+(−1)23)(1+(−1)34)(1+(−1)45)[1+(−1)56].…(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. B2. B3. B4. C5. B6. A7. B8. C9. B 10. B 11.{--1.5,0,-0.101,-5} {-1.5,-0.101} {0,3,-5} 12.点动成线 13.1 14.4 15.5 16.6 16 17.8 18.819.解(1)原式 =3.587+5−512+7−314−1.587 =(3.587−1.587)+(5+7)+(−512−314) =2+12−834 =514.(2)原式 =−1×{[−143÷4+0.5]÷(−19)−9}=−1×[(−23)÷(−19)−9] =−1×(6−9) =−1×(−3) =3. 20.解21.解(1)规定超市为原点,向南为正,向北为负,依题意,得C 单位离A 单位有 30+|15|=45(km ), ∴C 单位离A 单位45 km.(2)该货车一共行驶了 (30+20)×2+|15|×6=190(km).答:该货车一共行驶了190km.22.解所走的最短路线是正方体平面展开图中从点A 到点B 的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.23.解(1)5(2)6或-10(3)因为A 点与C 点重合,所以折痕与坐标轴的交点表示的数为-0.5,则B 点与表示1的点重合.24.解(1)第1个数: 12 ;第2个数: 32;;第3个数: 52. (2)第2017个数: 2017−(1+−12)[1+(−1)23][1+(−1)34]..[1+(−1)40334034]=40332.。
北师大版七年级上册数学第一次月考试卷及答案【完整】
北师大版七年级上册数学第一次月考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 494) A .32 B .32- C .32± D .81165.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________. 4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、A5、B6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、105°3、43 32a≤≤4、50°5、16、54°三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、(1)±3;(2)2a+b﹣1.3、(1)证明见解析;(2)75.4、20°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
七年级数学第一次月考卷01(北师大版,七上第1~2章:丰富的图形世界+有理数及其运算)(全解全析)
2024-2025学年七年级数学上学期第一次月考卷01(北师大版)(考试时间:90分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版七上第一章丰富的图形世界+第二章有理数及其运算。
5.考试难度:0.72。
第Ⅰ卷一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.3-的相反数是( )A .13-B .13C .3D .3-【解答】解:Q 互为相反数相加等于0,3\-的相反数,3.故选:C .2.安徽省能源局确定了2024年能源发展主要预期目标:预计全省一次能源生产总量达到99500000吨标准煤,其中99500000用科学记数法表示为( )A .599510´B .699.510´C .69.9510´D .79.9510´【解答】解:7995000009.9510=´,故选:D .3.在一条东西走向的道路上,若向东走3m 记作3m +,那么向西走7m 应记作( )A .7mB .7m -C .10m -D .4m【解答】解:若向东走3m 记作3m +,那么向西走7m 应记作7m -,故选:B .4.下列各图中,符合数轴定义的是( )A .B .C .D .【解答】解:A 、无正方向和原点,错误;B 、无正方向,错误;C 、单位长度不一致,错误;D 、正确.故选:D .5.下列长方体、圆柱体和圆锥体木料,切开后截面形状与其他三个不同的是( )A .B .C .D .【解答】解:长方体、圆柱形和圆锥形木料,切开后截面形状与其他三个不同的是圆锥.故选:D .6.计算5313716´,最简便的方法是( )A .53(13716+´B .23(14716-´C .23(162)716-´D .53(103)716+´【解答】解:53233233213(162)162327167161671677´=-´=´-´=-=Q .\计算5313716´,最简便的方法是23(162)716-´,故选:C .7.如果2|1|(2)0a b -+-=,则b a 的值为( )A .1B .2C .1-D .2-【解答】解:根据题意得,10a -=,20b -=,解得1a =,2b =,所以211=.故选:A .8.如图所示的正方体的展开图是( )A .B .C .D .【解答】解:由题意可知,有图案的三个面交于一点,即三个图案必须相邻,不能有两个在对面,故选项A 、C 不符合题意;再根据带有各种符号的面的特点及位置,选项B 不符合题意,选项D 符合题意.故选:D .9.有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )A .1000B .1C .0D .1-【解答】解:Q 任意相邻的三个数中,中间的数等于它前后两数的和,而且第一个数和第二个数都是1,\此行数为:1,1,0,1-,1-,0,1,1,0,1-,1-,0,1,1¼,1101100\++--+=,100061664¸=¼Q ,\这1000个数的和为:166011011´+++-=,故选:B .10.对于有理数a 、b ,定义一种新运算“※”,规定:a ※||||||b a b a b =---,则2※(3)-等于( )A .2-B .6-C .0D .2【解答】解:a Q ※||||||b a b a b =---,2\※(3)-|2||3||2(3)|=-----23|23|=--+235=--6=-,故选:B .第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
北师大版七年级数学上册第一次月考考试(完整)
北师大版七年级数学上册第一次月考考试(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定3.有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为( )①a ﹣b >0 ②ab <0 ③1a >1b④a 2>b 2.A .1B .2C .3D .44.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解 7.方程组33814x y x y -=⎧⎨-=⎩的解为 A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩8.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a |=6,|b |=3,则a -b 的值为( )A .-3B .-9C .-3或-9D .3或99.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.绝对值不大于4.5的所有整数的和为________.3.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.4.写出一个数,使这个数的绝对值等于它的相反数:__________.5.若实数a满足1322a-=,则a对应于图中数轴上的点可以是A、B、C三点中的点__________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x yx y--=⎧⎨-=⎩2.已知关于x,y的方程组54522x yax by+=⎧⎨+=-⎩与2180x yax by-=⎧⎨--=⎩有相同的解,求a,b的值.3.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,四边形ABCD 中,对角线AC 、BD 交于点O ,AB =AC ,点E 是BD 上一点,且AE =AD ,∠EAD =∠BAC,(1)求证:∠ABD =∠ACD ;(2)若∠ACB =65°,求∠BDC 的度数.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、B5、B6、C7、D8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、03、6或144、1-(答案不唯一)5、B6、76.510⨯三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、12 ab=⎧⎨=-⎩.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)略;(2) 50°5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。
北师大版七年级上册数学第一次月考考试题及答案【完整版】
北师大版七年级上册数学第一次月考考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.下列图形中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm 8.6的相反数为( )A .-6B .6C .16-D .169.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.364 的平方根为________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)2976x x -=+ (2)332164x x +-=-2.解不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.3.将一幅三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F ,(1)求证:CF∥AB,(2)求∠DFC的度数.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、B7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、()()2a b a b ++.3、70.4、-405、±26、48三、解答题(本大题共6小题,共72分)1、(1)x=﹣3;(2)x=34.2、32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.3、(1)证明见解析;(2)105°4、(1)详略;(2)70°.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)120件;(2)150元.。
北师大版七年级数学上册第一次月考试卷(完整版)
北师大版七年级数学上册第一次月考试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间2.下列说法中正确的是()A.若0a<0B.x是实数,且2x a=,则0a>C有意义时,0x≤D.0.1的平方根是0.01±3的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.下列各组数中,两个数相等的是()A .-2与2(-2)B .-2与-12C .-2与3-8D .|-2|与-27.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知5a =2b =10,那么 ab a b+的值为________. 2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =_______________,△APE 的面积等于6.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5(2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A 非常了解、B 了解、C 了解较少、D 不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;(2)扇形统计图中D 所在扇形的圆心角为 ;(3)将上面的条形统计图补充完整;(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.6.2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、A6、C7、B8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、1.5或5或93、43 32a≤≤4、8-5、两6、2或-8三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、(1)5x2-3x-3,原式=107;(2)-xy+2xy 2;原式=-4.3、略4、(1)60°;(2)50°;(3)18021nα︒--或18021nα︒-+5、(1)120;(2)54°;(3)详见解析(4)200.6、(1)一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)4种;(3)选择“派出大型渣土运输车10辆、小型渣土运输车10辆”的方案划算.。
北师大版七年级数学上册第一次月考试卷 (1)
北师大版七年级数学第一次月考试题一、选择题(每题3分,共30分):1、下面几何体的截面图不可能是圆的是( )A 、圆柱B 、圆锥C 、球D 、棱柱2、棱柱的侧面都是( )A 、三角形B 、长方形C 、五边形D 、菱形3、圆锥的侧面展开图是( )A 、长方形B 、正方形C 、圆D 、扇形4、将半圆绕它的直径旋转一周形成的几何体是( )A 、圆柱B 、圆锥C 、球D 、正方体5、如图,该物体的俯视图是 ( )A 、B 、C 、D 、6、下列平面图形中不能围成正方体的是( )A 、B 、C 、D 、7、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是 ( )A.长方形 、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.长方形、长主形、圆8、一天早晨的气温是-6℃,中午又上升了10℃,夜间又下降了8℃,则夜间气温是( )A 、-4℃B 、4℃C 、3℃D 、-5℃9、在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个10、一个数的绝对值是3,则这个数可以是( )1A.3B.3- C.3或者3- D.3二、填空(每空3分,共30分)11、数轴上原点右边的点表示 ,数轴上原点左边的点表示 ,原点表示 . 所有的有理数都能用数轴上的来表示.12、在棱柱中,任何相邻的两个面的交线都叫做 ,相邻的两个侧面的交线叫做。
13、写出两个三视图形状都一样的几何体:、。
14、用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个立方块,最多要个立方块。
15、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是和。
16、A地海拔高度是-30米,B地海拔高度是10米,C地海拔高度是-10米,则地势最高的与地势最低的相差__________米.17、在数轴上距原点3个单位长度的点表示的数是___________.18、已知P是数轴上的一点4-,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是______________.19、既不是正数也不是负数的数是_________,其相反数是________.20、最大的负整数是 _________,最小的正整数是_________ .三、计算题(每题5分,共20分)(1) )15()41()26()83(++-+++- (2) (-40)-(+28)-(-19)+(-24)-(32)(3)53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4) (-1.5)+134⎛⎫+ ⎪⎝⎭+(+3.75)+142⎛⎫- ⎪⎝⎭四.解答题(共40分)21、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
最新北师大版七年级数学上册第一次月考考试(完整)
最新北师大版七年级数学上册第一次月考考试(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43 3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3±5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____.5.364的平方根为________.6.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)321123x x-+-=(2)31322322105x x x+-+-=-2.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y-)+3xy]+5xy2的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、55°3、484、45、±26、10cm三、解答题(本大题共6小题,共72分)1、(1)17x =-;(2)716x =.2、2.3、(1) C (5,﹣4);(2)90°;(3)略4、20°5、(1)抽取了50个学生进行调查;(2)B 等级的人数20人;(3)B 等级所占圆心角的度数=144°.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
北师大版七年级数学上册第一次月考试卷(完美版)
北师大版七年级数学上册第一次月考试卷(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD4.按一定规律排列的一列数:3,82,153,244,…,其中第6个数为( )A .377B .355C .356D .233 5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.下列说法中,错误的是( )A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.若1m+与2-互为相反数,则m的值为_______.2.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.3.分解因式:32x2x x-+=_________.5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.分解因式:4ax 2-ay 2=_____________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程(1)2(1)25(2)x x -=-+ (2)3171124x x ++-=2.若2a+b=12,其中a ≥0,b ≥0,又P=3a+2b .试确定P 的最小值和最大值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△AOA 1的面积.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、D6、C7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、如果两个角互为对顶角,那么这两个角相等3、()2x x 1-.4、a >﹣15、a (2x+y )(2x-y )6、5三、解答题(本大题共6小题,共72分)1、(1)67x =- ;(2)3x =- 2、当a=0时,P 有最大值,最大值为p=24;当a=6时,P 有最小值,最小值为P=18.3、(1)(4,-2);(2)作图略,(3)6.4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1) A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.。
北师大版七年级上册数学《第一次月考》测试卷(完整)
北师大版七年级上册数学《第一次月考》测试卷(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A.118°B.119°C.120°D.121°7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是().A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+12x+14x=34 6858.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.分解因式:32x 2x x -+=_________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2976x x -=+ (2)332164x x +-=-2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D (1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、A6、C7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、20°.3、()2 x x1-.4、-405、40°6、48三、解答题(本大题共6小题,共72分)1、(1)x=﹣3;(2)x=3 4.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)4.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、A饮料生产了30瓶,B饮料生产了70瓶.。
北师大版七年级上册数学第一次月考考试(北师大版)
北师大版七年级上册数学第一次月考考试(北师大版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112°4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.正五边形的内角和等于______度.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、D5、C6、C7、A8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、40°3、5404、205、40°6、②.三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、原不等式组的解集为122x-≤<,它的所有整数解为0,1.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)略;(2)略.5、()117、20;()22次、2次;()372;()4120人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
北师大版七年级上册数学第一次月考考试卷(完整)
北师大版七年级上册数学第一次月考考试卷(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.下列图形中,不是轴对称图形的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、C5、C6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、10.3、3 44、3x=.5、AC=DF(答案不唯一)6、54°三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、0<m<3.3、72°4、(1)略(2) ∠AEB=15°(3) 略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。
北师大版七年级上册数学第一次月考试卷【及参考答案】
北师大版七年级上册数学第一次月考试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124° 3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x 494) A .32 B .32- C .32± D .81165.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程: (1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,点D 、E 在AB 上,点F 、G 分别在BC 、CA 上,且DG ∥BC ,∠1=∠2.(1)求证:DC ∥EF ;(2)若EF ⊥AB ,∠1=55°,求∠ADG 的度数.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、B6、C7、A8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、()()2a b a b++.3、15°4、(4,2)或(﹣2,2).5、①③④⑤.6、5三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、(1)见解析(2)35°4、(1)证明略;(2)证明略.5、(1)75,54;(2)补图见解析;(3)600人.6、(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。
北师大版七年级上册数学《第一次月考》试卷(完美版)
北师大版七年级上册数学《第一次月考》试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( )A .a<b<c<dB .a<b<d<cC .b<a<c<dD .a<d<b<c2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.一5的绝对值是( )A .5B .15C .15-D .-55.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点M B.点N C.点P D.点Q7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A.①②B.②③C.①③D.①②③10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解方程:(1)321123x x-+-=(2)31322322105x x x+-+-=-2.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.3.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.试说明:AB∥CD.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、A5、B6、C7、C8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、344、-405、①③④⑤.6、7三、解答题(本大题共6小题,共72分)1、(1)17x =-;(2)716x =.2、32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.3、略4、(1)略;(2)4.5、(1)50;72;(2)详见解析;(3)330.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
桑水出品
2014-2015学年第一学期七年级数学第一次月考试题
满分:120分时间:90分钟
班别姓名
学号分数
一、选择题(每小题3分,共30分)
1、把一个正方体展开,不可能得到的是()
2、如图2,是由几个相同的小正方体组成的几何体,则它的俯视图是:()
3、下列各式中,计算结果为正的是()
A、(-7)+4
B、2.7+(-3.5)
C、-4+9
D、0+(-2)
4、用一个平面去截圆柱体,则截面形状不可能是()
A、梯形
B、三角形
C、长方形
D、圆
5、下列说法中,不正确的是( )
A、没有最小的有理数
B、互为相反数的两个数到原点的距离相等
C、零没有相反数
D、最大的负整数是-1
6、一个数的平方为9,则这个数是()
A、3
B、-3
C、6
D、±3
7、.下列立体图形中,有五个面的是()
A、四棱锥
B、五棱锥
C、四棱柱
D、五棱柱
8、有理数
3
1的相反数是( ) (A )31 (B )31 (C )3 (D ) –3 9、将一个正方体截去一个角,则其面数( )
A 、增加
B 、不变
C 、减少
D 、上述三种情况均有可能
10、下面的说法错误的是( ).
A .0是最小的整数
B .1是最小的正整数
C .0是最小的自然数
D .自然数就是非负整数
二、填空题(每小题4分,共24分)
11、长方体有_____个面,_______条棱,_______个顶点 条侧棱。
12、用科学记数法表示1320000千米,记作 米 。
13、如右图,该图形经过折叠能得到一个正方体,
那么“3”的对面是_______(填编号)。
14、数轴上与-1的距离等于4个单位长度的点所表示的数为 。
15、如果收入2万元记作+2万元,那么-1万元表示 。
16、 能展开成如右图所示的几何体可能是____________.
三、解答题(共66分)
17、(6分)36-76+(-23)-(-10); 18、(6分)8×3+12÷4;
19、(6分)下图3是一个正方体盒子的展开图,要把-8、10、-12、8、-10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0。
20、(7分)所有的正数组成正数集合,所有的负数组成负数集合,所有的正数组成正数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:
4 1 2 6
5 3
-2.5, 3.14, -2, +72, -0.6, 0.618,, 0, -0.101
正数集合:{ }
负数集合:{ }
分数集合:{ }
21、(7分)计算: ;
22、(7分)如图4,这是一个由一些相同的小立方块塔成的几何体从上面看的形状图,小正方形中的数字表示该位置的小立方块的个数。
请你画出它从正面看和从左面看的形状图。
X K b1. C om
23、(9分)在数轴上表示下列各数:0,–2.5,213
,–2,+5,311。
并用“<”将它们连接起来。
24、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为5cm 、宽为6cm
的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?
25、观察下列数,探索其中的规律:
,……
(1)填空:第8,9,10个分别是,,;(2)第2014个数是;
(3)第2n个数是。