第六章磁路与变压器

合集下载

电工技术-第6章变压器

电工技术-第6章变压器

E 2 R2 I2 E σ2 U 2 R2 I2 j X 2 I2 U 2
u+– 1e+–σe+–11
U 2为二次绕组的端电压。
N1
i2
+e2 –+
+ u2
e–2 –
N2
变压器空载时:
I2 0 , U 2 U 20 E2 4.44 fΦm N 2
U1 E1 U1 E1 4.44 fΦm N1
E10 E10m 2fN 1Φ0m
2
2
E10 4.44 fN 1Φ0m
同理: e20 E20m sin(t 900 )
E20 4.44 fN 2Φ0m
6.2 变压器的工作原理
(2) 从电路分析得到电压电流关系式
I1 R1
变压器一次侧等效电路如图
+
––
U 1 R1 I1 E σ1 E 1 R1 I1 j X1 I1 E 1
一次、二次绕组互不相连,能量的传递靠磁耦合。
6.2 变压器的工作原理
6.2.1 功率传输
P1:一次电源输出功率即变压器的输入功率。 P2变压器的输出功率即传递给负载。
通常 P1 P2
变压器传输电能过程有铜损和铁损,降低铜损和 铁损,变压器的输出功率会大大增加。 即 P2 P1
6.2 变压器的工作原理
空载磁势
或: i1N1 i0 N1 i2 N2
1.提供产生m的磁势
2.提供用于补偿 作用的磁势
一般情况下: I0 (2~3)%I1N 很小可忽略。
所以 i1N1 i2 N2 或 I1N1 I2 N 2
所以 I1N1 I2 N2
I1 N2 1 I2 N1 K
结论:一次、二次侧电流与匝数成反比。

第6章-磁路和变压器

第6章-磁路和变压器
非磁性材料没有磁畴的结构,所以不具有磁化特性。
(a)无外场,磁畴排列杂乱无章。
(b)在外场作用下,磁畴排列逐 渐进入有序化。
磁性物质的磁化示意图
2. 磁饱和性
磁性物质因磁化产生的磁场是不会无限制增加的,当外磁场(或激 励磁场的电流)增大到一定程度时,全部磁畴都会转向与外场方向 一致。这时的磁感应强度将达到饱和值。
IN lx
I
其中N 为线圈的匝数;Hx 是半径为 x 处的磁场强度 。
乘积 I N 是产生磁通的原因,称为磁动势,用F 表示。
F IN 单位是安培
4. 磁导率
磁导率μ是表示磁场空间 媒质 磁性质的物理量,是物质导磁能力 的标志量。
前面已导出环形线圈的磁场强度 H ,可得磁感应强度 B 为
Bx
磁导率的单位
0.39
A
可见由于所用铁心材料不同,要得到相同的磁感应强度,则所需要的磁动势或励
磁电流是不同的。因此,采用高磁导率的铁心材料可使线圈的用铜量大为降低。
6.2 交流铁心线圈电路
铁心线圈分为两种:
1.直流铁心线圈电路
2.交流铁心线圈电路
直流铁心线圈通直流来励磁(如直流电机的励磁线圈、电磁吸盘 及各种直流电器的线圈)。因为励磁是直流,则产生的磁通是恒定的, 在线圈和铁心中不会感应出电动势来,在一定的电压U下,线圈电流I 只与线圈的R有关,P也只与I2R有关,所以分析直流铁心线圈比较简 单。本课不讨论。
t
qv
Fmax
F
I
B
B
l
B
l
I
S
N
同理,
vB F
三个矢量也构成右旋系关系。
如洛仑兹力公式所表示
F q v B

第6章磁路与变压器精品PPT课件

第6章磁路与变压器精品PPT课件

I
长度和截面积的几段组成,即磁
路由磁阻不同的几段串联而成 。
如图6.2.2所示
μ0 s0 = s1
δ
μ2 l2 s2
则 N H I1 l1 H 2 l2 (H ) l 图6.2.2 继电器的磁路
称为磁路各 段的磁压降
1. 串联磁路(给定Φ,求NI)
串联磁路:磁路由多段不同材料组成一个回路,中间无分叉 根据磁路的连续性原理,串联磁路中各段的磁通Φ都是相同。
3.磁场强度H
定义: 介质中某点的磁感应强度 B 与介质磁导率 之比。
大小: H B
单位: 安培/米(A/m)
4.磁导率μ
定义: 表示磁场媒质磁性的物理量,衡量物质的导磁能力。
大小: B
H 单位: 亨/米(H/m)
真空的磁导率 为0 常数,
0 4107亨/米
相对磁导率r
定义: 任一种物质的磁导率 和真空的磁导率0的比值。
(2) H226A0/m,
I2H N 2l23 6 0 0 0 .40A 50.3A 9
可见由于所用铁心材料的不同,要得到同样的磁感应强度, 则所需要的磁通势或励磁电流的大小相差就很悬殊.因此, 采用磁导率高的铁心材料,可使线圈的用铜量大为降低.
380,铁心中的磁感应强度为0.9T,磁路的平均长度 45cm
试求:(1)铁心材料为铸铁时线圈中的电流; (2)铁心材料为硅钢片时线圈中的电流。
解: 首先从图6.1.5中的磁化曲线查出磁场强度H,然后
根据式(6.2.1)算出电流
(1) H190A 0/m 0, I1H N 1l90 30 0 0.40 0A 51.5 3A
N
If + –
S
S
N

第6章变压器-

第6章变压器-

第6章变压器** 三相组式和芯式变压器** 三相组式变压器三相组式变压器由3台容量、变比等基本参数完全相同的单相变压器按三相连接方式连接组成。

其示意图如图6.1.1,此图的原、副边均接成星形,也可接成其它接法。

三相组式变压器的特点是具有3个独立铁心;三相磁路互不关联;三相电压对称时,三相励磁电流和磁通也对称。

** 三相芯式变压器三相芯式变压器的磁路系统是由组式变压器演变过来的,其演变过程如图6.1.2所示。

当我们把三台单相变压器的一个边(即铁心柱)贴合在一起,各相磁路就主要通过未贴合的一个柱体,如图6.1.2(a)所示。

这时,在中央公共铁心柱内的磁通为三相磁通之和,即ΦΣ=ΦA+ΦB+ΦC。

当三相变压器正常运行(即三相对称)时,合成磁通ΦΣ=0,这样公共铁心柱内的磁通也就为零。

因此中央公共铁心柱可以省去,则三相变压器的磁路系统如图6.1.2(b)所示。

为了工艺制造方便起见,我们把3相铁心柱排在一个平面上,于是就得到了目前广泛采用的如图6.1.2(c)所示的三相芯式变压器的磁路系统。

图6.1.2 三相芯式变压器的铁心演变过程(a)3个铁心柱贴合(b)中央公共铁心柱取消(c)三相芯式铁心三相芯式变压器的磁路系统是不对称的,中间一相的磁路比两边要短些。

因此,在对称情况下(即ΦA=ΦB=ΦC时),中间相的励磁电流就比另外两相的小,但由于励磁电流在变压器负载运行时所占比重较小,故这对变压器实际运行不会带来多大影响。

比较芯式和组式三相变压器可以知道,在相同的额定容量下,三相芯式变压器具有省材料、效率高、经济等优点;但组式变压器中每一台单相变压器却比一台三相芯式变压器体积小,重量轻,便于运输。

对于一些超高电压、特大容量的三相变压器,当制造及运输发生困难时,一般采用三相组式变压器。

** 三相变压器的联结组三相变压器的原边和副边都分别有A,B,C 三相绕组,它们之间到底如何联法,对变压器图6.1.1 三相组式变压器的运行性能有很大的影响。

磁路和变压器电工电子技术基础

磁路和变压器电工电子技术基础

磁路和变压器电工电子技术基础概述磁路和变压器是电工电子技术中重要的基础知识,它们在电力系统、通信系统以及各种电子设备中起着重要的作用。

本文将介绍磁路和变压器的基础概念、工作原理以及应用。

磁路的基础概念磁路是由磁性材料构成的路径,磁场通过磁路来传导。

磁路主要由磁性材料和空气间隙组成,其中磁性材料的主要作用是增强磁场强度。

磁通量和磁势磁通量是磁场通过磁路的量度,用Φ表示,单位是韦伯(Wb)。

磁通量的大小与磁场强度和磁路截面积成正比。

磁势是磁场在磁路中存在的力量,用Φ表示,单位是安培·匝(Am)。

磁路中的欧姆定律磁路中的欧姆定律类似于电路中的欧姆定律,描述了磁路中的磁势、磁通量和磁路电阻之间的关系。

根据磁路中的欧姆定律,磁势与磁通量的比例关系可以表示为Φ = R × Ψ,其中Φ表示磁通量,Ψ表示磁势,R表示磁路电阻。

磁路中的磁阻磁路中的磁阻决定了磁场通过磁路的难易程度。

磁阻与磁性材料的特性以及磁路的几何形状有关。

磁路中的磁阻可以通过磁路的长度、截面积以及磁性材料的磁导率来计算。

变压器的基本原理变压器是利用电磁感应原理而工作的电器,主要用于将交流电能从一个电路传输到另一个电路。

变压器可以将交流电的电压和电流进行变换,同时也可以提高或降低电压的大小。

变压器的结构典型的变压器由一个或多个绕组和一个铁芯构成。

绕组一般分为输入绕组和输出绕组,它们通过铁芯相连接。

铁芯主要起到增加磁路磁阻、导磁和集中磁感应线的作用。

变压器的工作原理变压器的工作原理基于电磁感应定律。

当输入绕组通电时,产生的磁场通过铁芯传导到输出绕组,由于磁场的变化,输出绕组中会产生感应电动势,从而产生输出电流。

变压器的变压比变压器的变压比是输入电压和输出电压之间的比值。

变压器的变压比可以通过绕组的匝数比来确定。

变压比的大小决定了变压器的升压或降压功能。

变压器的效率变压器的效率是指输出功率与输入功率之间的比值。

变压器的效率通常高达90%以上,主要损耗包括铜损、铁心损耗和额定功率损耗。

第六章变压器

第六章变压器

Sh ia iJ
. .
.
Zh ua ng Ra il wa yI
(6 − 10)
(6 − 11)
第六章 变压器
图 6-5 变压器的负载运行
I 1 N1 + I 2 N 2 ≈ I 0 N1
.
这就是变压器中的磁势平衡方程式。变压器的空载电流i0是励磁用的。由于铁心的磁导率高,空 f 载电流是很小的。它的有效值在原绕组额定电流的10%以内,因此i0N1 与i1N1相比,常可忽略。于是式 (6-10)可写成
.
.
= − E1 + I 0 ( R1 + jX σ 1 ) = − E 1 + I 0 Zσ 1

.
Zh
. .
.
ua
.
ng
Ra il
(6 − 8)
U 1 ≈ − E1
.
.
wa yI
U 20 = E 2
.
ns ti tu te
9
第六章 变压器
5、变比:
U1 E1 4.44 N1 f Φ m N1 ≈ = = =K U 20 E2 4.44 N 2 f Φ m N 2
图 6-1 心式变压器 (a) 单相心式变压器 (b)三相心式变压器
Sh
4
ia iJ
Zh
ua
ng
Ra
第六章 变压器
il wa
图 6-2 壳式变压器 (a)单相壳式变压器 (b)三相壳式变压器
yI ns ti tu te
一、变压器的结构 主要由铁心、绕组、绝缘及其他一些元部件构成。 铁心 绕组 绝缘 铁心:铁心都是由厚度为0.35—0.5mm的硅钢片迭装而成,硅钢片上涂有绝缘漆。 铁心 (据报道,美国的部分电力变压器已采用0.2mm以下的冷轧钢片。俄罗斯在中高频电机中 采用0.1mm的硅钢片。 绕组:绕组用导电性能好的漆包圆铜线绕制而成,为绝缘方便,低压绕组紧靠铁心, 绕组 高压绕组则套在低压绕组的外边,两个绕组之间留有油道,一方面作为绕组间绝缘,另一 方面冷却绕组。

《电工技术基础与技能》教学课件—第6章 磁路与变压器

《电工技术基础与技能》教学课件—第6章 磁路与变压器

nu
第6章磁路与变压器
^6.1磁路
任务 总览
^)6.2变压器 _____--
,实训:小型变压器检测
3
图6-1几种电工设备的铁心
a)变压器b)继电器c)电动机d)磁电系仪表
6.1磁路
1. 磁路 磁通所经过的路径叫做磁路。 2. 磁通势 把励磁电流I和线圈匝数N的乘积称为磁通势, 用符号Fm表示。
10

3. 不能进行绕组通断检测,扣5
~10分
20 1. 不能进行绕组间绝缘检测,
扌扌1〜10分
2. 不能进行绕组对外壳的绝缘
检测,扌扌1~10分
50 1. 不能正确运用直流判别法查
找同名端,扣10〜25分
2. 不能正确运用交流判别法查
找同名端,扣10〜25分
5
1. 工作台上不整洁,扌扌1〜2

2. 违反安全文明操作规程,酌
• 8)变压器同名端的判别方法主要有直流判别法和交流
判 别法。
(2) 外观检查。检查变压器铁心、绕组、绕组骨架、 引出线及其套管、绝缘材料有无机械损伤;绕组有无断 线、脱焊、霉变或烧焦的痕迹;检查绝缘材料是否老化、 发脆、剥落等。
(3) 绕组通断的检测。根据绕组直流电阻的大小选择 用万用表或电桥进行检测。
(4) 绝缘测试。用兆欧表对变压器进行绝缘测试。
nu
实训小型变压器检测
(3) 绕组通断的检测。根据绕组直流电阻的大小选 择 用万用表或电桥进行检测。
(4) 绝缘测试。用兆欧表对变压器进行绝缘测试。
nu
实训小型变压器检测
二、小型变压器同名端判别
1.直流判别法 1)万用表置于最小直流电压挡。 2)按下图所示接入万用表,取一节1.5V的干电池,在接

汽车电子电工技术-磁路和变压器

汽车电子电工技术-磁路和变压器

E
Em 2
2πfNΦm 2
4.44 fNΦm
由于线圈电阻 R 和感抗X(或漏磁通)较小, 其
电压降也较小,与主磁电动势 E 相比可忽略,故有
U E
U E 4.44 fNm 4.44 fNBmS (V)
式中:Bm是铁心中磁感应强度的最大值,单位为T; S 是铁心截面积,单位为m2。
3.2.3 功率损耗
e -N d dt
3.1.3 磁路的基本定律
(2)自感和互感
自感:当线圈中电流变化时,便在线圈周围产生 变化的磁通,这个变化的磁通穿过线圈本身时,线 圈中便产生感应电动势。这种由于线圈本身电流变 化而产生感应电动势的现象称为自感,所产生的电 动势称为自感电动势。
d d
eL -N dt = dt
(a)整块铁块 (b)叠层铁芯
3.1.2 磁性材料的磁性能
3.涡流损耗 涡流的存在会使电气设备的铁芯发热而消耗电
功率,称为涡流损耗,这对电气设备是不利的。 为了减小涡流损耗,电气设备的铁芯一般都不
用整体的铁芯,而用硅钢片叠成。硅钢片由含硅 2.5%的硅钢轧制而成,其厚度为0.35~1mm。硅钢 片表面涂有绝缘层,使片间相互绝缘。图(b)所示 为由硅钢片压制成的线圈铁芯,使得涡流大大减小。
U RI ( E σ ) ( E ) RI jXσ I ( E )
E jX I X L 称为漏磁感抗
3.2.2 电压电流关系
设主磁通 msin t, 则
e
N
d
dt
N
d dt
( msin t )
N mcos t
2πfNmsin( t 90) Emsin( t 90)
有效值
(a)磁场中通电导体所受作用力 (b)左手定则

磁路与变压器PPT课件

磁路与变压器PPT课件
磁滞回线较窄,比如 铸铁、铸钢等。一般 用来制造变压器、电 机等的铁芯。
(2)硬磁材料:
磁滞回线较宽,比 如碳钢等。
一般用来制造永久 磁铁。
(3)矩磁材料:
磁滞回线接近矩形, 比如铁氧体材料。一 般用于计算机或控制 系统中的记忆元件。
B
B
B
H
H
H
磁路与变压器
§3 磁路及磁路的基本定律
1 磁路
i
u
: 主磁通 :漏磁通
2 磁路的基本定律 2.1 安培环路定律(全电流定律)
I2 I1
I3
安培环路定律指出:在磁场 中,任取一闭合路径,并指定其
方向,沿此闭合路径的方向对磁
H 场强度H 的矢量进行线积分,则
线积分值等于通过该闭合路径的
所有电流的代数和。
H d l I I1 I2 I3
若电流方向和磁场强度H 的方向之间符合右手螺旋关
ninihl整理ppt17对于均匀磁路称为磁阻22磁路欧姆定律nihl整理ppt18磁路电路磁动势fni电动势e电流i磁压降hl电压降u磁通密度b磁阻电阻23磁路与电路的比较整理ppt19磁路电路磁路欧姆定律电路欧姆定律安培环路定律基尔霍夫电压定律磁通的连续性基尔霍夫电流定律hlni整理ppt20磁路欧姆定律安培环路定律磁通的连续性分别与电路欧姆定律基尔霍夫电压定律基尔霍夫电流定律具有相同的形式
的单位 韦伯(Wb) 1T=1Wb/m2
通常用磁力线来描述磁场,使磁力线的疏密反 映磁感应强度的大小。显然,通过某一面积的磁力 线疏密也反映了通过该面积的磁通的大小。
由于磁通的连续性,磁磁路与力变压线器 总是闭合的空间曲线。
3 磁导率
磁导率是一个用来表示磁场媒质磁性的物理量,也

第六章 磁路与变压器

第六章 磁路与变压器
IN = H 1l1 + H 2 l 2 + L + H n l n

IN = ∑ Hl = ∑ U m
四、应用举例: 2 [1]匀强磁场的磁感应强度为 5 × 10− T,媒介质是空气,与磁场方向平 行的线段长 10cm,求这一线段上的磁位差。 解:
投影
[2]一空心环形螺旋线圈,其平均长度为 30cm,横截面积为 10cm ,匝数 3 等于 10 匝,线圈中电流为 10A,求线圈磁阻,磁动势及磁通。 解:
永久性磁铁就是利用剩磁 很大的铁磁性物质制成 的。 矫顽磁力的大小反 映了铁磁性物质保存剩磁 的能力
6.2 线圈的互感[1] 教学目的:
理解互感现象、互感电动势的概念 掌握互感系数及同名端的概念 熟悉互感现象的应用 授课形式 讲授 授课对象
教学重点:
互感现象及互感系数及同名端的概念 教学难点:互感电动势、同名端的概念
结合实际使用的变压器当 输入线圈有电流输入时, 输出带负载时有电流输出 叙述互感现象 投影下图
Ψ 21
i1
=
Ψ12
i2
= M 12
在国际单位制中,互感 M 的单位为亨利(H) 三、耦合系数 K:[1]物理意义及定义:耦合系数用来说明两线圈间的 耦合程度,定义为
互感 M 取决于两个耦合线 圈的几何尺寸、匝数、相 对位置和媒介质。当媒介 质是非铁磁性物质时, M 为常数
2
五、学生课堂练习: 5 求在长度为 80CM,截面直径为 4CM 的空心螺旋线圈中产生 5 × 10− WB 的磁通所需的磁动势 解:分析根据: Rm =
l
µS
求出磁阻
Em 求出磁动势 Rm l
利用 Φ = 总结:
通过学习要正确理解磁路及磁阻的概念,会利用 Rm =

磁路与变压器习题参考答案

磁路与变压器习题参考答案

磁路与变压器习题参考答案一、填空题1.变压器运行中,绕组中电流的热效应所引起的损耗称为铜损耗;交变磁场在铁心中所引起的磁滞损耗和涡流损耗合称为铁损耗。

铁损耗又称为不变损耗;铜损耗称为可变损耗。

2.变压器空载电流的有功分量很小,无功分量很大,因此空载的变压器,其功率因数很低,而且是感性的。

3.电压互感器在运行中,副方绕组不允许短路;而电流互感器在运行中,副方绕组不允许开路。

从安全的角度出发,二者在运行中,其铁心和副绕组都应可靠地接地。

4.变压器是能改变电压、电流和阻抗的静止的电气设备。

5.三相变压器的额定电压,无论原方或副方的均指其线电压;而原方和副方的额定电流均指其线电流。

6.变压器空载运行时,其空载电流是很小的,所以空载损耗近似等于铁损耗。

7.电源电压不变,当副边电流增大时,变压器铁心中的工作主磁通Φ将基本维持不变。

二、判断题1. 变压器的损耗越大,其效率就越低。

(对)2. 变压器从空载到满载,铁心中的工作主磁通和铁损耗基本不变。

(对)3. 变压器无论带何性质的负载,当负载电流增大时,输出电压必降低。

(错)4. 电流互感器运行中副边不允许开路,否则会感应出高电压而造成事故。

(错)5. 互感器既可用于交流电路又可用于直流电路。

(错)6. 变压器是依据电磁感应原理工作的。

(对)7. 电机、电器的铁心通常都是用软磁性材料制成。

(对)8. 自耦变压器由于原副边有电的联系,所以不能作为安全变压器使用。

(对)9. 变压器的原绕组就是高压绕组。

(错)三、选择题1. 变压器若带感性负载,从轻载到满载,其输出电压将会( B )A、升高;B、降低;C、不变。

2. 变压器从空载到满载,铁心中的工作主磁通将( C )A、增大;B、减小;C、基本不变。

3. 电压互感器实际上是降压变压器,其原、副方匝数及导线截面情况是(A )A、原方匝数多,导线截面小;B、副方匝数多,导线截面小。

4. 自耦变压器不能作为安全电源变压器的原因是( B )A、公共部分电流太小;B、原副边有电的联系;C、原副边有磁的联系。

磁路与变压器资料课件

磁路与变压器资料课件
变压器工作原理
变压器是利用电磁感应原理实现电压、电流和阻抗变 换的电气设备。当交流电压施加在变压器的一次绕组 时,产生交变磁通,该磁通穿过二次绕组,产生感应 电动势。根据电磁感应定律,感应电动势的大小与磁 通的变化率成正比。由于一次绕组和二次绕组匝数不 同,因此一次绕组和二次绕组上的感应电动势也不同 ,从而实现电压的变换。
02
磁路设计要考虑材料的 成本和可获得性,以及 材料的物理和机械性能 。
03
磁路设计要尽可能减小 磁滞、涡流和磁饱和等 效应,以提高变压器的 效率。
04
磁路设计要考虑散热问 题,以保证变压器在正 常工作温度下运行。
04
变压器性能分析
变压器效率与损耗
变压器效率
变压器效率是指在正常工作条件下,其输出功率与输入功率的比值,是衡量变压 器性能的重要指标。
磁感应
描述磁场对通电导体作用的物理量, 其大小与导体在磁场中的长度、电流 大小及磁场强度有关。
磁通
穿过某一面积的磁力线总数,反映了 磁场在某一区域的强弱。
磁导率与磁阻
磁导率
描述材料导磁性能的物理量,其值越大表示导磁性能越好。
磁阻
反映磁场传播速度的物理量,与磁导率成反比关系。
02
变压器原理
变压器工作原理
感谢观看
变压器损耗
变压器在运行过程中会产生铁损和铜损,铁损主要是由于磁滞和涡流现象引起的 ,而铜损则是由电流通过绕组时产生的电阻损耗。
变压器绝缘与散热
变压器绝缘
变压器绝缘是保证变压器正常运行的重要条件,主要分为内 绝缘和外绝缘,内绝缘是变压器油、纸、纸板等绝缘材料, 外绝缘则是变压器外部的绝缘套管和绝缘子等。
变压器设计制造中的挑战与解决方案

《磁路及变压器》课件

《磁路及变压器》课件

理想变压器模型及其特性
理想变压器模型是一个简化的模型,用于分析和设计变压器。我们将探讨理 想变压器的特性,如变比、电流关系和功率传输等。

实际变压器模型及其等效电路
实际的变压器模型包括电阻、漏感和互感等效电路。我们将研究这些电路以 了解实际变压器的行为和性能。
变压器的应用和维护
变压器在电力系统、电子设备和工业应用中有广泛的应用。我们将探索变压器的各种应用领域,并讨论变压器 的维护方法和技巧。
磁通量和磁势
磁通量是磁场穿过一个闭合曲面的总磁场量度。磁势是磁场在磁路中的分布 情况,它类似于电势在电路中的作用。
磁阻和磁导率
磁阻是磁场通过磁路时遇到的阻碍。它取决于磁性材料的物性和磁路的几何 形状。磁导率是磁性材料对磁通量的响应能力。
变压器的基本原理和结构
变压器是电磁感应的重要应用之一。它通过互感作用将交流电能从一个线圈 传输到另一个线圈。了解其基本原理和结构对于电力传输和电子设备至关重 要。
磁路及变压器
欢迎来到《磁路及变压器》的PPT课件。通过本课件,我们将探索磁路的基本 概念,磁通量和磁势,磁阻和磁导率,变压器的原理和结构,理想变压器模 型和特性,实际变压器模型和等效电路,以及变压器的应用和维护。
磁路的基本概念
了解磁路的基础概念是理解磁力和电磁感应的关键。磁路是指导磁场的路径, 由磁性材料组成。它可以通过磁通量和磁势来描述。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档