2015-2016学年江苏省镇江市七年级(上)期末数学试卷

合集下载

2015-2016年七年级上数学第一章《有理数》单元测试卷(一)

2015-2016年七年级上数学第一章《有理数》单元测试卷(一)

2015-2016年七年级上数学第一章《有理数》单元测试卷(一)长底民中2015-2016学年《有理数》单元测试卷时间:120分 满分:120分班级_______姓名____________分数____________一、选择题(30分)1. 随着时间的变迁,罗平的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是—5℃,那么三溪今年气候的最大温差是( )℃ A.44 B.34 C.—44 D.—342. .│-3│的相反数是( )A 、3B 、-3C 、31D 、-313. 下列说法不正确...的是( ) A .0既不是正数,也不是负数 B .0的绝对值是0 C .一个有理数不是整数就是分数 D .1是绝对值最小的数 4. 在数-21, 0 , 4.5, |-9|, -6.79中,属于正数..的有( )个 A .2 B .3 C .4 D .5 5. 一个数的相反数是3,那么这个数是( ) A .3 B .-3 C .13 D .1-36. │a │= -a ,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 7. 近似数2.7×310是精确到( ) A.十分位 B.个位 C.百位 D.千位8. 把数轴上表示数2的点移动3个单位后,表示的数为( ) A .5 B .1 C .5或1 D .5或-1 9. 大于-2.2的最小整数是( )A .-2B .-3C .-1D .0 10. 若x =4,且X+Y=0,那么Y 的值是( )A. 4B. -4C. ±4D. 无法确定 二、填空题(本题共30分)11.若上升15米记作+15米,则-8米表示 。

12.平方等于本身的数是 。

13.计算:=+⨯-5.24__________。

14.绝对值等于2的数是15.绝对值大于1而不大于3的整数是 。

16.最小的正整数是_____;最大的负整数是_____。

2015-2016学年度第一学期期末测试(数学)

2015-2016学年度第一学期期末测试(数学)

2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

2018-2019学年江苏省镇江市七年级(下)期末数学试卷+解析

2018-2019学年江苏省镇江市七年级(下)期末数学试卷+解析

,并把解集在数轴上表示出来.
21.(8 分)如图,在1010 的正方形网格中,每个小正方形的边长为 1 个单位长度.ABC
的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得
到△ ABC ,点 C 的对应点是直线上的格点 C .
(1)画出△ ABC .
(2)若连接 AA 、 BB ,则这两条线段之间的关系是 .
过 1000 元时,超出的部分需支付 0.1% 的手续费,以后每次提现支付的手续费均为提现金额
的 0.1% , (1)小明用自己的微信账户第一次提现金额为 1500 元,需支付手续费
元.
(2)小丽使用微信至今,用自己的微信账户共提现三次,提现金额和手续费如下:
第一次
第二次
第三次
提现金额
a
b
2a 3b
②如图 2, NAM PBP 180 ,即12t 180 4(12 t) 180 ,解得 t 19.5 ;
综上所述,满足条件的 t 的值为 6 或 19.5.
故答案为:6 秒或 19.5 秒.
二、选择题(本大题共有 5 小题,每小题 3 分,共 15 分.在每小题所给出的四个选项中,恰
有一项符合题目要求,)
第 4 页(共 17 页)
N ①此时 的范围是 ; ② 1 与 2 度数的和是否变化?若不变,求出 1 与 2 度数和;若变化,请说明理由; ③若使得 2 21,求 的范围.
第 5 页(共 17 页)
2018-2019 学年江苏省镇江市七年级(下)期末数学试卷
参考答案与试题解析
一、填空题(本大题共有 12 小题,每小题 2 分,共 24 分) 1.(2 分)红细胞的直径约为 0.0000077m ,0.0000077 用科学记数法表示为 7.7 106 . 【解答】解: 0.0000077 7.7 10 6 , 故答案为: 7.7 106 . 2.(2 分)计算: 3x 2xy 6x2 y . 【解答】解: 3x 2xy 3 2 (x x) y 6x2 y .

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.912.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1113.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形4.下列四个选项中,不是正方体展开图形的是()A.B.C.D .5.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620156. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -8.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )A .2B .4C .6D .810.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9411.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度 C .8度 D .9度 12.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 13.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°14.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或315.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A.8-或2-B.8±或2±C.8-或2 D.8或216.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 17.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=( )A.9 B.11 C.13 D.1518.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( ) A.1985 B.-1985 C.2019 D.-201919.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .20.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7- 24.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -25.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量26.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条27.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.3.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.4.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=1111111 12233420152016 -+-+-++-=1 12016 -=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.6.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.10.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.11.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.12.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.13.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.15.A解析:A【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.18.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.19.D解析:D【解析】【分析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交与点M ,N ,则沿AM-MN-NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D .本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.解析:B 【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.25.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.26.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.27.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.。

江苏省常州市度七年级数学上学期期末考试试题(含解析) 苏科版-苏科版初中七年级全册数学试题

江苏省常州市度七年级数学上学期期末考试试题(含解析) 苏科版-苏科版初中七年级全册数学试题

某某省某某市2015-2016学年度七年级数学上学期期末考试试题一、填空题:每小题2分,共20分.1.﹣3的绝对值是.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是℃.3.已知∠A=50°,则∠A的补角是度.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字的小等边三角形重合.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b=.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣612.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|18.先化简,再求值:,其中x=2,y=.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有个正方体恰有两个面是红色,有个正方体恰有三个面是红色.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EHCH.(填<、>或=)23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=°.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:.某某省某某市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、填空题:每小题2分,共20分.1.﹣3的绝对值是 3 ﹣.【考点】倒数;绝对值.【分析】求一个数的倒数,即用1除以这个数.【解答】解:﹣3的绝对值是3,﹣1.5的倒数是﹣,故答案为:3;﹣【点评】本题主要考查绝对值,倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是21 ℃.【考点】有理数的减法.【专题】应用题.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为15﹣(﹣6)=21℃.故答案为:21【点评】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.3.已知∠A=50°,则∠A的补角是130 度.【考点】余角和补角.【专题】计算题.【分析】根据补角定义计算.【解答】解:∠A的补角是:180°﹣∠A=180°﹣50°=130°.【点评】熟知补角定义即可解答.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为 2 .【考点】同类项.【分析】根据同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:与单项式﹣5x m y3是同类项,得m=2,n﹣1=3.解得n=4.m﹣n=4﹣2=2,故答案为:2.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为10 .【考点】两点间的距离.【分析】根据线段中点的性质进行计算即可.【解答】解:∵C是线段AB的中点,线段BC=5,∴AB=2BC=10.故答案为:10.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义和性质是解题的关键.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7 的小等边三角形重合.【考点】旋转的性质.【分析】利用等边三角形的性质结合旋转角直接得出答案.【解答】解:由题意可得:标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7的小等边三角形重合.故答案为:7.【点评】此题主要考查了旋转的性质,正确利用等边三角形的性质得出答案是解题关键.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b= 3 .【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据已知的新定义得:a*b=a﹣b﹣2,当a=2,b=﹣3时,原式=2+3﹣2=3,故答案为:3【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1,而其中某三个相邻数的和是5103,设第一个的数为x,由此即可得到关于x的方程,解方程即可求解.【解答】解:设第一个的数为x,依题意得x﹣3x+9x=5103,∴x=729,∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律,解题的关键是首先认真观察所给数字,然后找出隐含的规律即可解决问题.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.【考点】直线、射线、线段.【专题】规律型.【分析】根据直线两两相交且不交于同一点,可得答案.【解答】解:平面内有n个点,过其中两点画直线,最多画条.故答案为:.【点评】本题考查了直线,直线两两相交且不交于同一点,每条直线都有(n﹣1)个交点,n条直线有n(n﹣1)个交点,每个交点都重复了一次,交点的总个数除以2.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣6【考点】有理数的乘方.【分析】根据有理数的乘方计算解答即可.【解答】解:A、(﹣2)2=4,错误;B、(﹣3)2=9,错误;C、(﹣3)2=9,正确;D、(﹣3)2=9,错误;故选C.【点评】此题考查有理数的乘方问题,关键是根据有理数的乘方法则计算.12.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.【考点】方程的解.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选B【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个【考点】绝对值;相反数.【分析】分别根据相反数、绝对值的概念分别判断即可.【解答】解:①任何数的绝对值都是非负数,所以绝对值最小是0,所以①正确;②绝对值等于它本身的数还有0,所以②不正确;③数轴上原点两侧的数,只有到原点的距离相等的数才互为相反数,所以③不正确;④两个负数比较时,绝对值大的反而小,所以④不正确;所以正确的只有一个,故选:A.【点评】本题主要考查绝对值的有关概念,解题时注意0的特殊性.14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:“创”与“城”是相对面,“建”与“明”是相对面,“文”与“市”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,掌握正方体的相对的面之间一定相隔一个正方形是解题的关键.15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把x=﹣2015代入原式,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:当x=﹣2015时,原式=|(﹣2015)2﹣2014×2015+1|+|(﹣2015)2﹣2015×2016﹣1|=20152﹣2014×2015+1﹣20152+2015×2016+1=2015×+2=4030+2=4032.故选C【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣5+4+3=﹣5+7=2;(2)原式=﹣4×7+﹣5=﹣28+﹣5=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中x=2,y=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=2,y=时,原式=﹣6+=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2y+12=4﹣4y+2,移项合并得:6y=﹣6,解得:y=﹣1;(2)去分母得:2(x+1)﹣3(2﹣3x)=12,去括号得:2x+2﹣6+9x=12,移项合并得:11x=16,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有 1 个正方体恰有两个面是红色,有 2 个正方体恰有三个面是红色.【考点】作图-三视图.【分析】(1)由已知条件可知,俯视图有2列,每列小正方形数目分别为3,2;左视图有3列,每列小正方形数目分别为3,2,1.据此可画出图形;(2)有2个面是黄色的应该是第一列正方体中最底层中间那个;有3个面是黄色的应是第一列最底层最后面那个和第一列第二层最后面的那个,依此即可求解.【解答】解:(1)如图所示:(2)由分析可知:如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有1个正方体恰有两个面是红色,有2个正方体恰有三个面是红色.故答案为:1,2.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EH >CH.(填<、>或=)【考点】作图—复杂作图.【分析】(1)利用直角三角板,一条边与BO重合,沿OB所在直线平移,使另一条直角边过C,再画直线即可;(2)根据过直线外一点做已知直线平行线的方法过点C画OB的平行线即可;(3)利用直角三角板,一条边与AO重合,沿OA所在直线平移,使另一条直角边过E,再画直线即可;根据垂线段最短可得EH>CH.【解答】解:(1)(2)如图所示:;(3)如图所示:EH>CH.【点评】此题主要考查了复杂作图,以及垂线段的性质,关键是掌握过直线外一点作已知直线平行线和垂线的方法.23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?【考点】一元一次方程的应用.【分析】分别表示出140元时的利润以及降价后的利润,再利用销量得出利润,进而得出等式求出答案.【解答】解:设剩下的衬衫促销价格定为每件x元时,销售完这批衬衫恰好盈利10800元,根据题意可得:(140﹣120)×500+(x﹣120)×100=10800,解得:x=128.答:剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.【点评】此题主要考查了一元一次方程的应用,根据题意分别表示出降价前后的利润是解题关键.24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角的性质和角平分线的定义求出∠BOE,根据图形求出∠BOF的度数,计算即可.【解答】解:∠BOD=∠AOC=74°,∵OE平分∠BOD,∴∠BOE=∠BOD=37°,∠BOF=∠DOF﹣∠BOD=16°,∴∠EOF=∠BOE+∠BOF=53°.【点评】本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=40 °.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:∠BOD+2∠COE=360°.【考点】角的计算;角平分线的定义;余角和补角;角的大小比较.【专题】推理填空题;开放型;线段、角、相交线与平行线.【分析】(1)由互余得∠DOE度数,进而由角平分线得到∠AOE度数,根据∠AOC=∠AOE﹣∠COE、∠BOD=180°﹣∠AOC﹣∠COD可得∠BOD度数;(2)由互余及角平分线得∠DOE=90°﹣∠COE=∠AOE,∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(3)由互余得∠DOE=90°﹣∠COE,由角平分线得∠AOD=2∠DOE=180°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(4)由互余得∠DOE=∠COE﹣90°,由角平分线得∠AOD=2∠DOE=2∠COE﹣180°,最后根据∠BOD=180°﹣∠AOD可得;【解答】解:(1)∠EOD=∠COD﹣∠COE=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=2×70°=140°,∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.(2)∠BOD=2∠COE.理由如下:∵∠COD=90°,∴∠DOE=90°﹣∠COE,∵OE平分∠AOD,∴∠AOE=∠DOE=90°﹣∠COE,∴∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,∵A、O、B在同一直线上,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣(90°﹣2∠COE)=2∠COE,即:∠BOD=2∠COE.(3)∠BOD=2∠COE,理由如下;∵OE平分∠AOD,∴∠AOD=2∠EOD,∵∠BOD+∠AOD=180°,∴∠BOD+2∠EOD=180°.∵∠COD=90°,∴∠COE+∠EOD=90°,∴2∠COE+2∠EOD=180°,∴∠BOD=2∠COE;(4)∵∠COD=90°,∴∠DOE=∠COE﹣90°,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2∠COE﹣180°,∴∠BOD=180°﹣∠AOD=180°﹣2∠COE+180°=360°﹣2∠COE,即:∠BOD+2∠COE=180°.故答案为:(1)40°,(4)∠BOD+2∠COE=360°.【点评】本题主要考查利用互余、互补及角平分线进行角的计算,求∠BOD时可逆向推理得到与∠COE 间关系,灵活运用以上三点是关键.。

苏科版七年级上学期第一次月考数学试卷

苏科版七年级上学期第一次月考数学试卷

2015-2016学年江苏省镇江市丹阳市里庄初级中学七年级(上)第一次月考数学试卷一、精心选一选(每小题3分,共30分)1.下列结论中正确的是( )A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c﹣d的值为( ) A.1 B.3 C.1或3 D.2或﹣13.已知数轴上三点A、B、C分别表示有理数a、1、﹣1,那么|a+1|表示( )A.A与B两点的距离B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和4.若|﹣a|+a=0,则( )A.a>0 B.a≤0 C.a<0 D.a≥05.甲、乙两人的住处与学校同在一条街道上,甲住处在离学校8千米的地方,乙住处在离学校5千米的地方,则甲、乙两人的住处相距( )A.只能是13千米B.只能是3千米C.既可能是13千米,也可能是3千米D.在5千米与13千米之间6.下列叙述正确的是( )A.若|a|=|b|,则a=b B.若|a|>|b|,则a>b C.若a<b,则|a|<|b| D.若|a|=|b|,则a=±b7.下列各组数中,互为相反数的是( )A.﹣(+7)与+(﹣7)B.﹣(﹣7)与7C.﹣|﹣1|与﹣(﹣)D.﹣(﹣)与+|﹣0.01|8.下列说法正确的是( )A.无限小数是无理数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数9.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边 B.点A与点B之间C.点B与点C之间D.点C的右边10.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为.现已知,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014的值为( )A.B.C.D.4二、用心填一填(每小题2分,共20分)11.填空:在﹣,1,0,8.9,﹣6,11、,﹣3.2,+108,28,﹣9这些有理数中,非正数有__________,整数有__________.12.﹣1的倒数的相反数是__________.13.在数轴上到﹣4所表示的点的距离为3个单位长度的点表示的数是__________.14.﹣9,6,﹣3三个数的和比它们绝对值的和小__________.15.把(+1)﹣(﹣2)+(﹣)﹣(+)+(+1)写成省略加号和的形式为__________.16.有理数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系__________.17.比较大小:﹣__________﹣18.化简:=__________,﹣(﹣3)=__________.19.在数轴上,一个点从1开始,往右运动4个单位,再往左运动7个单位,这时表示的数是__________.20.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:__________×__________+__________=502.三、细心做一做(共50分)21.在数轴上表示下列各数并用“<”连接:2,﹣1,0,﹣,3.5,﹣5.22.(25分)计算(1)12﹣(﹣18)+(﹣7)﹣15(2)|﹣45|+(﹣71)+|﹣5|+(﹣9)(3)﹣20﹣(+14)+(﹣18)﹣(﹣13);(4)﹣2+3+(﹣2(5)﹣4﹣28﹣(﹣29)+(﹣24)23.若|x﹣1|+|y+2|=0,求x+y的值.24.兴华粮食中转站仓库在9月1日至9月10日的时间内运进、运出粮食情况如下(运进记作“+”,运出记作“﹣”):+1 050吨,﹣500吨,+2 300吨,﹣80吨,﹣150吨,﹣320吨,+600吨,﹣360吨,+500吨,﹣210吨,在9月1日前仓库内没有粮食.(1)求9月3日仓库内共有粮食多少吨.(2)求哪一天仓库内的粮食最多,最多是多少.(3)若每吨粮食的运费(包括运进、运出)10元,从9月1日到9月10日仓库共需付运费多少元.25.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=__________.(2)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是__________.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.2015-2016学年江苏省镇江市丹阳市里庄初级中学七年级(上)第一次月考数学试卷一、精心选一选(每小题3分,共30分)1.下列结论中正确的是( )A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数【考点】正数和负数.【专题】常规题型.【分析】根据实数分为正数,负数和零,即可得出答案.【解答】解:根据0既不是正数,也不是负数,可以判断A、B、C都错误,D正确.故选D.【点评】本题考查了正数和负数的知识,属于基础题,注意基础概念的熟练掌握.2.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c﹣d的值为( ) A.1 B.3 C.1或3 D.2或﹣1【考点】倒数;有理数;绝对值.【专题】计算题.【分析】根据最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1,分别求出a,b,c及d的值,由d的值有两解,故分两种情况代入所求式子,即可求出值.【解答】解:∵设a为最小的正整数,∴a=1;∵b是最大的负整数,∴b=﹣1;∵c是绝对值最小的数,∴c=0;∵d是倒数等于自身的有理数,∴d=±1.∴当d=1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣1=1+1﹣1=1;当d=﹣1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣(﹣1)=1+1+1=3,则a﹣b+c﹣d的值1或3.故选C.【点评】此题的关键是弄清:最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1.这些知识是初中数学的基础,同时也是中考常考的内容.3.已知数轴上三点A、B、C分别表示有理数a、1、﹣1,那么|a+1|表示( )A.A与B两点的距离B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和【考点】数轴;绝对值.【分析】此题可借助数轴用数形结合的方法求解、分析.【解答】解:|a+1|=|a﹣(﹣1)|即:该绝对值表示A点与C点之间的距离;所以答案选B.【点评】此题综合考查了数轴、绝对值的有关内容.4.若|﹣a|+a=0,则( )A.a>0 B.a≤0 C.a<0 D.a≥0【考点】绝对值.【分析】根据互为相反数的和为0,可得a与|a|的关系,根据负数的绝对值是它的相反数,可得绝对值表示的数.【解答】解:|﹣a|+a=0,∴|a|=﹣a≥0,a≤0,故选:B.【点评】本题考查了绝对值,先求出绝对值,再求出a的值,注意﹣a不一定是负数.5.甲、乙两人的住处与学校同在一条街道上,甲住处在离学校8千米的地方,乙住处在离学校5千米的地方,则甲、乙两人的住处相距( )A.只能是13千米B.只能是3千米C.既可能是13千米,也可能是3千米D.在5千米与13千米之间【考点】数轴.【分析】分甲乙位于学校的两侧和位于学校的同侧时两种情况,甲、乙两人的住处的距离即可求解.【解答】解:当甲乙位于学校的两侧时,甲、乙两人的住处的距离是:8+5=13千米;当甲乙位于学校的同一侧时,甲、乙两人的住处的距离是:8﹣5=3千米.故选C.【点评】本题考查了有理数的计算,正确理解分两种情况进行讨论是关键.6.下列叙述正确的是( )A.若|a|=|b|,则a=b B.若|a|>|b|,则a>b C.若a<b,则|a|<|b| D.若|a|=|b|,则a=±b 【考点】不等式的性质;绝对值.【专题】常规题型.【分析】根据负数的绝对值为正数,可分别举反例判断各选项.【解答】解:A、令a=1,b=﹣1,此时|a|=|b|,而a≠b,故本选项错误;B、令a=﹣2,b=1,此时|a|>|b|,而a<b,故本选项错误;C、令a=﹣2,b=1,此时a<b,而|a|>|b|,故本选项错误;D、若|a|=|b|,则a=±b,故本选项正确.故选D.【点评】此题考查了不等式的性质及绝对值的知识,关键是掌握负数的绝对值为正数,解答本题利用举反例的解法就会很简单、明了.7.下列各组数中,互为相反数的是( )A.﹣(+7)与+(﹣7)B.﹣(﹣7)与7C.﹣|﹣1|与﹣(﹣)D.﹣(﹣)与+|﹣0.01|【考点】相反数.【分析】根据相反数的定义和绝对值的性质对各选项化简,然后进行判断即可.【解答】解:A、﹣(+7)=﹣7,+(﹣7)=﹣7,不是互为相反数,故本选项错误;B、﹣(﹣7)=7,与7相等,不是互为相反数,故本选项错误;C、﹣|﹣1|=﹣,﹣(﹣)=,是互为相反数,故本选项正确;D、﹣(﹣)=,+|﹣0.01|=0.01,相等,不是互为相反数,故本选项错误.故选C.【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念与性质是解题的关键.8.下列说法正确的是( )A.无限小数是无理数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数【考点】实数.【分析】直接利用实数的有关定义分析判断即可.【解答】解:A、无限小数是不一定是无理数,此选项错误;B、零是整数,但不是正数,也不是负数,正确;C、分数包括正分数、负分数,故此选项错误;D、有理数包括正数、负数、0,故此选项错误;故选:B.【点评】此题主要考查了实数的有关定义,正确区分相关定义是解题关键.9.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边 B.点A与点B之间C.点B与点C之间D.点C的右边【考点】实数与数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小,又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选C .【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.10.若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为.现已知,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2014的值为( )A .B .C .D .4【考点】规律型:数字的变化类;倒数.【分析】根据差倒数的定义分别计算出x 1=﹣,x 2==,x 3==4,x 4=﹣=﹣,…则得到从x 1开始每3个值就循环,而2014=3×671+1,所以x 2014=x 1=﹣.【解答】解:x 1=﹣,x 2==,x 3==4, x 4=﹣=﹣,… 2014=3×671+1,所以x 2014=x 1=﹣.故选:A .【点评】此题考查了数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、用心填一填(每小题2分,共20分)11.填空:在﹣,1,0,8.9,﹣6,11、,﹣3.2,+108,28,﹣9这些有理数中,非正数有﹣,0,﹣6,﹣3.2,﹣9,整数有1,0,﹣6,11,+108,28,﹣9.【考点】有理数.【分析】由题意可知:非正数有就是去掉正数所有的数,整数包括正整数、0和负整数,由此选择填空即可.【解答】解:在﹣,1,0,8.9,﹣6,11、,﹣3.2,+108,28,﹣9这些有理数中,非正数有﹣,0,﹣6,﹣3.2,﹣9;整数有1,0,﹣6,11,+108,28,﹣9.故答案为:﹣,0,﹣6,﹣3.2,﹣9;1,0,﹣6,11,+108,28,﹣9.【点评】此题考查有理数的意义与分类,掌握分类的标准是解决问题的关键.12.﹣1的倒数的相反数是.【考点】倒数;相反数.【分析】根据倒数及相反数的定义,求解即可.【解答】解:﹣1=﹣,﹣的倒数是﹣,﹣的相反数是.故答案为:.【点评】本题考查了倒数及相反数的知识,掌握倒数及相反数的定义是关键.13.在数轴上到﹣4所表示的点的距离为3个单位长度的点表示的数是﹣1或﹣7.【考点】数轴.【分析】注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:根据绝对值的意义得:在数轴上到﹣4所表示的点的距离为3个单位长度的点表示的数是﹣4+3=﹣1或﹣4﹣3=﹣7.故答案为:﹣1或﹣7.【点评】此题主要考查了数轴的意义,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的思想.14.﹣9,6,﹣3三个数的和比它们绝对值的和小24.【考点】绝对值;有理数的加减混合运算.【分析】根据绝对值的性质及其定义即可求解.【解答】解:(9+6+3)﹣(﹣9+6﹣3)=24.答:﹣9,6,﹣3三个数的和比它们绝对值的和小24.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,同时考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.把(+1)﹣(﹣2)+(﹣)﹣(+)+(+1)写成省略加号和的形式为+2﹣﹣+1.【考点】有理数的加减混合运算.【分析】原式利用减法法则变形即可.【解答】解:原式=+2﹣﹣+1.故答案为:+2﹣﹣+1.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.16.有理数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系a<1<﹣a.【考点】有理数大小比较;数轴.【分析】根据数轴上各点的位置进行解答即可.【解答】解:∵a在原点的左侧,∴a<0,∵a到原点的距离大于1到原点的距离,∴|a|>1,即﹣a>1,∴a<1<﹣a.故答案为:a<1<﹣a.【点评】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.17.比较大小:﹣>﹣【考点】有理数大小比较.【专题】计算题.【分析】负有理数:绝对值大的反而小,据此即可比较大小.【解答】解:∵|﹣|=,|﹣|=,∴<,∴﹣>﹣.【点评】本题考查了有理数比较大小的方法.法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.化简:=﹣,﹣(﹣3)=3.【考点】绝对值;相反数.【专题】计算题.【分析】根据相反数以及绝对值的性质即可求解.【解答】解:=﹣,﹣(﹣3)=3.故答案是﹣和3.【点评】本题主要考查了绝对值与相反数的性质,正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0.19.在数轴上,一个点从1开始,往右运动4个单位,再往左运动7个单位,这时表示的数是﹣2.【考点】数轴.【分析】根据数轴上原点右边的数大于0,左边的数小于0进行解答.【解答】解:∵原点右边的数大于0,∴一个点从数轴上的1开始,先向右移动4个单位长度表示的数是5,∵原点左边的数小于0,∴再向左移动7个单位长度,这时它表示的数是5﹣7=﹣2.故答案为:﹣2.【点评】本题考查的是数轴的特点,即数轴上原点右边的数大于0,左边的数小于0.20.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:48×52+4=502.【考点】规律型:数字的变化类.【分析】根据数字变化规律得出第n个算式为;n(n+4)+4=(n+2)2,进而得出答案.【解答】解:∵1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,∴第n个算式为;n(n+4)+4=(n+2)2,∴48×52+4=502.故答案为:48×52+4.【点评】此题主要考查了数字变化规律,根据数字变化得出数字规律是解题关键.三、细心做一做(共50分)21.在数轴上表示下列各数并用“<”连接:2,﹣1,0,﹣,3.5,﹣5.【考点】有理数大小比较;数轴.【分析】在数轴上表示出各数,再从左到右用“<”连接起来即可.【解答】解:如图所示,,由图可知,﹣5<﹣<﹣1<0<2<3.5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.22.(25分)计算(1)12﹣(﹣18)+(﹣7)﹣15(2)|﹣45|+(﹣71)+|﹣5|+(﹣9)(3)﹣20﹣(+14)+(﹣18)﹣(﹣13);(4)﹣2+3+(﹣2(5)﹣4﹣28﹣(﹣29)+(﹣24)【考点】有理数的加减混合运算.【分析】(1)首先写成省略括号的行驶,然后再正数和负数分别相加即可;(2)首先计算绝对值,然后再正数和负数分别相加即可;(3)首先写成省略括号的行驶,然后再正数和负数分别相加即可;(4)首先写成省略括号的行驶,然后再利用凑整原则进行计算即可;(5)首先写成省略括号的行驶,然后再正数和负数分别相加即可.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=45﹣71+5﹣9=45+5﹣71﹣9=﹣30;(3)原式=﹣20﹣14﹣18+13=﹣52+13=﹣39;(4)原式=﹣2++3﹣2=﹣2﹣2++3=﹣5+3=﹣1.5;(5)原式=﹣4﹣28+29﹣24=﹣4﹣28﹣24+29=﹣56+29=﹣27.【点评】此题主要考查了有理数的加减运算,关键是掌握计算方法:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.23.若|x﹣1|+|y+2|=0,求x+y的值.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值,再代入原式中即可.【解答】解:由题意,得:x﹣1=0,y+2=0,∴x=1,y=﹣2.则x+y=1﹣2=﹣1.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.24.兴华粮食中转站仓库在9月1日至9月10日的时间内运进、运出粮食情况如下(运进记作“+”,运出记作“﹣”):+1 050吨,﹣500吨,+2 300吨,﹣80吨,﹣150吨,﹣320吨,+600吨,﹣360吨,+500吨,﹣210吨,在9月1日前仓库内没有粮食.(1)求9月3日仓库内共有粮食多少吨.(2)求哪一天仓库内的粮食最多,最多是多少.(3)若每吨粮食的运费(包括运进、运出)10元,从9月1日到9月10日仓库共需付运费多少元.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)将记录的数字相加即可得到结果;(2)求出1日到9日的粮食数,得出仓库内的粮食最多的天数,求出最多的数量即可;(3)求出记录数字的绝对值之和,乘以10即可得到结果.【解答】解:(1)1050﹣500+2300=2850(吨),答:9月3日仓库内共有粮食2850吨;(2)9月9日仓库内的粮食最多,最多是2850﹣80﹣150﹣320+600﹣360+500=3040(吨),答:9月9日仓库内的粮食最多,最多是3040吨;(3)运进1050+2300+600+500=4450(吨),运出|﹣500﹣80﹣150﹣320﹣210|=1 620(吨),10×(4450+1620)=10×6070=60700(元),答:从9月1日到9月10日仓库共需付运费60700元.【点评】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.25.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.(2)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【考点】绝对值;数轴.【分析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2 当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.【点评】此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2.16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.332 12=16≠13,所以x不能取4;当x=6时,摸出的两个小球上数字之和为9的概率是13.(2)当x为4时,数字和为9的概率为。

七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案七年级上册数学期末考试试卷及答案期末考试对学生一个学期所学知识做全面的检测,下面是店铺为大家整理的七年级数学期末考试卷及答案,希望大家能够认真做题,查漏补缺!更多考试相关内容请及时关注我们店铺!一、选择题(共15小题,每小题3分,满分45分)1. |﹣2|等于( )A.﹣2B.﹣C.2D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=24.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与15.如图,下列图形全部属于柱体的是( )A. B. C. D.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损) 元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.2015-2016学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于( )A.﹣2B.﹣C.2D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是( )A. B. C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM= AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM 的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:= ﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣ xy2的系数是﹣,故答案为:﹣ .【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解:=6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= .熟记公式是解题的关键.20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15 cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD 的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD= ∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD= ∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG= ×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•xn.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•xn,故答案为:(﹣1)n+1•2n•xn.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的`值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x= ;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x= 或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数= ×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC= ∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴ ,,∴ .【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损) 80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.下载全文。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。

江苏省镇江市15—16学年上学期七年级期末考试数学试题(附答案)

江苏省镇江市15—16学年上学期七年级期末考试数学试题(附答案)

镇江市2015~2016学年度第一学期期末考试七年级数学试卷一、填空题(2分×14=28分)1. -2的相反数是________,倒数是________,2.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到 162 000 000,这个数用科学记数法表示为_________ _____.3.已知关于x 的方程02=+a x 的解是2=x ,则a 的值为__________.4.三个正整数的比是错误!未找到引用源。

,它们的和是错误!未找到引用源。

,那么这三个数中最大的数是_________5.已知∠1与∠2互余,∠2与∠3互补,∠1=65°,则∠3=____ ____6.如图,线段AB=8 cm ,点C 为线段AB 上一点,AC=3cm,点D 是线段BC 的中点,则线段BD 的长为____________cm.7.如图:︒=∠+∠︒=∠+∠90,90B BCD B A ,可得BCD A ∠=∠. 理由是______ __ _____8.直线AB 上一点,OM 平分∠AOC ,ON 平分∠BOC ,∠BON=28°,则∠BOC=__ ____°,∠BOM=___ ___°,图中互补的角有___ ____对。

9.一项工程,甲单独做需10小时完成,乙单独做需12小时完成;现在两人合作3小时后,由乙独做,若设乙队再用x 小时完成,则可列方程________________________.10.若32-=+mn m ,1232-=-mn n ,则224m mn n +-的值为____ ___.11.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3h ,已知船在静水中的速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km,则A 、B 两地间的距离是___ ______km.二、选择题(3分×6=18分) 12.下列各数中:()5-+、21--、2π-、()7--、0、()32015-负数有--( )第8第7题第6题A°︶ ︵A .2个 B.3个 C.4个 D.5个13. 下面的图形是天气预报中的图标,其中沿某直线翻折,折痕两旁的图形能重合的是----------------------------------------------------------------------------------------------------( )A .B .C .D . 14.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是--------( ) A . 85° B .105° C .125° D .160°15.如图中的立方体展开后,应是图中的-----------( )A B C D16.画如图所示物体的俯视图,正确的是----------------------------------------------( )17. 某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为--------------------------------------------------------------------------------------( ) A . 880元 B . 800元 C . 720元 D . 1080三、解答题: 18.计算(4分×2=8分)(1)()()634282---⨯--÷ (2)()12654331-⨯⎪⎭⎫⎝⎛+-19.(8分): 已知y 、x 的值满足()22y 1x 2-++=0 ,化简并求值:C DB A 正面()()xy x x xy 41285222+---,20.解方程:(5分×2=10分)(1)x x -=-1)1(4 (2)21231-=+-y y y21.(8分)按下列要求画图,并解答问题:(1)取线段AB 的中点D ,过点D 作DE ⊥AB,交BC 于点E .(2)线段DE 与线段AC 有怎样的位置关系? (3)请在图中不添加字母的情况下,相等的线段有________________________, 相等的角有_________________________.22. (10分)某地区居民生活用电基本价格为每千瓦时0.50元,若每月用电量超过a 千瓦则超过部分按基本电价的80%收费.(1)某户八月份用电96千瓦时,共交电费46.4元,求a .(2)若该用户九月份的平均电费为0.48元,则九月份共用电多少千瓦?应交电费多少元?23.(10分)用正方形纸折叠:将正方形纸片的一角折叠,使点A 落在点A ′处,折痕为EF ,再把BE 折过去与EA ′重合,EH 为折痕.(1)AE=_________,BE=_________,∠FEH=________°;(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图2如图所示的正方形EFGH ,且不重合的部分也是一个正方形。

镇江市2017-2018学年七年级(上)期末数学试卷(解析版)

镇江市2017-2018学年七年级(上)期末数学试卷(解析版)

镇江市2017-2018学年七年级(上)期末数学试卷一、填空题(每小题2分,共24分)1.﹣3的相反数是.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为.3.方程2x+a=2的解是x=1,则a=.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是元.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=°.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:;(4)点C到直线AB的距离是线段的长度.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5超出80m3不超出130m3的部分a超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=°,∠DOE=°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=°,∠DOE=°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题2分,共24分)1.﹣3的相反数是3.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为9.47×108.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:947000 000=9.47×108.故答案为:9.47×108.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.方程2x+a=2的解是x=1,则a=0.【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:将x=1代入方程,得:2+a=2,解得:a=0,故答案为:0.【点评】本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是100元.【分析】设这件商品的标价是x元,根据标价﹣实际付款钱数=20,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的标价是x元,根据题意得:x﹣0.8x=20,解得:x=100.故答案为:100.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是36.【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【解答】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点评】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=150°.【分析】根据∠1和∠2互为余角,∠1=60°,求得∠2的度数,然后根据∠2与∠3互补,得出∠3=180°﹣∠2.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故答案为:150°.【点评】本题考查了余角和补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=95°.【分析】首先根据角平分线的定义求出∠COD的度数,进而求出∠BOD的度数.【解答】解:∵∠AOC=90°,∵OD平分∠AOC,∴∠COD=∠AOC=×90°=45°.∵∠BOC=50°∴∠BOD=∠COD+∠BOC=45°+50°=95°.故答案为95【点评】本题考查了角度的计算,正确理解角平分线的定义,求得∠COD是关键.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为3.【分析】根据数轴和题意可以求得EF的长,本题得以解决.【解答】解:∵C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,∴AE=EC=AC,CF=BF=CB,∵AC+CB=AB,∴EC+CF=AB=3,即EF=3,故答案为:3.【点评】本题考查两点间的距离,解答本题的关键是明确题意,利用数轴的知识解答.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为﹣1.【分析】根据一元一次方程定义可得:|k|=1,且k﹣1≠0,再解即可.【解答】解:由题意得:|k|=1,且k﹣1≠0,解得:k=﹣1,故答案为:﹣1.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为30°或70°.【分析】考虑两种情形:①当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,②当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°.【解答】解:如图.当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°,故答案为30°或70°.【点评】本题考查角的计算、解题的关键是学会正确画出图形,注意有两种情形,属于中考常考题型.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过旋转得到,故本选项错误;B、通过轴对称得到,故本选项错误;C、通过平移得到,故本选项正确;D、通过旋转得到,故本选项错误.故选:C.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx【分析】根据同类项是字母项相同且相同字母的指数也同,可得答案.【解答】解:A、相同字母的指数不同,故A错误;B、字母不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、字母项相同且相同字母的指数也同,故D正确;故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°【分析】根据题中的方位角,确定出所求角度数即可.【解答】解:根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点评】此题考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=9+2=11,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)【分析】(1)原式利用绝对值的代数意义,以及减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=+﹣3=2﹣3=﹣1;(2)原式=﹣4+3+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)【分析】(1)直接移项合并同类项进而解方程即可;(2)首先去分母,进而移项合并同类项得出答案.【解答】解:(1)5x﹣2=﹣3(x﹣2)去括号得:5x﹣2=3x﹣6,移项得:5x﹣3x=﹣6+2,合并同类项得:2x=﹣4,系数化为1得:x=﹣2;(2)1﹣=去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项得:﹣2x﹣4x=2﹣6﹣1,合并同类项得:﹣2x=﹣5,系数化为1得:x=2.5.【点评】此题主要考查了解一元一次方程,正确掌握基本解题步骤是解题关键.20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab,∵|a+1|+(2﹣b)2=0.∴a+1=0,2﹣b=0,即a=﹣1,b=2,当a=﹣1,b=2时,原式=(﹣1)2﹣8×(﹣1)×2=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加2个小正方体.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.【解答】解:(1)如图所示:(2)由俯视图易得最底层有4个小立方块,第二层最多有3个小立方块,所以最多有2个小立方块.故答案为:2.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,CE线段最短,理由:垂线段最短;(4)点C到直线AB的距离是线段的长度.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(3)根据三角形的面积的两种求法,构建方程即可解决问题;【解答】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;=•AB•CE,(4)∵S△ABC∴18﹣×1×5﹣×1×3﹣×2×6=×2×CE,∴CE=.,【点评】本题考查作图﹣应用与设计,垂线段最短、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.【分析】设送件的规定时间为x小时,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,再利用路程=速度×时间,即可求出快递员所要骑行的路程.【解答】解:设送件的规定时间为x小时,根据题意得:40(x ﹣)=30(x +),解得:x=,∴40×(﹣)=40(千米).答:快递员所要骑行的路程为40千米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.【分析】先根据AB=4cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC 中点求出MC及AM,再由BM=AM﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5a超出80m3不超出130m3的部分超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?【分析】(1)根据应缴费用=80×2.5+超出80m3部分×a,即可得出关于a的一元一次方程,解之即可得出结论;(2)设乙用户3月份的用气量是xm3,由80×2.5+(130﹣80)×3=350<392可得出x >130,根据应缴费用=80×2.5+(130﹣80)×3+超出130m3部分×(3+0.5),即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:80×2.5+(125﹣80)a=335,解得:a=3.答:a的值为3.(2)设乙用户3月份的用气量是xm3,根据题意得:80×2.5+(130﹣80)×3+(x﹣130)×(3+0.5)=392,解得:x=142.答:乙用户3月份的用气量是142m3.【点评】本题考查了一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=90°,∠DOE=45°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=(n﹣m)°,∠DOE=(n﹣m)°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.【分析】(1)依据AOC=20°,∠AOB=110°,可得∠BOC=110°﹣20°=90°;再根据OD、OE 分别平分∠AOB、∠AOC,即可得到∠DOE的度数;(2)依据∠AOC=m°,∠AOB=n°,可得∠BOC=n°﹣m°=(n﹣m)°;再根据OD、OE分别平分∠AOB、∠AOC,可得∠AOD=n°,∠AOE=m°,进而得出∠DOE的度数;(3)依据OD、OE分别平分∠AOB、∠AOC,即可得出∠AOD=∠AOB,∠AOE=∠AOC,进而得到∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【解答】解:(1)∵∠AOC=20°,∠AOB=110°,∴∠BOC=110°﹣20°=90°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=55°,∠AOE=10°,∴∠DOE=55°﹣10°=45°;故答案为:90,45;(2)∵∠AOC=m°,∠AOB=n°,∴∠BOC=n°﹣m°=(n﹣m)°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=n°,∠AOE=m°,∴∠DOE=∠AOD﹣∠AOE=(n﹣m)°;故答案为:(n﹣m),(n﹣m);(3)∠DOE=∠BOC.证明:∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=∠AOB,∠AOE=∠AOC,∴∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【点评】本题考查了角的平分线定义和角的有关计算的应用,主要考查学生计算能力和推理能力,求解过程类似.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【分析】(1)根据两点间的距离公式,以及路程=速度×时间即可求解;(2)①根据时间=路程差÷速度差,列出算式计算即可求解;②分两种情况:相遇前相距4个单位长度;相遇后相距4个单位长度;进行讨论可求点P表示的数;(3)表示出2QR+3OP﹣mOR,求得m值以及2QR+3OP﹣mOR的定值.【解答】解:(1)数轴上点B表示的数为10﹣18=﹣8,点P表示的数为10﹣5t;(2)①18÷(5﹣3)=9(秒).故点P运动9秒时追上点Q;②相遇前相距4个单位长度,(18﹣4)÷(5﹣3)=7(秒),10﹣7×5=﹣25,则点P表示的数为﹣25;相遇后相距4个单位长度,(18+4)÷(5﹣3)=11(秒),10﹣11×5=﹣45,则点P表示的数为﹣45;(3)设t秒后2QR+3OP﹣mOR为定值,由题意得,2QR+3OP﹣mOR=2×[7t﹣(3t﹣8)]+3(10+5t)﹣7mt=(23﹣7m)t+46,∴当m=时,2QR+3OP﹣mOR为定值46.【点评】本题考查的是一元一次方程的应用、数轴的应用,根据题意正确列出一元一次方程、灵活运用分情况讨论思想是解题的关键.。

2015-2016学年七年级上第一次月考数学试题

2015-2016学年七年级上第一次月考数学试题

学校 班级 姓名 学号_________密 封 线 内 不 要 答 卷……………………………………………………装………………订…………………线…………………………………………………………2015~2016学年度第一学期第一次月度联考七 年 级 数 学 试 题(考试时间:120分钟,满分:150分) 成绩一、选择题(每题3分,共18分)(将正确答案填入下列表格中............) 题号 1 2 3 4 5 6 答案1.41-的相反数是( ) A.-4B.4C.41-D.41 2.计算2008)1(- 的结果是( ) A.2008B.-2008C.-1D.13.下列几种说法中,正确的有( )个①一个数它不是正数那么它一定是负数;②0只表示没有;③0不仅是自然数还是偶数、整数。

A.0B.1C.2D.34.若x 的相反数是3,|y|=5,则x+y 的值为 ( ) A.-8B.2C.8或-2D.-8或25.设a 、b 为任意两个有理数,且ab=|ab|,那么 ( ) A.ab>0或a=0,或b=0B.ab>0,或a=0C.a<0且b<0D.a,b 同号或b=06.观察一列数据:1,-2,3,-4,5,-6,…,根据你所发现的规律,则第2015个数是 ( ) A.-2015B.2015C .-2014D.2016二、填空题(每空3分,共30分)7.如果水库水位高于标准水位3m 时,记作+3,那么如果低于标准水位2m 时,记作 m 。

8.北京2008年奥运的国家体育场“鸟巢”的建筑面积达258000平方米,将258000用科学记数法表示为 平方米。

9.|a|=3,则a 的值为 。

10. -6-(+3)-(-7)+(-2)省略括号和的形式 。

11.绝对值小于3的所有整数的积是 。

12.若a 、b 互为相反数,m 、n 互为倒数,则(a+b )—mn= 。

13.|x-6|+(y-2)²=0,则yx = 。

2015-2016七年级上数学竞赛试题(含答案 )

2015-2016七年级上数学竞赛试题(含答案 )

裕安中学2015--20XX 年七年级上册数学竞赛命题人:孙磊 张成勇一、选择题(共20分)1、 有理数a 等于它的倒数,则2014a 是 ( A ) A. 最小的正整数 B.最小的非负数C.绝对值最小的整数 D. 最大的负数2、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是 ( D )A 、7xy -B 、7xyC 、xyD 、xy -3、若0ab ≠,则a b a b+的取值不可能是 ( B ) A .0 B.1 C.2 D.-24、 已知α∠与β∠互补,且αβ∠>∠,则β∠的余角可以表( C )A 、12α∠B 、12β∠C 、1()2αβ∠-∠D 、1()2αβ∠+∠5、如果△+△= ★,○= □+□,△= ○+○+○+○,那么★÷□=( D )解析:2△=★,○= 2□,△=4○,○=△/4★÷□=(△+△)/(○- □)=16A 、2B 、4C 、8D 、16二、填空题(共20分)6.定义:a⊙b=ab+a+b,若3⊙x=27,则x的值是________7.若︱a︱=5,︱b︱=3,︱c︱=6,且︱a+b︱=-(a+b),︱a+c︱=a+c,则 a-b+c =4或-28.如图是一块在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形边长为1,则这个长方形色块图的面积为 143 。

解析:设第二个小正方形ABCD的边长是x,则其余正方形的边长为:x,x+1,x+2,x+3,则根据题意得:x+x+(x+1)=x+2+x+3,解得:x=4,∴x+1=5,x+2=6,x+3=7,∴这个矩形色块图的面积为:1+4×4+4×4+5×5+6×6+7×7=143,.9、将自然数按下列三角形规律排列,则第15行的各数之和是6119 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…………………………………………解析:∵1+3+5+7+9+11+13+15+17+19+21+23+25+27+29=225,∴第15行的最后一个数字是225∵1+2×14=29,∴第15行有29个数字.∵225-29+1=197,∴第15行的第一个数字是197.∴197+198+199+200+…+225=(197+225)×(225-197+1)÷2=6119.故第15行的各数之和是6119....三、解答题(80分)10、(10分)计算(-212)÷(61 - 143 + 32 - 79)11、( 10分) 如果b a ,为定值,关于x 的方程6232bk x a kx -+=+,无论k 为何值,它的解总是1,求b a ,的值。

七年级数学上《整式的加减》期末复习知识点+检测试卷

七年级数学上《整式的加减》期末复习知识点+检测试卷

2016-2017学年度七年级上期末复习(整式的加减)知识点1:列代数式 知识回顾:(1)数学中的式子指的是用运算符号把数与字母连接而成的算式,单独的一个数或字母也叫是式子。

可以用式子把数量关系简明地表示出来。

(2)在含有字母的式子中如果出现乘号,通常将乘号写作“⋅”或省略不写。

例如,100×t 可以写成100⋅t 或100t 。

巩固练习: 1.(2015-2016北京市海淀区七上期末)某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x 件,那么这4名工人此月实际人均工作量 为 件.(用含x 的式子表示) 2.(2015-2016清远市连州市七上期末)a 与b 的平方的和可表示为( )A .(a+b)2;B .a 2+b 2;C .a 2+b ;D .a+b 2。

3.(2015-2016衡阳市耒阳市七上期末)a 的2倍与b 的和,用代数式表示为( )A .2a+b ;B .a 2+b ; C .2(a+b); D .a+2b 。

4.(2015-2016北京市西城区七上期末)用含a 的式子表示: (1)比a 的6倍小5的数: ;(2)如果北京某天的最低气温为a ℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为 ℃. 5.(2015-2016潍坊市寿光市七上期末)甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( ) A .y 3x y x 3-+; B .y 3x y x 3+-; C .y x 3y 3x +-; D .yx 3y3x -+。

6.(2015-2016深圳市龙华新区七上期末)小明每个月收集废电池a 个,小亮比小明多收集20%,则小亮每个月收集的废电池数为( ) A .(a+20%)个; B .a (1+20%)个; C .%201a -个; D .%201a-个。

7.(2015-2016吕梁市孝义市七上期末)一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数是( )A .a+b+c ;B .abc ;C .100a+10b+c ;D .100c+10b+a 。

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.下列图形经过折叠不能围成棱柱的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.﹣2b C.﹣2a D.2b6.如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点有且只有一条直线与已知直线平行D.若两条直线相交所成的角是直角,则这两条直线互相垂直8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣83二、填空题(本大题共有10小题,每小题3分,共30分)9.一个数的绝对值是5,这个数是.10.若方程3x m﹣2﹣2=0是关于x的一元一次方程,则m的值为.11.已知∠β=48°30′,则∠β的余角是.12.下午2点时,时针与分针的夹角的度数是.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠FEC=56°,则∠AED=.14.已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.16.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD 度数为.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是km.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为cm.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).20.解方程:(1)3(x﹣5)=﹣12;(2).21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有条线段;(2)求线段AN的长;(3)求线段MN的长.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 …2号探测气球所在位置的海拔/米30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.2015-2016学年江苏省扬州中学教育集团树人学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.B.2.D.3.B.4.B.5.A 6.C.7.C.8.B.二、填空题(本大题共有10小题,每小题3分,共30分)9.±510.3 11.41°30″12.60°13.62°14.0 15.7 16.30°或50°.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是5km.【考点】一元一次方程的应用.【分析】设甲、乙两村之间的距离为xkm,根据已知两人的速度结合行驶的路程相等,时间差为15分钟得出方程,再求出答案即可.【解答】解:设甲、乙两村之间的距离为xkm.根据题意可得:﹣=,解得:x=5,答:甲、乙两村之间的距离为5km;故答案为:5.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为10cm.【考点】翻折变换(折叠问题).【分析】将折叠纸条展开,分析其中的三角形,梯形的特点,再进行计算.【解答】解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即2cm,下底等于纸条宽的2倍,即4cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即4cm,故超出点P的长度为(26﹣10)÷2=8,AM=8+2=10cm,故答案为:10.【点评】本题考查了折叠的性质.关键是将折叠图形展开,分析每个图形形状及与纸条宽的关系.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣2﹣=﹣3;(2)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)3(x﹣5)=﹣12;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣15=﹣12,移项合并得:3x=3,解得:x=1;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.【点评】此题主要考查了偶次方、绝对值的性质以及整式加减运算法则,正确求出a,b的值是解题关键.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.【考点】同解方程.【分析】先求出方程=3x﹣2的解,再代入方程3(x﹣m)=6+2m,即可解答.【解答】解:方程=3x﹣2的解为:x=1,把x=1代入方程3(x﹣m)=6+2m得:3(1﹣m)=6+2m,解得:m=﹣0.6.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得含义.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;由三视图判断几何体.【分析】(1)主视图有3列,每列小正方数形数目分别为2,1,1,俯视图有3列,每列小正方形数目分别为1,2,1,左视图有2列,每列小正方形数目分别为2,1.据此可画出图形;(2)保持这个几何体的俯视图和左视图不变的情况下添加小正方体即可.【解答】解:(1)如图所示:;(2)可以在①和②的位置上各添加一个小正方体,这个几何体的俯视图和左视图都不变,最多添加2个,故答案为:2.【点评】此题主要考查了画三视图,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设小客车租了x辆,根据如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位,列出方程,求出x的值,即可得出答案;(2)先设至少要租用大客车x辆,根据同时租用大、小客车共6辆,且确保每个师生均有座位,列出不等式,求出解集即可.【解答】解:(1)设小客车租了x辆,根据题意得:30x=45(x﹣2)﹣30,解得:x=8,则这次准备外出采风的师生共有30×8=240(人),答:这次准备外出采风的师生共240人;(2)至少要租用大客车x辆,根据题意得:45x+30(6﹣x)≥240,解得:x≥4,答:至少要租用大客车4辆.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,根据题目中的数量关系,列出方程和不等式.26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有10条线段;(2)求线段AN的长;(3)求线段MN的长.【考点】两点间的距离.【分析】(1)根据线段有两个端点,写出所有线段后计算个数;(2)由N是AC中点知AN=AC,而AC=AB﹣BC,根据AB、BC的长度可得;(3)由图可知,MN=AM﹣AN,由M是AB中点且AB=10cm可得AM长度,由(2)知AN的长度,可得MN长.【解答】解:(1)图中的线段有AN、AC、AM、AB、NC、NM、NB、CM、CB、MB这10条;(2)∵AB=10cm,BC=6cm,∴AC=AB﹣BC=4cm,又∵N是AC的中点,∴AN=AC=2cm;(3)∵AB=10cm,M是AB的中点,∴AM=AB=5cm,由(1)知,AN=2cm,∴MN=AM﹣AN=3cm;故答案为:(1)10.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35…x+52号探测气球所在位置的海拔/米2030 …0.5x+15(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?【考点】一元一次方程的应用.【分析】(1)根据“1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(2)两个气球能位于同一高度,根据题意列出方程,即可解答;(3)两个气球所在位置的海拔相差7.5米,分两种情况:①2号探测气球比1号探测气球海拔高7.5米;②1号探测气球比2号探测气球海拔高7.5米;分别列出方程求解即可.【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20.填表如下:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35 …x+52号探测气球所在位置的海拔/米20 30 …0.5x+15故答案为:35,x+5,20,0.5x+15;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度;(3)分两种情况:①2号探测气球比1号探测气球海拔高7.5米,根据题意得(0.5x+15)﹣(x+5)=7.5,解得x=5;②1号探测气球比2号探测气球海拔高7.5米,根据题意得(x+5)﹣(0.5x+15)=7.5,解得x=35.答:当两个气球所在位置的海拔相差7.5米时,这时气球上升了5分或35分.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出函数解析式.28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=60°;若∠AOC=140°,则∠DOE=70°;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)首先利用补角的定义可得出∠BOC,再利用角平分线的定义可得出∠COE,易得∠DOE;(2)同理由(1)可得;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)若∠AOC=120°,则∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;若∠AOC=140°,则∠BOC=180°﹣140°=40°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣20°=70°;故答案为:60°;70°;(2);∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90)=,故答案为:;(3)∠DOE﹣∠AOF=45°.理由:设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省镇江市七年级(上)期末数学试卷一、填空题(2分&#215;14=28分)1.(4分)﹣2的相反数的倒数是.2.(2分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到162 000 000,这个数用科学记数法表示为.3.(2分)已知关于x的方程2x+a=0的解是x=2,则a的值为.4.(2分)三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是.5.(2分)已知∠1和∠2互为余角,且∠2与∠3互补,∠1=65°,则∠3=.6.(2分)如图,线段AB=8cm,点C为线段AB上一点,AC=3cm,点D是线段BC的中点,则线段BD的长为cm.7.(2分)如图:∠A+∠B=90°,∠BCD+∠B=90°,可得∠A=∠BCD.理由是.8.(6分)直线AB上一点,OM平分∠AOC,ON平分∠BOC,∠BON=28°,则∠BOC=°,∠BOM=°,图中互补的角有对.9.(2分)一项工程,甲单独做需10小时完成,乙单独做需12小时完成;现在两人合作3小时后,由乙独做,若设乙队再用x小时完成,则可列方程.10.(2分)若m2+mn=﹣3,n2﹣3mn=﹣12,则m2+4mn﹣n2的值为.11.(2分)某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3h,已知船在静水中的速度是8km/h,水流速度是2km/h,若A、C两地距离为2km,则A、B两地间的距离是km.二、选择题(3分&#215;6=18分)12.(3分)下列各数中:+(﹣5)、|﹣1﹣2|、﹣、﹣(﹣7)、0、(﹣2015)3,负数有()A.2个B.3个C.4个D.5个13.(3分)如图所示图形是天气预报中的图标,其中沿某直线翻折,折痕两旁的图形能重合的是()A.B.C.D.14.(3分)如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°15.(3分)图中的立方体展开后,应是右图中的()A.B. C.D.16.(3分)画如图所示物体的俯视图,正确的是()A. B.C.D.17.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元三、解答题:18.(8分)计算(1)8÷(﹣2)2﹣4×(﹣3)﹣|﹣6|(2)()×(﹣12)19.(8分)已知x、y的值满足|2x+1|+(y﹣2)2=0,化简并求值:2(5xy﹣8x2)﹣(﹣12x2+4xy).20.(10分)解方程:(1)4(x﹣1)=1﹣x(2).21.(8分)按下列要求画图,并解答问题:(1)取线段AB的中点D,过点D作DE⊥AB,交BC于点E.(2)线段DE与线段AC有怎样的位置关系?(3)请在图中不添加字母的情况下,相等的线段有,相等的角有.22.(10分)某地区居民生活用电基本价格为每千瓦时0.50元,若每月用电量超过a千瓦则超过部分按基本电价的80%收费.(1)某户八月份用电96千瓦时,共交电费46.4元,求a.(2)若该用户九月份的平均电费为0.48元,则九月份共用电多少千瓦?应交电费多少元?23.(10分)用正方形纸折叠:将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕.(1)AE=,BE=,∠FEH=°;(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图2如图所示的正方形EFGH,且不重合的部分也是一个正方形;①若点A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中点,若正方形A′B′C′D′的面积是4,则大正方形ABCD的面积是;②如图3,A′E=B′H=C′G=D′F=3,正方形ABCD的周长比正方形A′B′C′D′的周长的2倍小36,你能求出正方形A′B′C′D′的边长吗?四、解答题(共4小题,满分20分)24.(3分)方程|2x﹣3|=4的解为.25.(3分)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,这个长方体的高为cm.44列元,李明第一次购买香蕉千克,第二次购买千克.(2)王强分两次购买50千克,第二次购买的数量多于第一次购买的数量,共付出264元,请问王强第一次,第二次分别购买香蕉多少千克?2015-2016学年江苏省镇江市七年级(上)期末数学试卷参考答案与试题解析一、填空题(2分&#215;14=28分)1.(4分)(1998•山西)﹣2的相反数的倒数是.【分析】利用相反数、倒数的性质求出即可.【解答】解:﹣2的相反数是2,2的倒数是.故答案为:.【点评】此题考查了相反数和倒数的性质,要求掌握相反数和倒数的性质及其定义,并能熟练运用到实际当中.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.(2分)(2015秋•镇江期末)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到162 000 000,这个数用科学记数法表示为 1.62×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将162000000用科学记数法表示为:1.62×108.故答案为:1.62×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2015秋•镇江期末)已知关于x的方程2x+a=0的解是x=2,则a的值为﹣4.【分析】将x=2代入方程得到关于a的方程,然后解得a的值即可.【解答】解:∵x=2是方程2x+a=0的解,∴4+a=0.解得:a=﹣4.故答案为;﹣4.【点评】本题主要考查的是一元一次方程的解和解一元一次方程,掌握一元一次方程的解的定义是解题的关键.4.(2分)(2015秋•镇江期末)三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是48.【分析】设这三个正整数为x、2x、4x,根据等量关系:三个数之和为84,可得出方程,解出即可.【解答】解:设这三个正整数为x、2x、4x,由题意得:x+2x+4x=84,解得:x=12,所以这三个数中最大的数是4x=48.故答案为:48.【点评】本题考查了一元一次方程的应用,解答本题的关键是设出未知数,找到等量关系,利用方程思想求解.5.(2分)(2015秋•镇江期末)已知∠1和∠2互为余角,且∠2与∠3互补,∠1=65°,则∠3=155°.【分析】根据∠1和∠2互为余角,∠1=65°,求得∠2的度数,然后根据∠2与∠3互补,得出∠3=180°﹣∠2.【解答】解:∵∠1和∠2互为余角,∠1=65°,∴∠2=90°﹣∠1=90°﹣65°=25°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣25°=155°.故答案为:155°.【点评】本题考查了余角和补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.6.(2分)(2015秋•镇江期末)如图,线段AB=8cm,点C为线段AB上一点,AC=3cm,点D是线段BC的中点,则线段BD的长为cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵AB=8cm,AC=3cm,∴BC=5cm,∵点D是线段BC的中点,∴BD=BC=cm.故答案为:.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.7.(2分)(2015秋•镇江期末)如图:∠A+∠B=90°,∠BCD+∠B=90°,可得∠A=∠BCD.理由是同角的余角相等.【分析】根据余角的性质即可得出结论.【解答】解:∵∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD(同角的余角相等).故答案为:同角的余角相等.【点评】本题考查的是余角和补角,熟知同角的余角相等是解答此题的关键.8.(6分)(2015秋•镇江期末)直线AB上一点,OM平分∠AOC,ON平分∠BOC,∠BON=28°,则∠BOC=56°,∠BOM=118°,图中互补的角有5对.【分析】根据余角和补角的概念以及角平分线的定义解答即可.【解答】解:∵ON平分∠BOC,∠BON=28°,∴∠BOC=2∠BON=56°,∴∠AOC=180°﹣∠BOC=124°,∵OM平分∠AOC,∴∠MOC=62°,∴∠BOM=∠BOC+∠MOC=118°,图中互补的角有:∠AOC和∠BOC,∠AOM和∠BOM,∠CON和∠BOM,∠BON和∠AON,∠CON和∠AON共5对,故答案为:56;118;5.【点评】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.9.(2分)(2015秋•镇江期末)一项工程,甲单独做需10小时完成,乙单独做需12小时完成;现在两人合作3小时后,由乙独做,若设乙队再用x小时完成,则可列方程(+)×3+x=1.【分析】根据题意可得甲的工作效率为,乙的工作效率为,此题等量关系为:甲和乙合作3小时的工作量+乙单独做x小时的工作量=1,根据等量关系列出方程即可.【解答】解:设乙队再用x小时完成,由题意得:(+)×3+x=1,故答案为:(+)×3+x=1.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握工作效率×工作时间=工作量.10.(2分)(2015秋•镇江期末)若m2+mn=﹣3,n2﹣3mn=﹣12,则m2+4mn﹣n2的值为9.【分析】已知两等式左右两边相减求出所求式子的值即可.【解答】解:∵m2+mn=﹣3,n2﹣3mn=﹣12,∴原式=(m2+mn)﹣(n2﹣3mn)=﹣3﹣(﹣12)=﹣3+12=9,故答案为:9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.(2分)(2015秋•镇江期末)某人乘船由A地顺流而下到B地,然后又逆流而上到C 地,共乘船3h,已知船在静水中的速度是8km/h,水流速度是2km/h,若A、C两地距离为2km,则A、B两地间的距离是10或km.【分析】设A、B两地之间的距离为x千米,分两种情况C在A的上游时和C在A,B之间时,根据由A地顺流而下到B地,然后又逆流而上到C地,共乘船3h分别列出方程,再分别求解即可.【解答】解:设A、B两地之间的距离为x千米,C在A的上游时:则+=3,解得:x=10.若C在A,B之间时:则+=3,解得:x=.则A、B两地间的距离是10km或km.故答案为:10或.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,正确对三地的位置关系进行分类.二、选择题(3分&#215;6=18分)12.(3分)(2015秋•镇江期末)下列各数中:+(﹣5)、|﹣1﹣2|、﹣、﹣(﹣7)、0、(﹣2015)3,负数有()A.2个B.3个C.4个D.5个【分析】根据相反数的意义、绝对值的意义、乘方的意义,可化简各数,根据小于零的数是负数,可得答案.【解答】解:+(﹣5)=﹣5<0,|﹣1﹣2|=3>0,﹣<0,﹣(﹣7)=7>0,0=0,(﹣2015)3=﹣20153<0,故选:B.【点评】本题考查了正数和负数,化简各数是解题关键,注意小于零的数是负数.13.(3分)(2015秋•镇江期末)如图所示图形是天气预报中的图标,其中沿某直线翻折,折痕两旁的图形能重合的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.(3分)(2015秋•镇江期末)如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°【分析】首先求得AB与正东方向的夹角的度数,即可求解.【解答】解:AB于正东方向的夹角的度数是:90°﹣70°=20°,则∠BAC=20°+90°+15°=125°.故选C.【点评】本题考查了方向角,正确理解方向角的定义是关键.15.(3分)(2015秋•镇江期末)图中的立方体展开后,应是右图中的()A.B. C.D.【分析】首先能想象出来正方体的展开图,然后作出判断.【解答】解:由正方体的展开图可知,D项符合题意,故选D.【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.16.(3分)(2015秋•镇江期末)画如图所示物体的俯视图,正确的是()A. B.C.D.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看矩形分成两个矩形,分线是虚线,故B正确.故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,能看到的线用实线画.17.(3分)(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元【分析】设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.【解答】解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.【点评】本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2月份是销售总量”是解题的突破口.三、解答题:18.(8分)(2015秋•镇江期末)计算(1)8÷(﹣2)2﹣4×(﹣3)﹣|﹣6|(2)()×(﹣12)【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=8÷4+12﹣6=2+12﹣6=8;(2)原式=﹣4+9﹣10=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)(2015秋•镇江期末)已知x、y的值满足|2x+1|+(y﹣2)2=0,化简并求值:2(5xy﹣8x2)﹣(﹣12x2+4xy).【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|2x+1|+(y﹣2)2=0,∴2x+1=0,y﹣2=0,解得:x=﹣,y=2,则原式=10xy﹣16x2+12x2﹣4xy=﹣4x2+6xy,当x=﹣,y=2时,原式=﹣1﹣6=﹣7.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(10分)(2015秋•镇江期末)解方程:(1)4(x﹣1)=1﹣x(2).【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣4=1﹣x,移项得:4x+x=1+4,合并得:5x=5,解得:x=1;(2)去分母得:2(1﹣y)+6y=3(2y﹣1),去括号得:2﹣2y+6y=6y﹣3,移项合并得:﹣2y=﹣5,解得:y=2.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)(2015秋•镇江期末)按下列要求画图,并解答问题:(1)取线段AB的中点D,过点D作DE⊥AB,交BC于点E.(2)线段DE与线段AC有怎样的位置关系?平行(3)请在图中不添加字母的情况下,相等的线段有AB=AC,AD=BD,BE=CE,相等的角有∠B=∠C=∠BED,∠A=∠BDE=∠ADE.【分析】(1)根据格点的性质找出线段AD的中点,过点D作DE⊥AB,交BC于点E即可;(2)根据勾股定理可判定出△ABC是等腰直角三角形,再由DE⊥AB可得出∠BDE=90°,进而可得出结论;(3)根据三角形中位线定理即可得出结论.【解答】解:(1)如图所示;(2)∵AB2=AC2=62+62=72,BC2=122=144,∴AB2+AC2=BC2,∴△ABC是等腰直角三角形.∴∠A=90°,∵DE⊥AB,∴∠BDE=90°,∴DE∥AC.故答案为:平行;(3)∵△ABC是等腰直角三角形,D为线段AB的中点,DE∥AC,∴DE是△ABC的中位线,∴AB=AC,AD=BD,BE=CE.∵△ABC是等腰直角三角形∴∠B=∠C=∠BED.∵DE∥AC,∠A=90°,∴∠A=∠BDE=∠ADE.故答案为:AB=AC,AD=BD,BE=CE;∠B=∠C=∠BED,∠A=∠BDE=∠ADE.【点评】本题考查的是作图﹣基本作图,涉及到等腰直角三角形的判定与性质、三角形中位线定理等知识,根据题意判断出△ABC是等腰直角三角形是解答此题的关键.22.(10分)(2015秋•镇江期末)某地区居民生活用电基本价格为每千瓦时0.50元,若每月用电量超过a千瓦则超过部分按基本电价的80%收费.(1)某户八月份用电96千瓦时,共交电费46.4元,求a.(2)若该用户九月份的平均电费为0.48元,则九月份共用电多少千瓦?应交电费多少元?【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x的值.【解答】解:(1)根据题意得:0.50a+0.50×80%(96﹣a)=46.4,解得a=80,答:a的值是80;(2)设九月份用电x千瓦,根据题意得:0.50×80+0.50×80%(x﹣80)=0.48x,解得x=100,则0.48x=48(元),答:九月份共用电100千瓦,•应交电费48元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(10分)(2015秋•镇江期末)用正方形纸折叠:将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕.(1)AE=A′E,BE=B′E,∠FEH=90°;(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图2如图所示的正方形EFGH,且不重合的部分也是一个正方形;①若点A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中点,若正方形A′B′C′D′的面积是4,则大正方形ABCD的面积是36;②如图3,A′E=B′H=C′G=D′F=3,正方形ABCD的周长比正方形A′B′C′D′的周长的2倍小36,你能求出正方形A′B′C′D′的边长吗?【分析】(1)根据折叠的性质得到△A′EF≌△AEF,△B′EH≌△BEH,根据全等三角形的性质得到AE=A′E,BE=B′E,∠AEF=∠A′EF,∠BEH=∠B′EH,即可得到结论;(2)①由正方形A′B′C′D′的面积是4,求得A′B′=B′C′=C′D′=A′D′=2,根据线段中点的定义得到EB′=HC′=GD′=FA′=4,根据折叠的性质得BE=BE′=4,求得AB=AE+BE=6,根据正方形的面积即可得到结论;②设正方形A′B′C′D′的边长为x,根据题意列方程即可得到结论.【解答】解:(1)∵将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕,∴△A′EF≌△AEF,△B′EH≌△BEH,∴AE=A′E,BE=B′E,∠AEF=∠A′EF,∠BEH=∠B′EH,∴∠FEH=∠FEA′+∠HEB′=∠AEB=90°,故答案为:A′E,B′E,90°;(2)①∵正方形A′B′C′D′的面积是4,∴A′B′=B′C′=C′D′=A′D′=2,∵点A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中点,∴EB′=HC′=GD′=FA′=4,根据折叠的性质得BE=BE′=4,∴AB=AE+BE=6,∴正方形ABCD的面积是36;故答案为:36;②设正方形A′B′C′D′的边长为x,根据题意得:2×4x﹣36=4(x+3+3),解得:x=15,∴A′B′C′D′的边长=15.【点评】本题考查了正方形的性质,折叠的性质,正方形的面积和周长的计算,线段中点的定义,熟练掌握折叠的性质是解题的关键.四、解答题(共4小题,满分20分)24.(3分)(2015秋•镇江期末)方程|2x﹣3|=4的解为x=,或x=﹣.【分析】根据绝对值的性质,由方程|2x﹣3|=4可得2x﹣3=4,或2x﹣3=﹣4,解这两个方程即可求得原方程的解.【解答】解:根据题意,2x﹣3=4,或2x﹣3=﹣4,解这两个方程得:x=,或x=﹣,故答案为:x=,或x=﹣.【点评】本题考查含绝对值的一元一次方程,难度较大,关键是利用绝对值的性质去掉绝对值,注意在得出解后要检验.25.(3分)(2015秋•镇江期末)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,这个长方体的高为5cm.【分析】设长方体的高为xcm,然后表示出其宽为15﹣x,利用宽是高的2倍列出方程求解即可.【解答】解:设长方体的高为xcm,则其宽为=15﹣x,根据题意得:15﹣x=2x,解得:x=5.故答案为5.【点评】本题考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.()44列【分析】图中数字是从1开始的自然数排列顺序,且偶数行的第一列为4、16…相邻偶数的平方,而且后面的数则依次加1,第n列就加(n﹣1)个1,再拐弯加1;奇数列的第一行数为1、9…相邻奇数的平方,而且向下依次减1,第n行就减(n﹣1)个1,再拐弯减1.【解答】解:∵442=1936,∴第44行的第一个数字是1936,∴第45行的第一个数字是1937,第45列数字是1981.∴2016应该是第45列1981往上再数35个,∴2016所在的位置是第10行的第45列.故选:B.【点评】本题主要考查数字的排列规律,由特殊数据来猜想、归纳、验证,进而得出一般规律,较好地考查了同学们阅读理解、获取信息、处理数据、归纳推理等能力,是难题.(1)李明分两次购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,李明第一次购买香蕉16千克,第二次购买24千克.(2)王强分两次购买50千克,第二次购买的数量多于第一次购买的数量,共付出264元,请问王强第一次,第二次分别购买香蕉多少千克?【分析】(1)设第一次购买x千克香蕉,则第二次购买(40﹣x)千克香蕉,由题意可得x <20,根据李明分两次购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元建立方程,求解即可;(2)设第一次购买x千克香蕉,则第二次购买(50﹣x)千克香蕉.分两种情况考虑:①第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克;②第一次购买香蕉少于20千克,第二次香蕉超过40千克.根据王强分两次购买50千克,第二次购买的数量多于第一次购买的数量,共付出264元建立方程,求解即可.【解答】解:(1)设第一次购买x千克香蕉,则第二次购买(40﹣x)千克香蕉,由题意可得6x+5(40﹣x)=216,解得:x=16,40﹣x=24.答:第一次买16千克,第二次买24千克.故答案为16,24;(2)设第一次购买x千克香蕉,则第二次购买(50﹣x)千克香蕉.分两种情况考虑:①当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,根据题意,得:6x+5(50﹣x)=264,解得:x=14.50﹣14=36(千克);②当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,根据题意,得:6x+4(50﹣x)=264,解得:x=32.检验:x=32 (不符合题意,舍去);答:第一次购买14千克香蕉,第二次购买36千克香蕉.【点评】本题主要考查了一元一次方程的应用,关键是通过分类讨论,找到等量关系后,根据讨论的千克数找到相应的价格进行作答.参与本试卷答题和审题的老师有:sd2011;王学峰;梁宝华;HLing;caicl;知足长乐;CJX;sks;lantin;2300680618;zhjh;sxx;dbz1018;HJJ;三界无我(排名不分先后)菁优网2016年12月14日。

相关文档
最新文档