2018年秋九年级数学上册 第25章 概率初步单元测试卷(含解析)(新版)新人教版

合集下载

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

九年级数学上册第25章概率初步章节同步检测含解析新版新人教版

九年级数学上册第25章概率初步章节同步检测含解析新版新人教版

第25章一、单选题(共36分)1.(本题3分)一个密闭不透明的盒子里有若干个白球,在不允许将球倒出的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球200次,其中16次摸到黑球,估计盒中大约有白球的个数为( )A.30个B.92个C.84个D.76个2.(本题3分)小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A.13B.16C.19D.1273.(本题3分)在单词“APPLE”中随机选择一个字母,选择到的字母是“P”的概率是( )A.14B.15C.25D.354.(本题3分)如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次, 当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A.16B.15C.13D.125.(本题3分)做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A.0.22 B.0.42 C.0.50 D.0.586.(本题3分)某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是( )A.15B.16C.19D.1107.(本题3分)盒中装有4只白球5只黑球,从中任取一只球,取出的球是白球的概率是()A.520B.59C.420D.498.(本题3分)如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.139.(本题3分)从长为10cm,7cm,5cm,3cm的四条线段中任选三条,能构成三角形的概率是()A.12B.13C.14D.3410.(本题3分)以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6 B.多边形的内角和是360C.二次函数的图象不过原点D.半径为2的圆的周长是4π11.(本题3分)下列事件:①在一次数学测试中,小明考了满分;②经过有交通信号灯的路口,遇到红灯;③抛掷两枚正方体骰子,朝上的点数和大于1;④度量任一三角形,其外角和都是180°.其中必然事件是( )A.①B.②C.③D.④12.(本题3分)在一个袋中有4个黑球和若干个白球,每个球除染色外其余相同,摇匀后随机摸出一个球并记下颜色后放回,摇匀后再摸一个球,记下颜色后再放回……,依次不断重复上述摸球过程,当摸了100次后,发现其中有20次摸到的是黑球,请你根据所学知识估计袋中白球的数量约为()A.12 B.16 C.20 D.30二、填空题(共18分)13.(本题3分)一个不透明的袋子中有2个白球和3个黑球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是白球的概率是_____.14.(本题3分)一个不透明的盒子中装有4张卡片,这4张卡片的正面分别画有等腰三角形,线段,圆和三角形,这些卡片除图形外都相同,将卡片搅匀.从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是_____.15.(本题3分)将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是_____.16.(本题3分)四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是________.17.(本题3分)一个暗箱里放有a个白球和3个红球,白球的概率是34,球的总个数是_______.18.(本题3分)如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是_____.三、解答题(共66分)19.(本题8分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?20.(本题8分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.21.(本题8分)小明,小亮都想去观看电影,但是只有一张电影票,他们决定采取抽卡片的办法确定谁去,规定如下:将正面分别标有数字1,2,3的三张卡片(除数字外其余都同)洗匀后背面朝上放置在桌面上,随机抽出一张记下数字后放回,重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字,如果两个数字的积为奇数,则小明去;如果两个数字的积为偶数,则小亮去.(1)请用列表或树状图的方法表示抽出的两张卡片上的数字积的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.22.(本题8分)有两组牌,每组牌都是4张,牌面数字分别是1,2,3,4,从每组牌中任取一张,求抽取的两张牌的数字之和等于5的概率,并画出树状图.23.(本题8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.24.(本题8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.(本题9分)一只不透明的袋子中装有a个白球,b个黄球和10个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出一个球,摸到红球的概率是40%.(1)当a=8时,求摸到白球的概率;(2)若摸到黄球的概率是摸到白球的两倍,求a,b的值.26.(本题9分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图(图1)的信息回答下列问题:(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是_________小时;(2)请你补全条形统计图,在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_________;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?(4)若学校选取A、B、C、D四人参加阅读比赛,两人一组分为两组,求A与C是一组的概率,(列表或树状图)参考答案1.B【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式可求出白球的个数,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:设盒子里有白球x 个, 根据=黑球个数摸到黑球的次数黑白球总数摸球总次数得: 816x+8200= 解得:x=92.经检验得x=92是方程的解.故选B.【点睛】本题主要考查利用频率估计概率的知识,利用频率估计概率有以下条件及方法:(1)当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率;(2)当试验次数足够大时,试验频率稳定于理论概率.2.B【解析】【分析】根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,结合概率的计算公式可得答案.【详解】解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.【点睛】本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.3.C【解析】【分析】由单词“APPLE” 中有2个p, 直接利用概率公式求解即可求得答案.【详解】解:单词“ APPLE” 中有2个p,∴从单词“ APPLE” 中随机抽取一个字母为p的概率为:25故选:C.【点睛】本题主要考查概率的定义.4.C【解析】【分析】认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的应用, 据此计算后选择求解.【详解】解:转盘被等分成红、白二个扇形,且红色区域的圆心角为120o , 指针落在红色区域的概率是P=120360o o =13故选C.【点睛】解决这个问题的关键之处在于认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的定义和公式的运用, 据此计算后求解.5.B【解析】【分析】在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42, 故选B .【点睛】本题考察概率的相关知识.在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.6.D【解析】【分析】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n ,由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求【详解】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是1 10,故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握简单的概率求解方法.7.D【解析】【分析】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:根据题意可得:一袋中装有4个白球,4个黑球,共9个,任意摸出1个,摸到白球的概率是49故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握概率公式概率P(A)=mn..8.D【解析】【分析】列出事件的出现次数的树状图,用概率公式求解即可.解:为方便起见, 我们将3件上装和3件裤子从1 至 3 编号. 根据题意, 所有可能的结果如下图所示, 且各种结果发生的可能性相同.所有可能的结果总数为n=3⨯3=9,它们取自同一套的可能的结果总数为m=3 .所以P=31 93 =,故选D.【点睛】本题复习简单事件的概率计算,事件的出现次数可以用画树状图法求出,也可以用列表法求出,注意要不重不漏.9.A【解析】【分析】列举出所有情况,用能组成三角形的情况数除以总情况数即为所求的概率.【详解】共有10、7、5;10、7、3;10、5、3;7、3、5;共4种情况,其中10、7、3;10、5、3这两种情况不能组成三角形,所以P(任取三条,能构成三角形)=21 42 =,故选A.【点睛】本题考查了三角形三边关系,简单的概率计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 10.D【解析】【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误; 二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确.故选D .【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.11.C【解析】【分析】必然事件的发生率为100%,所以一定发生的为必然事件.【详解】解:1,2,4为可能事件,3为一定事件,两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了必然事件的定义,熟悉掌握概念是解决本题的关键.12.B【解析】【分析】一共摸了100次,其中有20次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【详解】∵共摸了100次,其中20次摸到黑球,∴有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,∴口袋中黑球和白球个数之比为1:4,14164÷=(个).故选B.【点睛】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.25,【解析】【分析】等可能事件中每件事发生的概率是相等的,为1n,本题n=5,,一共有两个白球,因此为25.【详解】∵一个不透明的袋子中装有2个白球和3个黑球,共有5个球,∴从袋子中随机摸出一个球,摸出的球是白球的概率是:25.故答案为25.【点睛】本题考查了等可能事件的概率公式,等可能时间每件事发生的概率都是1n,其中n是样本总量,本题是统计与概率部分的简单题型.14.3 4【解析】【分析】等腰三角形、线段、圆是轴对称图形,等可能概型中取到每种图形的概率都是14,所以结果是34.【详解】∵等腰三角形、线段、圆是轴对称图形,三角形不是轴对称图形,∴从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是34;故答案为:34.【点睛】本题考查了轴对称图形的判断,和简单概率的计算,要注意等腰三角形是轴对称图形,三角形不一定是轴对称图形,正确判断图形是否为轴对称图形是本题的关键.15.1 6【解析】【分析】列表得出所有等可能的情况数,找出能组成“柠檬”的情况数,即可求出所求的概率.【详解】列表得:∵12种可能的结果中,能组成“柠檬”有2种可能,共2种,∴两次摸出的球上的汉字能组成“柠檬”的概率是212=16,故答案为:16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.5 6【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果, 然后根据概率公式求出该事件的概率即可.【详解】解: 由树状图可知共有4 3=12种可能, 两张卡片上的数字的乘积为偶数的有10种, 所以两张卡片上的数字的乘积为偶数的概率是1012=56.【点睛】画树状图法可以不重复不遗漏的列出所有可能的结果, 适合于两步完成的事件. 用到的知识点为: 概率=所求情况数与总情况数之比.17.12;【解析】【分析】让白球的个数除以球的总数为34,可求得白球的个数,即可求得球的总个数.【详解】解答:P(白球)=aa+3=34,解得:a=9,故总的球数为9+3=12.故本题答案为:12.【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能, 而且这些事件的可能性相同, 其中事件A出现m种结果, 那么事件A的概率P(A)=mn.18.1 4【解析】【分析】利用阴影部分与三角形的面积比即可.【详解】设三角形面积为1.∵△ABC中,D、E、F分别是各边的中点,∴DE∥BC,DE=BF,∴四边形BFED是平行四边形,∴△DEF≌△FBD,同理△DEF≌△CFE,△DEF≌△EDA,∴阴影部分的面积=△ABC的面积的14,即米粒落到阴影区域内的概率是11414 .故答案为14.【点睛】本题考查了几何概型的概率求法,利用面积求概率是解题的关键.19.(1)不能;(2)516;18;116;116;116【解析】【分析】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件;(2)根据概率的计算方法,可得出答案.【详解】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件.故答案为:不能获得转动转盘的机会.(2)乙顾客消费150元,能获得一次转动转盘的机会.由于转盘被均分成16份,每份被转到的机会均等,其中打折的占5份,故获得打折待遇的概率为P=5 16;九折占2份,故获得九折待遇的概率为P=21= 168;八折占1份,故获得八折待遇的概率为P=1 16;七折占1份,故获得七折待遇的概率为P=1 16;五折占1份,故获得五折待遇的概率为P=1 16.故答案为:他获得打折待遇的概率为516;他获得九折,八折,七折,五折待遇的概率分别是18;116;116;116.【点睛】本题主要考查概率,掌握概率的计算方法是解答本题的关键.20.(1)14;(2)34,图见解析【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】(1)共有4种可能,所以选择A通道通过的概率是14.故答案为:14,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.故答案为(1)14;(2)34,图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解决实际问题,正确画出树状图是本题的关键.21.(1)见详解;(2)游戏不公平,理由见详解;【解析】【分析】(1)根据题意直接列表或画树状图即可;(2)先分别求出两纸牌上的数字之积的所有情况,再求出其中偶数和奇数的个数,即可求出小明获胜的概率和小亮获胜的概率,最后得出游戏是否公平.【详解】(1)画树状图如图:(2)由(1)知一共有9种等可能情形,其中出现积为奇数的情况有4种,出现积为偶数的情况有5种,则P(数字之积为奇数)49=,P(数字之积为偶数)59=P(数字之积为奇数) P(数字之积为偶数),所以游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.1 4【解析】【分析】画出树状图,列举出所有情况,看抽取的两张牌的数字之和等于5的情况占所有情况的多少可得答案. 【详解】解:如图,共有16种等可能的情况,和为5的情况有4种,∴P(和为5)= .【点睛】本题主要考查用列表法或画树状图求等可能事件的概率,其中如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)50;(2)详见解析;(3)220.【解析】【分析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。

2018年秋人教版九年级上册数学 第二十五章《概率初步》单元检测卷(有答案)

2018年秋人教版九年级上册数学 第二十五章《概率初步》单元检测卷(有答案)

第二十五章检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列事件是随机事件的是A.火车开到月球上B.抛出的石子会下落C.明天上海会下雨D.早晨的太阳从东方升起2.下列事件中,随机事件是A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字-1,3,4的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,海南在大寒这一天的最低气温会在0 ℃以下3.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了密码的最后一位数字,那么一次就能打开该密码锁的概率是A. B.C. D.4.有五张背面完全相同的卡片,正面分别写有,()0,,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是A. B. C. D.5.年假期间小明约同学玩“三国杀”游戏,有9位同学参与游戏,开始每人先摸四张牌,通过抽牌决定谁先出牌,事先做好9张卡牌(除所写文字不同,其余均相同),其中有过河拆桥牌2张,杀手牌3张,闪牌4张.小明参与游戏,如果只随机抽取一张,那么小明抽到闪牌的概率是A. B. C. D.6.狗年春节到了,小英制作了5张大小相同的卡片,在每张卡片上分别写上“金”“狗”“迎”“春”“到”五个字,并随机放入一个不透明的信封中,然后让小芳从信封中摸出一张卡片,小芳摸出的卡片是“狗”字的概率是A. B. C. D.7.如图,正方形ABCD内接于☉O,☉O的直径为cm,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是A. B.C. D.π8.如图,两个标有数字的轮子可以分别绕中心旋转,旋转停止时,每个轮子上的箭头各指向轮子上的一个数字,若左图上方箭头指着的数字为a,右图中指着的数字为b.数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对个数为m,则等于A. B. C. D.9.小明、小颖和小凡都想去看安徽第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为A.60个B.50个C.40个D.30个二、填空题(本大题共4小题,每小题5分,满分20分)11.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是2.12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.13.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.14.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是1平方米.三、(本大题共2小题,每小题8分,满分16分)15.班里有18名男生,15名女生,从中任意抽取a人打扫卫生.(1)若女生被抽到是必然事件,求a的取值范围;(2)若女生小丽被抽到是随机事件,求a的取值范围.解:(1)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生被抽到的是必然事件,∴18<a≤33.(2)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生小丽被抽到是随机事件,∴a≥1,∴1≤a<33.16.如图,一个转盘被平均分成12份,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:①猜是“奇数”,或是“偶数”;②猜是“大于10的数”,或是“不大于10的数”;③猜是“3的倍数”,或是“不是3的倍数”.如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.解:选择第③种方法,猜是“3的倍数”.理由如下:∵转盘中,奇数与偶数的个数相同,大于10与不大于10的数的个数也相同,∴①与②游戏是公平的.∵转盘中的数是3的倍数的有7个,不是3的倍数的有5个,∴猜3的倍数,获胜的机会大.四、(本大题共2小题,每小题8分,满分16分)17.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当试验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,摸到白球的概率P=;(3)试验估算这个不透明的盒子里黑球有多少只?解:(1)0.6.(2)0.6.(3)盒子里黑球有40×(1-0.6)=16(只).18.小明和小新分别转动标有“0~9”十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.解:(1)小明转出的四位数最大是9730;小新转出的四位数最大是9520.(2)小明可能得到的“千位数字是9”的四位数有6个,分别为9730,9703,9370,9307,9073,9037;小新可能得到的“千位数字是9”的四位数有6个,分别为9520,9502,9250,9205,9052,9025.(3)不一定,因为如果小明得到的是9370,小新得到的是9520,则小新获胜.五、(本大题共2小题,每小题10分,满分20分)19.小敏的爸爸买了一张嘉峪关的门票,她和哥哥都想去,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽取一张,然后将抽出的两张牌数字相加,如果和为偶数,则小敏去,如果和为奇数,则哥哥去.(1)请你用列表或树状图的方法求小敏去的概率.(2)哥哥设计的游戏规则公平吗?请说明理由.解:(1)根据题意,画出如图所示的树状图,从树状图中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏去的概率P(和为偶数)=.(2)不公平.理由:哥哥去的概率P(和为奇数)=1-,因为,所以哥哥设计的游戏规则不公平.20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.解:(1)“3点朝上”出现的频率是,“5点朝上”出现的频率是.(2)小颖的说法是错误的.这是因为:“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.(3)列表如下:P(点数之和为3的倍数)=.六、(本题满分12分)21.有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3).(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的有:(-3,-4),(-4,-3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率为.七、(本题满分12分)22.为了了解全校3000名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题:(1)在这次问卷调查中,一共抽查了名同学;(2)补全条形统计图;(3)估计该校3000名同学中喜爱足球活动的人数;(4)学校准备从随机调查喜欢跑步和喜欢舞蹈的同学中分别任选一位参加课外活动总结会.若被随机调查的同学中,喜欢跑步的男生有3名,喜欢舞蹈的女生有2名,请用列表或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.解:(1)50.(2)喜欢足球人数:50-5-20-5-3=17.补全统计图:(3)该校3000名同学中喜爱足球活动的有3000×=1020(名).(4)画树状图得:∵共有15种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有8种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为.八、(本题满分14分)23.在平面直角坐标系中给定以下五个点A(-2,0),B(1,0),C(4,0),D-,E(0,-6),从这五个点中选取三点,使经过三点的抛物线满足以y轴的平行线为对称轴.我们约定经过A,B,E三点的抛物线表示为抛物线ABE.(1)符合条件的抛物线共有多少条?不求解析式,请用约定的方法一一表示出来.(2)在五个形状、颜色、质量完全相同的乒乓球上标上A,B,C,D,E代表以上五个点,玩摸球游戏,每次摸三个球.请问:摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率是多少?(3)小强、小亮用上面的五球玩游戏,若符合要求的抛物线开口向上,小强可以得1分;若抛物线开口向下,小亮得5分,你认为这个游戏谁获胜的可能性大一些?说说你的理由.解:(1)从A,B,C,D,E五个点中任意选取三点,共有以下10种组合,分别如下:ABC ABD ABE ACD ACE.ADE BCD BCE BDE CDE.∵A,D所在直线平行于y轴,A,B,C都在x轴上,∴A,D不能在符合要求的同一条抛物线上,A,B,C也不能在符合要求的同一条抛物线上,于是符合条件的抛物线有如下六条:ABE ACE BCD BCE BDE CDE(2)摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率为.(3)这个游戏两人获胜的可能性一样.理由是:在可以确定的六条抛物线中,通过观察五点位置可知:抛物线BCE开口向下,其余五条开口向上,每摸一次,小强获得分数的平均值为×1=;小亮获得分数的平均值为×5=,∴这个游戏两人获胜的可能性一样.。

第25章 概率初步 测试卷(含答案)

第25章 概率初步 测试卷(含答案)

第二十五章测试卷一、选择题(每题3分,共30分)1.下列事件中,属于随机事件的是()A.|-63|>|-8|B.抛一枚质地均匀的硬币一次,正面朝上C.地球自转的同时也在绕太阳公转D.袋中只有五个黄球,摸出一个球是白球2.抛掷一枚质地均匀的硬币2 000次,正面朝上的次数最有可能为() A.500 B.800C.1 000 D.1 2003.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.12 B.34 C.112 D.5124.若在“正三角形”“平行四边形”“菱形”“正五边形”“正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15 B.25 C.35 D.455.如图,▱ABCD的对角线AC,BD相交于点O,EF,GH过点O,且点E,H 在边AB上,点G,F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12 B.13 C.14 D.18(第5题)(第8题)6.一个不透明的盒子里有n个除颜色外其他完全相同的球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计盒子中球的个数n为()A.20 B.24 C.28 D.307.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,抛第一次将朝上一面的点数记为x,抛第二次将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为()A.118 B.112 C.19 D.148. 如图,五一期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C或D出口离开的概率是()A.12 B.13 C.16 D.239.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.38 B.58 C.23 D.1210.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12 B.512 C.712 D.13二、填空题(每题3分,共24分)11.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次投中的概率约为________(精确到0.1).12.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为________.13. 在m2□6m□9的“□”中任意填上“+”或“-”,所得的代数式为完全平方式的概率为________.14.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是________.(第14题)(第18题)15.经过某十字路口的汽车,可直行,也可左转或右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.16.在5瓶饮料中,有2瓶已过了保质期,随机从这5瓶饮料中取2瓶,则至少有1瓶过保质期的饮料的概率为________.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是________.18.如图,有两个转盘A,B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A,B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是19,则转盘B中标有数字1的扇形的圆心角的度数是________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用画树状图法或列表法说明理由.20.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是1 3,求从袋中取出黑球的个数.21.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出1个盒子,求2次摸出的盒子中的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).22.在甲、乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲口袋中任意摸出一个小球,记下数字为m,再从乙口袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果.(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,问他们两人谁获胜的概率大?23.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图①和图②).(1)请你求出该班的总人数,并补全条形统计图(注:在所补小矩形上方标出人数).(2)在该班团支部4人中,有1人选修排球、2人选修羽毛球、1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的2人中恰好有1人选修排球、1人选修羽毛球的概率是多少?24.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=1 2.(1)求这4个球价格的众数.(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由.②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如下表)求乙组两次都拿到8元球的概率.答案一、1.B 2.C 3.D 4.C 5.C 6.D 7.C 8.B 9.D 10.D 二、11.0.5 12.14 13.12 14.23 15.19 16.710 17.1418.80° 设转盘B 中指针落在标有数字1的扇形区域内的概率为x .根据题意,得12x =19,解得x =29.∴转盘B 中标有数字1的扇形的圆心角的度数为360°×29=80°.三、19.解:这个游戏对双方公平.理由:如图所示.一共有6种等可能的结果,和小于4的有3种, ∴P (和小于4)=36=12. ∴这个游戏对双方公平.20.解:(1)袋中共有20个球,其中黄球有5个,所以从袋中摸出一个球是黄球的概率为520=14.(2)设从袋中取出黑球的个数为x . 由题意得8-x 20-x =13,解得x =2. 经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2. 21.解:(1)搅匀后从中摸出1个盒子有3种等可能的结果,所以摸出的盒子中是A 型矩形纸片的概率为13.(2)共有6种等可能的结果,分别为AB ,AC ,BA ,BC ,CA ,CB ,其中2次摸出的盒子中的纸片能拼成一个新矩形的有4种结果,即AB ,BA ,BC ,CB.所以2次摸出的盒子中的纸片能拼成一个新矩形的概率为46=23.22.解:(1)画树状图如图所示.(2)∵m,n都是方程x2-5x+6=0的解,∴m=2,n=3或m=3,n=2或m=n=2或m=n=3.由树状图得,共有12种等可能的结果,m,n都是方程x2-5x+6=0的解的结果有4种,m,n都不是方程x2-5x+6=0的解的结果有2种,∴小明获胜的概率为412=13,小利获胜的概率为212=16,∴小明获胜的概率大.23.解:(1)该班的总人数为12÷24%=50,足球科目人数为50×14%=7.补全条形统计图如图所示.(2)记选修排球的学生为A、选修羽毛球的学生为B1,B2,选修乒乓球的学生为C,则列举所有结果如下:AB1,AB2,AC,B1B2,B1C,B2C,共有6种等可能的结果,其中有1人选修排球、1人选修羽毛球的占2种,所以恰好有1人选修排球、1人选修羽毛球的概率为26=13.24.解:(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个).按照从小到大的顺序排列为7元、8元、8元、9元,∴这4个球价格的众数为8元.(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同.理由如下:原来4个球的价格按照从小到大的顺序排列为7元、8元、8元、9元,∴原来4个球价格的中位数为8+82=8(元),所剩的3个球价格为8元、8元、9元.∴所剩的3个球价格的中位数为8元.∴所剩的3个球价格的中位数与原来4个球价格的中位数相同.②列表如下:共有9种等可能的结果,乙组两次都拿到8元球的结果有4种,∴乙组两次都拿到8元球的概率为4 9.。

新人教版九年级数学上《第25章概率初步》单元测试含答案解析

新人教版九年级数学上《第25章概率初步》单元测试含答案解析

《第25章概率初步》一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为( )A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在2020标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A.B.C.D.不能确定6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A.B.C.D.7.下列说法正确的是( )A.一颗质地均匀的骰子已连续抛掷了2020次,其中,抛掷出5点的次数最少,则第2020次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ) A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将2020小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( )A.B.C.D.10.关于频率和概率的关系,下列说法正确的是( )A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件: .12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?2020个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定不会发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性很小的事件在一次实验中也会发生,故A错误;B、可能性很小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性很小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.3.下列事件是确定事件的为( )A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D都是不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】理解概念是解决这类基础题的主要方法.注意确定事件包括必然事件和不可能事件.4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(2020•汕头模拟)中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在2020标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A.B.C.D.不能确定【考点】概率公式.【分析】先计算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3 红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,所以概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.7.下列说法正确的是( )A.一颗质地均匀的骰子已连续抛掷了2020次,其中,抛掷出5点的次数最少,则第2020次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ) A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,所以概率是.故选D.【点评】用到的知识点为:概率=所求情况数与总情况数之比.9.元旦游园晚会上,有一个闯关活动:将2020小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( )A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部2020,只有2个红球,所以任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是( )A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等【考点】利用频率估计概率.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件: 摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件就是可能发生,也可能不发生的事件.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,直接利用概率公式求解即可求得答案.【解答】解:∵掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .【考点】概率公式.【分析】分别用所求的情况与总情况的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5) (2,5) (3,5) (4,5) ﹣(1,4) (2,4) (3,4) ﹣ (5,4)(1,3) (2,3) ﹣ (4,3) (5,3)(1,2) ﹣ (3,2) (4,2) (5,2)﹣ (2,1) (3,1) (4,1) (5,1)∴一共有2020况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情况,计算出和是奇数的情况个数,利用概率公式进行计算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情况,故点数和是奇数的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率0.998 0.998 0.998 0.999 1.000(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估计概率.【分析】(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2020个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能出现的结果共有9种,而出现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(2020•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)这个游戏对双方不公平.∵P(拼成电灯)=;P(拼成小人)=;P(拼成房子)=;P=,(拼成小山)∴杨华平均每次得分为(分);季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2020•贵阳)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6 ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= 0.6 ;(3)试估算盒子里黑、白两种颜色的球各有多少只?【考点】利用频率估计概率.【专题】图表型.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。

新人教九年级上册第25章第25章概率初步单元测试含答案解析

新人教九年级上册第25章第25章概率初步单元测试含答案解析

新人教九年级上册第25章《第25章概率初步》一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x ﹣1上方的概率为()A.B.C.D.13.下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天4.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.15.下列说法中不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.207.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.B.C.D.8.小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A.B.C.D.二、填空题9.有五张分别写有数字0,3,﹣,,﹣1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是______.10.“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是______.11.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是______.12.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为______.13.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为______.14.如图,是两个均匀的数字转盘,转盘停止转动时指针停在不同数字区域的可能性相同.分别转动两个转盘,用转盘A停止转动时指针所指的数字a作横坐标;转盘B停止转动时指针所指的数字b作纵坐标,则点(a,b)在第四象限的概率=______.三、解答题15.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有______种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.(2+3+2=7)19.“爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.组别原因人数A 不想改变传统风俗习惯650B 增添节日喜庆气氛300C 祈福运、求吉利、辟邪害mD 没有可替代的庆祝方式150E 为了孩子的玩耍和快乐nF 其他100请根据图表中提供的信息解答下列问题:(1)填空:m=______,n=______,扇形统计图中D组所占的百分比为______.(2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示);(3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?20.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第______小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?《第25章概率初步》参考答案与试题解析一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.【考点】几何概率.【专题】探究型.【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【解答】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值==,∴最终停在阴影方砖上的概率为.故选B.【点评】本题考查的是几何概率,熟知概率公式是解答此题的关键.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x ﹣1上方的概率为()A.B.C.D.1【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在直线y=﹣x﹣1上方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,点(x,y)在直线y=﹣x﹣1上方的有:(﹣2,1),(﹣1,1),(1,﹣1),∴点(x,y)在直线y=﹣x﹣1上方的概率为: =.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:明天会下雨,可能发生也可能不发生,故A是随机事件;小明数学成绩是99分,B为随机事件;一个数与它的相反数的和是0,正确,所以C为必然事件;明年一年共有367天,一定不会发生,为不可能事件;故选D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.1【考点】概率公式;轴对称图形.【分析】卡片共有四张,轴对称图形有等腰三角形、钝角、线段,根据概率公式即可得到卡片上所画图形恰好是轴对称图形的概率.【解答】解:卡片中,轴对称图形有等腰三角形、钝角、线段,根据概率公式,P(轴对称图形)=.故选:C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.下列说法中不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件【考点】随机事件.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“某射击运动员射击一次,正中把靶心”属于随机事件,正确;B、“13名同学至少有两名同学的出生月份相同”属于必然事件,正确;C、在标准大气压下,当温度降到﹣1℃时,水结成冰”属于必然事件;D、“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件,正确.故选C.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.20【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:设有20元的红包x个,根据题意得: =,解得:x=16,故选C.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.7.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形;中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的图形,再根据概率公式即可得出答案.【解答】解:∵①线段②正三角形③平行四边形④菱形⑤圆中是轴对称图形又是中心对称图形的是:①线段④菱形⑤圆,共三个,∴从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是;故选C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;然后根据题意列出表格,再由表格求得所有等可能的结果与恰好是同学送的那双的情况,然后利用概率公式求解即可求得答案.【解答】解:分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;列表得:d Ad ab Bd bc Cd cd Dd ﹣D AD aB BD bD CD cD ﹣dDc Ac ac Bc bc Cc ﹣Dc dcC AC aC BC bC ﹣cC DC dCb Ab ab Bb ﹣Cb cb Db dbB AB aB ﹣bB CB cB DB dBa Aa ﹣Ba ba Ca ca Da daA ﹣aA BA bA CA cA DA dAA aB bC cD d∵共有56种等可能的结果,恰好是同学送的那双的有2种情况,∴恰好是同学送的那双的概率为: =.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题9.有五张分别写有数字0,3,﹣,,﹣1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是.【考点】概率公式.【分析】先得到在所给的5个数中比0小的数有2个,即﹣,﹣1,然后根据概率公式求解.【解答】解:因为在数字0,3,﹣,,﹣1中,比0小的数有﹣,﹣1,所以从中任抽一张,那么抽到比0小的数的概率是.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.10.“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率为: =.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.【考点】列表法与树状图法.【分析】首先此题需要两步完成,直接运用树状图法或者采用列表法,再根据列举求出所用可能数,再求出只有一次正确的情况数根据概率公式解答即可.【解答】解:列表如下:第1次A B C D第2次A BA CA DAB AB CB DBC AC BC DCD AD BD CD由表可知一共有12种情况,其中抽取的两张卡片上的算式只有一个正确的有8种,所以两张卡片上的算式只有一个正确的概率=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据旋转的性质求出阴影区域的面积即可.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故答案为:.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三辆车全部继续直行,再利用概率公式即可求得答案;【解答】解:列树状图为:三辆车经过丁字路口的情况有8种,全部向右转的情况数为1种,以全部右转的概率.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,是两个均匀的数字转盘,转盘停止转动时指针停在不同数字区域的可能性相同.分别转动两个转盘,用转盘A停止转动时指针所指的数字a作横坐标;转盘B停止转动时指针所指的数字b作纵坐标,则点(a,b)在第四象限的概率= .【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:列表得:0 1 3 ﹣20 0,0 0,1 0,3 0,﹣2﹣1 ﹣1,0 ﹣1,1 ﹣1,3 ﹣1,﹣2﹣3 ﹣3,0 ﹣3,1 ﹣3,3 ﹣3,﹣22 2,0 2,1 2,3 2,﹣2∵共有16种等可能的结果,在第四象限的有4种,∴P(第四象限)==.故答案为:.【点评】考查了列表与树形图的知识,解题的关键是能够正确的通过列表或树形图将所有等可能的结果列举出来,难度不大.三、解答题15.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有 3 种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.【考点】列表法与树状图法.【分析】(1)根据题意得出每位考生的选择方案种类即可;(2)根据列表法求出所有可能,进而得出概率即可.【解答】解:(1)根据题意得出:每位考生有3种选择方案;故答案为:3;(2)列表法是:X 1X2X3X 1(X1,X1)(X1,X2)(X1,X3)X 2(X2,X1)(X2,X2)(X2,X3)X 3(X3,X1)(X3,X2)(X3,X3)由表中得知:共有9种不同的结果,而小颖和小华将选择同种方案的结果有3种,则:小颖与小华选择同种方案的概率为P==.【点评】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=.16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.【考点】列表法与树状图法.【分析】(1)列表或树状图将所有等可能的结果列举出来即可;(2)根据列表得到所有等可能的结果,然后利用概率公式求解即可.【解答】解:(1)画树状图,如图所示:(2)所有等可能的情况有12种,其中1支为甲签、1支为丁签的情况有2种,故P(1支为甲签、1支为丁签)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有9种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的结果数为3种,所有小玲两次抽出的卡片上的字母相同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.(2+3+2=7)【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于不放回实验;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于放回实验.【解答】解:(1)∵一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,∴任取一球,共有4种不同结果,∴球上汉字刚好是“黄”的概率为:;(2)画树状图得:∵共有12种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,∴P1==;(3)画树状图得:∵共有16种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,∴P2==,∴P1>P2.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.“爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.组别原因人数A 不想改变传统风俗习惯650B 增添节日喜庆气氛300C 祈福运、求吉利、辟邪害mD 没有可替代的庆祝方式150E 为了孩子的玩耍和快乐nF 其他100请根据图表中提供的信息解答下列问题:(1)填空:m= 600 ,n= 200 ,扇形统计图中D组所占的百分比为7.5% .(2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示);(3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?【考点】扇形统计图;用样本估计总体;统计表;概率公式.【分析】(1)根据B组的人数和所占百分比,求出总人数,总人数×C组所占的百分比得到C组的人数;用D组的人数÷总人数得到D组所占的百分比;(2)计算出B组所占的百分比,根据样本估计总体,即可解答;(3)根据概率公式,即可解答.【解答】解:(1)总人数为:300÷15%=2000(人),m=2000×30%=600,n=2000﹣650﹣300﹣600﹣150﹣100=200,扇形统计图中D组所占的百分比为:150÷2000×100%=7.5%,故答案为:600,200,7.5%;(2)B组所占的百分比为:300÷2000=15%,估计其中属于B组的市民有800×15%=120(万),。

九年级数学上册第25章概率初步检测卷新版新人教版附答案

九年级数学上册第25章概率初步检测卷新版新人教版附答案

九年级数学上册第25章概率初步检测卷新版新人教版附答案(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.指出下列事件中是随机事件的个数(C )①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560°;④购买一张彩票中奖.A.0B.1C.2D.32.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为(C )A.12B.15C.310D.7103.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(C )A.点数都是偶数B.点数的和为奇数C.点数的和小于13D.点数的和小于24.红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是(A )A.红红不是胜就是输,所以红红胜的概率为12B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为13D.娜娜胜的概率和两人出相同手势的概率一样5.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是(B )A.12B.13C.14D.156.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是(C )A.16B.14C.13D.127.在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m )2+n 的顶点在坐标轴上的概率为(A )A.25B.15C.14D.128.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是(B )A.13B.23C.16D.349.如图,A ,B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是(A )A.625B.15C.425D.72510.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是(A )A.310B.320C.720D.710二、填空题(每小题4分,共24分)11.有5张大小、背面都相同的卡片,正面上的数字分别为1,-2,0,π,-3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是25.12.在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是12个.13.小明把如图所示的矩形纸板ABCD 挂在墙上,E 为AD 中点,且∠ABD =60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是18.14.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是15.15.如果任意选择一对有序整数(m ,n ),其中|m |≤1,|n |≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是17.16.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为13.三、解答题(共66分)17.(6分)不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差别,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.解:如图所示:,所有的可能有12种,符合题意的有2种,故两次均摸到红球的概率为:212=16.18.(6分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A ,B ,C 三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.解:(1)画树状图如下:由树形图可知所以可能的结果为AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ;(2)由(1)可知两人再次成为同班同学的概率=39=13.19.(6分)在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋里搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号.(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果.(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M 的横坐标,把第二次取出的小球的数字作为点M 的纵坐标,试求出点M (x ,y )落在直线y =x 上的概率是多少?解:(1)画树状图得:则小明共有16种等可能的结果;(2)由(1)中的表格知,共有16个结果,每种结果出现的可能性都相同,其中满足条件的点有(1,1),(2,2),(3,3),(4,4)落在直线y =x 上;∴点P (x ,y )落在直线y =x 上的概率是416=14.20.(8分)某校开展校园“美德少年”评选活动,共有“助人为乐”、“自强自立”、“孝老爱亲”、“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.类别,频数,频率助人为乐美德少年,a,0.20自强自立美德少年,3,b孝老爱亲美德少年,7,0.35诚实守信美德少年,6,0.32根据以上信息,解答下列问题:(1)统计表中的a =4,b =0.15;(2)统计表后两行错误的数据是最后一行数据,该数据的正确值是0.30;(3)校园小记者决定从A ,B ,C 三位“自强自立美德少年”中,随机采访两位,用画树状图或列表的方法,求A ,B 都被采访到的概率.解:∵共有6种等可能的结果,A ,B 都被选中的情况有2种,∴P (A ,B 都被采访到)=26=13.21.(8分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.解:(1)0;(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯,画树状图为:,共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率=212=16.22.(10分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.解:(1)13;(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率=59.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B 处,乙在F 处,②甲在C处,乙在E 处,所以黑色方块所构拼图是中心对称图形的概率是29.23.(10分)传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作早点:一个枣馅粽,一个肉馅粽,两个花生馅粽,四个粽子除内部馅料不同外,其它一切均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请说明理由.解:(1)16;(2)会增大.理由:分别用A ,B ,C 表示一个枣馅粽,一个肉馅粽,三个花生馅粽,画树状图得:∵共有20种等可能的结果,两个都是花生的有6种情况,∴都是花生的概率为:620=310>16;24.(12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时.(1)利用画树状图的方法,求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往我市新建经济开发区的,因此交管部门的汽车行驶高峰时段对车流量做了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310,目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.解:(1)分别用A ,B ,C 表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P (三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=7 27;(3)∵汽车向右转、向左转、直行的概率分别为25,310,310,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).。

九年级数学上册第二十五章概率初步基础过关单元测试卷含解析新版新人教版

九年级数学上册第二十五章概率初步基础过关单元测试卷含解析新版新人教版

第二十五章概率初步(基础过关)考试时间:120分钟一、选择题(每小题3分,共36分)1、下列说法正确的是().A.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B.天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C.一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【答案】D【分析】根据概率的意义对各选项进行逐一分析即可.【解析】A、投掷一枚质地均匀的硬币1000次,正面朝上的次数不一定是500次,故A错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故B错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故C错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故D正确.故选:D.【点睛】本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.2、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表抛掷次数100 200 300 400 500正面朝上的频数53 98 156 202 249若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.200 B.300 C.400 D.500【答案】D【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解析】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:D.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.3、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数100 200 300 500 800 1000 2000频率0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.【解析】A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D、抛一枚硬币,出现反面的概率为12,不符合题意,故选B.【考点】利用频率估计概率【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.4、将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A.24 B.26 C.0.24 D.0.26【答案】C.【解析】根据表格中的数据,得:第4组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.故选C.【考点】1.频数与频率;2.图表型.5、在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.116B.316C.14D.516【答案】C【解析】画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:41=164.【考点】两步事件放回;用树状图或列举法求概率.6、如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F 在边CD上,向平行四边形ABCD内部投掷飞镖(每次均落在平行四边形ABCD内,且落在平行四边形ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12B.13C.14D.18【答案】C.【解析】∵四边形ABCD为平行四边形,∴△OEH和△OFG关于点O中心对称,∴S△OEH=S△OFG,∴S阴影部分=S△AOB=14S平行四边形ABCD,∴飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率=ABCDSS阴影部分平行四边形=14.故选C.【考点】1.几何概率;2.平行四边形的性质.7、下列说法正确的是( )A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个六边形,它的内角和等于540︒”是必然事件D.从1,2,3,4中任取2个不同的数,分别记为a和b,那么2219a b+>的概率是1 3【答案】D【分析】根据必然事件、不可能事件、随机事件以及画出树状图求概率即可解答.【解析】A. “购买1张彩票就中奖”是随机事件,故选项A不满足题意;B. “概率为0.0001的事件”是随机事件,故选项B不满足题意;C. 任意画一个六边形,它的内角和等于720°,则任意画一个六边形的内角和等于540︒是不可能事件,故选项C不满足题意;D.根据题意画出树状图如下:∴共有12种等可能的结果,任取两个不同的数,a2+b2>19的有4种结果∴a2+b2 > 19的概率是41123=,故选项D满足题意.【点睛】本题考查了必然事件、不可能事件、随机事件以及画出树状图求概率,画出树状图求概率既是解答本题的关键,也是解答本题的难点.8、在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16 B.18 C.20 D.22【答案】A【解析】根据题意,通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,可知摸到盒子中黑色球的概率为1-45%-15%=40%,由此可求得盒子中黑色球的个数为40×40%=16.故选A .【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.9、将一枚质地均匀的骰子连续投掷两次,记投掷两次的正面数字之和为S ,则下面关于事件S 发生的概率()P S 说法错误的是( ) A .(5)(9)P S P S === B .1(6)6P S ==C .5(8)36P S == D .15(7)36P S <=【答案】B【分析】用列表法或树状图法求出相应事件发生的概率,再进行判断即可. 【解析】投掷质地均匀的骰子两次,正面数字之和所有可能出现的结果如下:共有36种结果,其中和为5的有4种,和为9的有4种,和为6的有5种,和为8的有5种,和小于7的有15种,∴41(5)(9)369P S P S =====,因此选项A 不符合题意; 51(6)366P S ==≠,因此选项B 符合题意;5(8)36P S ==,因此选项C 不符合题意;15(7)36P S <=,因此选项D 不符合题意;故选:B . 【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,使用此方法一定要注意每一种结果出现的可能性是均等的,即为等可能事件.10、“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.29【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11、我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图,若2a=,3b=,现随机向该图形内掷一枚小针,则针尖落在阴影区域内的概率().A.25B.12C.13D.14【答案】B【分析】设小正方形的边长为x,根据已知条件得到AB=2+3=5,根据勾股定理列方程求得x=1,x=﹣6(不合题意舍去),根据三角形的面积公式即可得到结论.【解析】设小正方形的边长为x,∵a=2,b=3,∴AB=2+3=5,在Rt△ABC中,AC2+BC2=AB2,即(2+x)2+(x+3)2=52,解得:x=1,x=﹣6(不合题意舍去),∴S△ABC=×3×4=6,S阴影=×3×1×2=3,∴针尖落在阴影域内的概率=3162,故答案为:B【考点】1.几何概率;2.勾股定理.12.阅读对话,解答问题:分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(a,b)的所有取值中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率为().A.25B.14C.13D.12【答案】B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与在(a,b)的所有取值中使关于x的一元二次方程ax2﹣ax+2b=0有实数根的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:则共有12种等可能的结果,∵当a2﹣8b≥0时,关于x的一元二次方程x2﹣ax+2b=0有实数根,∴关于x的一元二次方程x2﹣ax+2b=0有实数根的有:(4,1),(4,2),(3,1),∴使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率为:.故答案为:B.二、填空题(每小题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,圆O是Rt△ABC的外接圆,如果在圆O内随意抛一粒小麦,则小麦落在△ABC内的概率为.【答案】2425π.【分析】分别计算出△ABC和⊙O的面积,由小麦落在△ABC内的概率即两者的面积比可得答案.【解答】解:∵∠C=90°,AB=10,AC=8,∴BC===6,∴S△ABC=12AC•BC=12×6×8=24,∵S⊙O=π•(102)2=25π,∴小麦落在△ABC内的概率为ABCOSS∆圆=2425π,故答案为:2425π.【点评】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.14、某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是_______.【答案】4 9【解析】根据题意可知可抽到的结果为:79,88;79,79;79,90;86,88;86,79;86,90;82,88;82,79;82,90;共9种可能,符合都大于80的可能为4中,所以抽到两个人的成绩都大于80的概率为49.【点睛】此题主要考查了概率的求法,解题关键是根据列举或列树状图的方法得到所有出现的可能,从中确定符合条件的可能,然后根据概率的求法求解即可.15、在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是.【答案】6【分析】直接利用摸到黄色乒乓球的概率为38,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,∴该盒子中装有黄色乒乓球的个数是:16×38=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.16、同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17、如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【答案】5 13.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解析】如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:5 13.故答案为:5 13.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.18、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则三辆汽车经过这个十字路口时,至少有两辆车向左转的概率为_______.【答案】7 27【分析】运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可.. 【解析】如图:三辆车经过十字路口的情况有27种,至少有两辆车向左转的情况数为7种,所以概率为:727.故答案为727.【点睛】本题考查的是运用树状图求概率的公式,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.三、解答题(共40分)19、(6分)在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n很大时,摸到白球的概率将会接近(精确到0.01),假如你摸一次,你摸到白球的概率为;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为, 需要往盒子里再放入多少个白球?【解析】(1)根据题意得:当n很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个;(3)设需要往盒子里再放入x个白球;根据题意得:=,解得:x=10;答:需要往盒子里再放入10个白球.【考点】考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.20、(8分)光明中学为了解九年级女同学的体育考试准备情况,随机抽取部分女同学进行了800米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有400名女生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会800米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.请用列表或树状图求甲、乙两人恰好分在同一组的概率是多少?【答案】(1)见解析;(2)120;(3)见解析,1 3【分析】(1)利用良好的人数除以良好的人数所占的百分比可得抽查的人数,然后计算出合格的人数和合格人数所占百分比,再计算出优秀人数,然后画图即可;(2)计算出成绩未达到良好女生所占比例,再利用样本代表总体的方法得出答案;(3)直接利用树状图法求出所有可能,进而求出概率.【解析】(1)从图可以得到抽取到良好的有16人,所占百分比为:40%,∴抽取的学生数:16÷40%=40(人);∴抽取的学生中合格的人数:40﹣12﹣16﹣2=10,合格所占百分比:10÷40=25%, 优秀人数:12÷40=30%,如图所示:;(2)成绩未达到良好的女生所占比例为:25%+5%=30%,所以400名九年级女生中有400×30%=120(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙恰好分在同一组的概率为39=13.【点睛】本题主要考查了树状图法求概率以及扇形统计图和条形统计图的应用,由图形获取正确信息是解题关键.21、(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【答案】(1)公平;(2)不公平.【分析】:(1)用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可;(2)用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.【解析】(1)甲同学的方案公平.理由如下:列表法,小刚小明2 3 4 52 (2,2)(2,3)(2,4)(2,5)3 (3,2)(3,3)(3,4)(3,5)4 (4,2)(4,3)(4,4)(4,5)5 (5,2)(5,3)(5,4)(5,5)所有可能出现的结果共有16种,其中抽出的牌面上的数字之和为偶数的有:8种,故小明获胜的概率为:12,则小刚获胜的概率为:12,故此游戏两人获胜的概率相同,即他们的游戏规则公平;(2)不公平.理由如下:所有可能出现的结果共有9种,其中抽出的牌面上的数字之和为偶数的有:5种,故小明获胜的概率为:59,则小刚获胜的概率为:49,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【考点】1.游戏公平性;2.列表法与树状图法.22、(8分)钟南山院士在谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区6070x7080x<8090x<90100x<甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a= , b= ;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传新型冠状病毒肺炎防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.解:(1)填空:a= 82.5 , b= 90 ;(2)41200=24020⨯(人)(人),乙小区成绩大于90分的人数为240人(3)因为从试卷得分的平均数,中位数,众数来看都是甲小区的试卷分数大于乙小区的试卷分数所以甲小区的居民对新型冠状病毒肺炎防护知识掌握更好些。

2018-2019学年度人教版数学九年级上册第25章《概率初步》单元测试卷含答案

2018-2019学年度人教版数学九年级上册第25章《概率初步》单元测试卷含答案

2018-2019学年度人教版数学九年级上册 第25章《概率初步》单元测试卷含答案(考试时间:120分钟 满分:120分)一、选择题(每小题3分,总计36分。

请将唯一正确答案的字母填写在表格内)1.下列事件中是随机事件的有( )①早晨的太阳一定从东方升起 ②打开数学课本时刚好翻到第60页 ③从一定高度落下的图钉,落地后钉尖朝上 ④小红经过十字路口时,遇到红灯A .1个B .2个C .3个D .4个2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件必然发生的是( )A .摸出的4个球中至少有一个是白球B .摸出的4个球中至少有一个是黑球C .摸出的4个球中至少有两个是黑球D .摸出的4个球中至少有两个是白球3.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )A.14B.13C.12D.234.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A.17B.37C.47D.575.小明在做一道正确答案是2的计算题时,由于运算符号(“+”“-”“×”或“÷”)被墨迹污染,看见的算式是“4■2”,那么小明还能做对的概率是( )A.14B.13C.16D.126.某校举行春季运动会,需要在七年级选取一名志愿者,七(1)班、七(2)班、七(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是七(3)班同学的概率是( )A.16B.13C.12D.237.已知一个布袋里装有2个从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .48.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.129.一只不透明的袋子中有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.3410.在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y =x -2图象上的概率是( )A.12B.13C.14D.1611.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.1512.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么推算出n 大约是( )A .6B .10C .18D .20第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.(盐城中考)如图所示是一个飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在灰色区域的概率是____.第13题图 第15题图14.某校九(2)班在体育考试中全班所有学生的得分情况如表所示:从九(2)班的学生中随机抽取一人,恰好是获得30分的学生的概率是__ _.15.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__ _.16.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不到的情况下随机摸出两只袜子,它们恰好同色的概率是__ _.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是__ _.18. 在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:__ __三、解答题(本大题共8小题,共66分)19.(5分)下列事件中,哪些事件是必然事件,哪些事件是不可能事件,哪些事件是随机事件?(1)中秋节晚上一定能看到月亮;(2)各边相等的多边形是正多边形;(3)在面值为1元、2元、5元的三张人民币中任取两张,面值的和小于8元;(4)买一张彩票,末位数字是8;(5)从装有2个红球和3个黄球的袋子中摸出一个白球.20.(6分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.21.(8分)如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是0”发生的概率;(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.22.(8分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山居民(记为C)、李庄古镇(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为________;(2)用画树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.23.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是____;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.24.(10分)如图的方格地面上,标有编号A,B,C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?25.(10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排和第三排灯的概率.26.(11分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下表中部分数据:(1)将数据表补充完整;(2)从上表中可以估计出现方块的概率是________(精确到0.01);(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表法或画树状图法)加以分析说明.参考答案13.12. 14.58. 15.13. 16.13. 17.14. 18.40三、 解答题(本大题共8小题,共66分)19.(3)是必然事件,(1)(2)(4)是随机事件,(5)是不可能事件.20.(1)14;(2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2,经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2.21.(1)P (所指的数为0)=13;(2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)列表或画树状图略.P (所指两数的绝对值相等)=59.22.(1)14;(2)画树状图如下:根据树状图可知,共有16种等可能的结果,其中小明和小华都选择去兴文石海旅游的结果有1种,所以P (小明和小华都选择去兴文石海)=116. 23.(1)12(2)解:乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有(男,男),(男,女),(女,男),(女,女),共有4种,它们出现的可能性相同,所有的结果中,满足“至少一个孩子是女孩”(记为事件A )的结果有3种,所有P (A )=34.24.解:(1)P (小鸟落在草坪上)=69=23.(2)由列表可知,共有6种等可能结果,编号为A ,B 的2个小方格空地种植草坪有2种,所以P (编号为A ,B 的2个小方格空地种植草坪)=26=13.25.解:用A 1,A 2,A 3,A 4分别表示第一排,第二排,第三排,第四排日光灯,列表如图所示.∴共有12种情况,其中满足条件的有两种(A 3,A 1)(A 1,A 3), ∴P (关掉第一排和第三排)=212=16. 26. 解:(1)30;0.250;(2)0.25;(3)列表如下.所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,∴P (甲方赢)=29,P (乙方赢)=39=13,∴P (乙方赢)≠P (甲方赢),∴这个游戏对双方是不公平的,红球,3个白球和a 个黄球,这些球除颜色外其余都相同.。

(完整版)2018人教版九年级数学上《第25章概率初步》单元测试含答案

(完整版)2018人教版九年级数学上《第25章概率初步》单元测试含答案

第二十五章概率初步单元测试一、单选题(共10题;共30分)1、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是A、 B、C、D、2、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A、 B、C、D、3、如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A、 B、C、D、4、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A、 B、C、D、5、下列模拟掷硬币的实验不正确的是()A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上6、明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A、B、C、D、7、历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A、“正面向上”必会出现5次B、“反面向上”必会出现5次C、“正面向上”可能不出现D、“正面向上”与“反面向上”出现的次数必定一样,但不一定是5次8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A、100个B、90个C、80个D、70个9、小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A、 B、C、D、10、一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A、B、C、D、二、填空题(共8题;共24分)11、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________ .12、在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是________ .13、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.14、有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .15、一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为________16、在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________17、流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为________.18、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为________.三、解答题(共6题;共46分)19、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20、不透明的盒中装有红、黄、蓝三种颜色的小球若干个(除颜色外均相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,是蓝球的概率为.(1)求盒中黄球的个数;(2)第一次任意摸出一个球放回后,第二次再任意摸一个球,请用列表或树状图,求两次都摸出红球的概率.21、如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.22、如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?23、一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.24、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(Ⅰ)用列表或画树状图的方法写出点Q的所有可能坐标;(Ⅱ)求点Q落在抛物线y=x2-2x-1上的概率.答案解析一、单选题1、【答案】 D【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与所有情况数的比.由题意得摸到白球的概率是,故选D.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.2、【答案】 B【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵书包里有数学书3本,英语书2本,语文书5本,共10本书,∴从中任意抽取一本,是数学书的概率是.故选B.3、【答案】 B【考点】概率公式【解析】【分析】先求出转盘上所有的偶数,再根据概率公式解答即可.∵在1,3,4,5,6,7,8,9中,偶数有4,6,8,∴转动转盘一次,指针指向的数字为偶数所在区域的概率=.故选B.4、【答案】 B【考点】概率公式【解析】【解答】∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.【分析】由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.【考点】模拟实验【解析】【解答】A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意.故选:D.【分析】利用模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,进而分析得出即可.6、【答案】C【考点】可能性的大小【解析】【解答】解:∵明明的相册里放了大小相同的照片共32张,其中与同学合影8张,∴她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是:=.故选;C.【分析】利用与同学合影的照片数量除以相片总数,即可得出答案.7、【答案】C【考点】利用频率估计概率【解析】【解答】解:A、“正面向上”不一定会出现5次,故本选项错误;B、“反面向上”不一定会出现5次,故本选项错误;C、“正面向上”可能不出现,只是几率不太大,故本选项正确;D、“正面向上”与“反面向上”出现的次数可能不一样,故本选项错误;故选C.【分析】利用频率估计概率时,只有做大量试验,才能用频率会计概率,但少数实验不能确定一定会出现和概率相符的结果.8、【答案】 D【考点】利用频率估计概率【解析】【解答】解:球的总数是:10÷=80(个),则红球的个数是:80﹣10=70(个).故选D.【分析】小亮共摸了1000次,其中有125次摸到白球,则白球所占的比例是,据此即可求得球的总数,进而求解.【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有9种等可能的结果数,其中小茜上、下午都选中球类运动的结果数为1,所以小茜上、下午都选中球类运动的概率= .故选A.【分析】画树状图展示所有9种等可能的结果数,再找出小茜上、下午都选中球类运动的结果数,然后根据概率公式计算.10、【答案】B【考点】概率公式【解析】【解答】解:∵个不透明的布袋里装有6个黑球和3个白球,∴中任意摸出一个球,是白球的概率= = .故选B.【分析】直接根据概率公式即可得出结论.二、填空题11、【答案】【考点】列表法与树状图法【解析】【解答】设三张风景图片分别剪成相同的两片为:A1, A2, B1, B2, C1, C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.【分析】把三张风景图片剪成相同的两片后用A1, A2, B1, B2, C1, C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.12、【答案】【考点】利用频率估计概率【解析】【解答】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即.故答案为:.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.13、【答案】【考点】概率公式【解析】【解答】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:.【分析】求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.14、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有12种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为4,所以两次都为红桃,并且数字之和不小于8的概率==.故答案为.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.15、【答案】 8【考点】利用频率估计概率【解析】【解答】解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,故答案为:8.【分析】首先根据黑球数÷总数=摸出黑球的概率,再计算出摸出白球,黑球,红球的概率可得答案.16、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率==,故答案为:.【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.17、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.18、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.三、解答题19、【答案】此游戏不公平.理由如下:列树状图如下,列表如下,<img style="vertical-align:middle;"src=/97/21/97721dbd27213200cd2440eb37ed9372.png color:blue;">【考点】列表法与树状图法,游戏公平性【解析】【解答】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等。

K12推荐学习(武汉专版)2018年秋九年级数学上册 第25章 概率初步检测题 (新版)新人教版

K12推荐学习(武汉专版)2018年秋九年级数学上册 第25章 概率初步检测题 (新版)新人教版

第25章单元检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1. (2018·武汉元调)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖.则( C )A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件2.下列说法正确的是( D )A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次3.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( C )A.12B.23C.25D.354.从1,2,3,4,5,6,7,8,9这九个自然数中任取一个,是2的倍数的概率为P1,是3的倍数的概率为P2,则( B )A.P1<P2 B.P1>P2 C.P1=P2 D.不能确定5.(株洲中考)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( D )A.19B.16C.14D.126.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上分别标有数字1,2,3,4,5,6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( C )A.13B.16C.19D.1127.已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( D )A.34B.23C.916D.128.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( C )A.10粒 B.160粒 C.450粒 D.500粒9.如图,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚( A )A .公平B .对小明有利C .对小刚有利D .不可预测10.已知一次函数y =kx +b ,现分别从装有1,-2两张数字卡片的甲口袋和装有-1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k ,乙口袋的卡片上的数字作b ,则该一次函数的图象经过第一、二、四象限的概率是( D )A.12B.14C.15D.13二、填空题(每小题3分,共18分)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为________.12________. 13.同时掷两个质地均匀的正方体骰子,这两个骰子的点数相同的概率是________. 14.(2018·武汉元调)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是________.15.在一个不透明的布袋里放4个白球和m 个黄球,它们除颜色不同外,其余均相同.从中随机摸一球,摸到黄球的概率是0.8.则m =__16__.16.如图,两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字.同时自由转动两个转盘,转盘停止后,指针都落在偶数上的概率是________.三、解答题(共72分)17.(8分)如图是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:①指针指向绿色;②指针指向红色或黄色;③指针不指向红色.【解析】转盘分成8个相同的图形,即共有8种等可能的结果.①∵绿色的有3部分,∴P (指针指向绿色)=38;②∵红色或黄色的共有5部分,∴P (指针指向红色或黄色)=58;③∵不指向红色的,即绿色或黄色的共有6部分,∴P (指针不指向红色)=68=34.18.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,7个黑球,8个红球.(1)求从袋中摸出的一个球是黄球的概率;(2)现从袋中取出若干个红球,搅匀后,使从袋中摸出一个球是红球的概率是13,求从袋中取出红球的个数.【解析】(1)从袋中摸出一个球是黄球的概率为520=14.(2)设从袋中取出x 个红球,8-x 20-x=13,解得x =2,经检验,x =2是原分式方程的解,∴从袋中取出红球的个数为2个.19.(8分)甲、乙两人都握有分别标记为A ,B ,C 的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A 胜B ,B 胜C ,C 胜A ;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果; (2)求出现平局的概率.【解析】(1)画图或列表略,共有9种等可能的结果.(2)∵出现平局的有3种情况,∴P =39=13.20.(8分)在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“武”、“汉”的文字.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是写有“美丽”二字的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球.求两次摸出的球上写有“武汉”二字的概率.【解析】(1)所有等可能的情况有16种,∴P (美丽)=216=18. (2)所有等可能的情况有12种,∴P (武汉)=212=16.21.(8分)小明和小亮两位同学做投掷骰子(质地均匀的正方体)试验,他们共做了100次试验,试验的结果如下:(1)计算“2点朝上”的频率和“4点朝上”的频率.(2)小明说:“根据试验,一次试验中出现3点朝上的概率最大”.小亮说:“如果投掷1000次,那么出现5点朝上的次数正好是200次.”小明和小亮的说法正确吗?为什么?(3)小明投掷一枚骰子,计算小明投掷点数不小于3的概率.【解析】(1)“2点朝上”的频率为15100=0.15;“4点朝上”的频率为16100=0.16. (2)小明的说法错误;因为只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小亮的判断是错误的;因为事件发生具有随机性;(3)P (不小于3)=46=23.22.(10分)在一个不透明的盒子里,装有四个分别标有数字-2,-1,1,4的小球,它们的形状、大小、质地等完全相同,小强先从盒子里随机取出一个小球,记下数字为a ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为b.(1)用列表法或画树状图法表示出(a ,b)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(a ,b)落在二次函数y =x 2的图象上的概率; (3)求小强、小华各取一次小球所确定的数a ,b 满足直线y =ax +b 经过第一、二、三象限的概率.【解析】(1)画树状图如下:共有16种等可能的结果.(2)落在二次函数y =x 2的图象上的点有(-2,4),(-1,1),(1,1),所以落在二次函数y =x 2的图象上的概率=316.(3)满足直线y =ax +b 经过一、二、三象限的点有(1,1),(1,4),(4,1),(4,4),所以满足直线y =ax +b 经过一、二、三象限的概率=416=14.23.(10分)近年来,各地广场舞噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对广场舞噪音干扰的态度有以下五种:A :没影响;B :影响不大;C :有影响,建议做无声运动;D :影响很大,建议取缔;E :不关心这个问题.将调查结果统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m =__32__,态度为C 所对应的圆心角的度数为__115.2°__; (2)补全条形统计图;(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B 的市民人数;(4)若在这次调查的市民中,从态度为A 的市民中抽取一人的年龄恰好在年龄段15~35岁的概率是多少?【解析】(1)m =100-10-5-20-33=32;态度为C 所对应的圆心角的度数为:32%×360=115.2°.(2)500×20%-15-35-20-5=25(人),图略.(3)估计该地区对“广场舞”噪音干扰的态度为B 的市民人数为:20×33%=6.6(万人).(4)从态度为A 的市民中抽取一人的年龄恰好在年龄段15~35岁的概率是:15+2515+25+35+20+5=25.24.(12分)商场举办一次迎亚运抽大奖的活动,将五张亚运吉祥物的图片都平均分成上、下两段,制成十张同样大小的卡片,然后将上、下两段分别混合均匀,放入两只密闭的盒子里,由顾客从两个盒子中各随机抽取一张,若两张卡片刚好拼成一个吉祥物的图案,即可获得奖品.(1)请用树状图或列表法求出顾客抽取一次获得奖品的概率;(2)为增强活动的趣味性,商场在两个盒子中分别放入同样多的空白卡片若干张.小明的概率附近,试估计抽取一次出现“至少一张空白卡片”的概率(精确到0.01);(3)设商场在两个盒子中分别放入的空白卡片x 张,根据(2),求出x 的值.【解析】(1)设第一个盒子,五张卡片分别为A ,B ,C ,D ,E ,第二个盒子,五张卡片分别为:a ,b ,c ,d ,e ,∴得到Aa ,Bb ,Cc ,Dd ,Ee 一共有5种情况,所有的可能为25种,∴P (至少一张空白卡片)=15.(2)根据表格可知:“至少一张空白卡片”的概率为:0.75.(3)根据题意知:第一个盒子共有(5+x )张卡,第二个盒子共有(5+x )张卡,则共有(5+x )2种可能性,“至少一张空白卡片”共有x (10+x )种可能性,则x (10+x )(x +5)2=0.75,解得x 1=5,x 2=-15(不合题意,舍去).经检验,x =5是原方程的根,∴x 的值为5.。

人教版九年级上册(新)第25章《概率初步》全章试题含答案

人教版九年级上册(新)第25章《概率初步》全章试题含答案

人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。

人教版初中数学九年级上册《第25章 概率初步》单元测试卷(含答案解析

人教版初中数学九年级上册《第25章 概率初步》单元测试卷(含答案解析

人教新版九年级上学期《第25章概率初步》单元测试卷一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.32.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.483.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.18.艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.19.某校对初三500名学生体育进行坐位体前屈测试,根据男生及女生的成绩整理绘制成如下不完整的统计图,请根据统计图提供的信息,回答下列问题:(1)男生有人,女生有人;扇形统计图中a=,b=,并补全条形统计图;(2)求图①中“8分a%”所对应的扇形圆心角的度数;(3)若该校学生中随机抽取一名男生,则这名男生的坐位体前屈测试成绩为10分的概率是多少?20.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,求这两个小球的号码之和大于4的概率.21.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).22.如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.在一个口袋中有3个完全相同的小球,把它们分别标上数字:﹣1,1,2,随机的摸出一个小球记录数字然后放回,再随机的摸出一个小球记录数字,求“两次都是正数”的概率.24.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.小明和小华从甲、乙两口袋中分别随机地摸出一个小球,若2个数字的乘积为偶数,就算小明赢,否则就算小华赢.请判断这个游戏是否公平,并用概率知识说明理由.人教新版九年级上学期《第25章概率初步》单元测试卷参考答案与试题解析一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.3【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.48【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【解答】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选:B.【点评】考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.3.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.【分析】直接利用概率公式计算.【解答】解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨【分析】根据概率的意义找到正确选项即可.【解答】解:本市降雨的概率是90%,是说明天下雨发生的可能性很大,但不一定就一定会发生.所以只有D合题意.故选:D.【点评】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.【分析】列举出所有情况,看直角三角形的情况数占总情况数的多少即可.【解答】解:4条线段的全部组合有:3,4,5和3,4,6和3,5,6和4,5,6.能构成直角三角形的是3,4,5一组,∴P(构成三角三角形)=,故答案为:.【点评】本题主要考查概率公式的应用,解题的关键是熟练掌握三角形三边间的关系、勾股定理逆定理及概率公式的运用.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.【分析】根据题意分析可得:3个数字两辆相加有3种情况,其中有1种情况可使牌面上两数和为0,故其概率是.【解答】解:一共有3种情况,这个两位数是0的有1种情况;∴P(两数和为0)=.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.【分析】根据概率公式可得答案.【解答】解:由表可知,当天上午九年级的课表中听一节课有16种等可能结果,其中听数学课的有3种可能,∴听数学课的可能性是,故答案为:.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25人,扇形统计图中短跑项目所对应圆心角的度数为72°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.【分析】(1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比例,即可得出参加复选的学生总人数;用短跑项目的人数除以总人数得到短跑项目所占百分比,再乘以360°即可求出短跑项目所对应圆心角的度数;(2)先求出长跑项目的人数,减去女生人数,得出长跑项目的男生人数,根据总人数为25求出跳高项目的女生人数,进而补全条形统计图;(3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.【点评】此题主要考查了概率公式,扇形统计图以及条形统计图,利用已知图形得出正确信息是解题关键.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?【分析】(1)全班共有50名学生,共有12名学生获奖,让获奖总人数除以学生总数即为能获得荣誉的机会;(2)全班共有50名学生,共有7名学生当选三好生、模范生,让当选三好生、模范生的总人数除以学生总数即为能当选三好生、模范生的机会;(3)利用(1)(2)的计算过程可得后四项为必须数据;(4)可以利用50个不同颜色的球来模拟实验.【解答】解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.【点评】概率等于所求情况数与总情况数之比;注意理解可以用一个班的获奖情况来估计整个学校的学生获奖情况;模拟实验需在等可能的情况下进行模拟,一般采用摸球法.11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?【分析】(1)由m=24,摸到黑球的概率不少于,根据题意可得≥,继而求得答案;(2)由若m=,摸到白种球概率的最大,可得==,则可求得x的值,继而求得答案.【解答】解:(1)∵口袋中有三个颜色的球共m个,其中白球x+3个,红球2x 个,m=24,∴黑球有:24﹣(x+3)﹣2x=21﹣3x,∵摸到黑球的概率不少于,∴≥,解得:x≤3,∴口袋中的红球的个数最多6个;(2)∵m=,白球x+3,∴摸到白种球概率为:==,∴当x=2时,摸到白种球概率的最大,∴m=10,白球5个,红球4个,∴袋中黑球有:10﹣5﹣4=1(个);∴若m=,当摸到白种球概率的最大时,袋中黑球有1个.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.【分析】(1)2次实验,每次实验都有3种情况,列举出所有情况即可;(2)看两人摸到的球的颜色相同的情况占所有情况的多少即可求得小明赢的概率,进而求得小英赢的概率,比较即可.【解答】解:(1)根据题意,画出树状图如下:或列表格如下:所以,游戏中所有可能出现的结果有以下9种:红1红1,红1红2,红1黄,红红1,2红2红2,红2黄,黄红1,黄红2,黄黄,这些结果出现的可能性是相等的;(2)这个游戏对双方不公平.理由如下:由(1)可知,一次游戏有9种等可能的结果,其中两人摸到的球颜色相同的结果有5种,两人摸到的球颜色不同的结果有4种.∴P(小英赢)=,P(小明赢)=,∵P(小英赢)≠P(小明赢),∴这个游戏对双方不公平.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由【分析】(1)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;(2)画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解可得.【解答】解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.【分析】分别求得时间A和事件B的概率后即可确定P(B)=+P(A)是否成立.【解答】解:等式P(B)=+P(A)不成立,理由:列表得:共9种等可能的结果,其中为2的倍数的有5种,为2或3的倍数的有7种,故P(A)=,P(B)=,故P(B)=+P(A)不成立.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.【分析】首相根据题意画出树状图,然后由树状图求得所有等可能的结果与白色上衣配米色裤子的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵所有等可能结果共6种,其中正好是白色上衣配米色裤子的只有1种,∴所求概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)所有可能的情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的,=.所以,P(积为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.【分析】(1)利用概率的求解方法,借助于方程求解即可;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验.【解答】解:(1)设袋中黄球的个数为x个,=∴x=1∴袋中黄球的个数为1个;(2分)(2)方法一、列表如下:(6分)∴一共有12种情况,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:.(8分)方法二,画树状图如下:。

九年级数学上册第25章概率初步章节同步检测含解析新版新人教版

九年级数学上册第25章概率初步章节同步检测含解析新版新人教版

第25章一、单选题(共36分)1.(本题3分)一个密闭不透明的盒子里有若干个白球,在不允许将球倒出的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球200次,其中16次摸到黑球,估计盒中大约有白球的个数为( )A.30个B.92个C.84个D.76个2.(本题3分)小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A.13B.16C.19D.1273.(本题3分)在单词“APPLE”中随机选择一个字母,选择到的字母是“P”的概率是( )A.14B.15C.25D.354.(本题3分)如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次, 当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A.16B.15C.13D.125.(本题3分)做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A.0.22 B.0.42 C.0.50 D.0.586.(本题3分)某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是( )A.15B.16C.19D.1107.(本题3分)盒中装有4只白球5只黑球,从中任取一只球,取出的球是白球的概率是()A.520B.59C.420D.498.(本题3分)如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.139.(本题3分)从长为10cm,7cm,5cm,3cm的四条线段中任选三条,能构成三角形的概率是()A.12B.13C.14D.3410.(本题3分)以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6 B.多边形的内角和是360C.二次函数的图象不过原点D.半径为2的圆的周长是4π11.(本题3分)下列事件:①在一次数学测试中,小明考了满分;②经过有交通信号灯的路口,遇到红灯;③抛掷两枚正方体骰子,朝上的点数和大于1;④度量任一三角形,其外角和都是180°.其中必然事件是( )A.①B.②C.③D.④12.(本题3分)在一个袋中有4个黑球和若干个白球,每个球除染色外其余相同,摇匀后随机摸出一个球并记下颜色后放回,摇匀后再摸一个球,记下颜色后再放回……,依次不断重复上述摸球过程,当摸了100次后,发现其中有20次摸到的是黑球,请你根据所学知识估计袋中白球的数量约为()A.12 B.16 C.20 D.30二、填空题(共18分)13.(本题3分)一个不透明的袋子中有2个白球和3个黑球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是白球的概率是_____.14.(本题3分)一个不透明的盒子中装有4张卡片,这4张卡片的正面分别画有等腰三角形,线段,圆和三角形,这些卡片除图形外都相同,将卡片搅匀.从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是_____.15.(本题3分)将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是_____.16.(本题3分)四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是________.17.(本题3分)一个暗箱里放有a个白球和3个红球,白球的概率是34,球的总个数是_______.18.(本题3分)如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是_____.三、解答题(共66分)19.(本题8分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?20.(本题8分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.21.(本题8分)小明,小亮都想去观看电影,但是只有一张电影票,他们决定采取抽卡片的办法确定谁去,规定如下:将正面分别标有数字1,2,3的三张卡片(除数字外其余都同)洗匀后背面朝上放置在桌面上,随机抽出一张记下数字后放回,重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字,如果两个数字的积为奇数,则小明去;如果两个数字的积为偶数,则小亮去.(1)请用列表或树状图的方法表示抽出的两张卡片上的数字积的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.22.(本题8分)有两组牌,每组牌都是4张,牌面数字分别是1,2,3,4,从每组牌中任取一张,求抽取的两张牌的数字之和等于5的概率,并画出树状图.23.(本题8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.24.(本题8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.(本题9分)一只不透明的袋子中装有a个白球,b个黄球和10个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出一个球,摸到红球的概率是40%.(1)当a=8时,求摸到白球的概率;(2)若摸到黄球的概率是摸到白球的两倍,求a,b的值.26.(本题9分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图(图1)的信息回答下列问题:(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是_________小时;(2)请你补全条形统计图,在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_________;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?(4)若学校选取A、B、C、D四人参加阅读比赛,两人一组分为两组,求A与C是一组的概率,(列表或树状图)参考答案1.B【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式可求出白球的个数,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:设盒子里有白球x 个, 根据=黑球个数摸到黑球的次数黑白球总数摸球总次数得: 816x+8200= 解得:x=92.经检验得x=92是方程的解.故选B.【点睛】本题主要考查利用频率估计概率的知识,利用频率估计概率有以下条件及方法:(1)当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率;(2)当试验次数足够大时,试验频率稳定于理论概率.2.B【解析】【分析】根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,结合概率的计算公式可得答案.【详解】解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.【点睛】本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.3.C【解析】【分析】由单词“APPLE” 中有2个p, 直接利用概率公式求解即可求得答案.【详解】解:单词“ APPLE” 中有2个p,∴从单词“ APPLE” 中随机抽取一个字母为p的概率为:25故选:C.【点睛】本题主要考查概率的定义.4.C【解析】【分析】认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的应用, 据此计算后选择求解.【详解】解:转盘被等分成红、白二个扇形,且红色区域的圆心角为120o , 指针落在红色区域的概率是P=120360o o =13故选C.【点睛】解决这个问题的关键之处在于认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的定义和公式的运用, 据此计算后求解.5.B【解析】【分析】在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42, 故选B .【点睛】本题考察概率的相关知识.在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.6.D【解析】【分析】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n ,由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求【详解】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是1 10,故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握简单的概率求解方法.7.D【解析】【分析】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:根据题意可得:一袋中装有4个白球,4个黑球,共9个,任意摸出1个,摸到白球的概率是49故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握概率公式概率P(A)=mn..8.D【解析】【分析】列出事件的出现次数的树状图,用概率公式求解即可.解:为方便起见, 我们将3件上装和3件裤子从1 至 3 编号. 根据题意, 所有可能的结果如下图所示, 且各种结果发生的可能性相同.所有可能的结果总数为n=3⨯3=9,它们取自同一套的可能的结果总数为m=3 .所以P=31 93 =,故选D.【点睛】本题复习简单事件的概率计算,事件的出现次数可以用画树状图法求出,也可以用列表法求出,注意要不重不漏.9.A【解析】【分析】列举出所有情况,用能组成三角形的情况数除以总情况数即为所求的概率.【详解】共有10、7、5;10、7、3;10、5、3;7、3、5;共4种情况,其中10、7、3;10、5、3这两种情况不能组成三角形,所以P(任取三条,能构成三角形)=21 42 =,故选A.【点睛】本题考查了三角形三边关系,简单的概率计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 10.D【解析】【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误; 二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确.故选D .【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.11.C【解析】【分析】必然事件的发生率为100%,所以一定发生的为必然事件.【详解】解:1,2,4为可能事件,3为一定事件,两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了必然事件的定义,熟悉掌握概念是解决本题的关键.12.B【解析】【分析】一共摸了100次,其中有20次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【详解】∵共摸了100次,其中20次摸到黑球,∴有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,∴口袋中黑球和白球个数之比为1:4,14164÷=(个).故选B.【点睛】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.25,【解析】【分析】等可能事件中每件事发生的概率是相等的,为1n,本题n=5,,一共有两个白球,因此为25.【详解】∵一个不透明的袋子中装有2个白球和3个黑球,共有5个球,∴从袋子中随机摸出一个球,摸出的球是白球的概率是:25.故答案为25.【点睛】本题考查了等可能事件的概率公式,等可能时间每件事发生的概率都是1n,其中n是样本总量,本题是统计与概率部分的简单题型.14.3 4【解析】【分析】等腰三角形、线段、圆是轴对称图形,等可能概型中取到每种图形的概率都是14,所以结果是34.【详解】∵等腰三角形、线段、圆是轴对称图形,三角形不是轴对称图形,∴从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是34;故答案为:34.【点睛】本题考查了轴对称图形的判断,和简单概率的计算,要注意等腰三角形是轴对称图形,三角形不一定是轴对称图形,正确判断图形是否为轴对称图形是本题的关键.15.1 6【解析】【分析】列表得出所有等可能的情况数,找出能组成“柠檬”的情况数,即可求出所求的概率.【详解】列表得:∵12种可能的结果中,能组成“柠檬”有2种可能,共2种,∴两次摸出的球上的汉字能组成“柠檬”的概率是212=16,故答案为:16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.5 6【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果, 然后根据概率公式求出该事件的概率即可.【详解】解: 由树状图可知共有4 3=12种可能, 两张卡片上的数字的乘积为偶数的有10种, 所以两张卡片上的数字的乘积为偶数的概率是1012=56.【点睛】画树状图法可以不重复不遗漏的列出所有可能的结果, 适合于两步完成的事件. 用到的知识点为: 概率=所求情况数与总情况数之比.17.12;【解析】【分析】让白球的个数除以球的总数为34,可求得白球的个数,即可求得球的总个数.【详解】解答:P(白球)=aa+3=34,解得:a=9,故总的球数为9+3=12.故本题答案为:12.【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能, 而且这些事件的可能性相同, 其中事件A出现m种结果, 那么事件A的概率P(A)=mn.18.1 4【解析】【分析】利用阴影部分与三角形的面积比即可.【详解】设三角形面积为1.∵△ABC中,D、E、F分别是各边的中点,∴DE∥BC,DE=BF,∴四边形BFED是平行四边形,∴△DEF≌△FBD,同理△DEF≌△CFE,△DEF≌△EDA,∴阴影部分的面积=△ABC的面积的14,即米粒落到阴影区域内的概率是11414 .故答案为14.【点睛】本题考查了几何概型的概率求法,利用面积求概率是解题的关键.19.(1)不能;(2)516;18;116;116;116【解析】【分析】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件;(2)根据概率的计算方法,可得出答案.【详解】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件.故答案为:不能获得转动转盘的机会.(2)乙顾客消费150元,能获得一次转动转盘的机会.由于转盘被均分成16份,每份被转到的机会均等,其中打折的占5份,故获得打折待遇的概率为P=5 16;九折占2份,故获得九折待遇的概率为P=21= 168;八折占1份,故获得八折待遇的概率为P=1 16;七折占1份,故获得七折待遇的概率为P=1 16;五折占1份,故获得五折待遇的概率为P=1 16.故答案为:他获得打折待遇的概率为516;他获得九折,八折,七折,五折待遇的概率分别是18;116;116;116.【点睛】本题主要考查概率,掌握概率的计算方法是解答本题的关键.20.(1)14;(2)34,图见解析【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】(1)共有4种可能,所以选择A通道通过的概率是14.故答案为:14,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.故答案为(1)14;(2)34,图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解决实际问题,正确画出树状图是本题的关键.21.(1)见详解;(2)游戏不公平,理由见详解;【解析】【分析】(1)根据题意直接列表或画树状图即可;(2)先分别求出两纸牌上的数字之积的所有情况,再求出其中偶数和奇数的个数,即可求出小明获胜的概率和小亮获胜的概率,最后得出游戏是否公平.【详解】(1)画树状图如图:(2)由(1)知一共有9种等可能情形,其中出现积为奇数的情况有4种,出现积为偶数的情况有5种,则P(数字之积为奇数)49=,P(数字之积为偶数)59=P(数字之积为奇数) P(数字之积为偶数),所以游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.1 4【解析】【分析】画出树状图,列举出所有情况,看抽取的两张牌的数字之和等于5的情况占所有情况的多少可得答案. 【详解】解:如图,共有16种等可能的情况,和为5的情况有4种,∴P(和为5)= .【点睛】本题主要考查用列表法或画树状图求等可能事件的概率,其中如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)50;(2)详见解析;(3)220.【解析】【分析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。

2018秋九年级数学上册 第二十五章 概率初步章末检测题(A)(新版)新人教版

2018秋九年级数学上册 第二十五章 概率初步章末检测题(A)(新版)新人教版

第二十五章概率初步章末检测题(A )一、选择题(每小题3分,共30分)1. 【导学号81180698】对“某市明天下雨的概率是80%”这句话,理解正确的是( D ) A .某市明天将有80%的时间下雨 B .某市明天将有80%的地区下雨 C .某市明天一定会下雨D .某市明天下雨的可能性较大2. 【导学号81180681】下列事件中,必然事件是( D ) A .抛掷1个均匀的骰子,出现6点向上 B .两直线被第三条直线所截,同位角相等 C .366人中至少有2人的生日相同 D .实数的绝对值是非负数3. 【导学号81180702】阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼•奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是( C ) A .15 B .25 C .35 D .454. 【导学号11090647】书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( )A .B .C .D .5. 【导学号11090307】为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是试验总次数的40%,下列说法错误的是( ) A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的概率约为0.4D.前20次试验结束后,钉尖着地的次数一定是8次6. 【导学号11090628】从分别写有A ,B ,C ,D ,E 的五张卡片中任取两张,这两张卡片上的字母恰好是按字母顺序相邻的概率是( )A.51B. 52C. 103D. 107 7. 【导学号11090626】将一枚硬币连续掷了三次, “三次都是正面朝上” 记为事件M ;将三枚硬币掷出, “三枚硬币正面都朝上” 记为事件N ,则P (M )与P (N )的大小关系为( )A.P (M )>P (N )B.P (M )=P (N )C.P (M )<P (N )D.无法比较8. 【导学号11090638】某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格: 试验次数 100 200 300 500 800 1000 2000 频 率0.3650.3280.3300.3340.3360.3320.333A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率9. 【导学号11090622】在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是()A.摸出的球不能放回B.摸出的球一定要放回C.可放回,可不放回D.不能用摸球试验来模拟此事件10. 【导学号11090645】一个箱子内装有3张标号分别为4,5,6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的两位数为5的倍数的概率为()A. B. C. D.二、填空题(每小题4分,共24分)11. 【导学号81180688】学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是________.12. 【导学号11090642】掷两枚质地均匀的骰子,其点数之和大于10的概率为.13. 【导学号11090807】在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在同一组的概率是.14. 【导学号11090644】为了有效保护环境,某居委会倡议居民将生活垃圾进行“可回收的”“不可回收的”和“有害的”分类投放.一天,小林把垃圾分装在三个袋中,则他任意投放垃圾,把三个袋子都放错位置的概率是.15. 【导学号11090623】在5瓶饮料中,有2瓶已过了保质期,随机地从这5瓶饮料中取2瓶,至少有1 瓶过保质期的饮料的概率为.16. 【导学号11090625】小李携带的4把钥匙中,有2把是开房门的,另外2把是开卧室门的,假设这些钥匙的外形相差无几,黑暗中他回家拿钥匙开门,一次就能成功打开房门与卧室门的概率是 .三、解答题(共66分)17. 【导学号11090911】(8分)一个袋子中装有3个红球和2个黄球,它们除颜色外其他都相同.(1)求从袋中摸出一个球是红球的概率;(2)将n个绿球(与红、黄球除颜色外其他都相同)放入袋中摇均匀,从袋中随机摸出一个球,记下颜色,再把它放回袋中,不断重复上述过程,共摸了500次,其中60次摸到红球.请通过计算估计n的值.18 .【导学号11090649】(8分)甲、乙、丙三位歌手进入“我是歌手”的决赛,他们通过抽签来决定演唱顺序.(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率,请用列表或画树状图的方法进行分析说明.19. 【导学号11090621】(10分)某中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名,请通过列表或画树状图求选拔的2名主持人恰好是1名男生和1名女生的概率.20. 【导学号11090646】(10分)有三张卡片(形状、大小、颜色、质地都相同),正面分别写着x2+1,﹣x2﹣2,3.将这三张卡片背面朝上洗匀,从中任意抽取一张,记卡片上的式子为A,再从剩下的卡片中任意抽取一张,记卡片上的式子为B,于是得到代数式.(1)请用画树状图或列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.21. 【导学号11090648】(10分)甲、乙、丙三位同学进行排球传球练习,球由一个人随机传给另一个人,且每位传球者传球给其余两人的机会是均等的,由甲开始传球,共传三次(每传一个人为一次).(1)请用树状图表示出传球三次所有等可能的情况;(2)求传球三次后,球传给丙的概率.22. 【导学号11090304】(10分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或画树状图的方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.第22题图附加题(20分,不计入总分)23. 【导学号11090879】如图①,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并判断她与嘉嘉落回到圈A的可能性是否一样.①②第23题图第二十五章概率初步章末检测题(A )参考答案一、1.D 2.D 3.C 4.B 5.A 6.A 7.B 8.B 9.B 10.C 二、11.3112.13.14.15.16.31 三、17.(1); (2)根据题意,得,解得n=20.经检验,n=20是分式方程的根,且符合题意, 所以n 的值为20. 18.(1); (2)画树状图如下:由树状图知,共有6种等可能的结果,其中甲比乙先出场的结果有3种,所以P (甲比乙先出场)==. 19.解:(1)不同意他的说法.理由如下:因为有2名男生和1名女生,所以主持人是男生的概率为,主持人是女生的概率为. 而≠,所以不同意他的说法. (2)画树状图如下:由树状图知,一共有6种等可能的结果,其中恰好是1名男生和1名女生的结果有4种,所以P (恰好是1名男生和1名女生)==. 20. 解(1)画树状图如下:(2)代数式所有等可能的结果共有6种,其中是分式的有4种:,,,,所以其概率为.21.解:(1)画树状图如下:由树状图知,三次传球共有8种等可能的结果.(2)由(1)可知传球三次后,球传给丙的概率为.22.(1);(2)画树状图如下:由树状图知,共有25种等可能的结果,其中经过两次“有效随机转动”后,获得一瓶可乐的结果有2种,所以该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为.23.(1)因为共有4种等可能的结果,落回到圈A的结果只有1种,所以P1=;1 2 3 41 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)由表格知,共有16种等可能的结果,最后落回到圈A的结果有4种:(1,3),(2,2)(3,1),(4,4),所以最后落回到圈A的概率P2==,所以她与嘉嘉落回到圈A的可能性一样.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25章概率初步考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于22.(4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于123.(4分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A.众数 B.中位数 C.平均数 D.方差4.(4分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球5.(4分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .32 B .61 C .31 D .216.(4分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A .21 B .31 C .41 D .617.(4分)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点8.(4分)甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是( ) A .游戏的规则由甲方确定 B .游戏的规则由乙方确定 C .游戏的规则由甲乙双方商定 D .游戏双方要各有50%赢的机会9.(4分)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过910.(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色,黑色球的概率稳定在15%和40%,则口袋中白色球的个数很可能是()A.25 B.26 C.29 D.27二.填空题(共4小题,满分20分,每小题5分)11.(5分)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.12.(5分)新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x﹣3)◎(3+x)的值为非负数的概率是.13.(5分)2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.14.(5分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.三.解答题(共9小题,满分90分)15.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是54,求m 的值. 16.(8分)抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后: (1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?17.(8分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.18.(8分)动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?19.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.21.(12分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是 ;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.22.(12分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了 名学生; (2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有 人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .23.(14分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.(1)该事件最有可能是 (填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯的概率; ②掷一枚硬币,正面朝上;③暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球. (2)你设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字 正面朝上,该事件发生的概率接近于31.2018年秋九年级上学期 第25章 概率初步 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可. 【解答】解:∵抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,∴A 、面朝上的点数是6的概率为61;B 、面朝上的点数是偶数的概率为63=21; C 、面朝上的点数大于2的概率为64=32; D 、面朝上的点数小于2的概率为61;故选:C .【点评】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm. 2.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 【解答】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误; B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误; C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误; D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确; 故选:D .【点评】此题主要考查了随机事件,关键是掌握随机事件定义. 3.【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选:B .【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数 4.【分析】直接利用概率的意义分析得出答案.【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球. 故选:C .【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键. 5.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个, ∴P (大于3)=63=21; 故选:D .【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm . 6.【分析】直接根据题意画出树状图,再利用概率公式求出答案. 【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:41.故选:C.【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.7.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.【分析】根据游戏是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【点评】此题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.9.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为53,不符合题意; B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为21,不符合题意; C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为41,不符合题意; D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为31,符合题意; 故选:D .【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 10.【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数. 【解答】解:∵摸到红色球、黑色球的频率稳定在15%和40%, ∴摸到白球的频率为1﹣15%﹣40%=45%, 故口袋中白色球的个数可能是60×45%=27个. 故选:D .【点评】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.二.填空题(共4小题,满分20分,每小题5分) 11.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为21. 故答案为:21. 【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm .12.【分析】对于任意有理数a 、b ,都有a◎b=a 2﹣ab+b ﹣1,即可得到(x ﹣3)◎(3+x )=(x ﹣3)2﹣(x ﹣3)(3+x )+3+x ﹣1=﹣5x+20,进而得出代数式(x ﹣3)◎(3+x )的值为非负数的概率. 【解答】解:∵对于任意有理数a 、b ,都有a◎b=a 2﹣ab+b ﹣1, ∴(x ﹣3)◎(3+x )=(x ﹣3)2﹣(x ﹣3)(3+x )+3+x ﹣1=﹣5x+20, 当x=1时,﹣5x+20=15; 当x=2时,﹣5x+20=10; 当x=3时,﹣5x+20=5; 当x=4时,﹣5x+20=0; 当x=5时,﹣5x+20=﹣5; 当x=6时,﹣5x+20=﹣10;∴代数式(x ﹣3)◎(3+x )的值为非负数的概率=64=32, 故答案为:32. 【点评】本题主要考查了概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 13.【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可; 【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能, 所以恰好选到经过西流湾大桥的路线的概率=62=31. 故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 14.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×4=12(m 2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近, ∴世界杯图案占长方形世界杯宣传画的40%, ∴世界杯图案的面积约为:12×40%=4.8m 2, 故答案为:4.8.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件; (2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件; ∵m >1,当摸出2个或3个红球时,摸到黑球为随机事件,故答案为:4;2、3.(2)依题意,得54106=+m , 解得 m=2, 所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm. 16.【分析】(1)根据题意得出落地后朝上的点数可能是1、2、3、4、5、6,再根据概率公式即可得出答案;(2)根据概率公式先分别求出朝上的点数是奇数和朝上的点数是偶数的概率,再进行比较即可; (3)先求出朝上的点数大于4的概率和朝上的点数不大于4的概率,再进行比较即可.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6, 所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是21,朝上的点数是奇数的有2,4,6,它们发生的可能性是21 所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是62=31, 朝上的点数不大于4的数有1,2,3,4,发生可能性是64=32,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等. 17.【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可; (3)用样本平均数估算总体的平均数.【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17, 故答案是16,17; (2)()26203171512970101++⨯+++++⨯=14, 答:这10位居民一周内使用共享单车的平均次数是14次; (3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错. 18.【分析】根据概率的和差,可得答案.【解答】解;现年20岁的这种动物活到25岁的概率为8.05.0=0.625, 现年25岁的这种动物活到30岁的概率为5.03.0=0.6, 答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6. 【点评】本题考查了概率的意义,利用了概率的和差. 19.【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值; (2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人), 所以m=5010×100=20; 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人), 如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=5012=256, 3000×256=720, 估计这3000人中大约有720人是A 型血.【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了统计图. 20.【分析】(1)依据C 部分的数据,即可得到本次一共调查的人数; (2)依据总人数以及其余各部分的人数,即可得到B 对应的人数; (3)列表将所有等可能的结果列举出来,利用概率公式求解即可. 【解答】解:(1)本次一共调查:15÷30%=50(人); 故答案为:50;(2)B 对应的人数为:50﹣16﹣15﹣7=12, 如图所示:(3)列表:∵共有12种等可能的结果,恰好选中A 、B 的有2种, ∴P (选中A 、B )=122=61. 【点评】本题考查了条形统计图、扇形统计图,列表与树状图的应用,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解. 21.【分析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案; (2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【解答】解:(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件; 故答案为:必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:53; 故答案为:53;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:208=52; 则选择乙的概率为:53, 故此游戏不公平.【点评】此题主要考查了游戏公平性,正确列出树状图是解题关键. 22.【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数; (2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形. (3)利用样本估计总体即可估计爱好运动的学生人数.(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率. 【解答】解:(1)爱好运动的人数为40,所占百分比为40% ∴共调查人数为:40÷40%=100 (2)爱好上网的人数所占百分比为10% ∴爱好上网人数为:100×10%=10, ∴爱好阅读人数为:100﹣40﹣20﹣10=30, 补全条形统计图,如图所示, (3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600 (4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为103故答案为:(1)100;(3)600;(4)103【点评】本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型. 23.【分析】(1)根据统计图可知发生的频率接近31,从而可以解答本题; (2)本题答案不唯一,设计的只要能说明该事件发生的概率接近于31即可.【解答】解:(1)由折线统计图可得,该事件最有可能是暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球, 故答案为:③;(2)设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字1和2正面朝上,该事件发生的概率接近于31, 故答案为:1和2.【点评】本题考查利用频率估计概率、频数分布折线图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

相关文档
最新文档