福州大学数理与概率统计第三章 PPT资料共90页

合集下载

概率论与数理统计课件第三章ppt

概率论与数理统计课件第三章ppt

Y X
y1
y2
...
yj
… pi·
x1 p11 p12 … p1 … p1·
x... 2 p... 21 x... i p... i1
p· p·1
p... 22 p... i2
p·2
…j
… p2
… j...
… …
p...pi·jj
… … … …

p... 2· p... i ·
1
j
例1.设袋中有五个同类产品,其中有两个 是次品,每次从袋中任意抽取一个,
设(X,Y)为连续型随机变量,其联合分布函 数和联合概率密度分别为F(x,y)和 f(x,y),则
f X
(x)
d dx
FX
(x)
f (x, y)dy
fY
( y)
d dy
FY
(
y)
f
(x,
y)dx
分别称为(X,Y)关于X和Y的边缘概率密度
函数,简称边缘概率密度。
例2. 设(X,Y)的分布密度是
e(xy) , x 0, y 0
3.1
例1.甲乙掷色子,观察点数。
w1i={甲掷i点} w2j={乙掷j点}
X,Y (i, j)
i,j=(1,2,…,6)
二维随机变量的定义
对于随机试验E,Ω是其样本空间。X(w) 和 Y(w)是定义在样本空间Ω上的两个随机变量, 由它们构成的向量(X,Y)称为二维随机变量 或二维随机向量。
y
w.
Y X
y1
y2
...
yj

x1 p11 p12 x... 2 p... 21 p... 22
x... i p... i1 p... i2

概率论与数理统计课件 第三章1

概率论与数理统计课件 第三章1

0, 其他.
求 (1) 边缘概率密度 pX ( x), pY ( y);
(2) P{ X+Y 2}
y
(1,1)
y 1 x
2019/4/3
O x 1 x e2 x
第三章 多维随机变量及其分布
28
例3 设二维随机变量 ( X , Y ) 具有概率密度
Ce(3x4 y) , x 0, y 0,
(x, y)
2019/4/3
第三章 多维随机变量及其分布
23
3.说明
几何上, z p( x, y) 表示空间的一个曲面.
p( x, y)d x d y 1,
表示介于 p (x, y)和 xoy 平面之间的空间区域的 全部体积等于1.
P{( X ,Y )G} p( x, y) d x d y, G
19
2019/4/3
第三章 多维随机变量及其分布
20
2019/4/3
第三章 多维随机变量及其分布
21
四、二维连续型随机变量
1.定义
对于二维随机变量 ( X ,Y ) 的分布函数 F ( x, y), 如果存在非负的函数 p( x, y) 使对于任意 x, y 有
yx
F ( x, y)
p(u, v) d ud v ,
记 P{X xi , Y yj } pij , i, j 1, 2,
称此为二维离散型随机变量 ( X ,Y ) 的分布律, 或随机变量 X 和 Y 的联合分布律.
其中 pij 0,
pij 1.
i1 j1
2019/4/3
第三章 多维随机变量及其分布
13
二维随机变量 ( X,Y ) 的分布律也可表示为
1 ( arctan x)

概率论与数理统计第三章PPT

概率论与数理统计第三章PPT

乘法公式应用举例 (波里亚罐子模型)
b个白球, r个红球
一个罐子中包含b个白球和r个红球. 随机地抽取一个球,观看颜色后放回罐中, 并且再加进c个与所抽出的球具有相同颜 色的球. 这种手续进行四次,试求第一、 二次取到白球且第三、四次取到红球的概 率.
随机取一个球,观看颜色后放 回罐中,并且再加进c个与所抽出 的球具有相同颜色的球. b个白球, r个红球
解: 设Wi={第i次取出是白球}, i=1,2,3,4 Rj={第j次取出是红球}, j=1,2,3,4 于是W1W2R3R4表示事件“连续取四个球,第 一、第二个是白球,第三、四个是红球. ”
用乘法公式容易求出 P(W1W2R3R4) =P(W1)P(W2|W1)P(R3|W1W2)P(R4|W1W2R3)
用它们可计算两 个事件同时发生 的概率
(3)
注意P(AB)与P(A | B)的区别!
请看下面的例子
例 甲、乙两厂共同生产1000个零件,其中300件 是乙厂生产的. 而在这300个零件中,有189个是 标准件,现从这1000个零件中任取一个,问这个 零件是乙厂生产的标准件的概率是多少?
设B={零件是乙厂生产}
P A 4 10 0.4
4 3 12 10 9 90 6 4 24 P AB P A P B | A 10 10 90 P AB P A P B | A
P16例4




P ABC P A P B | A P C | AB
二、 乘法法则 P ( AB) 由条件概率的定义: P ( A | B)
P ( B)
若已知P(B), P(A|B)时, 可以反求P(AB). 即 若P(B)>0,则P(AB)=P(B)P(A|B) (2) 将A、B的位置对调,有 (2)和(3)式都称为 乘法公式, 利 若 P(A)>0, 则P(BA)=P(A)P(B|A) 而 P(AB)=P(BA) 故 若P(A)>0,则P(AB)=P(A)P(B|A)

概率论与数理统计第3讲52265共45页

概率论与数理统计第3讲52265共45页

6年总计 31394 16146 15248
频率(%) 男孩 女孩 51.31 48.69 51.22 48.78 52.73 47.27 50.56 49.44 51.56 48.44 51.47 48.53 51.48 48.52
8
概率的古典定义(概率的古典概型) 有一类试验的特点是: 1,每次试验只有有限种可能的试验结果 2,每次试验中,各基本事件出现的可能性完全 相同. 具这两个特点的试验称为古典概型试验. 在古典概型的试验中, 如果总共有n个可能的 试验结果, 因此每个基本事件发生的概率为 1/n, 如果事件A包含有m个基本事件, 则事件A 发生的概率则为m/n.
11
排列和组合 在古典概型的概率的计算中困难的是计算一 事件包含的基本事件的数目, 因此需要排列和 组合的知识. 乘法法则: 如果一件事情可以分为两步做, 第 一步有n种选择, 在第一步中的每一种选择中, 第二步有m种选择, 则整件事情共有
mn种选择
12
放回抽样
假设一副牌有52张, 将它们编号为1,2,…,52. 每次抽出一张观察后再放回去(这样下一次这 张牌仍有机会被抽到), 这叫放回抽样. 假设共 抽了5次, 共有多少种可能的抽法? 第一次有52种抽法, 在第一次的每一种抽法中, 第二次又有52种抽法, …, 因此抽5次共有
3
概率的统计定义
概率的统计定义并非严格的数学上的定义, 而 只是大数定律的一个描述. 在n次重复试验中, 如果事件A发生了m次, 则 m/n称为事件A发生的频率. 同样若事件B发生 了k次, 则事件B发生的频率为k/n. 如果A是必 然事件, 有m=n, 即必然事件的频率是1, 当然 不可能事件的频率为0. 如果A与B互不相容, 则事件A+B的频率为(m+k)/n, 它恰好等于两个 事件的频率的和m/n+k/n, 这称之为频率的可 加性.

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计(完整版)(课堂PPT)

概率论与数理统计(完整版)(课堂PPT)
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);

概率论与数理统计课件

概率论与数理统计课件

1 9 1 9 81 3 10 10 9 10 9 8 10
或拨号不超过3次而接通电话的对立事件为
__
A1
__
A2
A3
__ __
__
__
__
P( A1 A2 A3 ) P( A1 )P( A2 A1 )P( A3 A1 A2 )
9 87 7 10 9 8 10
上页 下页 返回
四、全概率公式与贝叶斯公式
上页 下页 返回
例1:甲、乙、丙三人对同一目标各射击一次,甲、 乙、丙 击中目标的概率分别为0.6、0.55、0.45。
令Ai=“第i人击中目标”,i=1,2,3。 (1)求三人都击中目标的概率。 (2)求目标被击中的概率。 (1)解:P(A1A2A3)=P(A1)P(A2)P(A3)
0.6 0.55 0.45 =0.1485
P(A)>0时, P(B A) 1 P(B A)
P(B C A) P(B A) P(C A) P(BC A)
上页 下页 返回
例1 6个球中有4个白球2个黑球, 无放回取2个 球, 已知第一次取到白球, 问第二次取到白球 的概率? 解 A=“第一次取到白球” , B=“第二次取到白球”
P(B A) 3 5
P(B A) 0.8, P(B A) 0.1
__
(1)P(B) P(A)P(B A) P(A)P(B A)
0.48 0.04 0.52
(2)P(A B) P(A)P(B A) 0.48 12 P(B) 0.52 13
例3:已知男人中有5%是色盲,女人中有0.25%是色 盲,今从男女人数相等的人群中随机地挑选一人,恰 好是色盲,求此人是男人的概率。
(1)求收报台收到信号“+”的概率。

大学数学概率论的基本概念第三章PPT课件

大学数学概率论的基本概念第三章PPT课件

(1≤ k≤ n)的不同排列总数为:
nn nnk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
18
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
Cnk
Pnk k!
n! (nk)!k!
SC I ENCE
问:在多大程度上认为这样的结果 是奇怪的,甚至怀疑是一种魔术?
21
解:七个字母的排列总数为7!
拼成英文单词SCIENCE 的情况数为
224
故该结果出现的概率为:
p4 1 0.00079 7! 1260
这个概率很小,这里算出的概率有如 下的实际意义:如果多次重复这一抽卡试 验,则我们所关心的事件在1260次试验中 大约出现1次 .
设完成一件事有m个步骤,
第一个步骤有n1种方法,
第二个步骤有n2种方法, …;
第m个步骤有nm种方法,
则完成这件事共有
n1n2 nm
必须通过每一步骤, 才算完成这件事,
种不同的方法 .
14
例如,若一个男人有三顶帽子和两件 背心,问他可以有多少种打扮?
可以有 32 种打扮
15
加法原理和乘法原理是两个很重要 计数原理,它们不但可以直接解决不少 具体问题,同时也是推导下面常用排列 组合公式的基础 .
称这种试验模型为等可能概型 或古典概型.
8
二、古典概型中事件概率的计算
记 S e 1 ,e 2 , ,e n ;A i e i i 1 , ,n ,

概率论与数理统计第三章

概率论与数理统计第三章
二维随机变量(X,Y)的性质不仅与X及Y的性 质有关,而且还依赖于X和Y的相互关系,因此必须 把(X,Y)作为一个整体加以研究.
研究方法与一维类似,用分布函数、分布律、 或概率密度来描述其统计规律
二. 联合分布函数
X和Y的联合分布函数
F(x, y) P{(X x) (Y y)}

P{X x,Y y}
dx
6e(2 x3 y)dy
0
0
1 7e6
(III)两个常用的二维连续型分布
(1)二维均匀分布 若二维随机变量(X, Y)的密度函数为
f
(
x,
y)


1 SD

(x, y) D R2

0, 其它
则称(X, Y)在区域D上(内) 服从均匀分布.
易见,若(X, Y)在区域D 上(内) 服从均匀分布, 对
则称(X,Y)服从参数为1, 2 ,1, 2 , 的二维正态分布.
记作(
X,Y
)~N(
1 ,
2
,

2 1
,
2
2
,

)
五. 分布函数的概念推广到n维随机变量的情形
事实上, 对n维随机变量(X1, X2, … , Xn), F(x1, x2, … , xn)=P{X1 x1, X2 x2, … , Xn xn} 称为的n维随机变量(X1, X2, … , Xn)的分布函数, 或随机变量X1, X2, … , Xn的联合分布函数.
...
xi pi1 pi2 ... pij ... pi .
...
p .j p .1 p .2 ... p .j
例1. 已知(X,Y)的分布律为右图 X Y 1 0

概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)

概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)
点”或“6 点”3 个基本事件,即 A {2 ,4 ,6} 。
四、事件的关系与运算
在一个样本空间中显然可以定义不止一个事件。概率论的重要研究课 题之一是希望从简单事件的概率推算出复杂事件的概率。为此,需要研究 事件间的关系与运算。
事件是一个集合,因此事件间的关系和运算自然按照集合之间的关系 和运算来处理。
1 事件的包含与相等
若 A B ,则称事件 B 包含事件 A ,这里指的是事件 A 发生必然导致事件 B 发生, 即属于 A 的样本点都属于 B ,如图1-2所示。显然,对任何事件A,必有 A 。
若 A B 且 B A ,则称事件 A 与 B 相等,记为 A B。
图1-2 A B
事件 A B {x | x A或x B},称为事件A与事件B的和事件,即当且仅当事件 A 或 事件 B 至少有一个发生时,和事件 A B 发生。它由属于 A 或 B 的所有公共样本点构 成,如图 1-4 所示。
图 1-4 A B
4 事件的差
事件 A B {x | x A且x B}称为事件 A 与事件 B 的差事件,即当且仅当事件 A 发 生但事件 B 不发生时,积事件A B发生。它是由属于 A 但不属于 B 的样本点构成的集 合,如图1-5所示。差事件 A B 也可写作 AB 。
定义1 在相同的条件下重复进行了 n 次试验,如果事件 A 在这 n 次试验中出现
了 nA
次,则称比值
nA n
为事件 A
发生的频率,记为fn ( 源自) ,即fn( A)
nA n
显然,频率 fn ( A) 的大小表示了在 n 次试验中事件 A 发生的频繁程度。频率 大,事件 A 发生就频繁,在一次试验中 A 发生的可能性就大,也就是事件 A 发

概率论与数理统计第三章

概率论与数理统计第三章

华东师范大学
第三章 多维随机变量及其分布
第18页
解: P{ X<2, Y<1}
2 1
{x 2, y 1}

y
p( x, y )dxdy
1 2
dx 6e ( 2 x 3 y ) dy
0 0
6 e dx e dy
2 x 3 y 0 0
2
1
{x<2, y<1}
y 1 x2
x y 1
2 2
y
其 它
-1 1 x
当|x|>1时,p(x, y)=0,所以 p(x)=0 当|x|≤1时,
p ( x)
1 x2
1 2 2 d y 1 x 1 x2
y 1 x2
不是均匀分布
6 December 2014
华东师范大学
华东师范大学
第三章 多维随机变量及其分布
第22页
二、多维超几何分布
口袋中有 N 只球,分成 r 类 。 第 i 种球有 Ni 只, N1+N2+……+Nr = N. 从中任取 n 只, 记 Xi 为取出的n 只球中第i 种球的只数. 则 (X1, X2, ……, Xr)的联合分布列为:
P146 例3.1.5
注意: P (X ,Y ) D p( x, y)dxdy
D

偏导数存在的点上有
华东师范大学
6 December 2014
第三章 多维随机变量及其分布
第15页
例3.1.2
Ae (2 x 3 y ) , x 0, y 0 若 (X, Y) ~ p( x, y ) 0, 其 它

概率论与数理统计ppt课件

概率论与数理统计ppt课件

注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....

5.1 大数定律 5.2 中心极限定理

第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13


事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定

例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖

概率论与数理统计ppt课件(完整版)

概率论与数理统计ppt课件(完整版)
27
( 1)
n 1
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率:
(1) P ( A B ); (2) P ( A B); (3) P ( A B); (4)P( A B ).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑 在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
P(B) P( A).
一般地有: P(B-A)=P(B)-P(AB).
26
性质4. 对任一事件 A,
P( A) 1.
性质5. 对任一事件A, P( A) 1 P( A).
性质6. 对任意两事件 A, B有 P( A B) P( A) P(B) P( AB ).
推广
P( A B C) P ( A) P ( B ) P (C )
1 对于每一个事件 B, 有 1 P(B | A) 0.
0
2 P(S | A) 1.
0
3 设B 1 , B 2 , 两两互不相容, 则 P( B i | A ) P(B i | A).
i 1 i 1
0
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
m( A) P ( A) m( )
(其中m( ) 是样本空间的度量 , m( A) 是构成事件A 的子区域的度量) 这样借助于几何上的度 量来合理 规定的概率称为 几何概率 . 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
20
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档