TiO2HNbMoO6复合材料的结构特征及其光催化性能
《Bi2MoO6基异质结光催化剂的可控合成及催化增效机制研究》范文
《Bi2MoO6基异质结光催化剂的可控合成及催化增效机制研究》篇一一、引言随着环境问题的日益严重和能源危机的加剧,光催化技术作为一种绿色、高效的能源转换和污染物处理技术,受到了广泛关注。
Bi2MoO6作为一种具有良好光催化性能的材料,其基异质结光催化剂在光催化领域具有广阔的应用前景。
本文旨在研究Bi2MoO6基异质结光催化剂的可控合成方法及其催化增效机制,以期为光催化技术的发展提供新的思路和方法。
二、文献综述Bi2MoO6具有优良的光催化性能,其异质结的构建能有效提高光催化剂的催化效率。
近年来,关于Bi2MoO6基异质结光催化剂的合成方法、性能及催化机制的研究取得了显著进展。
然而,目前仍存在合成方法复杂、催化剂性能不稳定等问题,需要进一步研究和优化。
三、实验方法(一)材料与试剂实验所需材料包括Bi(NO3)3·5H2O、NaMoO4·2H2O等化学试剂,均购自国内知名化学试剂供应商。
(二)Bi2MoO6基异质结光催化剂的合成采用溶剂热法、水热法等可控合成方法,制备出Bi2MoO6基异质结光催化剂。
通过调整反应条件,如反应温度、反应时间、原料配比等,实现对催化剂形貌和结构的调控。
(三)表征方法利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段,对合成的Bi2MoO6基异质结光催化剂进行表征,分析其晶体结构、形貌和微观结构。
(四)催化性能测试通过光催化降解有机污染物等实验,测试Bi2MoO6基异质结光催化剂的催化性能。
采用紫外-可见光谱、电化学工作站等手段,分析催化剂的光响应范围、光电化学性质等。
四、结果与讨论(一)催化剂的表征结果通过XRD、SEM、TEM等表征手段,发现合成的Bi2MoO6基异质结光催化剂具有较高的结晶度和良好的形貌。
催化剂的微观结构表明,异质结的成功构建有助于提高催化剂的光吸收性能和电子传输性能。
(二)催化剂的催化性能光催化降解有机污染物的实验结果表明,Bi2MoO6基异质结光催化剂具有较高的催化性能。
《纳米TiO2复合材料制备及其光催化性能研究》范文
《纳米TiO2复合材料制备及其光催化性能研究》篇一一、引言随着科技的不断进步和人类对环保问题的日益关注,光催化技术作为新兴的绿色技术领域受到了广泛的关注。
纳米TiO2复合材料作为一种高效的光催化剂,具有广泛的应用前景。
本文旨在研究纳米TiO2复合材料的制备方法及其光催化性能,为实际应用提供理论依据。
二、文献综述纳米TiO2复合材料因其独特的物理和化学性质,在光催化领域具有广泛的应用。
其制备方法、性能及应用已成为研究热点。
目前,制备纳米TiO2复合材料的方法主要包括溶胶-凝胶法、水热法、微乳液法等。
其中,溶胶-凝胶法因其操作简便、制备条件温和等优点备受关注。
而光催化性能的研究主要关注其对有机污染物的降解、抗菌性能及自清洁等方面的应用。
三、实验方法(一)实验材料实验中所需材料主要包括TiO2纳米粉体、表面活性剂、溶剂等。
所有材料均需符合实验要求,保证实验结果的准确性。
(二)制备方法本文采用溶胶-凝胶法制备纳米TiO2复合材料。
具体步骤包括:将TiO2纳米粉体与表面活性剂混合,加入溶剂进行搅拌,形成溶胶;然后进行凝胶化处理,得到凝胶;最后进行热处理,得到纳米TiO2复合材料。
(三)性能测试本实验通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对制备的纳米TiO2复合材料进行表征。
同时,通过光催化实验测试其光催化性能,以降解有机污染物为评价指标。
四、实验结果与分析(一)表征结果通过XRD、SEM和TEM等手段对制备的纳米TiO2复合材料进行表征。
结果表明,制备的纳米TiO2复合材料具有较高的结晶度和良好的分散性。
(二)光催化性能测试结果以降解有机污染物为评价指标,对制备的纳米TiO2复合材料进行光催化性能测试。
结果表明,该材料具有优异的光催化性能,能够有效降解有机污染物。
此外,我们还研究了不同制备条件对光催化性能的影响,为优化制备工艺提供依据。
五、讨论本实验研究了纳米TiO2复合材料的制备方法及其光催化性能。
TiO2的介绍
TiO2又名钛白粉,白色粉末,无毒,不溶于水、有机酸和弱无机酸,微溶于碱。
在浓硫酸以及氢氟酸长时间煮沸可完全溶解,在1800o C以上逐渐熔融。
TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示[27]。
三种晶体结构均由相同的[TiO6]八面体结构单元构成,但八面体的排列方式、连接方式和晶格畸变的程度是不同的。
其连接方式包括共边和共顶点两种情况,如图1.2所示。
锐钛矿型TiO2为四方晶系,其中每个八面体与周围8个八面体相连(4个共边,4个共顶角),4个TiO2分子组成一个晶胞。
而金红石TiO2也为四方晶系,晶格中心为Ti原子,八面体棱角上为6个氧原子,每个八面体与周围10个八面体相联(其中有两个共边,八个共顶角),两个TiO2分子组成一个晶胞,其八面体畸变程度较锐钛矿要小,对称性不如锐钛矿相,其Ti-Ti键长较锐钛矿小,而Ti-O键长较锐钛矿型大。
板钛矿型TiO2为斜方晶系,6个TiO2分子组成一个晶胞。
这三种晶型的结构参数如表1.2所示。
三种晶相以金红石相最稳定,而锐钛矿和板钛矿相在加热处理过程中会发生不可逆的放热反应,最终都将转变为金红石相。
由锐钛矿相向金红石相的相变过程是一个形核-长大的过程,即金红石相首先在锐钛矿相表面形核,随后向体相扩展。
相变过程是一个逐步实现的过程,不断地发生着键的断裂和原子重排。
锐钛矿相中的{112}面变为金红石相的{100}面,Ti、O原子发生协同重排,大部分Ti原子通过6个Ti-O键中的两个键断裂迁移到新的位置形成金红石相,故氧离子的迁移形成点阵空位可促进相变,而Ti间隙原子的形成则会抑制相变。
锐钛矿和板钛矿向金红石相变温度范围在500-700o C,而且相变温度受到颗粒尺寸、杂质等影响。
尤其是杂质和热处理气氛会导致形成不同的缺陷结构而影响到晶相转变的温度和速度。
TiO_2_石墨烯纳米复合材料制备及其光催化性能研究_周建伟
第42卷第4期人工晶体学报Vol.42No.42013年4月JOURNAL OF SYNTHETIC CRYSTALS April ,2013TiO 2/石墨烯纳米复合材料制备及其光催化性能研究周建伟1,2,王储备1,禇亮亮1,张明瑛3,史磊3(1.新乡学院能源与燃料研究所,新乡453003;2.清华大学化学系,北京100084;3.新乡学院化学与化工学院,新乡453003)摘要:以TiCl 3和氧化石墨(GO )为原料,采用简便的原位液相法制备了TiO 2/石墨烯(RGO )纳米复合材料。
利用XRD 、SEM 、XPS 和UV-Vis 光谱表征了其微观结构及性能,实验考察了复合材料光催化还原CO 2性能,探究了其光催化反应机理。
研究表明,TiO 2/石墨烯纳米复合材料具有显著的光催化还原活性,光催化反应产物选择性高,反应6.0h 甲醇的累积产量为3.43mmol /L ,石墨烯的协同效应提高了TiO 2半导体的光催化活性和反应效率。
关键词:TiO 2/石墨烯复合材料;光催化;协同效应;反应机理中图分类号:O643.36文献标识码:A 文章编号:1000-985X (2013)04-0762-06收稿日期:2012-10-14;修订日期:2012-12-12基金项目:河南省高校科技创新人才支持计划项目资助(2010HASTIT040)作者简介:周建伟(1966-),男,河南省人,教授,博士。
E-mail :jwchow@163.com Preparation and Photocatalytic Performance of TiO 2/GrapheneNano-composite MaterialZHOU Jian-wei 1,2,WANG Chu-bei 1,CHU Liang-liang 1,ZHANG Ming-ying 3,SHI Lei 3(1.Institute of Energy and Fuel ,Xinxiang University ,Xinxiang 453003,China ;2.Department of Chemistry ,Tsinghua University ,Beijing 100084,China ;3.College of Chemistry and Engineering ,Xinxiang University ,Xinxiang 453003,China )(Received 14October 2012,accepted 12December 2012)Abstract :TiO 2/graphene composite photocatalyst has been prepared by a facile liquid phase deposition method using titanium trifluoride and graphene oxide as the raw materials.The products were characterized by X-ray diffraction ,scanning electron microscopy ,X-ray photoelectron spectroscopy and UV-Visible analysis.It was found that the reduction graphene was covered with petal-like anatase TiO 2nanoparticles ,which were more uniform and smaller in size.The photocatalytic activities were evaluated using the photocatalytic reduction of CO 2.Photocatalytic reduction of CO 2with H 2O in the aqueous phase is studied by using TiO 2/graphene catalyst under UV irradiation.The results showed that the compostie exhibitedsignificantly photocatalytic reduction activities and reaction products high selectivity ,reaction 6h methanol accumulated production for 3.43mmol /L.Graphene effectively improved the photocatalytic activity and reaction efficiency of the semiconductor ,and synergistic effect was obvious.Key words :TiO 2/graphene composites ;photocatalysis ;synergistic effect ;reaction mechanism1引言人工光合成是CO 2转化和利用的创新技术,它利用太阳能激发半导体光催化材料产生光生电子-空穴,第4期周建伟等:TiO2/石墨烯纳米复合材料制备及其光催化性能研究763以诱发氧化-还原反应将CO2与水合成碳氢燃料。
二氧化钛复合材料的制备及光催化性能研究
二氧化钛复合材料的制备及光催化性能研究黑龙江省巴彦县佳木斯大学 154000摘要本文选用白云母KAl2(AlSi3O10)(OH)2和钛酸丁酯C16H36O4Ti作为原料在水热的条件下制备出了白云母/TiO2复合光催化剂。
通过使用扫描电子显微镜、X射线衍射、红外线光谱分析仪和紫外可见光吸收光谱对其结构进行表征,并研究了复合物的光催化活性。
关键词:白云母/TiO2复合光催化剂;水热合成;光催化1概述1.1 TiO2简介云母是一种表面带有活性基团的层状硅酸铝大分子。
白云母是一种层状矿物,具有高比表面积、强吸附性和良好的化学稳定性。
白云母晶体的切片层可以提供光滑的基底,它的原子级光滑表面易于通过劈开来制备。
为了蛋白质结晶的目的,可以对云母表面进行改性,表面离子可以被各种碱金属离子交换。
改变表面离子对水层的有序性有直接影响,这被称为结构破坏或促进。
除了SFA,表面X射线衍射、原子力显微镜、分子动力学模拟和X射线反射率也被用来确定改性云母及其液体表层的表面结构。
由于白云母的(001)面沿c轴滑动,它可以有两个不同的终端,它们在(010)面上相互成镜像。
二氧化钛是三种不同的多态体:锐钛矿,金红石和板钛矿。
二氧化钛的主要来源和最稳定的形式是金红石。
这三种多态性都可以在实验室很容易地合成。
1.2光催化机理在光照条件下,TiO2表面的超亲水性起因于其表面结构的变化。
在紫外光照射下,TiO2价带电子被激发到导带,电子和空穴向TiO2表面迁移,在表面生成电子空穴对,电子与Ti反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位。
此时,空气中的水解离吸附在氧空位中,成为化学吸附水(表面羟基),化学吸附水可进一步吸附空气中的水分,形成物理吸附层。
2实验步骤2.1酸处理白云母称取5 g白云母放入三口烧瓶中,加入浓度为20%的稀硫酸150 mL,在水浴锅中80℃搅拌25 min,冷却至室温,用去离子水洗涤至中性,且用0.1mol/L氯化钡溶液检测不出SO42-,放在80℃烘箱中干燥备用。
TiO2光催化剂及其性能研究
TiO2光催化剂及其性能研究随着人们对环境保护意识的逐渐增强,环境问题已经成为人们关注的重要议题之一。
其中,水污染问题尤其严重,如何有效地处理废水和污水已经成为一个重要的研究领域。
而TiO2光催化剂,作为一种重要的废水处理材料,已经受到越来越多的关注。
TiO2光催化剂,简单来说,就是一种以二氧化钛(TiO2)为主要组成部分的催化剂。
通过光照的方式,能够将废水中的有机物和无机物分解为水和二氧化碳等环境友好的物质。
相比于传统的化学废水处理方法,TiO2光催化剂不需要添加大量的化学物质,不会产生二次污染,并且在处理污水的同时还能够利用太阳光进行自我再生,降低了经济成本。
在TiO2光催化剂的研究中,主要有以下几个方面需要注意。
第一,TiO2的晶相类型。
TiO2晶相类型的不同对其光催化性能有着显著的影响。
在一般情况下,锐钛矿相(anatase)的TiO2比金红石相(rutile)的TiO2具有更好的光催化性能。
因此,在TiO2光催化剂的制备和研究中,需要选择锐钛矿相的TiO2作为主要的组成部分。
第二,TiO2的表面积。
TiO2的表面积越大,其光催化活性就越高。
因此,在TiO2光催化剂的制备中,需要采用纳米材料制备方法,以获得高表面积的TiO2纳米颗粒。
同时,为了进一步提高TiO2的表面积,一些研究人员还通过表面修饰等方式,对TiO2纳米颗粒进行了进一步改进。
第三,TiO2的光吸收范围。
由于TiO2只能吸收紫外线(UV)光线,因此其在太阳光照射下的催化活性受到了很大的限制。
为了解决这个问题,研究人员提出了一系列方案,如添加其他光吸收剂或利用掺杂的方法扩展TiO2的吸收范围。
这些方法在提高TiO2的光催化活性方面取得了显著的进展。
除了上述三个方面,还有一些其他的TiO2光催化剂相关研究也十分重要。
例如,TiO2光催化剂的载体、光照条件、反应器类型以及催化剂复合材料等问题都需要得到有效的解决。
同时,在实际应用中,TiO2光催化剂也需要考虑到一些具体的问题,如操作成本、催化剂寿命等方面的问题。
TiO2催化剂
纳米TiO2催化剂的制备改性、表征及在光催化氧化过程中的性能研究自从上世纪七十年代以来,二氧化钛在环境治理方面的研究被迅速开展起来。
二氧化钛最大的优点是无毒、抗腐蚀,由于具有稳定的物理和化学性质被广泛地用作催化剂和载体。
其中研究最多的是二氧化钛在光催化氧化过程中的应用。
当物质所具有的尺寸属于纳米级别(<100nm),其特殊的表面效应和体积效应决定了其具有特殊的化学性质。
由于纳米颗粒表面原子数与其总原子数之比随粒径变小而急剧增大,表面原子的晶场环境和结合能与内部原子大相径庭,从而使其具有很大的化学活性。
另外,纳米颗粒因其表面原子周围缺少相邻原子会存在许多悬空键,具有不饱和性质,这些因素将导致纳米颗粒的特殊吸附现象,反应活性和催化性质。
纳米二氧化钛催化剂由于其特殊的表面状态和表面能,具有很高的活性和吸附能力是一种性能优良的催化剂。
纳米材料的制备可分为物理方法和化学方法两大类。
物理方法包括机械研磨法、沉积法和熔融法等,其中最常见的为机械粉碎法。
物理方法通常能耗大、成本高、尺寸可控性差,可取之处在于所得材料的微晶结构较为完善、表面缺陷相对较小。
化学方法在微粒粒度、粒度分布、微粒表面控制方面有一定优越性,主要包括:化学气相沉积法、液相法、溶胶—凝胶法、固相反应法、辐射合成法。
1.纳米二氧化钛的制备纳米二氧化钛的合成方法很多中溶胶—凝胶法以其工艺简单、反应温度低、能耗小、且引入杂质的可能性小、制得的产品粒度小、纯度高、分散性好等优点,成为合成超细二氧化钛的主要方法。
溶胶—凝胶技术是指金属的有机或无机化合物经过溶液、溶胶、凝胶而固化,再经热处理而成为氧化物或其他固体化合物的方法,所需要的烧结温度比传统的固相反应法低200~500℃。
采用溶胶—凝胶法制备纳米二氧化钛,选择钛酸丁酯作为前驱物,令其均匀混合于无水乙醇中并发生水解与缩聚反应,形成稳定的溶胶体系,溶胶再经过陈化转变为凝胶,最后对凝胶进行热处理得到超细的二氧化钛颗粒。
TiO_2基复合纳米材料的制备及其光催化性能研究
TiO_2基复合纳米材料的制备及其光催化性能研究面对日益严重的能源短缺问题和环境污染问题,寻找一种能够高效利用太阳能降解有机污染物的光催化剂成为当前研究的热点。
在众多光催化剂中,TiO<sub>2</sub>光催化材料表现出较高的催化活性,且其物理化学性质稳定、无毒副作用、费用低廉。
然而,传统的TiO<sub>2</sub>材料吸收光谱范围窄,禁带宽度较宽(3.2eV),只能被紫外光激发,对可见光的利用率较低。
因此,TiO<sub>2</sub>光催化材料的改性研究的重点在于拓宽其光响应范围,提高对可见光的吸收能力,使其充分利用太阳光。
基于此,本文将过度金属氧化物与TiO<sub>2</sub>复合,制备具有p-n结结构的复合纳米材料,并以典型有机污染物亚甲基蓝、邻氯苯酚以及可挥发性污染物(VOCs)的光催化降解实验考察各改性材料的光催化性能。
本文选取p型半导体NiO和Co<sub>3</sub>O<sub>4</sub>对TiO<sub>2</sub>进行改性,缩小TiO<sub>2</sub>的禁带宽度,提高对可见光的吸收能力,并通过构建p-n异质结形成半导体复合界面的内电场,抑制光生电子和空穴的复合,提高电子传输效率,从而提高纳米材料的光催化效率。
本文主要研究内容及结果如下:(1)水热法合成了NiO/TiO<sub>2</sub>复合纳米材料,通过TEM和HRTEM表征结果说明合成的NiO/TiO<sub>2</sub>光催化剂为平均直径180nm的棒状纳米材料,尺寸均匀且结构稳定,主要暴露晶面为锐钛矿型TiO<sub>2</sub>的101晶面和NiO的200晶面。
tio2光催化原理
tio2光催化原理
TiO2光催化作用是指利用二氧化钛(TiO2)作为催化剂,在
紫外光或可见光照射下,产生光生电子和光生空穴,从而产生一系列光化学反应的过程。
具体的光催化原理如下:
1. 紫外光或可见光照射下,TiO2表面的价带顶部电子会被能
级较高的光子激发,从价带向导带跃迁,形成光生电子,同时产生光生空穴。
2. 光生电子具有很高的还原能力,可与氧气或水中的氧还原剂发生反应,从而产生氢氧离子或超氧自由基等活性氧物种。
3. 光生空穴则具有很高的氧化能力,能与水中的水分子发生反应,产生羟基自由基(•OH),这是一种强氧化剂,可对有机
污染物进行氧化降解。
4. 光生电子和光生空穴还会在TiO2表面进行寿命较短的复合
反应,产生一系列高级氧化物种(如过氧化氢、过氧硫酸根离子等),进而参与光化学反应。
5. 这些高级氧化物种可与有机污染物发生氧化、光降解等反应,将有机污染物分解为无害的小分子或低毒化合物,从而起到净化水和空气环境的作用。
通过控制光照强度、催化剂的类型和剂量、溶液pH值等条件,可以调节TiO2光催化反应的速率和效果。
此外,TiO2光催化
也具有无需添加外部化学试剂、操作简单、无二次污染等优点,因此在环境净化、光催化降解有机废水、大气污染治理等方面具有广泛的应用前景。
二氧化钛光催化技术介绍
納米二氧化鈦光催化技術介紹納米光催化採用二氧化鈦(TiO2)半導體的效應,啟動材料表面吸附氧和水分,產生活性氫氧自由基(OH.)和超氧陰離子自由基(O2-),從而轉化為一種具有安全化學能的活性物質,起到礦化降解環境污染物和抑菌殺菌的作用。
納米二氧化鈦(TiO2)光催化利用自然光即可催化分解細菌和污染物,具有高催化活性、良好的化學穩定性、無二次污染、無刺激性、安全無毒等特點,且能長期有益於生態自然環境,是最具有開發前景的綠色環保催化劑之一。
無毒害的納米TiO2催化材料,充分發揮抗菌、降解有機污染物、除臭、自淨化的功能,這類環保型功能材料實施方便、應用性強,能實用到生活空間的多種場合,發揮其多功能效應,成為我們生活環境中起長期淨化作用的環保材料。
光催化原理- 什麼是光催化光催化[Photocatalyst]是光 [Photo=Light] +催化劑[catalyst]的合成詞。
主要成分是二氧化鈦(TiO2),二氧化鈦本身無毒無害,已廣泛用於食品,醫藥,化妝品等各種領域。
光催化在光的照射下會產生類似光合作用的光催化反應(氧化-還原反應,產生出氧化能力極強的自由氫氧基和活性氧,這些產物可殺滅細菌和分解有機污染物。
並且把有機污染物分解成無污染的水(H2O)和二氧化碳(CO2),同時它具有殺菌、除臭、防汙、親水、防紫外線等功能。
光催化在微弱的光線下也能做反應,若在紫外線的照射下,光催化的活性會加強。
近來, 光催化被譽為未來產業之一的納米技術產品。
- 光催化反應原理TiO2當吸收光能量之後,價帶中的電子就會被激發到導帶,形成帶負電的高活性電子e-,同時在價帶上產生帶正電的空穴h+。
在電場的作用下,電子與空穴發生分離,遷移到粒子表面的不同位置。
熱力學理論表明,分佈在表面的h+可以將吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水體中存在的氧化劑中最強的,能氧化並分解各種有機污染物(甲醛、苯、TVOC等)和細菌及部分無機污染物(氨、NOX等),並將最終降解為CO2、H2O 等無害物質。
TiO2纳米结构、复合及其光催化性能研究共3篇
TiO2纳米结构、复合及其光催化性能研究共3篇TiO2纳米结构、复合及其光催化性能研究1TiO2纳米结构、复合及其光催化性能研究随着环境污染日益严重,光催化技术逐渐成为一种重要的治理手段。
其中,TiO2因其良好的光催化性能,在光催化领域中得到了广泛应用。
近年来,随着纳米技术的发展,研究人员开始尝试制备TiO2纳米结构及其复合材料,以提高其光催化性能。
本文将就TiO2纳米结构、复合及其光催化性能进行探讨。
TiO2是一种广泛应用于光催化领域的半导体材料。
其中,纳米级TiO2颗粒具有更高的比表面积和更好的光催化性能。
通过控制TiO2颗粒的形貌和尺寸,可以进一步提高其光催化性能。
目前,制备TiO2纳米颗粒的方法主要有溶胶-凝胶法、水热法、气-液界面法等。
其中,溶胶-凝胶法是最常用的制备方法之一。
通过将钛酸四丁酯、乙醇等原料混合后,进行溶胶-凝胶、干燥、煅烧等步骤,即可制备纳米级TiO2颗粒。
研究表明,通过控制煅烧温度和时间,可以控制TiO2颗粒的尺寸和形貌。
例如,较高温度和较长时间会导致颗粒尺寸增大,形貌由球形转变为椭球形或纺锤形等。
除了纳米颗粒外,掺杂和复合是另一种提高TiO2光催化性能的有效手段。
掺杂主要是通过将其他元素掺入TiO2晶格中,以改变其电子结构,提高光催化性能。
目前常用的掺杂元素包括银、氮、碳等。
复合则是将TiO2与其他材料复合,以提高其光催化稳定性和性能。
常用的复合材料包括金属氧化物、石墨烯、聚合物等。
对于掺杂TiO2,研究发现,掺杂银元素可以增加TiO2的光催化活性和稳定性。
由于银元素具有良好的表面等离子共振吸收效应,可促进TiO2的光吸收和电子传输。
同时,掺杂氮和碳元素可以缩小TiO2带隙,增强光吸收效果。
对于复合TiO2,研究发现,纳米级TiO2颗粒与金属氧化物复合,可以提高其光吸收和电子传输效果,从而提高光催化性能。
总体而言,制备TiO2纳米结构、掺杂和复合是提高TiO2光催化性能的有效手段。
二氧化钛光催化材料研究现状与进展
二氧化钛光催化材料研究现状与进展二氧化钛(TiO2)作为一种重要的半导体光催化材料,在环境治理、能源转化和新能源开发方面具有广泛的应用潜力。
本文将介绍二氧化钛光催化材料的研究现状和进展。
目前,二氧化钛光催化材料的研究主要集中在可见光响应和光催化活性的提高上。
传统的二氧化钛主要响应紫外光,而可见光区域占了太阳光的大部分能量,因此实现可见光响应是提高二氧化钛光催化性能的重要途径之一一种常用的策略是通过掺杂其他元素来实现可见光响应。
例如,掺杂氮、碳等非金属元素可以改变二氧化钛的带隙结构,使其能够吸收可见光。
此外,过渡金属氧化物(如Fe2O3、WO3等)和半导体(如Bi2O3、ZnO等)的掺杂也可以改善二氧化钛的可见光催化性能。
这些掺杂可以提高二氧化钛的吸光能力,增加光生电子-空穴对的产生,从而提高光催化活性。
另一种策略是通过结构调控来提高二氧化钛的光催化性能。
例如,将二氧化钛构筑成纳米结构或多孔结构,可以增加其比表面积和光吸收能力,提高光催化反应的效率。
此外,采用复合材料可以进一步提高二氧化钛的光催化性能。
例如,将二氧化钛与其他半导体、金属纳米粒子等复合,可以形成协同效应,提高光生电子-空穴对的产生和利用效率。
在二氧化钛光催化材料的应用方面,除了环境治理和能源转化外,还包括新能源开发领域。
例如,可通过二氧化钛光催化材料将太阳能转化为化学能,实现光电催化制氢。
此外,二氧化钛光催化还可以应用于电化学合成、光催化合成等方面。
总的来说,二氧化钛光催化材料的研究已经取得了显著的进展。
通过掺杂和结构调控等方法可以实现二氧化钛对可见光的响应,并提高光催化活性。
未来的研究可以继续挖掘二氧化钛光催化材料的潜力,拓展其在环境治理、能源转化和新能源开发方面的应用。
二氧化钛光催化技术介绍
纳米二氧化缺光催化技荷介^纳米光催化探用二氧化金太(TiO2)半^髓的效鹿启攵勤材料表面吸附氧和水分,走生活性氢氧自由基(OH.)和超氧陪雕子自由基(02-), ^而^化舄一希重具有安全化孥能的活性物筲起到碳化降解璞境污染物和抑菌杀殳菌的作用。
纳米二氧化金太(TiO2)光催化利用自然光即可催化分解^菌和污染物,具有高催化活性、良好的化孥穗定性、照二次污染、照刺激性、安全照毒等特黑占,且能畏期有益於生熊自然璞境,是最具有^畿前景的^色璞保催化蒯之一。
然毒害的纳米TiO2催化材料,充分畿撞抗菌、降解有^污染物、除臭、自浮化的功能,是^璞保型功能材料^施方便、雁用性弓鱼,能^ 用到生活空^的多重埸合,畿撞其多功能效废,成舄我仍生活璞境中起畏期浮化作用的璞保材料。
光催化原理-什麽是光催化光催化[Photocatalyst ]是光[Photo二Light] +催化蒯[catalyst]的合成羞司。
主要成分是二氧化金太(Ti02),二氧化金太本身照毒照害,已腐泛用於食品,髻桑,化片攵品等各希重令臭域。
光催化在光的照射下畲走生^似光合作用的光催化反雁(氧化-遢原反雁,走生出氧化能力桎弓鱼的自由氢氧基和活性氧,是些走物可^M^菌和分解有檄污染物。
亚且把有檄污染物分解成照污染的水(H20)和二氧化碳(C02),同畤它具有杀殳菌、除臭、防汗、^水、防紫外^泉等功能。
光催化在微弱的光%泉下也能做反底若在紫外#泉的照射下光催化的活性畲加逾近来,光催化被餐舄未来走棠之一的纳米技彳桁走品。
-光催化反雁原理TiO2富吸收光能量之彳爰,僵带中的雷子就畲被激畿到^带,形成带^雷的高活性雷子e-,同畤在僵带上走生带正雷的空穴h+。
在雷埸的作用下,雷子典空穴畿生分雕,暹移到粒子表面的不同位置。
熟力孥理言禽表明,分怖在表面的h+可以将吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水髓中存在的氧化蒯中最弓鱼的,能氧化亚分解各重有^污染物(甲醛、苯、TVOC等)和^菌及部分照檄污染物(氨、NOX 等),亚将最^降解舄CO2、H2O 等照害物鼻由於OH自由基封反废物^乎MB®性,因而在光催化中起著〉夬定性的作用。
Tio2的光催化性能研究
TiO2的光催化性能研究摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。
关键字:二氧化钛光催化光催化剂,俗称钛白粉,多用于光触媒、化妆品,能靠紫外二氧化钛,化学式为TiO2线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
1 TiO的基本性质21.1结晶特征及物理常数物性:金红石型锐钛型结晶系:四方晶系四方晶系相对密度:3.9~4.2 3.8~4.1折射率: 2.76 2.55莫氏硬度:6-7 5.5-6电容率:114 31熔点:1858 高温时转变为金红石型晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949线膨胀系数:25℃/℃a轴:7.19X10-6 2.88?10-6c轴:9.94X10-6 6.44?10-6热导率: 1.809?10-3吸油度:16~48 18~30着色强度:1650~1900 1200~1300颗粒大小:0.2~0.3 0.3功函数:5.58eV2TiO的光催化作用22.1光催化作用原理二氧化钛是一种N型半导体材料,锐钛矿相TiO的禁带宽度Eg =3.2eV,由2半导体的光吸收阈值λg与禁带宽度E g的关系式:λg (nm)=1240/Eg(eV)上时,价带中的电子就会发生跃迁,可知:当波长为387nm的入射光照射到TiO2形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。
在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。
光催化剂TiO2
封底
谢谢
13
TiO2光催化剂的掺杂改性
引入:尽管TiO2是目前已知所有半导体材料中光催化反应活
性最高的,但是迄今为止,文献报道TiO2光催化反应的量子效 率都还是很低,也就是说绝大部分光子在反应中不能够被利用 ,所以提高TiO2的催化活性是多相光催化技术推广应用的重要 任务。此外,由于TiO2的带隙高(锐钛矿3.20eV和金红石 3.03eV),所以只有光线的辐射能大于其带隙才能够在光催化 反应中被利用,而太阳光中只有很小的一部分满足这样的能量 要求,基于这些原因,掺杂或改性TiO2光催化剂以达到对可见 光的利用和提高其活性是很有必要的,国内外科技工作者对此 进行了大量的研究。 改性Ti02光催化剂的方法主要有:金属掺杂改性、金属表面修 饰、半导体复合、染料表面修饰等。近年来的一些研究表明以 非金属掺杂改性同样具有高的效率并且显示出可见光活性,这 些方法包括氮掺杂、碳掺杂改性以及F、S元素等掺杂改性。
光强度的影响
光照强度和催化效果有直接关系。因为单位体积内有效 光子数是影响反应速率的直接因素。光照强度越高时,单 位体积内所接受的入射光子数越多,在催化剂表面产生的 活性物种越多,反应自然就快。但光强度也不是无限制的 越高越好。当光子的利用率达到最大时,过多的光子无法 得到利用。从经济角度出发,能源的过渡浪费也是不可取 的。另外,TiO2的加入量、光波长、氧浓度的变化等都对 光催化降解反应有影响。
金属掺杂改性
金属离子掺杂是利用物理或化学方法,将金属离子 引入到TiO2晶格结构内部,从而在其晶格中引入新 电荷、形成缺陷或改变晶格类型,影响光生电子和 空穴的运动状况、调整其分布状态或者改变TiO2的 能带结构,最终导致TiO2的光催化活性发生改变。 合理的金属离子掺杂可使TiO2光吸收能力提高、TiO2 表面对目标反应物的吸收增加、电子和空穴复合率 降低,从而提高TiO2的光催化性能。
二氧化钛复合材料的研究进展
二氧化钛复合材料的研究进展庄晨晨(台州学院医药化工学院,浙江,台州)摘要:二氧化钛具有独特的光物理和光化学性质,在光学材料、光电化学和光电池、光催化降解有机物治理环境污染等方面具有广泛的应用前景。
一直以来,二氧化钛的各种复合材料都是研究界的关注热点。
本文对二氧化钛的合成制备、膨胀石墨/ 二氧化钛复合材料及纳米TiO2/环境矿物复合材料的制备与应用进行了综述,并展望了其发展前景。
关键词:二氧化钛;复合材料;膨胀石墨;纳米;研究进展1 引言近年来,随着全球环境污染的日益严重,光催化剂材料一直是材料学及催化科学研究的热点.在光催化领域,TiO2因其具有成本低廉,高的化学稳定性,强氧化性等特点而成为使用最多的光催化剂,以TiO2为主的材料在光催化氧化有机污染物方面得到了广泛的研究. 0但TiO2是一种宽带隙半导体(3.2eV)只能吸收占太阳光谱大约4%的紫外辐射(=387.5nm),另外,光生电子和空穴复合几率很高,导致TiO2光生载流子利用效率低。
为克服单一TiO2存在的缺陷,复合材料的研究及应用日益受到重视.近年来,研究者们在针对单一TiO2量子效率低、比表面积小、吸附性差和在光催化后催化剂分离困难等缺点进行复合材料研究方面投入大量精力,并取得一些成果,在一定程度上推进了TiO2光催化技术的工业化进程,对TiO2进行金属阳离子掺杂、贵金属修饰、半导体复合、有机染料分子或者窄带隙半导体敏化以及表面还原处理等方法,可以引入杂质或缺陷,使半导体的禁带内尝试施主能级从而改善TiO2半导体材料其光催化活性。
本文主要讨论膨胀石墨/ 二氧化钛复合材料和纳米TiO2/环境矿物复合材料的制备、性质与应用。
2 TiO2的制备以钛酸丁酯为前躯体,异丙醇为溶剂,放入高压釜中,并在120℃的烘箱中加热,以此创造一个高温、高压反应环境,使前驱物在溶剂中溶解,进而成核、生长,最终形成具有一定粒度和结晶形态的晶粒。
本方法分两步:第一步是制备钛的氢氧化物凝胶,反应体系有四氧化钛+氨水和钛醇盐+水;第二步是将凝胶转入高压釜内,升温(<250℃),在高温、高压的环境,使难溶或不溶的物质溶解,并且重结晶生成纳米TiO2 粉体。
纳米TiO2光催化材料简介及光催化机理毕业设计
纳米TiO2光催化材料简介及光催化机理毕业设计目录摘要 ................................................... 错误!未定义书签。
Abstract ............................................... 错误!未定义书签。
1.文献综述 (1)1.1 纳米TiO光催化材料简介及光催化机理 (1)2光催化材料简介 (1)1.1.1 纳米TiO21.1.2 TiO光催化的基本原理 (1)21.2 提高光催化性能的改性方法及原理 (3)1.2.1 过渡金属元素掺杂 (3)1.2.2 稀土元素掺杂 (4)1.2.3 非金属元素掺杂 (4)制备方法 (5)1.3 掺杂TiO21.3.1 共沉淀法 (5)1.3.2 浸渍法 (6)1.3.3 W/O型微乳液法 (6)1.3.4 固相反应法 (6)1.3.5 溶胶凝胶法溶胶一凝胶法 (7)1.4 金属离子掺杂改性TiO的原理及影响因素 (7)2的光催化机理 (8)1.4.1 金属离子掺杂 TiO21.4.2 金属离子掺杂改性TiO光催化性能的影响因素 (9)21.5 TiO2光催化技术在环境净化方面的应用 (11)1.5.1 水环境有机污染物的去除 (11)1.5.2 空气净化 (12)1.5.3 高效杀菌 (12)1.6 本课题研究的意义及内容 (12)1.6.1本课题研究的意义 (12)1.6.2本课题研究的内容 (13)2 实验方法 (15)2.1 设计及实验流程图 (15)2.2 仪器与试剂 (16)2.2.1 实验仪器 (16)2.2.2 分析测量仪器 (16)2.2.3 化学试剂和原材料 (16)2.2.4 初始化学试剂的配制 (17)2.3 凝胶的制备及条件的选择 (18)2.3.1 TiO凝胶的制备 (18)2凝胶的制备 (19)2.3.2 M/TiO22.4 粉末的制备 (19)2.5 粉末的光催化降解实验方法 (19)2.6 粉末的表征 (20)3.实验结果及讨论 (21)3.1 焙烧温度的影响及优选 (21)3.2 不同金属掺杂的影响及优选 (21)3.3 掺杂量的影响及优选 (22)3.4 不同反应pH的影响及优选 (23)3.5 表征数据的处理及分析 (23)3.5.1 (23)3.5.2 (23)3.5.3 (23)4 结论 (24)5 谢辞 (27)6 参考文献 (26)7.附录 (28)1.文献综述1.1 纳米TiO2光催化材料简介及光催化机理1.1.1 纳米TiO2光催化材料简介自从1972年日本Fujisima和Honda报道了TiO2电极上电解水现象后,半导体光催化引起了国际化学、物理学和材料学等领域科学家的广泛关注。
钼酸铋基光催化剂的研究进展
283管理及其他M anagement and other钼酸铋基光催化剂的研究进展潘 杰,莫创荣*,谭 顺,王依霖,黄丽珍(广西大学,广西 南宁 530000)摘 要:钼酸铋(Bi 2MoO 6)因是一种稳定、高效的光催化剂,而引起广泛的关注。
但其存在光生电子-空穴对容易复合、分离效率低以及对可见光吸收效率比较低等问题,而阻碍了在环境修复中的应用。
因此,已经有大量的研究致力于解决这些缺点,本文综述过去增强钼酸铋光催化剂性能的已开发策略。
包括近年来Bi 2MoO 6光催化剂的制备方法以及改性方法,并展望今后钼酸铋的发展。
关键词:光催化剂;钼酸铋;制备方法;改性研究中图分类号:O643.36 文献标识码:A 文章编号:11-5004(2021)02-0283-2 收稿日期:2021-01作者简介:潘杰,男,生于1994年,广西梧州人,汉族,硕士,研究方向:高级氧化技术。
通讯作者:莫创荣,男,广西南宁人,副教授,博士,研究方向:环境规划与管理。
光催化技术是一项高效、低能耗、无二次污染的绿色技术,是处理有机物废水很有前景的技术。
1972年Fujishima 和Honda 以TiO 2作为电极在紫外光照射下,发现水分解产生氢气和氧气,从此打开了光催化的大门。
在实际中使用紫外灯光耗能高,如果能充分利用太阳光,可以降低成本。
实际中太阳光中的紫外光不足5%,而可见光占比较多,所以希望光催化剂能够吸收更多的可见光。
可见光型光催化剂相继被开发,如Bi 系、Ag 系、Zn 等。
由于Bi 系光催化剂合适的带隙(2.5eV ~2.8eV)、无毒、低成本、高化学稳定性等优点,成为光催化领域的研究热点。
Bi 2MoO6属于铋系光催化剂的一种最经典的材料,具有α、β和γ三种晶体结构。
其中,γ-Bi 2MoO 6是低温下结构稳定的唯一层状Aurivillius 结构。
MoO 6层呈八面体构型且共用角类钙钛矿结构,与(Bi 2O 2)2+层以交替的方式堆叠形成γ-Bi 2MoO 6。
pyrite-结构tio_2的光学性质
pyrite-结构tio_2的光学性质TiO2 是一种常见的金属氧化物,具有多种多样的结构和性质。
其中一种常见的结构是六方结构的pyrite。
在本文中,我将详细探讨pyrite-TiO2 的光学性质。
1.常见的光学性质:光学性质是材料的重要性质之一,对于使用光的材料非常关键。
Pyrite-TiO2 在光学性质上有以下特点:- 透明性:Pyrite-TiO2 在可见光范围内具有较高的透明性。
这意味着它可以让可见光通过,几乎不会吸收光线。
- 折射率:Pyrite-TiO2 的折射率较高,约为2.7-2.9、折射率是指光线在通过材料时的弯曲程度,较高的折射率意味着光线会被材料更强烈地弯曲。
- 反射率:Pyrite-TiO2 的反射率较低。
反射率是指光线从材料表面反射的程度,较低的反射率意味着材料吸收了更多的光线。
- 散射性:Pyrite-TiO2 在可见光范围内具有较低的散射性,也就是说光线通过材料时不会被分散。
2.常见的光谱性质:光谱性质是指材料对不同波长的光的吸收和发射行为。
Pyrite-TiO2 在光谱性质上有以下特点:- 吸收谱:Pyrite-TiO2 在紫外光谱范围内具有高的吸收能力。
这意味着它可以有效地吸收紫外线,而在可见光范围内的吸收相对较低。
- 发射谱:Pyrite-TiO2 在受激发后可以发射可见光。
这称为发射谱,其强度和波长可以被控制和调节。
这一特性使得它在光电器件中具有广泛的应用前景。
3.光学应用:基于上述的光学性质和光谱性质,Pyrite-TiO2 在许多光学应用中都有潜在的用途:- 光催化:Pyrite-TiO2 在光催化反应中展示出优异的性能。
它可以利用吸收的光能将其转化为化学反应能量,从而催化各种反应,如水分解和有机物降解。
- 光伏:Pyrite-TiO2 在太阳能电池中具有应用潜力。
它可以通过吸收光能将其转化为电能,从而实现电能的产生。
然而,目前对于pyrite-TiO2 在光伏应用中的研究还相对较少。
《Bi2MoO6基异质结光催化剂的可控合成及催化增效机制研究》范文
《Bi2MoO6基异质结光催化剂的可控合成及催化增效机制研究》篇一一、引言随着全球能源需求的持续增长和环境污染的日益严重,光催化技术因其具有清洁、高效、可再生的特点,成为了当前研究的热点领域。
Bi2MoO6作为一种典型的层状化合物,具有良好的光学性质和稳定的化学性质,是光催化领域的优秀候选材料。
然而,单一的Bi2MoO6光催化剂在应用中仍存在一些不足,如光生电子-空穴复合率高、催化活性有待提高等。
为了解决这些问题,本文通过可控合成Bi2MoO6基异质结光催化剂,并对其催化增效机制进行研究。
二、Bi2MoO6基异质结光催化剂的可控合成1. 材料选择与制备本文选择Bi2MoO6为基体材料,通过引入其他半导体材料(如TiO2、WO3等)构建异质结。
采用水热法、溶胶-凝胶法等合成方法,通过控制反应温度、时间、pH值等参数,实现对Bi2MoO6基异质结光催化剂的可控合成。
2. 结构表征与性能分析通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对合成的Bi2MoO6基异质结光催化剂进行结构表征。
结果表明,成功合成了具有特定结构的异质结光催化剂,且具有较高的结晶度和良好的分散性。
此外,通过紫外-可见光谱(UV-Vis)和光电流测试等手段对催化剂的光学性能和光电性能进行分析,发现异质结的引入有效提高了光催化剂的吸光性能和光电流强度。
三、催化增效机制研究1. 异质结界面电荷转移在Bi2MoO6基异质结光催化剂中,不同半导体材料之间的界面处形成了异质结。
当光照射到催化剂表面时,光生电子和空穴分别在两种材料间发生转移。
这种界面电荷转移有效抑制了光生电子-空穴的复合,提高了催化剂的量子效率。
2. 增强光吸收能力引入其他半导体材料可以拓宽Bi2MoO6的光吸收范围,使其能够更好地利用太阳光中的可见光和近红外光。
此外,异质结的形成还可以提高催化剂的光吸收强度,进一步提高其光催化性能。
3. 表面反应活性提高Bi2MoO6基异质结光催化剂具有较大的比表面积和丰富的活性位点,有利于提高表面反应活性。